
universe

Review

Effective String Description of the Confining Flux Tube at
Finite Temperature

Michele Caselle

����������
�������

Citation: Caselle, M. Effective String

Description of the Confining Flux

Tube at Finite Temperature. Universe

2021, 7, 170. https://doi.org/

10.3390/universe7060170

Academic Editor: Dmitri Antonov

Received: 29 April 2021

Accepted: 26 May 2021

Published: 30 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Physics, University of Turin & INFN, Via Pietro Giuria 1, I-10125 Turin, Italy;
michele.caselle@unito.it

Abstract: In this review, after a general introduction to the Effective String Theory (EST) description of
confinement in pure gauge theories, we discuss the behaviour of EST as the temperature is increased.
We show that, as the deconfinement point is approached from below, several universal features of
confining gauge theories, like the ratio Tc/

√
σ0, the linear increase of the squared width of the flux

tube with the interquark distance, or the temperature dependence of the interquark potential, can be
accurately predicted by the effective string. Moreover, in the vicinity of the deconfinement point the
EST behaviour turns out to be in good agreement with what was predicted by conformal invariance
or by dimensional reduction, thus further supporting the validity of an EST approach to confinement.

Keywords: Lattice Gauge Theories; Effective String Theories

1. Introduction

One of the most powerful tools we have for studying the non-perturbative behaviour
of confining Yang–Mills theories is the so called “Effective String Theory” (EST) in which the
confining flux tube joining together a quark-antiquark pair is modeled as a thin vibrating
string [1–5]. As explicitly stated in its definition, this model is only an effective large
distance description of the flux tube and not an exact non-perturbative solution of the
Yang–Mills theory; however, due to the peculiar features of the string action, it turns out to
be a highly predictive effective model, whose results can be successfully compared with the
most precise existing Monte Carlo simulations in Lattice Gauge Theories (LGTs). Besides its
predictive power EST is also interesting from a theoretical point of view, since it is a perfect
laboratory to test more refined nonperturbative descriptions of Yang–Mills theories, guess
new hypotheses, and drive our understanding of the role of string theory in this game.

EST also plays an important role from a phenomenological point of view since it
can be used to model the glueball spectrum of QCD [6] or to model the large distance
(non-perturbative) part of the interquark potential in heavy quarkonia [3,4] or the onset of
the deconfinement transition [7].

The simplest, Lorentz invariant, EST is the Nambu–Goto model [1,2] which will be the
main subject of this review. The Nambu–Goto action can be considered in this framework
as a first order approximation of the actual EST describing the non-perturbative behavior
of the Yang–Mills theory. The most interesting result of the last ten years of EST studies is
that this first order approximation works remarkably well and agrees within the errors,
in the large distance limit, with almost all the existing Monte Carlo simulations for all the
confining models that have been studied (with only a few exceptions [8,9]). We shall see
below that this is not by chance and that it is instead a direct consequence of the peculiar
nature of the EST and of the strong constraining power of Lorentz invariance in this context.

This also explains the impressive universality of the infrared regime of confining gauge
theories (with only a mild dependence on the number of space–time dimensions, exactly
as predicted by the Nambu–Goto model), which show essentially the same behaviour for
the interquark potential, the deconfinement temperature and the glueball spectrum. This
universality of LGT results, which holds for models as different as the three dimensional
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gauge Ising model and the four dimensional SU(3) Yang–Mills theory was in the past one of
the major puzzles in the Lattice community and is now understood only as a side effect of
the impressive effectiveness of the Nambu–Goto approximation. It is thus only an apparent
universality and all the details on the gauge group are expected to be encoded in the higher
order EST corrections beyond Nambu–Goto. It is thus clear why a lot of efforts have been
devoted in these last years to the identification and modellization of these non-universal
higher order corrections. The hope is that, since they depend on the particular type of
confining gauge theory, they could shed some light on specific non-perturbative properties
of the theory, for instance on the non-pertubative degrees of freedom (say, instatons or
monopoles) driving confinement in the model.

Due to the asymptotic large-distance nature of the EST expansion, the optimal regime
in which one can observe higher order terms is for short interquark separations, much
smaller than the length of the Polyakov loops. In the string language this is known as the
“open string channel”.

While the above choice is the one which is more often used, it is easy to see, looking at
the explicit expression of the EST partition function that the opposite choice (the “closed
string channel” in string language) in which the short direction is the one with periodic
boundary conditions, is better suited to observe higher order corrections. In the language
of Lattice Gauge Theories this is the high temperature regime of the theory in which the
temperature is just below the deconfinement transition. This is exactly the limit in which
we are interested in this review.

While there are already several good general reviews on EST (see for instance [10–12]),
the goal of this paper is to focus specifically on the EST behaviour in the high-T regime
and to discuss how our understanding of Lattice Gauge Theory in this limit can help us
to constrain and check EST. In particular an important reason of interest of this limit is
that, in LGTs with a second order deconfinement transition, several non trivial results on
EST can be obtained using renormalization group arguments of the type discussed in [13].
This approach, which allows to map a (d + 1) dimensional LGT into a suitably chosen d
dimensional spin model, will be one of the main focus of the present review.

In this review we shall mainly focus on two observables: The interquark potential
and the flux tube width which in the past years played a major role in the progress of
our understanding of EST properties. In particular, the review is organized as follows.
Section 2 will be devoted to a brief introduction to Lattice Gauge Theories. In Section 3
we shall discuss the main properties of EST (and in particular of the Nambu–Goto action)
with a particular focus on the high-T behaviour. Then in Section 4 we shall compare EST
predictions for the interquark potential in the high temperature regime with Monte Carlo
simulations. In Section 5 we shall address the important issue of the width of the flux
tube and discuss its behaviour in the high-T regime. Section 6 will be devoted to a few
concluding remarks.

2. A Brief Summary of LGTs

The natural context in which we can see the EST at work is in the confining phase
of Lattice Gauge Theories (LGT) where EST is expected to describe the large distance
behaviour of the confining flux tube joining a quark antiquark pair. Thus in order to fix
notations and to better understand the physics behind EST it is useful to briefly discuss
a few basic notions of LGTs. We refer the interested reader to the book [14] for a more
detailed introduction to LGTs.

The partition function of a gauge theory in D spacetime dimensions with gauge group
G regularized on a lattice is

Z =
∫

∏ dUµ(~x, t) exp{−β ∑
p

Re Tr(1−Up)}, (1)

where Uµ(~x, t) ∈ G is the link variable at the site (~x, t) = (x1, .., xD−1, t) in the direction µ
and Up is the product of the links around the plaquette p.
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We shall denote in the following with Nt (Ns) the lattice size in the time (space)
direction and assume for simplicity Ns to be the same for all the space-like directions. We
shall use d to denote the number of space-like directions in the lattice; thus D = d + 1. To
simplify notations we shall fix the lattice spacing a to 1 and neglect it in the following.

As it is well known the link variable Uµ(~x, t) is not gauge invariant and only the traces
of ordered products of link variables along closed paths are gauge invariant.

The simplest choice is the Wilson loops

W(γ) = Tr ∏
(~x,t)∈γ

Uµ(~x, t) (2)

where the product is assumed to be ordered along the path γ. If we choose the path γ to be
a rectangle of size R× L (with L along the Euclidean “time” direction and R along one of
the space directions) then it is possible to relate the expectation value of W(R× L) to the
interquark potential as:

V(R) = − lim
L→∞

1
L

log〈W(R, L)〉. (3)

The idea behind this definition is that we may think of 〈W(R, L)〉 as the free energy
due to the creation at the time t0 of a quark and an antiquark pair which are instantaneously
moved at a distance R from each other, keep their position for a time L and finally annihilate
at the instant t0 + L.

A confining LGT will be characterized by a linearly rising potential and thus, according
to Equation (3) we expect for the Wilson loop an “area law” of this type

〈W(R, T)〉 ∼ e−σ0RT+p(R+T)+k. (4)

The area term is responsible for confinement while the perimeter and constant terms
are non universal contributions related to the discretization procedure. The physically
important quantity is the coefficient of the area term which represents the lattice estimate
of the string tension.

2.1. Finite Temperature LGTs

It is important at this point to stress that Equation (3) above, only defines the so called
zero temperature interquark potential and accordingly σ0 is the zero temperature string
tension. If one is interested in the finite temperature behaviour of the interquark potential
and in the possible presence of a deconfinement transition at some finite temperature Tc
the lattice regularization prescription must be modified.

The lattice regularization of a generic Quantum Field Theory (QFT) at a non-zero,
finite temperature T can be obtained by imposing periodic boundary conditions in the
time direction for the bosonic field (and antiperiodic for fermionic ones). With this choice a
lattice of size (Nsa)d(Nta) represents the regularized version of a system of finite volume
V = (Nsa)d at a finite temperature T = 1/Nta. Even if in the rest of the paper, having
set a = 1, we shall systematically use Nt and Ns as a shorthand notation for Nta and Nsa,
in the above formulas we restored the lattice spacing to emphasize the correct dimensions
of the physical quantities we are defining. The compactified “time” direction at this point
does not have any longer the meaning of time (recall that we are describing a system at
equilibrium in the canonical ensemble) but its size Nta is instead a measure of the inverse
temperature of the system Nta = 1/T.

As a consequence, in a finite temperature setting, the Wilson loop cannot be related
any more to the interquark potential as we did above. Fortunately we have a different
way to construct a quantity with the same physical interpretation. In a finite temperature
setting one can define a new class of gauge invariant observables which are usually called
Polyakov loops.
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A Polyakov loop P(~x) is the trace of the ordered product of all time-like links with the
same space-like coordinates; this loop is closed owing to the periodic boundary conditions
in the time direction:

P(~x) = Tr
Nt

∏
z=1

Ut(~x, z). (5)

In a pure LGT the Polyakov loop has a deep physical meaning, since its expecta-
tion value is related to the free energy of a single isolated quark. Hence the fact that the
Polyakov loop acquires a non-zero expectation value can be considered as a signature of
deconfinement and the Polyakov loop is thus the order parameter of such a deconfine-
ment transition.

The value βc(Nt) of this deconfinement transition in a lattice of size Nt = 1/T in the
compactified time direction can be used to define a new physical observable Tc which is
obtained by inverting βc(Nt). We obtain in this way, for each value of β, the lattice size in the
time direction (which we shall call in the following Nt,c(β)) at which the model undergoes
the deconfinement transition and from this the critical temperature Tc(β) ≡ 1/Nt,c(β) as a
function of β.

2.2. The Finite Temperature Interquark Potential

In a finite temperature setting the interquark potential can be extracted by looking at
the correlations of Polyakov loops in the confined phase. The correlation of two loops P(x)
at a distance R and at a temperature T = 1/Nt (which we denote with the subscript Nt in
the expectation value) is given by

〈P(x)P†(x + R)〉Nt ≡ e−
1
T V(R,T) = e−NtV(R,T), (6)

where we consider the free energy V(R, Nt) as a proxy for the interquark potential at a
finite temperature T

V(R, T) = − 1
Nt

log 〈P(x)P†(x + R)〉Nt . (7)

If we assume also for this correlator an area law similar to the one discussed above for
the Wilson loop:

〈P(x)P†(x + R)〉Nt ∼ e−σ(T)NtR, (8)

then we find again a confining behaviour for the interquark potential. In the above equation
σ(T) denotes this time the finite temperature string tension. As we shall see below σ(T)
is a decreasing function of T and vanishes exactly at the deconfinement point [15,16].
Following the definitions of the previous section, we may identify V(R) with the T → 0
limit of V(R, T) and σ0 with the T → 0 limit of σ(T).

It is interesting to notice that the observable Equation (6) is similar to the expectation
value of an ordinary Wilson loop except for the boundary conditions, which are in this case
fixed in the space directions and periodic in the time direction. The resulting geometry
is that of a cylinder, which is topologically different from the rectangular geometry of the
Wilson loop.

2.3. Center Symmetry and the Polyakov Loop

The major consequence of the periodic boundary conditions in the time direction is
the appearance of a new global symmetry of the action, with symmetry group the center C
of the gauge group (i.e., ZN if the gauge group is SU(N)).

This symmetry can be realized, for instance, by acting on all the timelike links of a
given space-like slice with the same element W0 belonging to the center of the gauge group.

Ut(~x, t)→ W0 Ut(~x, t) ∀~x, t fixed . (9)
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it is easy to see that the Wilson action is invariant under such transformation. while the
Polyakov loop transforms as:

P(~x)→ W0 P(~x); (10)

thus it is a natural order parameter for this symmetry. It will acquire a non zero expectation
value if the center symmetry is spontaneously broken.

Thus we see that the Polyakov loop is at the same time the order parameter of the
deconfinement transition and of the center symmetry: The deconfinement transition in a
pure lattice gauge theory coincides with the center symmetry breaking phase transition. In
the deconfined phase the center symmetry is spontaneously broken while in the confining
phase it is conserved.

2.4. The Svetitsky–Yaffe Conjecture

The peculiar role played by the Polyakov loops in the above discussion, suggests to
use some kind of effective action for the Polyakov loops, integrating out the spacelike links
of the model, to study the deconfinement transition and, more generally, the physics of
finite temperature LGT. Such a construction corresponds in all respects to a “dimensional
reduction”: Starting from a (d + 1) dimensional LGT we end up with an effective action for
the Polyakov loops which will be a d dimensional spin model with global symmetry the
center of the original gauge group.

While the explicit construction of such an effective action may be cumbersome and can
be performed only as a strong coupling expansion, some general insight on the behaviour
of the model can be deduced by simple renormalization group arguments [13] .

Indeed, even if as a result of the integration over the original gauge degrees of freedom
we may expect long range interactions between the Polyakov loops, it can be shown [13]
that these interactions decrease exponentially with the distance. Thus, if the phase transition
is continuous, in the vicinity of the critical point the fine details of the interactions can be
neglected, and the model will belong to the same universality class of the simplest spin
model, with only nearest neighbour interactions, sharing the same symmetry breaking
pattern. For instance, the deconfinement transition of the SU(2) LGT in (2 + 1) and (3 + 1)
dimensions, which in both cases is continuous, belong to the same universality class as,
respectively, the two dimensional and the three dimensional Ising models.

This mapping has several important consequences:

(a) The ordered (low temperature) phase of the spin model corresponds to the deconfined
(high temperature) phase of the original gauge theory. This is the phase in which
both the Polyakov loop, in the original LGT, and the spin, in the effective spin model,
acquire a non-zero expectation value.

(b) As for the operator content of the two models, the Polyakov loop is mapped into
the spin operator, while the plaquette is mapped into the energy operator of the
effective spin model. Accordingly, the Polyakov loop correlator in the confining
phase, from which we extract the interquark potential, is mapped into the spin–spin
correlator of the disordered, high temperature phase of the spin model

(c) Thermal perturbations from the critical point in the original gauge theory, which
are driven by the plaquette operator, are mapped into thermal perturbation of the
effective spin model which are driven by the energy operator. Notice, however, the
change in sign: An increase in temperature of the original gauge theory corresponds
to a decrease of the temperature of the effective spin model.

A major consequence of this correspondence is that, in the vicinity of the decon-
finement point, the behaviour of the interquark potential is strongly constrained and
thus it represents, as we shall see, a powerful tool to test the predictions of the effective
string model.
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2.5. EST Versus LGT: The Roughening Transition

As we mentioned above, a confining interquark potential implies an area law for the
Wilson loop (at zero temperature) or for the correlator of two Polyakov loops (at finite
temperature). A nice feature of the lattice regularization is that such an area law naturally
arises from a strong coupling expansion of these observables. Order by order in the strong
coupling parameter β, the expectation value of a Wilson loop (or of a Polyakov loops corre-
lator) is described by the sum over all the possible surfaces bordered by the Wilson loop
with a weight proportional to their area. As it is well known this expansion diverges at the
so called “roughening point” [3,4,17,18], well before the values of β for which a continuum
limit of the lattice regularization can be approached. This roughening transition is due
to the vanishing of the stiffness of the strong coupling surfaces and has a very insightful
explanation from an EST point of view. The vanishing of the surface stiffness ensures that
the surfaces bordered by the Wilson loop can freely fluctuate as actual continuum-like
surfaces and that they are not any more anchored to the crystallographic planes of the
lattice and can thus be described by a set of (D− 2) real degrees of freedom representing
their transverse displacement from the Wilson loop plane [17,18]. Upon quantization these
transverse coordinates will become the (D − 2) bosonic degrees of freedom of the EST
description which we shall discuss in the next section [3,4]. These massless quantum
fluctuations delocalize the flux tube which acquires a nonzero width, which diverges
logarithmically as the interquark distance increases [19]. We shall discuss in detail this
issue in Section 5.

We may summarize all these observations by saying that the LGT regularization
strongly supports an Effective String Theory description of confinement. We shall devote
the next section to a precise formulation of this EST.

3. Effective String Description of the Interquark Potential

Even if a rigorous proof of quark confinement in Yang–Mills theories is still missing,
there is little doubt that confinement is associated to the formation of a thin string-like flux
tube [1–5], which generates, for large quark separations, a linearly rising confining potential.

This picture is strongly supported by the lattice regularization of Yang–Mills theories
where, as we have seen in the previous section, the vacuum expectation value of Polyakov
loops correlators is given by a sum over certain lattice surfaces which can be considered as
the world-sheet of the underlying confining string.

This picture led Lüscher and collaborators [3,4], more than forty years ago, to propose
that the dynamics of the flux tube for large interquark distances could be described by a
free massless bosonic field theory in two dimensions.

S[X] = Scl + S0[X] + . . . , (11)

where the classical action Scl describes the usual perimeter-area term, X denotes the two-
dimensional bosonic fields Xi(ξ1, ξ2), with i = 1, 2, . . . , D− 2, describing the transverse
displacements of the string with respect the configuration of minimal energy, ξ1, ξ2 are the
coordinates on the world-sheet and S0[X] is the Gaussian action

S0[X] =
σ0

2

∫
d2ξ(∂αX · ∂αX) (12)

We are assuming an Euclidean signature for both the worldsheet and the target space.
This is the first example of an effective string action and, as we shall see below, it is

actually nothing else than the large distance limit of the Nambu–Goto string written in the
so called “physical gauge”.

This free Gaussian action can be easily integrated, leading in the T → 0 (Nt → ∞)
limit to a correction to the linear quark-anti-quark potential, known as Lüscher term [3,4]

V(R) = σ0R + c− π(D− 2)
24R

+ O(1/R2) . (13)
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We shall neglect from now on the constant c which is related to the perimeter term
discussed in the previous section.

It is instructive to look at this correction for finite values of Nt. Thanks to the Gaussian
nature of the action the integration can be easily performed also for finite values of Nt,
for instance using the ζ function regularization, leading to the following result [20–22]:

V(R, T) = σ0R +
D− 2

Nt
log(η(q)), (14)

where η denotes the Dedekind eta function (see the Appendix A):

η(τ) = q
1

24

∞

∏
n=1

(1− qn) ; q = e2πiτ ; τ = i
Nt

2R
. (15)

To understand the meaning of this result it is useful to expand it in the two limits
R� Nt and R� Nt.

R� Nt, low temperature

V(R, T) = σ0R +

[
− π

24R
+

1
Nt

∞

∑
n=1

log(1− e−πnNt/R)

]
(D− 2), (16)

R� Nt, high temperature

V(R, T) = σ0R +
D− 2

Nt

[
− πR

6Nt
+

1
2

log
2R
Nt

+
∞

∑
n=1

log(1− e−4πnR/Nt)

]
. (17)

From a string point of view these limits correspond to the open and closed string
channels, respectively. They are related by a modular transformation τ → −1/τ

η
(

e−2πi/τ
)
=
√
−iτη

(
e2πiτ

)
. (18)

which is known as open-closed string duality.
In the LGT language the two limits correspond, respectively, to the low temperature

and the high temperature limits where, obviously, with high temperature we mean a value
of T large, but still below the deconfinement temperature, so that a confining flux tube still
exists between the quark and the antiquark and an EST picture is still a valid description of
the infrared behaviour of the theory.

It is interesting to see that the EST corrections have a completely different behaviour
in the two regimes.

At low temperature we find a rather mild correction, which is dominated by the
Lüscher term mentioned above (the first term in Equation (16)) while the remaining terms
vanish in the Nt → ∞ limit.

On the contrary at high temperature we find that the dominant term is linear in R and
gives a large correction, which increases as the temperature increases, and counteracts the
string tension.

V(R, T) ∼
(

σ0 −
π(D− 2)

6N2
t

)
R. (19)

We shall see below that, if one studies the whole Nambu–Goto action this correction
represents only the first term of an infinite set of corrections which can be resummed
as follows

V(R, T) ∼ σ0

√
1− π(D− 2)

3σ0N2
t

R ≡ σ(T)R (20)
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where we have introduced a temperature dependent string tension σ(T) defined as:

σ(T) = σ0

√
1− π(D− 2)

3σ0N2
t

(21)

Intuitively, what is happening in this regime is that the fluctuations induced by
the temperature tend to reduce the confining force of the flux tube. As the temperature
increases, fluctuations get stronger and stronger and finally, at the deconfinement point,
the flux tube is destroyed by the fluctuations and there is no more a confining potential
between the quark and the antiquark.

It is exactly this finite temperature regime the main focus of the present review, and it
is clear now the reason of this choice: In this regime string effects are magnified and can be
more easily compared with numerical simulations.

3.1. The Nambu–Goto Action

It is easy to see that the free Gaussian action discussed above cannot be a consistent
effective string description of the flux tube since it does not fulfill the constraints imposed
by the Lorentz invariance of the original gauge theory (we shall discuss this issue in more
detail below). The simplest possible EST fulfilling these constraints is the well known
Nambu–Goto action [1,2]. As we shall see below the free Gaussian action of Equation (12)
is actually the first term of the large distance expansion of the NG action. This explains
why, notwithstanding its lack of consistency, its predictions, and in particular the Lüscher
term, were initially found in good agreement with LGT simulations of several different
gauge models [23–30], and why, with the improvement of LGT simulations, this agreement
was later shown to hold only for for Polyakov loops correlators with large separations and
higher order corrections (in particular the next to leading Nambu–Goto term that we shall
discuss below) started to be detected [31–46]. Notice that some of the first studies on EST
were actually performed in the three dimensional Ising model. In these simulations instead
of the interquark potential one studies the interface free energy which is also described
by the EST, but with different boundary conditions. In particular this is the case of the
following papers: [23,31,36,45].

In the Nambu–Goto model [1,2], the string action SNG is :

SNG = σ0

∫
Σ

d2ξ
√

g , (22)

where g ≡ det gαβ and

gαβ = ∂αXµ ∂βXµ (23)

is the induced metric on the reference world-sheet surface Σ and, as above, we denote the
worldsheet coordinates as ξ ≡ (ξ0, ξ1). This term has a simple geometric interpretation: It
measures the area of the surface spanned by the string in the target space and is thus the
natural EST realization of the sum over surfaces weighted by their area in the rough phase
of the LGT model which we discussed above. This action has only one free parameter:
The string tension σ0 which has dimension (length)−2. Once this is fixed, say, by a fit to
the large distance behaviour of the lattice data at zero temperature, there are no more free
degrees of freedom in the model which is thus, as we shall see, highly predictive.

In order to perform calculations with the Nambu–Goto action one has first to fix
its reparametrization invariance. The standard choice is the so called “physical gauge”.
In this gauge the two worldsheet coordinates are identified with the longitudinal degrees
of freedom of the string: ξ0 = X0, ξ1 = X1, so that the string action can be expressed
as a function only of the (D − 2) degrees of freedom corresponding to the transverse
displacements, Xi, with i = 2, . . . , (D− 1) which are assumed to be single-valued functions
of the worldsheet coordinates. We shall comment below on the problems of this gauge
fixing choice, but let us assume it for the moment and let us see what are the consequences.
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With this gauge choice the determinant of the metric can be written as

g = 1 + ∂0Xi∂0Xi + ∂1Xi∂1Xi

+∂0Xi∂0Xi∂1Xj∂1X j − (∂0Xi∂1Xi)2 (24)

and the Nambu–Goto action can then be written as a low-energy expansion in the number
of derivatives of the transverse degrees of freedom of the string which, by a suitable
redefinition of the fields, can be rephrased as a large distance expansion. The first few
terms in this expansion are

S = Scl +
σ0

2

∫
d2ξ

[
∂αXi · ∂αXi +

1
8
(∂αXi · ∂αXi)2 − 1

4
(∂αXi · ∂βXi)2 + . . .

]
, (25)

and we see, as anticipated, that the first term of the expansion is exactly the Gaussian
action of Equation (12). From a Quantum Field Theory point of view the free Gaussian
action is the two dimensional Conformal Field Theory (CFT) of the D− 2 free bosons which
represent the transverse degrees of freedom.

Remarkably enough, it can be shown that all the additional terms in the expan-
sion beyond the Gaussian one combine themselves so as to give an exactly integrable,
irrelevant perturbation of the Gaussian term [47], driven by the TT̄ operator of the
D− 2 free bosons [48].

Thanks to this exact integrability, the partition function of the model can be written
explicitely [49,50]. The explicit expression for the partition function was actually found
even before this TT̄ study, first by using the constraints imposed by the open-closed string
duality [51] and then using a d-brane formalism [52]. For the Polyakov loop correlator in
which we are interested here (similar expressions can be obtained also for the other relevant
geometries: The Wilson loop [42] and the interface [53]), the expression in D space–time
dimensions is, using the notations of [51,52]:

〈P(x)∗P(y)〉 =
∞

∑
n=0

wn
2Rσ0Nt

En

(
π

σ0

) 1
2 (D−2)( En

2πR

) 1
2 (D−1)

K 1
2 (D−3)(EnR) (26)

where R denotes, as above, the interquark distance R = |x− y|, wn the multiplicity of the
closed string states which propagate from one Polyakov loop to the other, and En their
energies which are given by

En = σ0Nt

√
1 +

8π

σ0N2
t

[
− 1

24
(D− 2) + n

]
. (27)

At large distance the correlator is dominated by the lowest state

E0 = σ0Nt

√
1− π(D− 2)

3σ0N2
t

= σ(T)Nt. (28)

where σ(T) is the finite temperature string tension defined in Equation (21).
The weights wn can be easily obtained from the expansion in series of q of the infi-

nite products contained in the Dedekind functions which describes the large-R limit of
Equation (26) (see reference [52] for a detailed derivation):(

∞

∏
r=1

1
1− qr

)D−2

=
∞

∑
k=0

wkqk. (29)

For D = 3 we have simply wk = pk, the number of partitions of the integer k, while
for D > 3 these weights can be straightforwardly obtained from combinations of the pk.
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These weights diverge exponentially as n increases; in particular we have:

wn ∼ exp

(
π

√
2(D− 2)n

3

)
. (30)

Again, it is easy to see that the large distance expansion of Equation (26) exactly
matches the free Gaussian result of Equation (14).

3.2. The Nambu–Goto Action at Finite Temperature

Looking at Equation (26) we see that the NG partition function coincides with a a
collection of free particles of mass En and multiplicity wn in D− 1 dimensions. In the large
distance limit only the lowest of these masses survives and the Polyakov loop correlator is
described by an expression of this type

〈P(x)∗P(y)〉 ∼
(

1
R

) 1
2 (D−3)

K 1
2 (D−3)(E0R) (31)

Remarkably enough this is exactly what we would expect from the Renormalization
Group analysis of Section 2.4. In fact, if we interpret the Polyakov loop as a spin of a
D− 1 dimensional spin model with global symmetry the center of the gauge group, then,
if the symmetry group is discrete (like for instance for the SU(2) or SU(3) LGTs), in the
symmetric phase of the model the spin–spin correlator is described by an isolated pole in
the Fourier space, which, when transformed back to the coordinate space becomes exactly
the expression of Equation (31). In this interpretation, the mass E0 becomes the inverse of
the correlation length ξ of the system. We thus find (see Equation (28)).

1
ξ
= σ0Nt

√
1− π(D− 2)

3σ0N2
t

=
σ0

T

√
1− π(D− 2)T2

3σ0
(32)

It is interesting to look at the large distance expansion of the interquark potential
in this regime. As anticipated the dominant term is linear in R and is proportional to
the finite temperature string tension σ(T). On top of this we have a set of subleading
corrections, (encoded in the asymptotic expansion of the modified Bessel function K D−3

2
)

which represent a specific signature of the Nambu–Goto action.
Using the large distance expansion of the modified Bessel function Kn(z):

Kn(z) =
√

π

2z
e−z
[

1 +
4n2 − 1

8z
+

16n4 − 40n2 + 9
128z2 +O(z−3)

]
(33)

and the definition of the interquark potential in Equation (7) we find, using Equation (31)

V(R, Nt) ∼ RTE0 +
T(D− 2)

2
ln R +

T(1− (D− 3)2)

8RE0
· · · (34)

where we dropped an irrelevant additive constant, and neglected terms which are sup-
pressed by higher powers of (RT)−1. In the following we shall mainly study models in
D = 3 dimensions. In this case the above expression becomes:

V(R, Nt) ∼ Rσ(T) +
T
2

ln R +
T2

8Rσ(T)
· · · (35)

In the framework of the Nambu–Goto approximation one can also derive an esti-
mate of the critical temperature Tc,NG measured in units of the square root of the string
tension

√
σ0 [7,54,55]

Tc,NG√
σ0

=

√
3

π(D− 2)
(36)
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given by the value of the ratio Tc,NG√
σ0

for which the lowest mass E0 vanishes. We can thus
rewrite the energy levels as a function of T/Tc,NG as

En =
(D− 2)πT2

c,NG

3T

√
1− T2

T2
c,NG

[
1− 24n

D− 2

]
. (37)

In this framework the correlation length can be written as:

ξ(T) =
3T

(D− 2)πT2
c,NG

1√
1− T2

T2
c,NG

. (38)

which diverges as expected at the critical point. This result is particularly interesting from
a conceptual point of view since it makes explicit in which sense the Nambu–Goto action
is an approximation of the “correct” effective string action. The critical index that we find:
ν = 1/2 is the typical signature of the mean field approximation. We know from the
Svetitsky-Yaffe analysis that this cannot be the correct answer and that the critical index
should instead be that of the symmetry breaking phase transition of the (D− 1) dimensional
spin model with symmetry group the center of the original gauge group. For instance,
for the (3 + 1) dimensional SU(2) model we expect to find ν = 0.6299709(40) [56,57] which
is the value for the three dimensional Ising model or for the (2 + 1) SU(2) LGT we expect
ν = 1, which is the cirtical index for the 2D Ising model. Besides this anomalous dimension,
the major effect of the mean field approximation is, as usual, a shift in the critical temperature.
Indeed, while the Nambu–Goto prediction for the deconfinement temperature is in four

dimensions Tc,NG =
√

3σ0
2π ∼= 0.691

√
σ0 the actual value for the SU(2) deconfinement

transition is slightly larger: Tc/
√

σ0 = 0.7091(36) [58]. The fact that this shift is so small is
another evidence of the goodness of the Nambu–Goto approximation. It is interesting to
notice that this agreement holds for all the LGTs which have been studied [58–62], both
in (2 + 1) and in (3 + 1) dimensions, with the only exception of the 3D U(1) model [63],
for which, in fact, a different EST is expected [8,64], with a dominant contribution from the
extrinsic curvature term.

3.3. Beyond Nambu–Goto

We have seen from the above analysis that the Nambu–Goto action alone cannot be
the end of the story. Finding hints of the correct EST action beyond the Nambu–Goto term
is one of the major open challenges in this context. We shall devote this subsection and the
following to a brief discussion of this issue.

As a starting point let us notice that, from an effective action point of view, there is no
reason to constrain the coefficients of the higher order terms in Equation (25) to the values
displayed there. In principle, one should instead assume the most general form for such an
effective action

S = Scl +
σ0

2

∫
d2ξ
[
∂αXi · ∂αXi + c2(∂αXi · ∂αXi)2 + c3(∂αXi · ∂βXi)2 + . . .

]
, (39)

and then fix the coefficients order by order using Monte Carlo simulations or experimental
results. However, one of the most interesting results of the last few years is that the ci
coefficients are not arbitrary, but must satisfy a set of constraints to enforce the Poincarè
invariance of the lattice gauge theory in the D dimensional target space. These constraints
were first obtained by comparing the string partition function in different channels, using
the open-closed string duality [51,65]. It was later realized [66–70] that they could be
directly obtained as a consequence of the Poincaré symmetry of the underlying Yang–Mills
theory. A similar result, for the first few coefficients of the EST, was obtained also in the
Polchinski-Strominger [5] formalism in [71,72] (See also [73–77] for a debate on these results
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and a discussion on the extension of this analysis to higher orders and its interplay with
conformal invariance).

In fact, even though the SO(D) invariance of the original theory is spontaneously
broken by the formation of the classical string configuration around which one is expanding,
the effective action should still respect this symmetry through a non-linear realization in
terms of the transverse fields Xi [66–70]. These non-linear constraints induce a set of
recursive relations among the coefficients of the expansion, which strongly constrain the
coefficients ci. In particular, it can be shown that the terms with only first derivatives
coincide with the Nambu–Goto action to all orders in the derivative expansion [78] and
that the first correction with respect to the Nambu–Goto action appears at order 1/R7 in
the large R expansion. This explains why the Nambu–Goto model has been so succesfull
over these last forty years to describe the infrared behaviour of confining gauge theories
despite its simplicity and why the deconfinement temperature predicted by Nambu–Goto
is so close to the one obtained in Monte Carlo simulations.

This argument can be better understood looking at the original string action, before fix-
ing the reparametrization invariance from a geometric point of view. In this framework the
effective action is obtained by the mapping

Xµ :M→ RD, µ = 0, · · · , D− 1 (40)

of the two-dimensional surface describing the worldsheet of the stringM into the (flat)
D-dimensional target space RD of the gauge theory and then imposing the constraints due
to Poincaré and parity invariance of the original theory. This approach was discussed in
detail in reference [11]. The first few terms of the action compatible with these constraints
must be combinations of the geometric invariants which can be constructed from the
induced metric gαβ = ∂αXµ∂βXµ. These terms can be classified according to their “weight”,
defined as the difference between the number of derivatives minus the number of fields Xµ

(i.e., as their energy dimension). Due to invariance under parity, only terms with an even
number of fields should be considered. The first term of this expansion, which is also the
only term of weight zero, corresponds, as we mentioned above, to the Nambu–Goto action

SNG = σ0

∫
d2ξ
√

g , (41)

At weight two, two new contributions appear:

S2,R = γ
∫

d2ξ
√

gR, (42)

S2,K = α
∫

d2ξ
√

gK2, (43)

where α, and γ are two new free parameters,R denotes the Ricci scalar constructed from
the induced metric, and K is the extrinsic curvature, defined as K = ∆(g)X, with

∆(g) =
1√
(g)

∂a[
√
(g)gab∂b] (44)

the Laplacian in the space with metric gαβ. In principle the new free parameters α, and γ
should be fixed, as we did for σ0 by comparing with Monte Carlo simulations. However
this process is simplified by the observation that the term proportional to R is a topo-
logical invariant in two dimensions and, since in the long-string limit in which we are
interested one does not expect topology-changing fluctuations, its contribution can be
neglected [11]. On the other hand, the term in Equation (43) which contains K2 leads to
quantum corrections which decrease exponentially with the interquark distance [8] and are
thus negligible unless the ratio between the coefficient of the K2 term and the string tension
grows to infinity in the continuum limit and this seems to occur only in very few models
like, for instance, the d = 3 U(1) model [8]. In these cases an Effective String Theory model,
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which combines Nambu–Goto and extrinsic curvature was proposed long ago in [79,80].
The resulting EST is usually known as “rigid string”. We shall comment on this issue in the
last section of the review.

At weight four, two new combinations can be constructed and correspondingly two
new parameters appear, leading in the open string channel (i.e., in the low T regime) to
the 1/R7 correction mentioned above. Notice, however, that also these new parameters
are not completely free and can be constrained using a bootstrap type of analysis [81]
in the framework of the S-matrix approach pioneered by [47]. As above they should in
principle be fixed by comparing with Monte Carlo estimates of the potential; however,
their contributions appear at such a high level that they are very difficult to detect even
with the most precise numerical simulations.

3.4. Beyond Nambu–Goto: The Boundary Term

Another term which must be considered beyond the Nambu–Goto one is the so called
“boundary term”. This term has an origin different from those discussed above. It is due
to the presence of the Polyakov loops at the boundary of the correlator. The classical
contribution associated to this correction is the constant term c which appears in the
potential and that we have systematically neglected in the previous analysis. Beyond
this classical term we may find quantum corrections due to the interaction with the flux
tube. The main result in this context is that also these terms are strongly constrained by
Lorentz invariance

The first boundary correction compatible with Lorentz invariance is [82]:

b2

∫
dξ0

[
∂0∂1X · ∂0∂1X
1 + ∂1X · ∂1X

− (∂0∂1X · ∂1X)2

(1 + ∂1X · ∂1X)2

]
. (45)

with an arbitrary, non-universal coefficient b2. The lowest order term of the expansion of
Equation (45) is:

S(1)
b,2 = b2

∫
dξ0(∂0∂1X)2 (46)

The contribution of this term to the interquark potential was evaluated in [78] using
the zeta function regularization:

〈S(1)
b,2 〉 = −b2

π3Nt

60R4 E4(e−
πNt

R ) (47)

where E4 denotes the fourth order Eisenstein series (see the Appendix for definitions and
properties of these functions). In the standard low temperature (Nt � R) setting, this
amounts to a correction proportional to 1/R4 to the interquark potential, which turns out
to be the dominant correction term beyond Nambu–Goto in this regime and represents
a further obstacle to detect signatures of the “bulk” correction terms discussed in the
previous subsection.

Recent high precision Monte Carlo simulations [82–86] allowed to estimate b2 for a few
LGTs with remarkable precision. For the SU(2) model in (2 + 1) dimensions a boundary
correction was estimated even for the first string excitations [86]. Preliminary results
have been also obtained for the (3 + 1) dimensional SU(3) LGT [87,88] where, besides b2,
a tentative estimate of the next to leading term b4 is also reported. As expected these values
are not any more universal and represent the first hint of the fact that different LGTs are
described by different ESTs and that the information on the gauge group of the model and
the gluon content of the flux tube is somehow encoded in the effective string model.

At the same time the above discussion shows that this boundary term is the dominant
non universal correction beyond Nambu–Goto in this low T regime and it is clear that its
presence makes it almost impossible to detect the much weaker signatures of the “bulk”
correction terms discussed in the previous subsection.
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However, by performing a modular transformation (see the Appendix A) it is easy to
see that in the high temperature limit (i.e., R� Nt) this correction becomes

〈S(1)
b,2 〉 = −b2

4π3

15N3
t

E4(e
− 4πR

Nt ) (48)

and does not contain a term proportional to R and thus it does not give a correction to the
temperature dependent string tension σ(T).

This is a second important reason of interest of the high temperature regime which is
the focus of this review. In this limit the boundary term does not interfere with the “bulk”
EST corrections beyond Nambu–Goto which can thus be directly observed with Monte
Carlo simulations.

4. Comparison with Monte Carlo Simulations

In the past years the predictions of EST for the interquark potential were tested with
Monte Carlo simulations of increasing precision in several different LGTs [23–46]. Most
of these tests were performed in the low temperature regime. However, as we have seen
in the previous sections, in order to have a complete understanding of EST and to test
its consistency under the open–closed string transformation, it is interesting to test EST
predictions also in the high temperature regime. This is the goal of this section in which we
shall report the results of a few papers in which EST was compared with high-T Monte
Carlo simulations.

We shall first discuss in detail, as an example, the SU(2) gauge theory in
(2 + 1) dimensions, which is the simplest non-abelian LGT and allows to reach high
precision results with a relatively small amount of computing power. Then, in the last
subsection, we shall briefly review the results obtained in other LGTs both in (2 + 1)
and in (3 + 1) dimensions.

4.1. LGT Observables

Let us first discuss a few combinations of Polyakov loop correlators which are partic-
ularly useful to address the comparison between EST predictions and LGT results in the
high temperature regime.

To simplfy notations let us define the Polyakov loop correlator as:

G(R, T) = 〈P(x)P†(x + R)〉Nt (49)

Following [30,33,89] it is particularly convenient to introduce the following quantities:

Q(R, T) = T ln
G(R, T)

G(R + 1, T)
, (50)

A(R, T) = R2 ln
G(R + 1, T)G(R− 1, T)

G2(R, T)
. (51)

Note that, in the continuum limit a → 0, Q(R, T) tends to the first derivative of
V(R, T) with respect to R:

lim
a→0

Q =
∂V
∂R

, (52)

so that it can be interpreted as a lattice version of (minus) the interquark force. On the
other hand, A(R, T) is a dimensionless quantity proportional to the discretized deriva-
tive of the force:

lim
a→0

A = −R2

T
∂2V
∂R2 . (53)
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These quantities are the finite temperature version of the observables introduced
in [30]. In particular Q(R, T) coincides in the low-T limit with the “force” F(R) of [30]
while A(R, T) is related to the “central charge” c(R) of [30] as follows

A(R, T) =
2

RT
c(R). (54)

Using Equation (35) we may estimate the large-R limit of these two observables for
D = 3 LGTs in the framework of the Nambu–Goto effective string model:

Q(R, T) ' σ(T) +
T

2R
− T2

8σ(T)R2 + · · · (55)

A(R, T) ' 1
2
− T

4σ(T)R
+ · · · (56)

The constraints on the EST discussed in Section 3.3 tell us that these expressions
for Q and A should be universal and should hold for any LGT (except, as usual, the 3d
U(1) LGT). Corrections to the EST beyond Nambu–Goto should only affect higher order
terms (the dots in the above Equations (55) and (56), and are expected to affect the finite
temperature string tension σ(T) only with corrections of the order of (T/Tc)7. In the next
section we shall compare this prediction with Monte Carlo simulations.

4.2. The Su(2) LGT in (2 + 1) Dimensions

The (2 + 1) dimensional SU(2) model has been the subject of several numerical efforts
in the last years; most of them, however, focused on the low T regime of the model. We shall
report here the results of the simulations discussed in [89] which were instead performed
at a relatively high (T = 3

4 Tc) temperature.
The only imput we need to fix our predictions is the zero temperature string tension

σ0. This can be fixed using for instance the results of [33] which we report here

√
σ0 '

1.324(12)
β

+
1.20(11)

β2 (57)

Simulations were perfomed at β = 9 for which we have σ0 = 0.0262(1) [33] on a lattice
of size 1202 × 8. For this value of β the critical tempearture is, almost exactly located at
Nt = 6 thus this choice of lattice sizes corresponds to a temperature T = 3

4 Tc. Polyakov
loop correlators were measured up to the distance of R = 19 lattice spacings. We report for
completeness the results of the simulations in Table 1 and refer the interested reader to [33]
for more details on the simulation settings and on the fitting protocol.

Table 1. Results for Q(r, T), as a function of the interquark distance R, for the (2 + 1) dimensional
SU(2) model at T = 3Tc/4, taken from [89].

R Q R Q R Q

2 0.037433(46) 8 0.02232(11) 14 0.01971(16)
3 0.030958(56) 9 0.02170(12) 15 0.01949(18)
4 0.027600(64) 10 0.02117(12) 16 0.01926(19)
5 0.025553(72) 11 0.02072(13) 17 0.01906(20)
6 0.024154(84) 12 0.02034(15) 18 0.01892(22)
7 0.023118(94) 13 0.02000(15) 19 0.01876(24)

Following Equation (55) the values of Q(R, T) are fitted with:

Q(R, T)|T=3Tc/4 = s +
b
R
+

c
R2 , (58)
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and the following best fit values for the parameters are found

s = 0.01530(37) b = 0.0668(58) c = −0.087(27)

with a reduced χ2
r = 0.75.

The universal correction in which we are interested are encoded in the parameter b
which according to the analysis discussed in the previous sections should be given by

b =
T
2
=

1
16

= 0.0625 ,

which turns out to be in remarkable agreement with the result of the fit.
This is further confirmed by the analysis of the A(R, T) values (which can be easily

obtained from the data reported in Table 1). These values are fitted with

A(R, T)|T=3Tc/4 = k− m
R

, (59)

finding
k = 0.528(28), m = −1.09(28), with χ2

red = 1.6,

which is again in perfect agreement with the expected value k = 1/2.
From the first fit we can extract the value σ(T) = 0.01530(37) for the finite temper-

ature string tension at T = 1/8. Using the value σ0 reported in Equation (57), we may
obtain a “Nambu–Goto” prediction for σ(T) using Equation (21), which turns out to be
σNG(T = 1/8) = 0.01605(6), at two standard deviations from the observed value. This
indicates, as already observed in [90], that for the (2 + 1) SU(2) LGT the Nambu–Goto
string represents a rather good approximation but, as the precision of the simulations
improves, small deviations start to be detected. These deviations are the signatures of the
(T/Tc)7 term mentioned above.

Finally, using the measured value of σ(T) it is possible to obtain predictions for the
subleading corrections in the two fits. One find for the c term in the first fit cNG ∼ −0.1216(5)
and for m in the second fit mNG = −1.946(8). Both values are similar to those extracted
from the fits, but not compatible within the errors. This small discrepancy agrees in sign
and magnitude with the analogous deviations from the Nambu–Goto ansatz observed
in [90] and summarized in the coefficient C3 evaluated there. We shall comment on these
deviations in the next section.

4.3. EST Predictions Versus Monte Carlo Results for Different LGTs

The same analysis was performed in [33] for the (2 + 1) SU(3) and SU(4) lattice
gauge theories and, using data obtained in [91], also in the case of the three dimensional
Ising gauge model for two different temperatures. We summarize the results for the fits to
Q(R.T) in Table 2.

Table 2. Results of the fits to Q(R, T) for various LGTs (listed in the first column), together with the expected values for the
best fit parameters according to the Nambu–Goto EST.

Gauge
Group Nt T/Tc s σNG(T) b bNG c cNG

SU(2) 8 3/4 0.01530(37) 0.01605(6) 0.0668(58) 0.0625 −0.087(27) −0.1216(5)
SU(3) 8 3/4 0.01884(44) 0.01946(6) 0.0612(74) 0.0625 −0.063(34) −0.1003(5)
SU(4) 8 3/4 0.01721(43) 0.01830(40) 0.0634(70) 0.0625 −0.063(32) −0.1070(20)

Z2 12 1/2 0.01485(2) 0.01487(6) 0.0414(8) 0.04167 −0.049(6) −0.058(1)
Z2 9 2/3 0.01137(11) 0.01067(6) 0.0522(40) 0.0556 −0.076(34) −0.145(1)

Looking at the table we can make a few interesting observations
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• All the models, except the one at the lowest temperature, show deviations in the fitted
value of σ(T) with respect to the Nambu–Goto prediction. These deviations are the
signatures of the terms beyond Nambu–Goto which must be included in the EST
action which we discussed in the previous section. They are exactly those needed to
match the critical index of the deconfinement transition which in this case is ν = 1
instead of the Nambu–Goto value ν = 1/2.

• The universal constant b is always compatible with the theoretical expectation. This
represents a remarkable consistency check of the whole EST construction.

• The constant c shows the same trend for all the models: It is similar to the expected
Nambu–Goto value, but always slightly smaller in magnitude. Most likely this
deviation is due to the fact that in the fit we are neglecting higher terms, and indeed
the first of them, the one proportional to 1/R3 , due to the expansion of the modified
Bessel function has the opposite sign with respect to the 1/R2 one and may explain
the decrease in magnitude of c.

Similar results are found fitting the A(R, T) function (see [33] for further details).
A similar analysis was also performed for the SU(2) model in (3 + 1) dimensions [92]

and (with a different set of observables) for SU(3) in [93]. In both cases two different
temperatures were tested and a good agreement with the Nambu–Goto predictions was
found for the lower one, while deviations were detected for the higher one, pointing to the
possible presence of terms in the EST beyond the Nambu–Goto one. Besides its physical
relevance, this extension to (3 + 1) dimensions is also interesting because the interquark
potential, as can be seen in Equation (34), shows a non-trivial dependece on the number of
space time dimensions which is precisely confirmed by the numerical simulations at the
lowest temperatures.

As a matter of fact this type of corrections in the (3 + 1) dimensional SU(3) models were
already observed more than twenty years ago when the first high precision determinations
of σ(T) were obtained [15,16]. The behaviour of σ(T) was very similar to the one predicted
by the Nambu–Goto action, but with small deviations in the vicinity of the deconfinement
point. Thes deviations led to a non-zero, even if small, value of the string tension σ(Tc) at
the critical point which had the effect of transforming the second order phase transition
predicted by the Nambu–Goto model into the first order deconfinement phase transition of
the SU(3) (3 + 1) dimensional model.

5. Width of the Confining Flux Tube at High Temperature

One of the most intriguing features of the EST picture of confinement is the logarith-
mic increase of the square width w2(R) of the flux tube as a function of the interquark
distance R [19].

σ0w2(R) =
1

2π
log

R
Rc

(60)

where Rc is known as “intrinsic width” and sets the scale of the logarithmic growth.
This logarithmic growth, which is commonly referred to as the “delocalization” of

the flux tube was discussed for the first time many years ago by Lüscher, Münster and
Weisz in [19] but it required several years of efforts before it could be observed in lattice
simulations. The first numerical results were obtained in abelian models [94–100] where,
thanks to duality, simulations can be performed more easily and later the flux tube width
was studied also in non abelian LGTs [87,88,101–111].

An important issue in this context is to understand the fate of the flux tube width
as the deconfinement transition is approached from below. It is important to stress that
delocalization and deconfinement are two deeply different conditions of the flux tube.
As we have seen in Section 2, deconfinement is characterized by the vanishing of the string
tension σ(T) and, accordingly, of the flux tube. The delocalization of the flux tube instead
coincides with the onset of the rough phase. Delocalization is a typical quantum effect.
It is a consequence of the Mermin-Wagner theorem which imposes the restoring in the
continuum limit of the translational symmetry for the fluctuations of the flux tube in the
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transverse directions. Intutively it amounts to say that we cannot fix deterministically
the trajectory of the flux tube but may only describe it as a probabilty distribution. It is
important to stress that, even if delocalized, the flux tube fully keeps its confining function.
The quantum fluctuations which drive the delocalization also influence the confining
potential (as the presence of Lüscher term indicates) but do not destroy it.

While the behaviour of the string tension σ(T) as the deconfinement temperature Tc
is approached from below is rather well understood, much less is known on the behaviour
of the flux tube thickness in this regime. This is an important issue from a physical point
of view since the interplay between delocalization and deconfinement could strongly
influence the transition from hadrons to free quarks as Tc is approached.

Similarly to what we did for the interquark potential, also this problem can be ad-
dressed by performing a modular transformation of the low temperature result. This was
done in [112] in the case of the free Gaussian action (i.e., the first order in the perturba-
tive expansion of the Nambu–Goto effective string) leading in the large R limit to the
following result:

σ0w2
lo =

R
4Nt

+
1

2π
log

Nt

Lc
− 1

π
e−2π R

Nt + · · · (61)

where Lc is a length scale which plays the role in this limit of the intrinsic width of
Equation (60) and the suffix lo is added to emphasize that this is only the leading order
(Gaussian) approximation of the true flux tube width.

We see that the large R behaviour of the square width changes completely and becomes
linear (with a coefficient 1

4σ0 Nt
) instead of logarithmic. This behaviour holds in principle

for any temperature T, but as T decreases it requires larger and larger values of R to
be observed. Similarly it is possible to show that for any fixed value of R the square
width smoothly converges toward the expected logarithmic behaviour as T decreases.
The threshold between the two behaviours is R ∼ 1/T.

In [112] this prediction was tested with a set of high precision Monte Carlo simulations
of the 3D gauge Ising models and only a partial agreement with Equation (61) was found.
For all the temperatures studied in [112] w2(R) was indeed a linearly increasing function
of R. However the coefficient of this linear behaviour was in general larger than the one
predicted by the effective string (except for the smallest temperature values) and, what is
more important, it seemed to diverge as the deconfinement point was approached (while
the coefficient 1

4σ0 Nt
converges instead to a finite value at the deconfinement point).

This discrepancy tells us that as the deconfinement transition is approached the leading
order approximation gets worse and worse and that, similarly to what happens for the
interquark potential, higher order terms must be included. The problem is that, while for
the interquark potential we have the exact solution to all orders, for the flux tube width only
the next to leading order is known [101,113,114]. This correction goes in the right direction
but is not enough to fill the gap between numerical data and theoretical expectations.

We shall see in the next section that the Svetitsky-Yaffe conjecture offers a powerful
tool to address this issue when one approaches the deconfinement transition and allows to
guess the resummation to all orders of the flux tube width for the Nambu–Goto effective
string. The complete answer for the leading term linear in R turns out to be [115–117]

w2(R) =
1

4σ(T)
RT (62)

where σ(T) is the temperature dependent string tension of Equation (21).
By expanding this expression in powers of T/Tc it is easy to see that both the leading

order w2
lo and the next to leading order of [101,113,114] fully agree with Equation (62).

The results for the Ising model of [112] agree with Equation (62) and a few years later,
the same behaviour was observed with a set of high precision simulations in the (3 + 1)
dimensional SU(3) model [104].
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To understand the origin of Equation (62) we should first define the LGT observables
which allows to evaluate the flux tube width, then address their dimensionally reduced
version, according to the Svetitsky-Yaffe projection and finally evaluate these expectation
values using the S-matrix approach. Let us address these issues step by step.

5.1. Definition of the Flux Tube Thickness

In a finite temperature setting the lattice operator which is used to evaluate the flux
through a plaquette p of the lattice is:

〈
φ(p; P, P′)

〉
Nt

=

〈
PP′† Up

〉
Nt

〈PP′†〉Nt

−
〈
Up
〉

Nt
(63)

where P, P′ are two Polyakov loops separated by R lattice spacings and Up is the operator
associated with the plaquette p. Different possible orientations of the plaquette p measure
different components of the flux. In the following we shall neglect this dependence which
plays no role in our analysis. The only information that we need is the position of the
plaquette. Let us define 〈

φ(p; P, P′)
〉

Nt
=
〈

φ(~h; R, Nt)
〉

where~h denotes the displacement of p from the P P′ plane. In each transverse direction,
the flux density shows a Gaussian like shape (see for instance Figure 2 of [94]). The width
of this Gaussian w is the quantity which is usually denoted as “flux tube thickness”:

w2(R, Nt) =
∑~h

~h2
〈

φ(~h; R, Nt)
〉

∑~h

〈
φ(~h; R, Nt)

〉 (64)

This quantity depends on the number of transverse dimensions and on the bare
gauge coupling β. Once β is fixed the only remaining dependences are on the interquark
distance R and on the inverse temperature Nt. By tuning Nt we can thus study the flux
tube thickness near the deconfinement transition.

5.2. Dimensional Reduction and the Svetitsky–Yaffe Approach

As we have seen in Section 2.4. In the vicinity of the deconfinement transition the
physics of a (d + 1) LGT can be described using an effective model in which the spacelike
links are integrated out and the only remaining degrees of freedom are the Polyakov loops.
The simplest examples of this effective mapping are the (2 + 1) SU(2) LGT and the (2 + 1)
Ising gauge model which have the same center Z2 and are thus both mapped into the 2D
spin Ising model. We shall use this case as an example in the following to simplify the
discussion. Using the correspondences discussed in Section 2.4 it is possible to construct the
dimensionally reduced projection of the operator which measures the flux tube thickness
which turns out to be a suitable ratio of three and two point correlators of the spin and
energy operators (see [115] for a detailed discussion of this mapping). In the particular
case of the 2D Ising model that we are using as an example this combination is:

〈σ(x1)ε(x2)σ(x3)〉
〈σ(x1)σ(x3)〉

(65)

to be evaluated in the high temperature phase and in zero magnetic field. Since we are
interested in the large distance behaviour of these correlators we can use the so-called Form
Factors approach (see [118] for an introduction to Form Factors and their application in the
context of the 2D Ising model without magnetic field).

A straightforward calculation leads to the following expression for the flux
distribution [115]

P(R, y) =
2πR

4y2 + R2
e−m
√

4y2+R2

K0(mR)
. (66)
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where y denotes the transverse direction, K0 is the modified Bessel function of order 0, m is
the mass of the 2D Ising model and a large mR limit is assumed.

From this flux distribution it is easy to extract the square of the flux tube
width as the ratio

w2(R) =

∫ ∞
−∞ dy y2 P(R, y)∫ ∞
−∞ dy P(R, y)

(67)

which, setting x = 2y/R amounts to evaluate

w2(R) =
R2

4

∫ ∞
−∞ dx x2

1+x2 e−2mr
√

1+x2∫ ∞
−∞ dx e−2mr

√
1+x2

1+x2

(68)

These integrals can be evaluated asymptotically in the large mR limit [115,116] leading
to the following result:

w2(R) ' 1
4

R
m

+ . . . . (69)

where the dots stay for terms constant or proportional to negative powers of R.
The last step in order to compare this result with Equation (62) is to give a meaning to

the Ising mass m in terms of LGT quantities.
This can be easily accomplished if we recall that the mass can be obtained from the

large R limit of the spin spin correlator, which according to the Svetitsky-Yaffe mapping
is the 2D limit of the expectation value of two Polyakov loops at distance R. Following
Equation (28) we can thus identify

m = σ(T)Nt (70)

from which we immediately obtain the result of Equation (62).
Similar arguments allow to obtain also estimates of the intrinsic width of the model [117].
The above analysis was performed in the case of the Ising model, but the argument is

completely general and the derivation of the large distance behaviour holds for any spin
model with a gap in the spectrum.

6. Open Issues and Concluding Remarks

In this review we focused in particular on the behaviour of the interquark potential
and of the flux tube width. There are, however, a few other observables which show a non
trivial behaviour at high-T and allow for non-trivial tests of EST. We could not discuss
them in detail in this review for lack of space and specific expertise but we briefly mention
them here and list a few relevant references which may help the interested reader to deepen
the subject.

• The deconfinement transition as a Hagedorn transition.
One of the more interesting consequences of the EST description of confinement is
that the deconfinement transition can be interpreted as a Hagedorn transition [119].
This can be understood (using a dual transformation) as a direct consequence of the
tachyonic singularity in the interquark potential [7]. This Hagedorn behaviour has
relevant consequences on the equation of state of pure gauge theories which can be
precisely tested using Monte Carlo simulations. In fact, in pure gauge theories the only
massive excitations in the confining phase are glueballs and the equation of state can
be accurately modeled in terms of a gas of these massive, non-interacting glueballs. If
one assumes a description of glueballs as closed color flux tubes (as for instance in the
Isgur-Paton model [6]) then one should expect a Hagedorn-like [119] stringy behaviour
of the glueball spectrum and as a consequence a highly non trivial temperature
dependence of pressure and entropy across the deconfinement transition. This effect
was observed for the first time in reference [120] for the SU(3) Yang–Mills theory in



Universe 2021, 7, 170 21 of 28

(3 + 1) dimensions, and later also in SU(N) theories in (2 + 1) dimensions [121] and in
the (2 + 1) dimensional SU(2) [122,123], finding always a very good agreement with
the expected Hagedorn behaviour.

• The spacelike string tension at high Temperature.
An interesting open issue in Lattice Gauge Theory is to understand and model the
behaviour of the so called “space–like string tension” [124–138] across the deconfine-
ment transition.
The space–like string tension is extracted from the correlator of space–like Polyakov
loops, i.e., Polyakov loops which lay in a space–like plane, orthogonal to the compact
time direction Nt. Due to their space–like nature these Polyakov loops do not play the
role of order parameter of deconfinement and the space–like string tension extracted
from them is different from the actual string tension of the model σ(T).
At low temperature the two string tensions coincide but as the temperature increases
they behave differently [124–127,139]. As we have seen σ(T) decreases as the de-
confinement temperature is approached and vanishes at the deconfinement point,
while the space–like string tension remains constant and then increases in the de-
confined phase [124–126]. The physical reason for this behavior is that the correlator
of two space–like Polyakov loops describes quarks moving in a finite temperature
environment. It can be shown that what we called space–like string tension is related
to the screening masses in hot QCD [128–134] and thus it does not vanish in the
deconfined phase.
An EST description of this behaviour has been recently obtained [140] using the
mapping between the Nambu–Goto action and the TT̄ deformation of the free bosonic
action. An important open issue in this context is to address the interplay of the
space–like string tension with the intrinsic width of the flux tube.

• EST and interfaces.
In this review we studied EST in two particular choices of boundary conditions for
the world sheet: Wilson loops (rectangular geometry) and Polyakov loop correlators
(cylindrical geometry). There is a third important case, the toroidal geometry, which
cannot be easily realized in non-abelian LGTs, but is pretty natural in three dimen-
sional abelian gauge theories. These models, thanks to the Kramers–Wannier duality
can be mapped into standard three dimensional spin models (the most relevant ex-
ample being the 3D gauge Ising model which is mapped into the three dimensional
Ising spin model). By suitably choosing the boundary conditions of the spin model
(for instance: Antiperiodic in the Ising case) in the low temperature phase one can
induce the formation of interfaces which can be described by EST with a toroidal
world sheet [31,36,141–146]. Interfaces in the spin model are in some sense the dual
of the Wilson loops in the gauge model. The partition function of the Nambu–Goto
string with this toroidal boundary conditions can be evaluated with the same tools
used for the Polyakov loop correlators [53]. The major reason of interest of this set-
ting is the absence of boundary terms. It is thus much easier to study higher order
terms of EST and in fact some of the most precise Monte Carlo studies of these terms
were obtained using interfaces in the 3D Ising model [45,146]. The analogy of the
high temperature regime in this context is obtained by “squeezing” the interface in
one direction. From the spin model point of view this is the regime in which one is
approaching dimensional reduction from three to two dimensions [147]. A systematic
comparison of EST predictions and Monte Carlo simulations in this regime is still
lacking and could lead to an interesting and original insight into EST behaviour.

• Interplay between the EST and the dual superconductor model of confinement.
In this review we introduced the EST, following the seminal papers of Lüscher and
collaborators, as a tool to describe the behaviour of Wilson loops in LGT beyond the
roughening transition. There is, however, a different, interesting, route which may
lead to an effective string description of confinement which was proposed long time
ago by Nielsen and Olesen [148], ’t Hooft [149], Mandelstam [150] and Polyakov [151].
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The proposal relies on the description of the QCD vacuum as a coherent state of
color magnetic monopoles or, equivalently, as a magnetic (dual) superconductor (for
a review see for instance [152–154]). According to this picture the (dual) Meissner
effect naturally leads to vortex like structures: The Abrikosov vortices [155] which
are very similar to the confining color flux tubes which are described by the EST. A
very interesting laboratory to address this picture is the 3D U(1) LGT for which it
can be shown, using a duality transformation, that confinement is indeed due to the
condensation of monopoles [156]. The remarkable success of this approach led to
conjecture that a similar mechanism could drive confinement also in non-Abelian
Yang–Mills theories [105–111].
The implicit assumption behind this scenario is that there should exist a duality
transformation mapping gauge fields into strings. In the non-Abelian case, such
gauge/string duality transformation is in general unknown (a notable exception,
however, is given by the holographic correspondence, relating gauge theories and
string theories defined in a higher-dimensional spacetime [157–159]), but in the 3D
U(1) case Polyakov [160] (see also [153,154,161] for an alternative derivation) was
able to give a heuristic proof of this mapping and proposed to describe the free energy
of a large Wilson loop with a string action combining both the Nambu–Goto and the
extrinsic curvature terms, the so called “rigid string” [79,80].
It is by now clear that this approach leads to an EST different from the one discussed
in this review [8]. The “rigid string”, dominated by the extrinsic curvature term,
agrees with the expectation of the dual superconductor model while the one which
we discussed in this review has a negligible extrisic curvature term and is dominated
by the Nambu–Goto behaviour. The major difference between the two ESTs is in the
shape and width of the flux tube [9]. Interestingly this difference is magnified exactly
in the high temperature regime [9,64] which is the subject of this review. It would be
interesting to pursue this study to better understand the role of the extrinsic curvature
term in driving this difference and, more importantly, which one better describes the
behaviour of the flux tube in non-abelian LGTs.
As a final remark on this issue, let us stress that the rigid string shows a pretty different
behaviour depending on the sign of the extrinsic curvature term. An EST with negative
extrinsic curvature was proposed more than twenty years ago in [162–164] and was
subsequently thoroughly studied in [153,154,165–168]. Despite the apparent instability
due to the negative sign of the curvature term, it can be shown that the string is
stabilized by higher order terms in the derivative expansion [165] (for a review, see for
instance [153]). In particular, as far as the topic of this review is concerned, the high
temperature behaviour of the model was studied in detail in [166,167] and, also in this
case, it would be very interesting to test these prediction with high precision Monte
Carlo data for non-abelian LGTs.

In the last few years we have witnessed remarkable progress in our understanding of
EST; however several important issues are still open, from the identification of EST terms
beyond the Nambu–Goto one, to a better understanding of the role and properties of the
rigidity term. The main goal of this review was to show that the high-T regime of LGTs is a
perfect laboratory to test new ideas in this context and compare them with Monte Carlo
simulations. We hope that this review will stimulate further research in this direction.

Funding: This research received no external funding.

Acknowledgments: We thank D. Antonov and F. Caristo for a careful reading of the draft and for
many useful suggestions. We warmly thank M. Billo’, F. Gliozzi, M. Hasenbusch, A. Nada, M. Panero
and D. Vadacchino for a longlasting fruitful collaboration on the topics discussed in this review.

Conflicts of Interest: The authors declare no conflict of interest.



Universe 2021, 7, 170 23 of 28

Appendix A. Useful Formulae

Here are some properties of the modular functions which appear in the text. To sim-
plify notations we shall denote τ̃ ≡ − 1

τ in the following
The relation with the variables used in the text is:

τ ≡ i
Nt

2R
, q ≡ e2πiτ = e−

πNt
R ,

τ̃ ≡ − 1
τ
= i

2R
Nt

, q̃ ≡ e2πiτ̃ = e−
4πR
Nt . (A1)

The Dedekind-η-function is

η(q) ≡ q
1
24

∞

∏
n=1

(1− qn) . (A2)

The Eisenstein functions are defined as:

E2k(q) ≡ 1 +
2

ζ(1− 2k)

∞

∑
n=1

n2k−1qn

1− qn , (A3)

where ζ(s) denotes the Riemann ζ function defined as follows:

ζ(s) ≡
∞

∑
n=1

n−s , (A4)

The Eisenstein functions can be expanded as follows:

E2(q) = 1− 24q− 3 · 24q2 − 4 · 24q3 − 7 · 24q4 − · · ·
E4(q) = 1 + 10 · 24q + 90 · 24q2 + · · · (A5)

These functions transform as follows under the modular transformation τ → − 1
τ

(notice the inhomogeneous term in the E2 function):

η(q) = (−iτ̃)1/2η(q̃) =
(

2R
Nt

) 1
2
η(q̃) ,

E2(q) = −
6i
π

τ̃ + τ̃2E2(q̃) =
12R
πNt

−
(

2r
l

)2
E2(q̃) =

12R
πNt

(
1− πR

3Nt
E2(q̃)

)
,

E4(q) = τ̃4E4(q̃) =
(

2R
Nt

)4
E4(q̃) . (A6)
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