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ABSTRACT
We study the imprints on the formation and evolution of cosmic structures of a particular
class of dynamical dark energy models, characterized by an oscillating equation of state. This
investigation complements earlier work on the topic that focused exclusively on the expansion
history of the Universe for such models. Oscillating dark energy cosmologies were introduced
in an attempt to solve the coincidence problem, since in the course of cosmic history matter and
dark energy would have had periodically comparable energy densities. In this class of models
the redshift evolution of the equation of state parameter w(z) for dark energy is characterized
by two parameters, describing the amplitude and the frequency of the oscillations (the phase
is usually set by the boundary condition that w(z) should be close to −1 at recent times). We
consider six different oscillating dark energy models, each characterized by a different set of
parameter values. For one of these models w(z) is lower than −1 at present and larger than −1
in the past, in agreement with some marginal evidence from recent Type Ia supernova studies.
Under the common assumption that dark energy is not clustering on the scales of interest,
we study different aspects of cosmic structure formation. In particular, we self-consistently
solve the spherical collapse problem based on the Newtonian hydrodynamical approach, and
compute the resulting spherical overdensity as a function of cosmic time. We then estimate the
behaviour of several cosmological observables, such as the linear growth factor, the integrated
Sachs–Wolfe effect, the number counts of massive structures and the matter and cosmic shear
power spectra. We show that, independently of the amplitude and the frequency of the dark
energy oscillations, none of the aforementioned observables shows an oscillating behaviour as
a function of redshift. This is a consequence of the said observables’ being integrals over some
functions of the expansion rate over cosmic history, thus smoothing any oscillatory features
in w(z) below detectability. We also notice that deviations with respect to the expectations
for a fiducial � cold dark matter cosmology are generically small, and in the majority of the
cases distinguishing an oscillating dark energy model would be difficult. Exceptions to this
conclusion are provided by the cosmic shear power spectrum, which for some of the models
shows a difference at the level of ∼10 per cent over a wide range of angular scales, and the
abundance of galaxy clusters, which is modified at the ∼10–20 per cent level at z � 0.6 for
future wide weak lensing surveys.
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1 IN T RO D U C T I O N

In recent years an increasingly large body of observations confirmed
the general framework of a standard cosmological model based on
general relativity. Accordingly, right after the big bang the Uni-
verse experienced an accelerated expansion phase, dubbed inflation
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(Guth 1981; Linde 1982; Zelnikov 1991), during which quantum
fluctuations were amplified to produce tiny perturbations in the
matter distribution, whose imprints can nowadays be observed in
the cosmic microwave background (CMB) temperature map. Later
on, and due to gravitational instability, these seed fluctuations grew
up, giving rise to the web of cosmic structures that we observe to-
day. After inflation, the Universe experienced a period of reheating
(Shtanov, Traschen & Brandenberger 1995; Kaiser 1996) with the
formation of light elements. Current observations of the CMB and
of the luminosity distances of Type Ia supernovae (SNe Ia) show
that the geometry of the Universe is spatially flat, in accordance with
the predictions of the inflationary paradigm, and furthermore show-
ing that the Universe is currently undergoing another accelerated
expansion phase.

After the first detection of an accelerating expansion rate at low
redshift (possibly z � 0.5; Shapiro & Turner 2006) by Riess et al.
(1998) and Perlmutter et al. (1999) many other different and in-
dependent studies led to the same conclusions making this infer-
ence very solid. In particular, evidence for an accelerated expansion
comes from the CMB (Jaffe et al. 2001; Komatsu et al. 2011) and
the integrated Sachs–Wolfe (ISW) effect (Ho et al. 2008), the large-
scale structure (LSS) and the baryon acoustic oscillation (BAO;
Eisenstein et al. 2005; Percival et al. 2010), globular clusters (Krauss
& Chaboyer 2003), galaxy clusters (Haiman, Mohr & Holder 2001;
Allen et al. 2004, 2008; Wang et al. 2004) and weak lensing (Hoek-
stra et al. 2006; Jarvis et al. 2006).

As a homogeneous and isotropic general relativistic model uni-
verse filled with matter is unable to reproduce the observed accel-
erated expansion, three different explanations have been proposed
to account for it. One possibility consists in putting aside the hy-
pothesis of homogeneity on large scales: these models are described
by the Lemaı̂tre–Tolman–Bondi (LTB) metric or are based on the
idea of back reaction (Kolb, Matarrese & Riotto 2006). A second
possibility is to suppose that on very large scales general relativity
breaks down and gravity is modified. In this case we will be in the
need for a new theory of gravity and general relativity would be only
the small-scale limit of a more profound theory. Examples of this
idea are the f (R) models (Amendola et al. 2007; Starobinsky 2007),
brane models (Dvali, Gabadadze & Porrati 2000; Deffayet 2001)
and the f (T) models (Bengochea & Ferraro 2009; Linder 2010;
Dent, Dutta & Saridakis 2011; Zheng & Huang 2011). Finally, one
could assume that general relativity is correct but the low-z Universe
is dominated by some kind of exotic fluid with negative pressure,
the dark energy. Specifically, if dark energy constitutes ∼70 per
cent of the matter-energy content of the Universe, from the second
Friedmann equation it turns out that its equation of state parame-
ter w would need to be w < −1/2 in order to provide accelerated
expansion.

In the concordance cosmological model the role of dark en-
ergy is played by the cosmological constant �, having a redshift-
independent equation of state parameter w = −1 and commonly
interpreted as the energy density of the vacuum. Even though this
� cold dark matter (�CDM) model is now the standard refer-
ence framework in cosmology, it suffers from some fundamen-
tal theoretical problems that can be summarized by the following
questions.

(i) Why is the energy density implied by the cosmological con-
stant much smaller than the theoretically expected vacuum energy
density?

(ii) Why is the dark energy density comparable to the dark matter
density only today?

The last one is also known as the coincidence problem. In order
to solve or at least alleviate these issues, it is possible to identify
dark energy with the energy density of a minimally coupled scalar
field (named quintessence), that evolves through cosmic time as
dictated by its own potential. This gives rise to a redshift-dependent
equation of state parameter w(z), hence making at least the coin-
cidence problem less severe. These dynamical dark energy models
can be roughly grouped into two classes: tracking models (Stein-
hardt, Wang & Zlatev 1999) and scaling models (Halliwell 1987;
Wands, Copeland & Liddle 1993; Wetterich 1995).

Models with an oscillating equation of state were introduced
to solve the coincidence problem, because the present accelerated
expansion phase would just be one of the many such phases oc-
curring over cosmic history, especially at early times. Moreover,
oscillations would more naturally accommodate the crossing of the
phantom barrier, w = −1 as it is marginally suggested by recent
observations (Alam, Sahni & Starobinsky 2004; Allen et al. 2004;
Dicus & Repko 2004; Riess et al. 2004; Choudhury & Padmanabhan
2005; Feng, Wang & Zhang 2005; Huterer & Cooray 2005). In the
framework of particle physics, it is possible to have an oscillating
quintessence potential if one considers a pseudo-Nambu–Goldstone
boson field when it has rolled through the minimum. As models for
dark energy, oscillating scalar fields were proposed by Dutta &
Scherrer (2008), Johnson & Kamionkowski (2008) and Gu (2008).
An oscillating behaviour can also be obtained in models with grow-
ing neutrino mass, where the dark energy component is coupled
with massive neutrinos. These models in fact predict oscillations in
the dark energy equation of state for relatively low redshifts (z �
10; see e.g. Amendola, Baldi & Wetterich 2008; Mota et al. 2008;
Wintergerst et al. 2010; Baldi et al. 2011). Lazkoz, Nesseris &
Perivolaropoulos (2005) and Kurek, Hrycyna & Szydłowski (2008)
found a better agreement with SNe Ia data if an oscillating equa-
tion of state is used instead of the cosmological constant or an
equation of state linearly dependent on the scale factor. Further in-
dications in the same direction come from the study performed by
Riess et al. (2007). Previous works on this topic focused mainly on
the expansion history of the Universe and marginally on the linear
perturbation theory in the framework of oscillating quintessence
(Feng et al. 2005; Xia, Feng & Zhang 2005; Barenboim & Lykken
2006; Barenboim, Mena Requejo & Quigg 2006; Kurek et al. 2008;
Kurek, Hrycyna & Szydłowski 2010; Lan et al. 2010).

The novelty of this work lies in the fact that we explore signatures
of an oscillating equation of state w(z) in the (non-linear) growth of
cosmic structures, thus extending and complementing the majority
of foregoing studies. The main idea we explore here is to find out
cosmological observables based on structure formation that can hint
toward oscillating quintessence even though the expansion of the
homogeneous and isotropic background does not. The rest of this
paper is hence organized as follows. In Section 2 we describe the
formalism of the spherical collapse used to derive important pa-
rameters for the formation and evolution of structures. In Section 3
we describe and motivate several parametrizations used in order to
describe the oscillating dark energy, and in Section 4 we present
results for the different observables we considered. Section 5 is
devoted to our conclusions. In Appendix A we present implemen-
tation details of the code used to evaluate the linear growth factor
and the evolution of the spherical overdensity.

2 SP H E R I C A L C O L L A P S E MO D E L

Despite its simplifying nature, the model describing the collapse
of a uniform non-rotating spherical overdensity in a cosmological

C© 2012 The Authors, MNRAS 422, 1186–1202
Monthly Notices of the Royal Astronomical Society C© 2012 RAS



1188 F. Pace et al.

setting provides numerous insights on the actual process of structure
formation. For instance, the linear density contrast extrapolated
at the spherical collapse time provides a fair approximation for
the threshold at which actual perturbations can collapse to form
bound structures. Thus, in this section we sketch the derivation
of the relevant equations for the spherical collapse model under
the assumption that only dark matter can form clumps, while dark
energy is just present as background fluid. For further details we
refer to the current literature on the topic (see e.g. Bernardeau
1994; Ohta, Kayo & Taruya 2003, 2004; Mota & van de Bruck
2004; Nunes & Mota 2006; Abramo et al. 2007; Pace, Waizmann
& Bartelmann 2010).

Rather than studying the time evolution of the radius of the col-
lapsing sphere, we study directly the time evolution of the over-
density. This procedure proves to be numerically more stable and
less prone to errors than the classical approach based on the radius
evolution (Pace et al. 2010). We consider a perfect fluid described
by the energy–momentum tensor Tμν , satisfying the local conser-
vation laws expressed by ∇νTμν = 0. This set of four equations
encapsulates both the continuity and the Euler equations, while
from Einstein’s field equations it is possible to derive a relativistic
generalization of the Poisson equation. In a more explicit form these
expressions read

∂ρ

∂t
+ ∇ · (ρv) + P

c2
∇ · v = 0, (1)

∂v

∂t
+ (v · ∇)v + ∇� = 0 (2)

and

∇2� − 4πG

(
ρ + 3P

c2

)
= 0, (3)

where ρ, P, v and � are the density, the pressure, the velocity and
the gravitational potential of the fluid.

For the average background matter density the following conti-
nuity equation holds:

˙̄ρ + 3H

(
ρ̄ + P̄

c2

)
= 0, (4)

where ρ̄ = 3H 2�m/8πG is the background matter density, H is the
Hubble parameter and �m is the matter density parameter. Since
for ordinary matter and dark matter the pressure contribution is
negligible, from now on we will set P = 0.

Assuming spherical symmetry and perturbing the physical quan-
tities appearing in the previous set of equations (density, velocity
and gravitational potential) around their background values, we ob-
tain the following exact non-linear differential equation, describing
the evolution of the matter density perturbation δ as a function of
the cosmic time,

δ̈ + 2Hδ̇ − 4

3

δ̇2

1 + δ
− 4πGρ̄δ(1 + δ) = 0. (5)

We stress that equation (5) is valid also for large density contrasts,
deep in the non-linear regime, as long as spherical symmetry is
satisfied. By restricting to δ < 1 instead, at first order equation (5)
reads

δ̈ + 2Hδ̇ − 4πGρ̄δ = 0, (6)

and it coincides with the differential equation commonly used to
determine the linear growth factor.

As explained in detail in Pace et al. (2010), in order to deter-
mine the linear density perturbation threshold for spherical collapse,

δc, one should solve equation (6) with suitable initial conditions,
namely the initial overdensity and velocity of the perturbation. In
order to find the initial overdensity we take into account that at the
time of the collapse of the object all the matter is concentrated in one
point, therefore, formally δ → +∞. Hence by fixing the time, or
scale factor, of collapse ac, with a root-search method it is possible
to determine the initial overdensity δi such that the solution of the
non-linear equation (5) diverges at ac. Once the initial overdensity
is found, we compute the initial velocity as detailed in Appendix A,
and use both of them as initial conditions for the linear equation (6)
. When integrated up to ac the latter returns us the linear density
contrast corresponding to the time of spherical collapse, δc.

In order to determine the virial overdensity, 	v, representing the
non-linear evolution of the density perturbation up to the time of
virialization, we need to evaluate the turn-around scale factor ata,
defined as the time when the radius of the sphere reaches its max-
imum, detaches from the overall expansion of the Universe, and
collapses afterwards. Using then the virial theorem and energy con-
servation considerations, the virial overdensity 	v can be derived
according to the discussion of Maor & Lahav (2005).

3 O U T L I N E O F T H E C O S M O L O G I C A L
M O D E L S

As outlined in Section 1, at the moment there is no explanation
for dark energy in terms of fundamental physics, therefore, all the
models that we explored in the present work are purely phenomeno-
logical and the values of their parameters are generically adjusted
such that certain classes of cosmological observables (most com-
monly the luminosity distance of SNe Ia and the CMB temperature
power spectrum) are well reproduced. These models are described
in the present section. As a fiducial reference cosmology we assume
the standard flat �CDM model. The cosmological parameters are
set to �m,0 = 0.274, �q,0 = 0.726 and h = 0.7 in accordance with
Wilkinson Microwave Anisotropy Probe 7-year (WMAP7) data (Ko-
matsu et al. 2011; Larson et al. 2011) and the Supernova Legacy
Survey 3-year data (see Sullivan et al. 2011). These same param-
eter values are also kept intact for all the dynamical dark energy
cosmologies investigated in this paper.

The amplitude of the primordial matter power spectrum in the
fiducial �CDM cosmology is selected in order to attain a given
value of the quadratic deviation on a comoving scale of 8 Mpc h−1,
σ 8 = 0.8. In all the other dynamical dark energy models that we
considered the normalization is scaled according to

σ8,DE = δc,DE(z = 0)

δc,�CDM(z = 0)
σ8,�CDM, (7)

where δc is the linear overdensity parameter extrapolated at spheri-
cal collapse (see Section 2). In this way, the exponential tail of the
dark matter halo mass function at redshift zero is conserved, and
hence the abundance of massive structures at present times, which
is arguably well defined from the observational point of view, is the
same for all models. We show the values for the normalization of
the different models in Table 1.

In the present work we analysed six different dark energy cos-
mologies with an oscillating equation of state parameter w(z). In
the first five of them w(z) has the same functional form but different
values of the free parameters. The sixth model has instead a differ-
ent functional form for w(z), although still presenting oscillations.
The functional form for the first five cosmologies is (Feng et al.
2006; Linder 2006; Lazkoz, Salzano & Sendra 2010)

w(a) = w0 − A sin (B ln a + θ ), (8)
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Table 1. Values of the free parameters for the dark energy equation of
state and for the matter power spectrum normalization σ 8. The numbers
in the last column correspond to the following references: (1) – Linder
(2006); (2) – Lazkoz et al. (2010); (3) – Feng et al. (2006); (4) – Ma &
Zhang (2011).

Model w0 A B θ σ 8 Reference

1 −0.9 0.07 5.72 0.0 0.7989 (1)
2 −0.9 0.07 2.86 0.0 0.7986 (1)
3 −0.9 0.15 1.0 0.0 0.7983 (1)
4 0.0 1.0 0.06 π/2 0.7999 (2)
5 −1.0 1.5 0.032 5π/18 0.8012 (3)
6 −1.061 0.041 1.0 −sin (1) 0.8001 (4)

where a = 1/(1 + z) is the scale factor, A determines the amplitude
of the oscillations, B gives their frequency, while θ is a phase shift.
As can be easily seen, the value of the equation of state parameter
today is w(a = 1) = w0 − Asin (θ ), which equals w0 if the phase
is θ = 0. Model six is meant to generalize the Chevallier–Polarski–
Linder (CPL) parametrization (Chevallier & Polarski 2001; Linder
2003) in order to avoid the future unphysical divergence of the
dark energy equation of state typical of this model. In this case, the
function w(z) can be written as

w(a) = w0 − A(aB sin (1/a) + θ ). (9)

Going into the distant future, we have a → ∞ and taking the limit
of the previous equation we observe that it asymptotes to

w(a) = w0 − A(B + θ ), (10)

thus remaining finite. For more details on this model we refer the
reader to Ma & Zhang (2011).

In Table 1 we summarize the values for the free parameters
characterizing each cosmology. We also quote the paper where the
expansion history of the Universe resulting from that specific dark
energy model has been studied in detail. The quoted values are the
best fit to certain classes of cosmological observables considered
by those authors. In the literature other parametrizations of w(z)
showing an oscillatory behaviour can be found (see e.g. Kurek et al.
2008, 2010). However they represent only local fits to the expansion
history, giving unphysical divergences in the distant past. For this
reason we did not include them in our analysis.

In Fig. 1 we show the redshift evolution of the equation of state
parameter w(z) for the different models studied in this work. We
refer to the caption for the description of the line styles adopted. As
it appears evident from the figure, models 1 and 2 have the same
amplitude but the frequency of oscillations changes by a factor of 2
between each other. Model 3 is qualitatively the same, but the
amplitude is twice as big and the oscillations one-third less frequent
with respect to model 1. These models allow a comparative study on
the influence of the amplitude and the frequency of the oscillations.
Models 4 and 5, despite being described by the same functional
form, have a very long period and oscillations are not even visible
throughout cosmic history. Models 3 and 5 are also characterized
by a crossing of the phantom barrier, w = −1, a feature that is
marginally find to best fit the luminosity distance of SNe Ia. Finally,
model 6 shows tiny oscillations only at recent times, while for z �
10 the function w(z) approaches a constant. By comparing model 6
with the others we can draw conclusions about the importance of
the oscillations at early times.

Figure 1. The redshift evolution of the equation of state parameter for
the oscillating dark energy cosmologies analysed in this work. The red
dashed, blue short dashed and cyan dotted curves show the models 1, 2
and 3, respectively. The orange dot–dashed curve shows model 4, while the
dark-green dot-short-dashed and the light-green dot–dotted lines represent
models 5 and 6, respectively (see Table 1 for more details).

3.1 Homogeneous background analysis

We now explore in detail the redshift evolution of functions re-
lated to the homogeneous background for the various oscillating
quintessence cosmologies presented above. In the upper panel of
Fig. 2 we show the ratio between the matter density parameters
in the six dynamical dark energy models considered here and the
same function in the concordance �CDM cosmology, as a func-
tion of redshift. In the lower panel of the same figure we display
the corresponding redshift evolution for the dark energy density
parameters. As one could naively expect, the amount of matter at
early times is the same in all models, consequence of the fact that
at high redshift the dark energy contribution becomes negligible,
and hence the Universe always behaves as an Einstein–de Sitter
(EdS) cosmology. Differences become significant at z � 5 and are
at most at the level of ∼10–15 per cent. It is worth noticing that
in no circumstances we see full oscillations in the density parame-
ters, implying that one integral over the cosmic history is enough to
smooth out most features of w(z).

It is worth noting that model 6 and, especially, model 4 display
very little difference with respect to the concordance case, an in-
stance that will show up time and again throughout the discussion of
our results. The other models instead, with the exception of model 5
that sees a reduction in the abundance of dark energy, show a sub-
stantially higher amount of dark energy at early times than the
cosmological constant case. At z ∼ 20 the difference in the dark
energy density parameter is of one order of magnitude or more. It
should be recalled however that at such high redshifts the contri-
bution of dark energy to the expansion history of the Universe is
negligible anyway.

A different perspective on the same results is given by examining
the Hubble parameters (that are, the expansion rates) for the various
cosmologies, shown in the upper panel of Fig. 3. For flat universes,
the Hubble parameter can be written as

H (a) = H0E(a) = H0

√
�m,0

a3
+ �q,0g(a), (11)

where g(a) is defined as

g(a) = exp

(
−3

∫ a

1

1 + w(a′)
a′ da′

)
, (12)
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Figure 2. The redshift evolution of the density parameters. In the upper
(lower) panel we show the ratio of the matter (dark energy) density parameter
in the six oscillating dark energy cosmologies studied in this work to the
corresponding function in the fiducial �CDM model. Line types and colours
are as in Fig. 1.

and �q is the dark energy density. The behaviour of the expansion
rates is very similar to that of the matter density parameters, which
is expected because dark energy comes to dominate the evolution
of the Hubble function only at very low redshift, where differences
between different models tend to vanish.

Since oscillations are not present in the redshift evolution of the
matter and dark energy density parameters, the same holds true for
the expansion rate in our quintessence cosmologies. However, con-
sidering the derivative of the expansion rate with respect to the scale
factor (dubbed deceleration parameter; see Dunajski & Gibbons
2008, and references therein), shown in the lower panel of Fig. 3,
we observe some partial indication of oscillations, in that the oscil-
lating dark energy deceleration parameter crosses the �CDM one at
least once for models 1, 2 and 5. However, since the overall pattern
looks the same for all models, it is likely not directly connected with
dark energy oscillations. Moreover, oscillating quintessence models
introduce absolute differences in the deceleration parameter of at
least ∼20–30 per cent with respect to the fiducial case, which is a
quite significant effect.

In the upper (lower) panel of Fig. 4 we present the ratio of the
luminosity distance (age of the Universe) in the various dynamical
dark energy cosmologies to the same quantity in the �CDM model,
as a function of redshift. In both cases we see that differences are
at most of the order of ∼4 per cent and predominantly located at
relatively low redshifts (z � 2), although the luminosity distance
shows a ∼2 per cent deviation even at arbitrarily high redshifts.
This fact is expected, since both the luminosity distance and the

Figure 3. Upper (lower) panel: ratio of the Hubble parameter (derivative of
the Hubble parameter with respect to the scale factor) in the six oscillating
dark energy models considered in the present paper to the same function in
the fiducial �CDM cosmology. Line styles and colours are as in Fig. 1.

age of the Universe are suitable integrals over some function of
the Hubble parameter, which also shows most differences at low
redshift. Comparing the upper panel of Fig. 4 with the luminosity
distances inferred by SN Ia Union2 data (Amanullah et al. 2010) we
see that differences induced by the oscillating dark energy models
at low redshifts are at the same level of the systematic errors in the
measurements as well as of the intrinsic scatter around the best fit.
This, together with the very slight deviations in various cosmologi-
cal functions shown in previous figures lead us to conclude that the
oscillating quintessence cosmologies studied in this work are not
distinguishable from the concordance model by current geometri-
cal probes. This is perfectly consistent with previous works, since
the parameter values that we adopted are indeed chosen so as to
reproduce some particular geometrical tests.

It is also interesting to compare our models with recent measure-
ments of the Hubble function performed with the WiggleZ Dark
Energy Survey (Drinkwater et al. 2010). These measurements, to-
gether with the determination of the growth rate (see Section 4.1),
represent the most accurate and the highest redshift ones available
at the moment. This comparison is done in Fig. 5, where we plot the
quantity H(z)/[H0(1 + z)] for the �CDM model and the six oscil-
lating models considered in this work. The black data points (filled
circles with error bars) are obtained using the Alcock–Paczynski
(Alcock & Paczynski 1979) test in combination with SN Ia dis-
tance measurements. The blue points (open circles) are results of
the same test, but obtained with the distance reconstruction method
of Shafieloo et al. (2006). Notice how this method is able to dra-
matically reduce error bars. Data points are taken from Blake et al.
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Figure 4. Upper (lower) panel: ratio of the luminosity distances (ages of
the Universe) in the oscillating dark energy models considered here to the
same quantity for the fiducial �CDM cosmology, as a function of redshift.
Line styles and colours are as in Fig. 1.

Figure 5. Redshift behaviour of the quantity H(z)/[H0(1 + z)] for the
�CDM model and the six oscillating dark energy models considered in
this work. The black solid line represents the concordance �CDM cosmol-
ogy, the other models are shown using the same line styles and colours as
in Fig. 1. Black and blue data points with error bars are from the WiggleZ
Dark Energy Survey.

(2011b) to which we refer the reader for more details on the analysis
leading to their determination of the four data points. The first thing
to notice is that our �CDM curve would be a slightly worse fit to
the data points with respect to fig. 5 from Blake et al. (2011b) since
we use slightly different cosmological parameters. This being said,
we observe that, despite the very good quality of the data, the size
of the 1σ error bar is too large to rule out the oscillating models

considered in this work. All the models are consistent within 3σ

with results inferred from observations. We can therefore safely use
these models for the following analysis.

3.2 Redshift drift

An important cosmological test related with the expansion history
that has not been considered in the past, but might reveal itself valu-
able in the near future is the so-called redshift drift, that represents
the variation of the cosmological redshift of a source due to the
expansion of the Universe (Balbi & Quercellini 2007; Liske et al.
2008; Uzan, Bernardeau & Mellier 2008; Araújo & Stoeger 2010;
Jain & Jhingan 2010). Let us indicate with ts the time of emission
of an electromagnetic signal from a source, and with t0 the time
of observation of the same signal. The cosmological redshift of the
source is then defined as

1 + zs = a(t0)

a(ts)
. (13)

After a time interval 	t0 has passed for the observer, corresponding
to an interval 	ts for the source, the change in the source redshift
can be estimated by expanding at first order the previous equation,

	zs � 	t0

[
ȧ(t0) − ȧ(ts)

a(ts)

]
. (14)

By substituting H (a) = ȧ/a we obtain the expression for the red-
shift drift:

	zs � H0	t0 [1 + zs − E(zs)] , (15)

where E(zs) = H(zs)/H0.
Using the variation in the cosmological redshift, it is also possible

to determine the variation in the recession velocity of the source,

	υs = c	zs

1 + zs
. (16)

We can therefore write

υ̇s = cH0

1 + zs
[1 + zs − E(zs)]. (17)

Since all the cosmological properties of the model at hand are
encoded into the Hubble function, we see that we can use the time
variation of the redshift in order to reconstruct the expansion history
of the Universe.

In Fig. 6 we show the difference between the redshift drifts in the
oscillating dark energy models and the same function in the concor-
dance �CDM cosmology, per unit of observed time and normalized
by the Hubble constant. We decided to plot the differences instead
of ratios in this case in order to avoid divergences, due to the fact
that 	zs goes to zero when 1 + zs = E(zs). Similarly to previous
figures, also in this case models 4 and 6 behave very similarly to
the �CDM cosmology. The redshift drift is systematically higher
for the model 5, while it is systematically lower for the first three
oscillating cosmologies. At high redshifts the differences between
the models decrease since all the Hubble parameters converge to
the EdS behaviour. Since all the cosmological information is en-
coded in the Hubble expansion function, no oscillations appear in
this case as well, although a slight wiggle is visible for model 1 at
z ∼ 2. As for the perspective of realistically measuring the redshift
drift, according to Liske et al. (2008), peculiar motions are negli-
gible (∼10−3 cm s−1) and with a temporal baseline of 20 yr it will
be possible to determine the existence of the cosmological constant
at 3.1σ observing distant quasars. Following Balbi & Quercellini
(2007) we also notice that variations in the recession velocity of the
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Figure 6. The difference between the redshift drifts in the six oscillating
quintessence cosmologies considered in this work and the some quantity in
the fiducial �CDM model, as a function of redshift. Line styles and colours
are the same as in Fig. 1.

sources are bigger than the error bars forecasted by Monte Carlo
simulations, therefore, with a sufficiently long baseline, it should be
possible to discriminate between oscillating quintessence and cos-
mological constant, at least for the models showing more significant
deviations.

4 R ESULTS

In this section we present results concerning the structure formation
in the oscillating quintessence cosmologies described in Section 3.
We studied several aspects of structure formation and in particular
we focused our attention on the growth factor, the linear and non-
linear overdensities derived from the spherical collapse model, the
mass function of cosmic structures, the power spectrum of cosmic
shear and the ISW effect. We now proceed to describe each one of
these observables in detail.

4.1 Growth factor

In Fig. 7 we show the growth factor normalized by the scale factor,
D+(a)/a, as a function of redshift for the six oscillating dark energy
cosmologies described above, plus the fiducial �CDM model. Cos-
mological observables sensitive to the growth factor include cosmic
shear, ISW effect and the Rees–Sciama (RS) effect, all discussed
later on. In Fig. 7 the growth factor is normalized to unity at z = 0.

Figure 7. The growth factor as a function of the redshift. Line styles and
colours are as in Fig. 5.

As can be seen, differences between the oscillating quintessence
models and the �CDM cosmology (solid black curve) are at most
of ∼10 per cent (for model 3), while, in agreement with previous
figures, model 4 does not show any appreciable difference from
the concordance model. It is interesting to note that, while w(z) for
model 4 shows indeed very little variation up to the last scattering
redshift due to the very large period of its oscillations (see Fig. 1),
model 6 shows even smaller time evolution, yet its effects on cosmo-
logical functions are larger. This implies that high-frequency oscil-
lations in w(z), albeit with a very small amplitude and limited time
extent have more of an effect on the expansion history (and structure
formation too, see later subsections) than larger oscillations with a
low frequency. This is because low-frequency oscillations cancel
integral contributions more effectively.

Fig. 7 also shows that for models 5 and 6 the growth factor
is smaller than for the cosmological constant case. This can be
understood by the following argument. From the lower panel of
Fig. 2 we see that for these two models the amount of dark energy
is smaller than for the cosmological constant case at all redshifts.
This means that the Hubble drag is less effective in the former
models, and hence the growth of structures (at least at the linear
stage) is easier. Since the amplitude of density fluctuations at z = 0
is almost the same amongst all the dark energy models considered
here (it differs by a factor proportional to the critical overdensity
for spherical collapse, that however is only slightly changed in the
case of dynamical dark energy, see below), the growth factor must
be smaller in order to match the amplitude of fluctuations at early
times.

The growth factors depicted in Fig. 7 do not present any sign of
oscillations, not even if we consider their ratios with respect to the
concordance cosmology case. By rewriting equation (6) using the
scale factor instead of cosmic time as the independent variable, we
obtain

δ′′ +
(

3

a
+ E′

E

)
δ′ − 3

2

�m,0

a5E2
δ = 0. (18)

As shown above, the derivative of the Hubble function presents
mild signs of oscillations, however, since this is a second-order
differential equation, the solution involves a double integral over
the scale factor, that efficiently smoothes out any fluctuation in the
coefficients.

Finally, we also estimated the logarithmic derivative of the growth
factor with respect to the scale factor, f (�m(a)) = d ln D+(a)/d ln a.
It has been shown that in a broad range of cosmologies f (�m(a)) ∼
�γ

m(a), an empirical relation that we retrieve for the oscillating dark
energy cosmologies as well. Deviations with respect to the �CDM
expectation however are smaller than for the growth factor itself.

The logarithmic derivative of the growth factor can be used in
combination with the power spectrum normalization σ 8 to derive the
quantity f (z)σ 8(z), where σ 8(z) = σ 8D+(z). It represents the growth
rate of structure weighted by a time-dependent normalization. We
used the appropriate σ 8 for each model, as reported in Table 1.
This quantity was recently measured by Blake et al. (2011a) using
the WiggleZ Dark Energy Survey data. Measurements were done
in four redshift slices using redshift space distortions for the non-
linear power spectrum. For more details, we refer to Blake et al.
(2011a). In Fig. 8, we compare the analytical predictions for our
models with the observational data points. For an easy comparison,
we also show the prediction for the fiducial �CDM model. The
black filled points represent the WiggleZ measurements with the
corresponding error bars.
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Figure 8. Growth rate of structure as a function of redshift, expressed in a
more model-independent way via the function f (z)σ 8(z). Black data points
are from the WiggleZ Dark Energy Survey. Line styles and colours are as in
Fig. 5.

As noted by Blake et al. (2011a), the �CDM model prediction of
f (z)σ 8(z) is a very good fit to the WiggleZ data points, but, since the
oscillating models here used to have their free parameters calibrated
on already existing data, they only slightly differ from the fiducial
model. While this statement only had qualitative significance before,
we can ground it on a more quantitative basis analysing Fig. 8. The
WiggleZ data points have a relative accuracy between roughly 9
and 17 per cent up to redshift z ∼ 0.9 but the oscillating dark energy
models differ at most of 8 per cent at z ∼ 0.4, being therefore all
well within the error bars. Also in this case, we can therefore safely
assume that at the linear level this class of models is not excluded
by the most recent observations.

4.2 ISW and Rees–Sciama effects

The Sachs–Wolfe (SW) effect (Sachs & Wolfe 1967) describes
the effect of gravitational potentials on the CMB anisotropy at the
last-scattering surface. Photons travelling to an observer encounter
variations in the gravitational potential caused by variations in the
matter density. Photons climbing out a potential well will be gravi-
tationally redshifted and this will make the region they come from
appear colder. Together with this gravitational effect, one has to take
into account the time-dilation effect induced by the perturbations:
we see the photons as coming from a different spatial hypersurface
(labelled by a different scale factor a(t)).

The ISW effect is based on the same principle, only it is given
by the gravitational redshift occurring as photons travel through the
LSS to reach an observer at present time. The ISW effect arises only
recently in the cosmic history, as dark energy starts dominating the
expansion of the Universe. This means that a non-vanishing ISW
effect indicates by itself presence of dark energy if the model is
spatially flat, as indeed it is assumed in our case. The ISW effect is
sensitive to the derivative of the growth factor, d(D+(a)/a)/da, that
vanishes for an EdS universe where D+(a) = a. It was detected for
the first time by Boughn & Crittenden (2004) using X-ray cluster
catalogues. The RS effect (Rees & Sciama 1968) is very similar to
the ISW effect, only it refers to the gravitational redshift induced by
non-linear structures only, and hence it is active on much smaller
scales. It is mainly sensitive to the function d

(
D2

+(a)/a
)
/da.

In Fig. 9 we show the difference of the functions probed by the
ISW effect (upper panel) and by the RS effect (lower panel) for the
six oscillating dark energy models studied here to the same quanti-

Figure 9. Redshift evolution for the quantities describing the ISW (upper
panel) and the RS (lower panel) effects. For the ISW effect we plot the
function d(D+(a)/a)/da, while for the RS effect we plot d

(
D2+(a)/a

)
/da.

In both cases, the result for the fiducial model is subtracted from the corre-
sponding quantities for each of the six oscillating dark energy cosmologies.
Line types and colours are the same as in Fig. 1.

ties evaluated in the reference �CDM cosmology, as a function of
redshift. As can be seen, the ISW effect is preferentially modified
at low redshifts, either positively or negatively, except for models
4 where no differences from the �CDM model are seen. At high
redshifts deviations with respect to the cosmological constant case
tend to disappear, since all the models are very well approximated
by an EdS universe. The models showing the largest effect are
models 3 and 5, which are the ones having the largest differences
in the growth factor. On the other hand, hints of an oscillatory be-
haviour with redshift are seen for model 1, which has the high-
est frequency in w(z) among those considered here. All in all,
since differences between different models can be quite substantial,
high-redshift observations could be used in principle to discrim-
inate oscillating quintessence cosmologies. Examples come from
cross-correlating galaxies, radio sources or hard X-ray sources and
CMB temperature fluctuations (see Fosalba, Gaztañaga & Castander
2003; Scranton et al. 2003; Afshordi 2004; Boughn & Crittenden
2004; Nolta et al. 2004). However, one should keep in mind that at
high redshift, where differences are more marked, the ISW effect
itself tends to disappear.

As for the RS effect, deviations with respect to the cosmological
constant expectations are of the same order of magnitude as the
ISW effect and differences do not vanish at high redshifts, but reach
a somewhat constant value, the exact one depending on the specific
model. There is however a very specific redshift pattern according to
which the difference with respect to the fiducial �CDM cosmology
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Figure 10. The redshift evolution of the linear density contrast parameter
δc (upper panel) and of the virial overdensity parameter 	v (lower panel)
for the six dynamical dark energy models and for the reference �CDM
cosmology. Line types and colours for the different models are as in Fig. 5.

gets reversed at z ∼ 2 (except for model 4, that is basically identical
to the concordance cosmology). Hence, combining RS effect ob-
servations at low- and high redshift can improve the discrimination
between the models.

4.3 The characteristic overdensities δc and �v

In this subsection we present results regarding the time evolution of
the linear density contrast parameter for spherical collapse δc and of
the virial overdensity 	v. The main results are reported in Fig. 10.
In the upper panel we show the time evolution of δc, while in the
lower panel we present the time evolution of 	v. Line types and
colours are the same as in Fig. 7, to which we refer for a detailed
explanation. The first thing to note is that, contrary to expectations,
the function δc(z) does not perfectly converge to the EdS value of
δc � 1.686 at high redshift. This is a problem of numerical con-
vergence related to the oscillatory nature of w(z), and that is better
explored in Appendix A. This fact obviously implies that we should
not use this δc(z) at z � 5–6. However, all the cosmological tests
that we propose in the following that make use of this function
are limited to substantially lower redshifts, hence they should be
unaffected by this issue.

As mentioned above, differences between the δc(z) computed in
different cosmologies are very mild, being at most of ∼1 per cent
at z � 2. It is apparently a generic feature of cosmological models
displaying a dynamical evolution of the dark energy density that the
spherical collapse parameters are only slightly modified with respect
to the fiducial �CDM case (Pace et al. 2010). The lower panel of

Fig. 10 shows results for the virial overdensity parameter 	v(z). In
order to evaluate it we used the prescription of Wang & Steinhardt
(1998). In this case for z � 6–8 all the models behave almost exactly
as the �CDM cosmology. Differences between different models are
of the order of a few per cent and are mostly evident at z � 3. We
tried to evaluate 	v(z) adopting a different prescription, detailed in
Wang (2006). As it turns out, differences between different models
are very similar to those obtained by using other recipes.

4.4 Mass function

An observable quantity depending crucially on the growth factor
D+(z) and on the linear overdensity threshold for collapse δc(z) is the
mass function of cosmic structures n(M, z), representing the number
of dark matter haloes per unit mass and per unit comoving volume
present at a certain redshift. Integrals of the mass function over
mass can be observed directly by using large cosmological surveys,
provided their selection function is well understood. Specifically,
the cumulative number density of cosmic structures above a certain
limiting mass Mmin (that will depend on the specific survey) at
redshift z is simply given by

N (>Mmin, z) =
∫ ∞

Mmin

dMn(M, z). (19)

The mass variance is another key ingredient for the mass function
formalism, and is identified by

σ 2
M = 1

2π2

∫ +∞

0
k2T 2(k)W 2

R(k)P0(k) dk. (20)

In equation (20) P0(k) represents the primordial matter power spec-
trum, T(k) is the matter transfer function and WR(k) is the Fourier
transform of the real space top-hat window function. Since the only
difference induced by oscillating dark energy in the primordial mat-
ter power spectrum is given by the different normalization σ 8, that
as we shown above is very slight, we expect only minor differences
in the mass variance as well. In this work, to evaluate the mass
function, we used the Sheth–Tormen expression (Sheth & Tormen
1999).

In Fig. 11 we show the cumulative mass function for the six
oscillating quintessence cosmologies considered in this work at
different redshifts, divided by the corresponding quantity evaluated
for the reference �CDM model. From this figure we note first of
all that there are no differences between different models at z = 0.
This is due to our choice of the normalization, namely that the
ratio δc(z = 0)/σ 8 should be conserved for all models. Significant
differences start instead to appear at higher redshifts, where we
notice that the six models can be broadly divided into two groups.
Models 1, 2 and 3 show more objects with respect to the �CDM
case, while models 4, 5 and 6 show less objects. These differences
are consistent with the latter group having a lower growth factor with
respect to the former and a higher critical linear overdensity δc(z),
which makes more difficult for density perturbations to collapse into
bound structures. As one could naively expect, deviations increase
with increasing redshift and are most notable in the very high mass
tail, since rare events are very sensitive even to small fluctuations in
the expansion history. As an example, differences in the abundance
of massive galaxy clusters M � 5 × 1014 M	 h−1 range from ∼5–10
per cent at z = 0.5 up to ∼30 per cent at z = 1. Large galaxy groups
that can be expected to be found at z = 2 (M � 5 × 1013 M	 h−1)
are ∼20–30 per cent more abundant in models belonging to the first
group, and up to ∼40–50 per cent less frequent in models of the
second group. We also note that models showing an enhancement
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Figure 11. Cumulative comoving number density of objects with mass exceeding M at different redshifts. Ratios with respect to �CDM expectations are
shown. Selected redshifts are z = 0 (upper left-hand panel), z = 0.5 (upper right-hand panel), z = 1 (bottom left-hand panel) and z = 2 (bottom right-hand
panel). Line styles and colours for the different models are as in Fig. 1. The upper left-hand panel is unity by normalization, as explained in the text.

in the abundance of cosmic structures are those having more dark
energy at high redshift.

It should be noted that up to now we only considered the comov-
ing number density of objects, that is we did not take into account
possible effects deriving from changes in the cosmic volume in-
duced by the presence of oscillating dark energy. We will include
this additional ingredient shortly. For the time being, we can con-
clude that the impact of oscillating quintessence on the counts of
cosmic structure can be quite substantial, especially at high redshift,
thus implying that a detection might be possible with future large
cluster surveys.

In order to establish a more direct link with observations, we
forecast the redshift distribution of galaxy clusters that, in each of
the cosmological models considered in this work, will be observed
by upcoming wide field surveys with cluster selection based both on
X-ray and weak lensing data. In order to do that we need to define
a redshift-dependent minimum mass for the observed objects, and
integrate the mass function above that threshold. We assume that
precise estimates for the masses of these objects will be available,
which is realistically expected if a robust multiwavelength follow-
up will be performed.

The first survey that we consider is a wide field X-ray survey
on the model of the upcoming extended Roentgen Survey with an
Imaging Telescope Array (eROSITA).1 In order to determine the
minimum mass of clusters that will compose the X-ray catalogue
we need a scaling relation between the observable at hand (in this

1 http://www.mpe.mpg.de/erosita/

case the X-ray flux) and the true mass. First of all, knowing the
redshift of the cluster, the measured bolometric flux can be related to
the intrinsic bolometric luminosity as L(M, z) = 4πf (M, z)d2

L(z),
where dL(z) is the luminosity distance (see upper panel of Fig. 4). In
reality the X-ray bolometric flux is almost never measured, rather
the X-ray photon counts in a certain energy band are used. For
the specific case of an eROSITA-like X-ray survey, we adopted
the band [0.5, 2.0] keV, where the threshold flux is expected to be
f min = 3.3 × 10−14 erg (s cm2)−1. In order to estimate the band
flux for a cluster of a given mass placed at a given redshift we
modelled the related intracluster medium using a Raymond–Smith
plasma model (Raymond & Smith 1977) as implemented in the
XSPEC software package (Arnaud 1996), with metal abundance Z =
0.3 Z	 (Fukazawa et al. 1998; Schindler 1999). The plasma model
has been normalized so as to reproduce the bolometric luminosity
expected from the scaling relation adopted by Fedeli, Moscardini
& Bartelmann (2009), namely

L(M, z) = 1.097 × 1045 erg s−1 (ME(z))1.554, (21)

where the mass must be inserted in units of 1015 M	 h−1. This rela-
tion results from the combination of two scaling laws, one relating
the mass to the X-ray temperature, and the other relating the tem-
perature to the luminosity. See Fedeli et al. (2009) for additional
details.

The second case that we consider is representative of cluster cat-
alogues selected through their weak lensing signal. Massive galaxy
clusters can be selected as high signal-to-noise ratio (S/N) peaks
in the weak lensing map produced by weak lensing surveys. The
S/N strength will also be used as a proxy for their mass, although a
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Figure 12. Upper panel: minimum mass for weak lensing survey (solid
line) and X-ray survey (dashed line) for the reference �CDM model. Lower
panel: minimum mass for the eROSITA cluster catalogue as a function of
redshift, presented as ratios between the oscillating dark energy models and
the �CDM cosmology estimates.

robust multiwavelength follow-up program will be necessary in
order to have more precise estimates. For the minimum cluster
mass entering this catalogue, we adopted the calculations of Bergé,
Amara & Réfrégier (2010). In particular, we refer to their fig. 1,
where they present the selection function for a Euclid-like survey2

(Laureijs 2009; Laureijs et al. 2011) in the mass–redshift plane,
assuming a number density of background galaxies of n̄g =
40 arcmin−2. We considered the contour referring to a S/N thresh-
old of 5, threshold that was shown to be a good choice to minimize
spurious detections in the weak lensing maps (see Pace et al. 2007).

In Fig. 12 we present our results for the minimum mass of the
catalogues. In the upper panel we show the minimum mass for the
adopted weak lensing survey (solid line) and X-ray survey (dashed
line) for the �CDM model. We see that as expected both minimum
masses increase with redshift in order to have the same flux or S/N.
The X-ray mass increases from few times 1013 M	 h−1 at z � 0
till � 6 × 1014 M	 h−1 at z = 2. As evident, since the flux limit
is constant in redshift, the redshift dependence of the mass can be
very well approximated by a parabola, therefore, compensating the
increase of the luminosity distance (entering quadratically in the
relation between flux and luminosity). The minimum mass for a
weak lensing survey is increasing much faster with redshift since
the lensing efficiency drops very fast to zero if the lens approaches
the sources.

2 http://sci.esa.int/science-e/www/area/index.cfm?fareaid=102

Figure 13. Cluster redshift distribution, as a function of redshift, presented
as ratios between the oscillating dark energy models and the �CDM cosmol-
ogy estimates. Upper panel: number of objects above the minimum mass for
a Euclid-like survey. Lower panel: number of objects above the minimum
mass for an eROSITA-like survey. Line styles and colours for the different
models are as in Fig. 1.

In the lower panel we show the minimum cluster mass for the
X-ray catalogue in each dark energy cosmology considered here,
divided by the same quantity estimated for the reference �CDM
model (lower panel). We see that differences in the minimum ob-
served mass are strongly related to the differences in the Hubble
function and in the luminosity distance, as one might naively have
expected. Specifically, since the minimum mass depends on the
square of the luminosity distance, even small variations of the latter
turn out to affect the former at the level of ∼10 per cent.

In Fig. 13 we present the redshift distributions expected for the
weak lensing survey (upper panel) and the X-ray survey (lower
panel) we considered, respectively. The redshift distribution is de-
fined as

N (z) = dV (z)

dz
N (>Mmin(z), z), (22)

where Mmin(z) is the minimum observed mass for the survey at hand
and dV(z)/dz is the comoving volume element contained in the unit
redshift. The first thing to note is that the deviations in the redshift
distributions induced by the presence of oscillating dark energy
are quite substantially different for an X-ray survey and a cosmic
shear survey. This is likely due to the fact that these surveys have
remarkably different selection functions, that sample quite distinct
regions of the mass–redshift plane, where the impact of oscillating
dark energy is necessarily different. Let us consider first the X-ray
eROSITA-like survey. In this case the redshift distributions com-
puted for different cosmologies are almost identical at very low
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redshift, while substantial deviations are visible at higher redshift.
Specifically, the abundance of clusters is incremented by up to ∼20
per cent at z ∼ 0.8 for models 1, 2 and 3, and decreased by the same
amount or more for the other models.

For the weak lensing survey the situation is totally different. Cos-
mological models differ from each other by up to ∼5–10 per cent
already at relatively low redshift. Deviations from the �CDM cu-
riously vanish at z ∼ 0.6 for all models, and then grow again, but
with opposite sign, for higher redshifts. In addition to the differ-
ent selection function, one additional difference between the X-ray
survey and the cosmic shear survey considered here is that in the
former case the minimum mass depends on cosmology, while in
the latter case it is model independent since what we measure is
directly related to the mass of the cluster.

4.5 Dark matter power spectrum

An important tool that can be used to infer the statistical proper-
ties of a cosmological model is the fully non-linear matter power
spectrum. Observationally, this can be estimated both by using the
distribution of tracers such as galaxies and galaxy clusters (provided
their non-linear bias is understood) and through cosmic shear (that
however returns only a projected version of the three-dimensional
spectrum). The matter power spectrum can be studied in the non-
linear regime by means of numerical N-body simulations or semi-
analytic prescriptions that are fitted against them (Peacock & Dodds
1996; Smith et al. 2003). The shortcoming of such fitting formu-
las stays in the fact that they have limited tests of validity, usually
restricted to the concordance �CDM cosmology and scales k �
50–100 h Mpc−1 at z = 0.

An alternative approach, that we exploited, is based on the halo
model developed by Ma & Fry (2000) and Seljak (2000) (see Cooray
& Sheth 2002 for a comprehensive review). The halo model has a
physical motivation, and relies on ingredients, such as the average
dark matter halo density profile and mass function, whose universal-
ity is much better established than for the non-linear matter power
spectrum. Additionally, using this formalism the matter power spec-
trum calculation can be pushed to very small scales, in principle as
small as the structure of cold dark matter haloes has been studied.
Within the halo model the full power spectrum is given by the sum
of two terms: one (the two-halo term) dominates on large scales
and it depends on the correlation of individual haloes; the other
(the one-halo term) dominates on small scales and it is sensitive to
the inner structure of the haloes. The ingredients needed in order
to apply the halo model formalism are the halo mass function, the
halo linear bias and the halo mass density profile.

The behaviour of the mass function in the various oscillating
dark energy cosmologies considered here has been described in
the previous subsection. For the average internal structure of dark
matter haloes we adopt the Navarro, Frenk & White (1997) (NFW)
density profile:

ρ(r) = ρs

(r/rs)(1 + r/rs)2
, (23)

where ρs is a density scale while rs is the radius at which the
logarithmic slope of the profile equals −2. The parameter rs is
related to the virial radius Rv of the structure by the concentration,
c ≡ Rv/rs. The concentration is in turn depending on the total mass M
of the object, in that dynamically younger structures have on average
larger masses and lower concentrations. We adopt the following

Figure 14. The fully non-linear dark matter power spectrum at z = 0 (upper
panel) and z = 0.5 (lower panel) according to the halo model prescription.
Ratios with respect to the �CDM expectation are shown. Line types and
colours for the different models are as in Fig. 1.

concentration–mass relation,

c(M, z) = 10

1 + z

[
M

M∗(z)

]−0.15

, (24)

inspired by Huffenberger & Seljak (2003) and tested to give good
agreement with fits to N-body simulations in the framework of the
�CDM cosmology. In the previous equation M∗(z) represents the
characteristic collapsing mass at a given redshift, defined implicitly
as D+(z)σM∗ = δc(z).

As for the large-scale bias, which is needed in the two-halo part
of the power spectrum, we adopt the prescription by Sheth, Mo &
Tormen (2001):

b(M, z) = 1 + a
δc(z)

D2+(z)σ 2
M

− 1

δc(z)

+ 2p

δc(z)

[
(D+(z)σM )2p

(D+(z)σM )2p + (
√

aδc(z))2p

]
,

(25)

where a = 0.75 and p = 0.3.
In Fig. 14 we show the ratio of the matter power spectrum com-

puted in each of the six oscillating dark energy models explored
here to the same function in the concordance �CDM cosmology,
as a function of wavenumber. In the upper panel we plot the ratio
at z = 0, while in the lower panel we consider the ratio at z = 0.5.
It is immediately evident that at the present time all cosmologies
tend to have the same non-linear matter power spectrum at small
scales. This is due to the fact that in the concentration–mass relation
that we adopted (equation 24) all the cosmology dependence is en-
capsulated in the characteristics non-linear mass M∗(z). However,
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due to the fact that D+(z = 0) = 1, and δc(z = 0)/σ 8 is the same
for all cosmological models, the concentration for a given mass at
z = 0 is also unchanged. Hence, since dark matter haloes share
always the same inner structure, they produce an identical dark
matter correlation function at small scales. The situation changes
at z > 0. In fact, as we can see from the lower panel of Fig. 14,
the matter power spectra now differ from the �CDM case at all
scales. Differences are however at the level of ∼1 per cent at most
and model 4 in particular does not show strong differences from the
reference model. One might argue that the inner structure of dark
matter haloes should change at least a bit due to oscillatory dark
energy, even at z = 0. Since, however, we have no indication on how
this is expected to happen, we stick to our original choice. At very
large scales the power spectrum approaches the linear primordial
one, hence the deviations with respect to the fiducial cosmology are
induced only by differences in the normalization σ 8 (squared), that
are always below 1 per cent.

4.6 Cosmic shear

As mentioned above, the power spectrum of cosmological weak
lensing is a projected (and weighted) version of the fully non-linear
matter power spectrum. What is actually measured is the effective
convergence power spectrum (equivalent to the shear and reduced
shear power spectra), given by

Pκ (�) = 9H 4
0 �2

m,0

4

∫ χH

0
P

[
�

fK (χ )
, χ

]
W 2(χ )

a2(χ )
dχ, (26)

where a(χ ) is the scale factor, χ the comoving distance up to scale
factor a and f K(χ ) the comoving angular diameter distance which
depends on K, the spatial curvature of the Universe. The integral in
the previous equation formally extends up to the horizon size χH,
however, since the number density of sources (see below) drops to
zero much before that, the integral can be effectively truncated at
z ∼ 10.

The function W(χ ) is an integration kernel depending on n(z(χ )),
the redshift distribution of background sources. The kernel can be
written as

W (χ ) =
∫ χH

χ

n(χ ′)
fK (χ − χ ′)

fK (χ ′)
dχ ′. (27)

The functional form for the redshift distribution of the sources
has to be inferred with the help of observations. In the following
we decided to assume the source distribution derived by Fu et al.
(2008) using data of the Canada–France–Hawaii Telescope Legacy
Survey (CFHTLS). The distribution takes the functional form

n(z) = A
za + zab

zb + c
, (28)

with parameter values a = 0.612, b = 8.125 and c = 0.62. The
normalization constant A is given by

A−1 =
∫ +∞

0

za + zab

zb + c
dz. (29)

We checked our results against variations of the source redshift dis-
tribution, verifying that adopting instead the distribution of Brain-
erd, Blandford & Smail (1996) (see also Efstathiou et al. 1991;
Smail & Dickinson 1995) or Benjamin et al. (2007) changed very
little the subsequent cosmic shear results.

In Fig. 15 we show the effective convergence power spectra for
the various oscillating dark energy models explored in this work,
divided by the same quantity estimated in the framework of the

Figure 15. The effective convergence power spectrum for each of the six
oscillating dark energy cosmologies considered in this work. We show ratios
with respect to the �CDM power spectrum. Line styles and colours for the
different models are as in Fig. 1.

concordance cosmology. We can observe that models 4 (yellow
dot–dashed curve) and 6 (cyan dot–dotted curve) have negligible
differences with respect to the �CDM model, while for the other
models deviations can reach up to ∼10–15 per cent at very small
angular scales. The fact that the largest deviations are visible at
small scales highlights how the matter power spectrum is indeed
affected by oscillating quintessence at those scales if one considers
z > 0.

Let us now make the case for a possible detection of oscillat-
ing dark energy more specific, by considering the S/N for such a
detection at a fixed multipole. This can be written as

S

N
(�) =

[
P DE

κ (�) − P �CDM
κ (�)

	P �CDM
κ (�)

]2

, (30)

where 	P �CDM
κ (�) is the Gaussian statistical error on the power

spectrum in the framework of the concordance cosmology. Follow-
ing Kaiser (1992, 1998), Seljak (1998) and Huterer (2002), the latter
can be evaluated as

	P �CDM
κ (�) =

√
2

(2� + 1)	�fsky

[
P �CDM

κ (�) + γ 2

n̄g

]
, (31)

where n̄g is the average surface number density of observed galax-
ies, f sky is the fraction of sky area surveyed and γ represents the
rms intrinsic shape noise for the average galaxy. By assuming
the specifications of a future typical weak lensing survey we set
n̄ = 40 arcmin−2, f sky = 1/2 and γ = 0.22 (see Zhang, Yuan &
Lan 2009). To specify 	�, the binwidth over which the spectrum
is averaged, we follow Takada & Bridle (2007) and Takada & Jain
(2009) and adopt the value 	� = 1. A survey like Euclid is expected
to have similar performances (Laureijs et al. 2011).

We stress that the resulting S/N values should be deemed accu-
rate only for multipoles up to � ∼ 2000–3000. For angular scales
smaller than that non-Gaussian errors due to the non-linear growth
of structures, which have not been taken into account in our anal-
ysis, kick in and baryonic physics cannot be neglected anymore as
well. Given this, in Fig. 16 we show the S/N for the effective con-
vergence power spectrum. As also found by Fedeli & Moscardini
(2010) when studying the impact of primordial non-Gaussianity on
the weak lensing power spectrum, we observe that at intermediate
scales, 100 � � � 1000, S/N ∼0.5–1 for four out of the six models
we studied, while for very low or very high multipoles the S/N tends
to vanish. This means that for these models it would be sufficient to
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Figure 16. The S/N for discriminating between the concordance cosmology
and each one of the six dynamical dark energy models considered in this
work, as a function of multipole. Line styles and colours for the different
models are as in Fig. 1.

sum the S/N over a relatively limited number of intermediate mul-
tipoles in order to have a significant detection of oscillating dark
energy over the concordance cosmology. In models 4 and 6, how-
ever, the S/N is at most at the level of ∼10−3, hence these models
would be very difficult to distinguish from the �CDM cosmology
by using a cosmic shear survey.

A maneuver usually capable of increasing the discriminatory
power of cosmic shear consists in subdividing the source redshift
distribution in a certain number of bins (usually five is the maximum
number that gives appreciable improvement; see Sun et al. 2009),
computing the effective convergence power spectrum given by each
bin, and then combining the various spectra together. This expedient
is dubbed lensing tomography (Hu 1999; Takada & Jain 2004).
Specifically, the cross-spectrum between the two source redshift
bins i and j is just a straightforward generalization of the power
spectrum defined in equation (26):

P ij
κ (�) = 9H 4

0 �m,0

4c4

∫ χH

0
P

(
�

fK (χ )
, χ

)
Wi(χ )Wj (χ )

a2(χ )
dχ, (32)

where the integration kernels are now defined as

Wi(χ ) =
∫ χH

χ

ni(χ
′)

fK (χ − χ ′)
fK (χ ′)

dχ ′. (33)

While previously the redshift distribution was normalized to unity
over the complete redshift range, now we must normalize to unity
the redshift distribution in each redshift bin, so that∫ χH

0
ni(χ ) dχ = 1. (34)

We did not attempt here a full tomographic analysis, since the
resulting gain in discriminatory power is likely not enough to dis-
tinguish models 4 and 6, while the remaining models should be
relatively easy to distinguish by simply using the weak lensing
power spectrum alone. We did however compute the power spectra
resulting from three different source redshift bins, in order to verify
whether one of them would give a markedly stronger signal than the
others in order to focus observational efforts on that redshift range.
The bins adopted are [0, 0.5], [0.5, 1] and [1, +∞]. In Fig. 17
we show the ratio of the power spectra restricted to a specific
source redshift bin computed for each of the six oscillating
quintessence models in this work to the corresponding quantity
evaluated in the framework of the �CDM cosmology. As can be
seen, the qualitative behaviour is the same as for the full effective
convergence power spectrum, although some quantitative differ-
ences exist. Specifically, the impact of oscillating dark energy is
somewhat larger for the high-redshift bins, having z > 0.5. How-
ever it is a relatively small effect, changing the deviations with
respect to the �CDM cosmology of a few per cent at most.

5 C O N C L U S I O N S

In this work we considered structure growth in six different dark
energy models characterized by an oscillating equation of state
parameter w(z). While many authors studied the expansion history
of the Universe implied by these models, here we performed one
step further by investigating the consequences of such models on the
formation of non-linear structures. The main idea was to explore
cosmological probes potentially capable of distinguishing one or
more of these models from the concordance �CDM cosmology.
To that aim, we studied several observables, ranging from the ISW
effect to the cluster mass function and the cosmic shear power
spectrum. Our main conclusions can be summarized as follows.

(i) No cosmologically relevant quantity shows oscillations as a
function of redshift for any of the models considered in this work.
This is a consequence of the fact that observables are given by
integrals over w(z), so that any feature in the latter function is
efficiently smoothed out. There are very slight hints of a wiggle only
in the ISW effect, in the age of the Universe, and in the deceleration
parameter, at a level that is however likely impossible to detect.

(ii) We estimated the redshift drift, that is the variation of the cos-
mological redshift of a source due to the expansion of the Universe
in the various models considered here. The impact of oscillating
dark energy can reach up to ∼10 per cent at z ∼ 1 for the most
extreme cosmologies, and stays at the level of a few per cent all the

Figure 17. The weak lensing power spectra for the six oscillating dark energy cosmologies computed by restricting to a specific source redshift bin. We show
ratios with respect the �CDM expectation. Each panel refers to a particular redshift bin, as labelled. Line styles and colours for the different models are as in
Fig. 1.
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way up to z ∼ 10. At these high redshifts the impact of peculiar
motions is highly negligible, thus allowing us to probe the expansion
history with very high accuracy.

(iii) The critical linear density contrast for spherical collapse
δc(z) and the virial overdensity 	v(z) are always quite similar to the
corresponding quantities evaluated within the fiducial cosmology,
with deviations being at the level of a few per cent for z � 2–3.

(iv) As naively expected, the growth factor of models having a
larger amount of dark energy at early times is slightly larger than
for the �CDM cosmology, and vice versa. Differences are at the
level of a few per cent also in this case and perfectly consistent
with recent measurements presented by Blake et al. (2011a) for the
redshift space distortions of the non-linear power spectrum.

(v) The impact of oscillating quintessence on the mass function
increases with both mass and redshift, reaching ∼30 per cent or
more for M > 1013 M	 h−1 at z = 2. Interestingly, models with a
high frequency of oscillations show an increment in the abundance
of cosmic structures, while models with a more regular evolution
of w(z) show a decrement. This is because in models with high
frequency of oscillations the amount of dark energy is higher than
for the cosmological constant case and structures need to growth
faster to compensate it (see Figs 2, 7 and 10). The resulting effect
on the redshift distribution of cluster catalogues depends heavily on
the selection function, however, it is at a level likely to be detectable
with future wide cluster surveys.

(vi) Cosmic shear is affected at the level of ∼10–15 per cent at
intermediate/small angular scales. Given the sky coverage, sensi-
tivity and point spread function (PSF) stability of future wide field
weak lensing surveys, at least some oscillating dark energy models
will be discriminated form the concordance �CDM cosmology by
using the power spectrum of effective convergence alone.

It is also worth to study what happens to our analysis if the
dark energy equation of state is still oscillating, but is decreasing
when the redshift increases in the vicinity of z = 0, opposite to
what we assumed now. In order to achieve that we added a phase
θ = π . We limited our new analysis only to the first three models
and we consider the evolution in time of the growth factor, of the
overdensities δc and 	v and the mass function at the four redshift
considered, namely z = 0, 0.5, 1 and 2. We observed that for all the
quantities considered, the behaviour is qualitatively the same but
the effect is much smaller than before. We can therefore conclude
that for the oscillating dark energy models, a first oscillation in
the equation of state with decreasing values of the equation of state
parameter makes the effects of dark energy smaller than before. This
is due to the fact that the amount of dark energy in this situation
is smaller than before, therefore, structures do not need to grow as
fast as it was before in order to compensate for it.

It is interesting to compare our results with those of Mignone &
Bartelmann (2008). In that work the authors showed that even if the
expansion rate of the Universe has a sudden transition (that would
require an even stronger transition in the dark energy equation of
state parameter w(z)) this would hardly show up in cosmological
observables such as the luminosity distance of SNe Ia. This agrees
with our findings, namely since actual observables are given by at
least a double integral over the function w(z), any feature of the latter
is easily smoothed out. A partial exception to this is the deceleration
parameter. This is the second derivative of the expansion factor,
hence it does retain some of the oscillatory behaviour of the dark
energy equation of state parameter.

We conclude by noting that, although it is virtually not possible to
find traces of oscillatory behaviour in cosmological observables, os-

cillating dark energy models do induce some specific modifications
in the number counts of massive clusters and the power spectrum of
cosmic shear that will likely be detectable by future cosmological
surveys. This paper hence gives an additional contribution to the
study of observational signatures of a dynamically evolving dark
energy component, which is a fundamental field of study in order
to better understand the nature of quintessence itself.
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Araújo M. E., Stoeger W. R., 2010, Phys. Rev. D, 82, 123513
Arnaud K. A., 1996, in Jacoby G. H., Barnes J., eds, ASP Conf. Ser. Vol.

101, Astronomical Data Analysis Software and Systems V. Astron. Soc.
Pac., San Francisco, p. 17

Balbi A., Quercellini C., 2007, MNRAS, 382, 1623
Baldi M., Pettorino V., Amendola L., Wetterich C., 2011, MNRAS, 418,

214
Barenboim G., Lykken J., 2006, Phys. Lett. B, 633, 453
Barenboim G., Mena Requejo O., Quigg C., 2006, J. Cosmol. Astropart.

Phys., 4, 8
Bengochea G. R., Ferraro R., 2009, Phys. Rev. D, 79, 124019
Benjamin J. et al., 2007, MNRAS, 381, 702
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A P P E N D I X A : C O D E D E TA I L S A N D T E S T I N G

In this appendix we explain in detail how we solved the equations
(5) and (6) for the non-linear and linear evolution of matter den-
sity fluctuations. Because all the terms involving the dark energy
equation of state present oscillating behaviour, particular care has
to be taken in order to achieve numerical convergence in the results.
Since equation (6) is an ordinary second-order linear differential
equation, in order to solve it we need to provide the initial condi-
tions δi and δ′

i . We assume that at early times the solution is a power
law δi = an (implying δ′

i = nδi/a) and we insert this ansatz into
the differential equation. By evaluating it at the equivalence scale
factor aeq, we obtain a second-order algebraic equation for n which
can be easily solved. Since at early times all the models are very
well approximated by an EdS model, n differs from unity only by a
few per cent, more so for models having more dark energy at early
times. We parametrized the initial density contrast as a power law
only in order to easily determine the velocity.

To solve equation (5) we have to provide as before two ini-
tial conditions, one for δ and one for δ′. At early times, we can
safely assume that the evolution of density perturbations is linear
and the solution can be written in the same form as done before.
As explained in the main text, we need to determine the initial
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overdensity making the perturbation diverge at a given time. To do
so we fix the time (scale factor) corresponding to the collapse and
run a root-search algorithm. At each step δi and δ′

i are automatically
updated. The values corresponding to the divergent result of the
non-linear evolution are then used as initial conditions for the linear
equation in order to determine the linear overdensity parameter δc.
Despite the fact that, compared to Pace et al. (2010), we do not have
a fixed value for the initial velocity of the perturbations, we could
reproduce the results presented there, implying that the role of the
initial velocity is rather marginal. The advantages of doing so are
twofold: on one side the new velocities are formally correct and can
vary according to the cosmological model and on the other side the
code is numerically much more stable. One instability problem is
due to the fact that formally a divergent value needs to be infinite
and this cannot obviously be satisfied from the numerical point of
view. We therefore assume that divergence occurs when δ ≥ 107.
This makes δc artificially increase with the redshift also for an EdS

Universe (see Fig. 10). We checked that having the initial velocity
related to the initial overdensity makes this problem much less se-
vere. We run the code to determine the value of δc up to zc = 50
and we saw that first of all the increase is very mild, and second
the numerical value is higher than the analytical one by only 0.5
per cent at zc = 50. For equation (5) the initial scale factor is ai =
5 × 10−5.

A crucial point for having numerical convergence of the results
is to perform an accurate numerical integration for the equation
determining the time evolution of the dark energy density.

To perform the integral in equation (12), we made sure to have
a numerical accuracy of at least 10−3 when compared with the
analytical result. We also checked that different integration methods
would give the same result as indeed was the case.
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