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Abstract 

 
Trade-offs between advantageous but conflicting properties (e.g., speed vs. accuracy) are 

ubiquitous in cognition, but the relevant literature is conceptually fragmented, scattered across 
disciplines, and has not been organized in a coherent framework. This paper takes an initial step 
toward a general theory of cognitive trade-offs by examining four key properties of goal-directed 
systems: performance, efficiency, robustness, and flexibility. These properties define a number 
of basic functional trade-offs that can be used to map the abstract “design space” of natural and 
artificial cognitive systems. Basic functional trade-offs provide a shared vocabulary to describe a 
variety of specific trade-offs including speed vs. accuracy, generalist vs. specialist, exploration 
vs. exploitation, and many others. By linking specific features of cognitive functioning to general 
properties such as robustness and efficiency, it becomes possible to harness some powerful 
insights from systems engineering and systems biology to suggest useful generalizations, point to 
under-explored but potentially important trade-offs, and prompt novel hypotheses and 
connections between disparate areas of research. 

 
Keywords: Design; efficiency; flexibility; performance; robustness; trade-offs. 
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1. Introduction 

 
Trade-offs—balances between separately advantageous but conflicting traits—are 

fundamental aspects of all systems, whether they are artificial machines or biological 
mechanisms designed through evolution by natural selection. Trade-offs are also ubiquitous in 
cognitive systems. Enhanced computational performance does not come for free; the same is true 
of other desirable properties such as speed, flexibility, or the ability to withstand damage. 
Crucially, improving a system on one front will typically worsen it in other ways. For example, 
the speed of decisions can be increased by sacrificing their accuracy (Heitz, 2014), and more 
flexible learning algorithms also tend to be more computationally demanding (Daw & Dayan, 
2014). The design of cognitive systems is thus shaped by constraints, compromises, and 
opposing priorities that can be understood only in relation to the underlying trade-offs.  

 
Cognitive trade-offs have been addressed in many disciplines, from neuroscience and 

psychology to behavioral ecology and computer science. Unfortunately, the relevant literature 
remains scattered, limited in scope, and conceptually fragmented. Different research traditions 
tend to focus on different trade-offs, largely ignore each other’s contribution, and often employ 
different terms for similar or overlapping constructs. To the best of our knowledge, there have 
been no attempts to organize this literature within a coherent framework. Here we take an initial 
step in this direction by offering an integrative overview of what we label basic functional trade-
offs: a set of highly general trade-offs that apply to all natural or artificial systems designed to 
perform a function, including cognitive systems whose function can be described as 
manipulation of information (Piccinini & Scarantino, 2011; more on this in section 2).  

 
Basic functional trade-offs are defined by four key properties of goal-directed systems: 

performance, efficiency, robustness, and flexibility (Figure 1). Together, these properties map the 
abstract “design space” of any natural or artificial system endowed with a function; when they 
are applied to cognitive systems (as we do here), they provide a shared vocabulary to describe a 
variety of specific characteristics such as speed, accuracy, reliability, memory use, and so on. By 
linking specific features of cognitive functioning to general properties such as robustness and 
efficiency, it becomes possible to harness some powerful insights from systems engineering and 
systems biology, two related disciplines that explicitly investigate the design of complex 
functional mechanisms (Alderson & Doyle, 2010; Doyle & Csete, 2011; Kitano, 2004, 2007).  

 
We have identified the four properties in Figure 1 as basic after surveying an extensive 

literature on trade-offs in biology and engineering, as detailed in the remainder of this paper. We 
could not find other examples of properties that were both universal (i.e., would apply to all 
functional systems) and similarly general (i.e., were not already encompassed by the basic ones). 
This assertion does not mean that the classification we propose is fully exhaustive or that it 
cannot be extended in principle, and we encourage its growth and elaboration. As we discuss in 
the following sections, even the distinctions between basic properties are not absolute, and admit 
a degree of conceptual overlap—for example, in particular cases it can be hard to differentiate 
sharply between robustness and flexibility, or between robustness and performance. While it is 
important to acknowledge and discuss those cases, the functional properties that we describe 
have a broad range of application and considerable heuristic power. Their value lies in their 
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ability to integrate many particular examples within a common frame of reference, suggest useful 
generalizations, and prompt novel hypotheses and connections across scientific domains. 

 

 
 
Figure 1. A map of basic functional trade-offs. Performance, efficiency, robustness, and flexibility are the key 
properties of all functional systems, including natural and artificial cognitive systems. Straight arrows represent 
trade-offs between properties; curved arrows represent trade-offs between different aspects of the same property. 

 
 
In this paper, we examine the four properties shown in Figure 1 and discuss the trade-offs 

that arise between competing properties, as well as between different aspects of each (e.g., trade-
offs between multiple aspects of robustness), with a focus on cognitive and neural systems. We 
also consider the implications of simultaneous trade-offs among more than two properties (e.g., 
three-way trade-offs between performance, robustness, and efficiency). The framework we 
present brings together many specific trade-offs that have been investigated in the literature 
(summarized in Table 1), points to some potentially important trade-offs that have received 
comparatively little attention so far, and offers a toolkit for clarifying some counterintuitive 
phenomena such as “less-is-more” effects in the performance of simple cognitive heuristics 
(Gigerenzer & Brighton, 2009). We conclude by considering possible ways to apply and extend 
the framework. From a psychological perspective, a better understanding of trade-offs may 
illuminate typical human cognitive variation as well as mental disorders, some of which appear 
to involve extremes or dysregulation in the balances between competing cognitive functions 
(e.g., Baron-Cohen, 2009; Crespi & Go, 2015). 
 

2. Performance 
 

The performance of a system is usually defined as its ability to produce an intended result 
(or some other roughly equivalent formulation). The concept of performance is meaningless 
without explicit or implicit reference to function, the idea that the system has an identifiable 
purpose, goal, or rationale. In turn, function implies design—in order to fulfill a purpose, a 
system needs to be structured in an organized, non-random fashion. When the term “design” is 
employed in this broad sense it does not require the existence of a conscious designer: indeed, 
the crucial insight of Darwinian biology is that design and function can arise from the blind, 
undirected, and impersonal process of natural selection (Alderson & Doyle, 2010; Dennett, 2009; 
Sterling & Laughlin, 2015).  
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Basic trade-offs  Main examples discussed in the text 

Efficiency vs. performance - Speed-accuracy trade-offs 
- Exploration-exploitation trade-offs 
- Efficiency trade-offs in neural design 

Efficiency vs. robustness - Robustness-resource trade-offs 
- Proactive vs. reactive control 

Efficiency vs. flexibility - Generalist-specialist trade-offs  
- Model-based vs. model-free learning 
- Fast and frugal heuristics 

Performance vs. robustness - Bias-variance trade-offs 
- Pessimistic strategies 

Performance vs. flexibility - Generalist-specialist trade-offs 

Robustness vs. flexibility - Stability-flexibility dilemma 
- Proactive vs. reactive control 
- Fast and frugal heuristics 
 

Aspects of efficiency - Space-time trade-offs 
 

Aspects of robustness - Robustness-fragility trade-offs 

 
Table 1. Summary of the trade-offs discussed in the text.  

 
 
In biological systems, goals can exist on an objective level even if they are not 

represented consciously (or at all) within the system. When bacteria move toward higher 
concentrations of glucose by chemotaxis, their behavior is regulated by a system of feedback 
control that alternates straight line swimming and random tumbling. The objective goal of this 
behavior is to move bacteria toward glucose, even if bacteria themselves have no representation 
of it—and, interestingly, do not even possess a representation of the direction in which they are 
swimming (Bechhoefer, 2005). Such real but unrepresented goals are ubiquitous in biological 
systems; in Daniel Dennett’s terminology, they can be described as “free-floating rationales” 
produced by blind selection (Dennett, 2009). The difference between free-floating rationales and 
deliberate, fully represented goals (such as those of a human designer) is best understood as a 
gradient, which is climbed by evolutionary processes through the gradual accumulation of 
functional specialization and cognitive complexity. For the purpose of this paper, we make no 
distinction between different types of goals, and the concepts of design and function apply to 
natural and artificial systems alike. 
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2.1. Performance in Cognitive Systems 
 

Broadly defined, a cognitive system is an information-processing mechanism that 
computes mappings between inputs and outputs (Lewis et al., 2014). Input-output mappings can 
be extremely complex; as well, outputs can take many possible forms, including commands to 
physical effectors (e.g., muscles or motors) but also representations that are used as inputs to 
other systems (e. g., information transfer between different brain regions). Note that we employ 
both “computation” and “information” in a broad sense, to include non-algorithmic and non-
digital types of computation as well as various types of information (e.g., Shannon vs. semantic 
information; see Piccinini & Scarantino, 2011). Thus, our working definition of a cognitive 
system includes both natural and artificial instances of information-processing mechanisms. 
Some proponents of dynamical approaches to cognition (most notably van Gelder, 1998) have 
argued that cognitive mechanisms should be understood as dynamical systems—as defined for 
example by sets of differential equations—rather than computational processes. However, 
dynamical systems can also be analyzed with the tools of information theory and described from 
a computational perspective (Beer & Williams, 2015; Quax et al., 2016), making the distinction 
irrelevant for our purposes.  

 
When the function of a system involves information processing, its performance can be 

assessed with respect to the intended relationships between input and output (Gluck et al., 2012). 
A system performs well when it produces the intended output in relation to a certain input; 
performance degrades to the extent that the actual output diverges from the intended one. What 
counts as “intended” depends on the specific function of the system, whether that function is 
explicitly represented in the mind of human designers (e.g., an application that detects and 
recognizes faces in pictures) or is a free-floating rationale in a biological mechanism (e.g., the 
face recognition circuits found in primate brains). Importantly, the intended input-output 
relationships can be probabilistic rather than deterministic; for example, a system may be 
designed to yield certain patterns of correlation between features of the input and those of the 
output. Moreover, we make no assumption that the output is solely or uniquely determined by 
the input; in particular, a cognitive system may produce self-generated output patterns that are at 
least partly independent from inputs. 

 
Parsing the functions of complex cognitive systems can be challenging, and a detailed 

taxonomy of cognitive functions is outside the scope of this paper. Typical functions discussed in 
the literature include perception, detection, decision-making, memory, and motor control. These 
categories are not clearly demarcated and overlap substantially with one another; for example, 
perceptual processes can be partly understood as detection tasks, and may be deeply intertwined 
with motor control (e.g., eye saccades play an important role in visual perception). Information 
processing is also crucially involved in motivation, emotion, communication, and in the 
regulation of visceral and endocrine processes. Cognitive systems are often arranged 
hierarchically, with smaller/simpler systems nested within larger/more complex ones (e.g., 
hierarchies of routines and subroutines in software applications; hierarchies of neural circuits in 
brains, down to the level of individual neurons and synapses). Thus, what constitutes the system 
of interest—and its corresponding functions, input, and output—critically depends on the level of 
analysis one decides to adopt. Of course, it is only possible to speak meaningfully of 
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performance when the design logic of a system has been “carved at its joints” and its function 
has been correctly identified.  

 
3. Efficiency 

 
The efficiency of a system is its ability to perform its function with minimal use of 

resources. Time is a vital resource, particularly in cognition: a faster system can respond more 
quickly to important events, make rapid decisions, and free up time for other tasks. When the 
activity of a system relies on the serial (as opposed to parallel) concatenation of multiple 
subsystems, the delays introduced by each of them will cumulate, making speed a highly 
desirable property. Note that, by treating time as a resource, the present framework draws a 
distinction between computational performance (the ability to produce the intended input-output 
mappings) and computation speed (the time employed to produce those mappings). The 
distinction may become blurred in cases in which processing speed is an integral component of 
performance. For example, the ability to accurately process high-pitched acoustic signals 
critically depends on the bandwidth of neural transmission. Accordingly, auditory neurons spike 
at faster rates than do visual or olfactory ones, and have thicker and more expensive axons 
(Sterling & Laughlin, 2015). Since higher frequencies require proportionally higher spiking 
rates, this is an interesting case in which a system’s performance—that is, the ability to encode 
and process high acoustic frequencies—cannot be separated from the speed of its components.  

 
Another crucial type of resource is energy, which is required for the operation of any 

natural or artificial system. Computation can be quite energy-intensive, and selection to 
minimize energetic demands seems to have shaped the evolution of neural machinery, from the 
biophysical characteristics of neurons to patterns of brain connectivity (e.g., Hasenstaub et al., 
2010; Lennie, 2003; Tomasi et al., 2013). The amount of physical machinery devoted to 
computation—processors, neurons, connections—is yet another aspect of efficiency. Each 
additional component of a cognitive system requires additional energy to build, maintain, and 
operate. Not least, larger and heavier systems are harder to transport, which is a critical limitation 
for animal brains, but also for computers that need to be embedded in small, portable, or moving 
devices. Selection for efficiency may contribute to explaining why modularity is a widespread 
property of biological networks, from metabolic pathways to brains. Modular networks are 
clustered—their elements are densely connected within each cluster but only sparsely connected 
with elements outside the cluster. Intuitively, modularity can enhance performance, as each 
module becomes more specialized for a particular task (Rueffler et al., 2012). Less obviously, 
evolutionary simulations show that selection to minimize the cost of the connections between the 
elements of a network (including the necessary machinery and the energy required to run it) may 
be sufficient to favor the evolution of a modular organization (Clune et al., 2013). Finally, 
complex cognitive systems often contain centralized computational resources (e.g. shared 
memory spaces) that can be accessed and used by multiple subsystems. From the perspective of 
each of the subsystems, efficiency includes minimal use of limited shared resources such as 
memory and attention. 
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Figure 2. Schematic representations of pairwise trade-offs between performance, efficiency, robustness, and 
flexibility. Curves in panels (a), (b), and (e) represent the performance of a system in response to a range of inputs 
(horizontal axis); performance is maximal for a certain kind of input and degrades for increasingly different inputs. 
Taller curves indicate higher maximum performance; broader curves indicate higher flexibility. Curves in panels (c) 
and (f) represent the performance of a system exposed to increasingly severe perturbations (horizontal axis). Curves 
with a steeper downward slope indicate lower robustness. The contour plot in panel (d) represents the performance 
of a system (darker colors = higher performance) in response to a range of inputs (horizontal axis) and increasingly 
severe perturbations (vertical axis). The more flexible system (blue) maintains performance in response to a broader 
range of inputs, but its performance degrades more steeply as perturbations increase. 
 
 
3.1. Trade-Offs Between Efficiency and Performance 
 

The idea that reducing resource use may limit performance is an intuitive one, and there 
is a rich literature on trade-offs between efficiency and cognitive performance (Figure 2a). The 
best-known case is arguably that of speed-accuracy trade-offs, a broad class of phenomena in 
which faster performance on a task (i.e., more efficient use of time) leads to less accurate 
responding (Garrett, 1922; Heitz, 2014). In this context, “accuracy” refers to the ability to 
produce the correct answer to the task—for example detect or identify a target stimulus, make 
the correct decision, or find the correct answer to a problem. This usage of the term is 
commonplace in cognitive science but may cause some confusion with the way “accuracy” has 
been classically used in measurement theory to quantify systematic error (the distance between 
the true value and the mean of a set of measures), as contrasted with the random error quantified 
by precision. However, more recent metrological standards recommend using “trueness” to 
describe the lack of systematic error, and employ “accuracy” in the more ordinary sense of the 
overall closeness of a measurement to the true value (Joint Committee for Guides in Metrology, 
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2008). This revised meaning of accuracy is conceptually closer to the one found in the cognitive 
literature. 

 
Speed-accuracy trade-offs have been documented in many different species and across a 

variety of tasks, from visual discrimination and motor control to predator avoidance and 
decision-making in foraging (Chittka et al., 2009; Sih & Del Giudice, 2012; Soukoreff & 
MacKenzie, 2009). In many contemporary cognitive models of decision-making (e.g., drift-
diffusion models), the trade-off arises from the sequential sampling of information. By the logic 
of these models, more time spent sampling a noisy input translates into a better estimate of the 
actual state of the world, which in turn permits more accurate decisions (see Heitz, 2014). A 
similar trade-off applies to inference algorithms that progressively refine their estimates through 
multiple iterations (e.g., Bayesian sampling); in this case, each additional iteration improves 
accuracy but increases the time spent computing (Lieder et al., 2012). From yet another 
perspective, the existence of speed-accuracy trade-offs across domains may be predicted from 
some abstract properties of information transfer in noisy cognitive systems with limited capacity. 
Specifically, error rates can be expected to increase as the rate of information generated in the 
system exceeds the capacity of the transmission channel between input and output (e.g., the 
sequence of sensory, cognitive, and motor processes that determine the response to a stimulus in 
a discrimination task). When the rate of information transfer exceeds the channel capacity, every 
additional increase in speed reduces accuracy by increasing the error rate (Soukoreff & 
MacKenzie, 2009; note that this is a theoretical argument rather than an empirical 
generalization). 

 
Another class of pervasive trade-offs involving time efficiency is that of exploration-

exploitation trade-offs (Hills et al., 2015; Mehlhorn et al., 2015). In many types of cognitive 
tasks, it is possible to increase performance by sampling the environment for information and 
looking for additional options (exploration) instead of simply choosing the best option among 
those already known (exploitation). The benefits of exploration are typically uncertain, in 
contrast with the predictable outcomes of exploitation. The main cost of exploration lies in the 
time spent gathering information, although energetic costs may also play a significant role in 
some contexts. Finding the optimal balance of exploration and exploitation is a fundamental 
problem in the design of control systems and learning algorithms (including reinforcement 
learning; Dayan & Daw, 2008). Classic examples of this trade-off have been described in 
foraging (exploiting a known patch of food vs. searching for more abundant patches; Charnov, 
1976) and mate choice (mating with a current attractive partner vs. waiting for better 
opportunities; Todd & Miller, 1999). Beyond decision-making, exploration-exploitation trade-
offs occur in many cognitive processes that involve sequential searches under uncertainty—
including visual attention, memory search, problem-solving strategies, and executive functions 
that regulate the allocation of cognitive resources between multiple tasks and goals (see Hills et 
al., 2015). 

 
Efficiency constraints on cognitive performance are by no means limited to time. Several 

striking examples come from research in neural biophysics. Neurons are subject to a strong 
trade-off between the accuracy of information transmission through the synapse and the 
energetic cost of postsynaptic excitatory currents. Larger currents (which transmit information 
more accurately) can be obtained by increasing the influx of ions through postsynaptic channels; 
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however, the energy required to pump ions out and repolarize the membrane increases as well. 
The evidence indicates that synapses in visual pathways are not designed to maximize 
information transfer, but to optimize the ratio of information transmitted to energy consumed 
(Attwell & Laughlin, 2001; Harris et al., 2015; Sterling & Laughlin, 2015).  

 
Other energetic trade-offs arise in patterns of functional connectivity in the brain: long-

distance connections can increase computational performance but are considerably less energy-
efficient than short-distance ones (Tomasi et al., 2013). The performance of neural transmission 
(in the form of enhanced signal-to-noise ratio) can also be improved by increasing the number of 
redundant synapses and/or their size, which drives up energetic consumption and requires 
additional cellular machinery. Accordingly, larger synapses are selectively expressed by neurons 
that perform high-precision computations (Laughlin, 2001; Sterling & Laughlin, 2015). 
Similarly, axons with a larger diameter and/or thicker myelination can transmit information 
faster and with higher signal-to-noise ratios. At the same time, they require larger amounts of 
lipids and proteins to build and take up more space, resulting in increased white matter volume 
and higher energetic consumption for building and maintenance (Wang et al., 2008). The design 
of the brain reflects myriad efficiency trade-offs at all levels of analysis, from the large-scale 
features of cortical structures and connections to the characteristics of single neurons and 
synapses (for extended discussion see Sterling & Laughlin, 2015).  

 
3.2. Trade-Offs Between Aspects of Efficiency 
 

From the preceding sections, it is easy to see how different aspects of efficiency may 
partly conflict with one another. As a rule, faster processors also tend to consume more energy; 
the same trade-off between energy and time efficiency applies to neurons, whose capacity for 
rapid spiking can be increased only by increasing the energetic cost of each action potential 
(Hasenstaub et al., 2010; Laughlin, 2001). Note that enhancing the response speed of individual 
neurons increases their ability to transmit information at faster rates, and thus encode signals 
with a higher bandwidth; this may translate into both speed and performance gains at the level of 
larger neural circuits. Thus, energy efficiency in neural transmission may trade off 
simultaneously against speed and performance.  

 
Trade-offs between speed and energy consumption are relatively intuitive. Less 

intuitively, research in computer science has demonstrated the pervasive existence of space-time 
trade-offs in computation (Savage, 2008). The general idea is that the time required to perform a 
certain computation can often be reduced by increasing the memory space available to run the 
program. In cognitive science, space-time trade-offs have been discussed mainly in relation to 
the design of cognitive architectures (computational models of general-purpose intelligent 
agents; see Langley et al., 2009). For example, storing the results of previous computations into 
“chunks” of declarative knowledge or rules for action permits faster decisions, at the expense of 
memory space (e.g., Kurup & Lebiere, 2012; Rosenbloom et al., 1991). However, the concept 
has not been applied as broadly as it deserves in psychology and neuroscience. Trade-offs 
between memory space and processing time may partly explain the robust positive correlations 
between working memory capacity, processing speed, and performance on intelligence tests 
(which typically reflects response speed as well as accuracy; see Ackerman et al., 2005; Conway 
et al., 2002). At the neural level, space-time trade-offs may offer insights into the mechanisms of 
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cortical plasticity during skills acquisition. For example, intensive skill straining—which usually 
includes training for fast execution—is accompanied by expansion of the cortical regions 
involved in the task during the initial phase of performance gain (cortical representation may 
“renormalize” after performance stabilizes; see Ungerleider et al., 2002; Wenger et al., 2017; 
Zatorre et al., 2012). To the extent that larger cortical representation entails increased memory 
availability, it is possible that the recruitment of additional neural space is driven—at least in 
part—by requirements for increased computation speed while the new skills are being fine-
tuned. 

 
3.3. From Functional Trade-Offs to Design Solutions  
 

The existence of functional trade-offs may shape the design of cognitive systems in a 
number of different ways. It can be useful to think about the consequences of trade-offs in terms 
of “design solutions” that balance competing properties within a certain set of constraints, which 
determine the range of feasible solutions. To begin, trade-offs may shape the basic structure and 
functionality of a given system. The biophysical properties of neurons and the general patterns of 
connectivity in the brain are case in points (e.g., all members of a species share the same general 
brain structure, which is partly shaped by performance-efficiency trade-offs). Sometimes, trade-
offs can be addressed by deploying multiple subsystems or algorithms, each designed to 
privilege a different property. For example, evolution has endowed mammals with two distinct 
neural circuits to deal with predation threats: a rapid but inaccurate system that processes sensory 
information in the amygdala and triggers an immediate fear response, and a slow but accurate 
system that relies on cortical processing (Chittka et al., 2009). Similarly, reinforcement learning 
can take place through model-free or model-based algorithms. Model-free algorithms are 
computationally simpler and therefore more rapid, but also less accurate (and less flexible in 
response to changing conditions) than their model-based counterparts. The brain seems to make 
use of both types of algorithms, which may be instantiated in partially distinct neural regions 
(Daw & Dayan, 2014). Of course, the coexistence of multiple subsystems with different 
properties raises the higher-order problem of if and how to combine their outputs or “arbitrate” 
between them (e.g., Keramati et al., 2011). 

 
On a shorter time scale, cognitive systems may dynamically adjust their functioning 

parameters depending on contextual factors, internal states, or the specific characteristics of a 
task. For example, raising the decision threshold of a decision-making process can increase 
accuracy at the expense of speed. (A similar result can be obtained by altering the balance 
between competing subsystems, e.g., by giving priority to slower and more accurate 
mechanisms.) Thus, foraging animals often respond to cues of predation risk by shifting to 
slower, more careful search strategies (Chittka et al., 2009). The optimal allocation of time 
between exploration and exploitation also depends on a wide array of factors, from the value and 
distribution of potential rewards to the predictability of the environment (Mehlhorn et al., 2015). 
Finally, alternative design solutions to functional trade-offs may be instantiated in stable patterns 
of individual differences: to illustrate, animals with “bold” personalities tend to make faster and 
less accurate decisions (Sih & Del Giudice, 2012), and individuals with higher intelligence and 
working memory capacity tend to devote more time to exploration, possibly because they benefit 
more from the additional information that they gain (Mehlhorn et al., 2015). 
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3.4. From Functional Trade-Offs to Empirical Correlations 
 

All else being equal, functional trade-offs between competing properties of a system can 
be expected to give rise to negative correlations between indicators of those properties. For 
example, when participants are given stronger incentives to respond quickly in a decision task, 
the accuracy of their responses decreases accordingly. Varying the strength of the incentive 
should produce a negative correlation between response speed and accuracy, mirroring the 
underlying trade-off (Chittka et al., 2009; Heitz, 2014). However, all else may not be equal. For 
example, some participants in a group may process information at a much higher rate than 
others. Even when those participants respond quickly, their accuracy may still be higher than 
those of participants with a low processing capacity. It is also plausible that, under the same 
testing conditions, individuals with lower processing capacity will experience more severe trade-
offs than those with higher capacity. If individual differences in processing capacity are large 
enough, they may significantly attenuate (or even reverse) the expected negative correlation 
between speed and accuracy.  

 
An intriguing empirical finding in this respect is that people with higher general 

intelligence (as measured for example by IQ tests) tend to show lower neural activity and 
glucose consumption in the brain while solving cognitive tasks, especially if the tasks in question 
are relatively easy (Neubauer & Fink, 2009). This empirical pattern seemingly contradicts the 
trade-off between performance and energetic efficiency that would be expected based on the 
biophysics of information processing in neurons. However, the contradiction may be only 
apparent: as it turns out, the integrity of white matter fibers is associated with both higher 
intelligence and reduced neural activity, likely because intact and better-insulated fibers transmit 
electrical signals with higher fidelity (higher signal-to-noise ratio) and energetic efficiency 
(Penke et al., 2012; Warbrick et al., 2017). Confounding factors may operate between 
individuals—as in the case of white matter integrity—but also within the same individual over 
time: if state variables such as sleepiness or hormone levels affect performance, they can easily 
mask the existence of trade-offs at the group level (e.g., between an individual’s average speed 
and its average accuracy; see Careau & Wilson, 2017). 

 
The general point that empirical correlations may not mirror the underlying trade-offs is 

illustrated in Figure 3. Functional trade-offs may or may not give rise to negative correlations 
between empirical variables, because the existence of additional factors may easily lead to null 
or positive correlations that mask the underlying functional relationships. To reveal the 
underlying trade-offs, one needs to experimentally or statistically control for the effects of the 
confounding factors (Careau & Wilson, 2017). The distinction between a functional trade-off 
between two traits and a negative correlation between the same traits has been discussed most 
extensively in evolutionary biology. While organisms face multiple trade-offs in the allocation of 
resources to different life history traits (e.g., growth vs. production of offspring), individual 
variation in the availability of resources is often large enough to obscure the trade-offs at the 
phenotypic level (Reznick et al., 2000; Roff & Fairbairn, 2007; van Noordwijk & de Jong, 1986). 
This principle is obviously relevant to the analysis of trade-offs between multiple functional 
properties. For example, variation in resource availability (e.g., energy) may modulate existing 
trade-offs between performance and robustness: to the extent that performance and robustness 
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trade off against efficiency, it may be possible to increase both at the same time by relaxing the 
efficiency constraints on the system. We discuss this issue in more detail in a later section.  
 

 

 
 

Figure 3. A functional trade-off between properties A and B (e.g., accuracy and speed) may give rise to different 
empirical correlations depending on variation in factor C (e.g., energetic resources). In panel (a), the overall 
correlation between A and B is negative, mirroring the underlying trade-off (negative slope of the lines). In panel 
(b), the effect of C is large enough that the overall correlation becomes positive, even if the same trade-off applies at 
any particular level of C. In panel (c), factor C also modulates the strength of the trade-off between A and B: the 
trade-off becomes stronger at lower levels of C (convex blue line) and weaker at higher levels of C (concave red 
line).  

 
 

4. Robustness 
 

Robustness is the ability of a system to maintain performance in the face of perturbations. 
There are many possible kinds of perturbations, both external (e.g., physical damage, extreme 
events that exceed the system’s operating range) and internal (e.g., component failures, conflicts 
between subsystems). Cognitive systems are particularly exposed to perturbations caused by 
information corruption or noise. Noise can arise at any stage in the flow of information, 
including the system’s input (e.g., sensors, neural connections), internal processing mechanisms, 
and output (e.g., inaccurate effectors), as well as in the environment in the form of stochastic 
fluctuations, sampling error, and unreliable cues to the true state of the world (Dayan, 2012; 
Flack et al., 2012; Gluck et al., 2012; Kitano, 2007). 

 
Because noise and other perturbations are ubiquitous, the design of cognitive systems is 

heavily shaped by robustness demands. As we discuss in section 4.3, enhancing a system’s 
robustness against one type of perturbation often generates new fragilities, which can then be 
addressed by additional mechanisms in a potentially never-ending cycle. The constant pressure 
for robustness contributes to the tendency for both natural and technological systems to become 
increasingly more complex over time (Anderson & Doyle 2010; Carlson & Doyle, 2002).   

 
A system’s robustness can be enhanced in a variety of ways (Anderson & Doyle 2010; 

Flack et al., 2012, Krakauer, 2006). A common design strategy to buffer the system against 
damage and component failure is to incorporate a degree of redundancy, with multiple units 
performing identical or overlapping tasks (e.g., processors in a multi-processor architecture; two 
brain hemispheres). The coexistence of alternative pathways or mechanisms that address the 
same task in complementary ways (e.g., fast vs. accurate processing) is a variation on this 
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principle. To further increase resistance to damage, such subsystems can be modularized (i.e., 
rendered functionally dissociable to a large degree) and/or compartmentalized in space. A related 
way to deal with errors and computational noise is to distribute a single information processing 
task among multiple units. Examples are natural and artificial neural networks, or statistical 
methods that make ensemble predictions by aggregating the results of a large number of semi-
independent models (see Hastie et al., 2009). Distributed and ensemble processing can increase 
robustness by smoothing out noise and stochastic fluctuations, but also by buffering the system’s 
functionality against the loss of individual units (e.g., neurons). All these strategies involve 
forms of multiplicity, whereby robustness is obtained through the coordinated activity of partially 
autonomous units (Dayan, 2012; Frank, 2008; Krakauer, 2006). 

 
Multiplicity is not the only path to robustness. The quality of a system’s components can 

be improved with better materials, increased precision, and more stringent quality control (e.g., 
selective elimination of defective neurons in the brain, or massive overproduction of neurons and 
synapses in early development followed by pruning). A basic engineering strategy is to build an 
extra safety margin in the components after the normal range of fluctuations has been calculated, 
so that the system will maintain functionality in the face of rare events that exceed the expected 
range. Biological organisms also encounter uncommon, extreme events that threaten the 
organism’s integrity (e.g., heat shock, starvation, asphyxia). If such events are not exceedingly 
rare, biological systems can evolve “safety margins” around their normal range of operation as 
insurance against catastrophic failure. For tissues such as muscle, bone, and lung, safety factors 
have been estimated in the order of 2-10 times the normal range; neural circuits seem to possess 
a similar amount of excess capacity (Sterling & Freed, 2007; note that these estimates should be 
taken with a grain of salt, given the difficulty of assessing all the relevant variables). Increasing 
safety margins is a passive means to enhance robustness—but similar results can be achieved 
with the use of active processes. Errors in computation can be addressed by specialized error 
correction mechanisms; a system can be equipped with sensors that detect threats, perturbations, 
and malfunctions, making it possible to avoid them or counteract their effects.  

 
An especially widespread strategy to counteract perturbations is to include feedback 

loops in the system (Anderson & Doyle 2010; Bechhoefer, 2005; Krakauer, 2006). Feedback 
controllers track the state of the system over time, correcting discrepancies between the desired 
and actual state as they arise. If the behavior of the system and the effect of perturbations can be 
modeled with some accuracy, feedback control can be supplemented with feedforward 
mechanisms that anticipate disturbances and correct them proactively instead of reactively (see 
Albertos & Mareels, 2010; Bechhoefer, 2005). Both feedback and feedforward control are 
extensively implemented in the architecture of the brain (e.g., Franklin & Wolpert, 2011; 
Wolpert et al., 2003; Yuste, 2015). Finally, the potentially catastrophic impact of rare outlier 
events (“black swans”) can be attenuated by pessimistic decision-making strategies that are 
biased toward expectations of worst-outcome scenarios (Dayan, 2012; Gluck et al., 2012). Of 
course, all these robustness mechanisms have costs, and cannot be implemented without 
sacrificing other desirable properties of the system.  
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4.1. Trade-Offs Between Performance and Robustness 
 

It is a common observation in systems biology and engineering that systems optimized 
for high performance on a certain task usually exhibit fragilities to perturbations, giving rise to 
performance-robustness trade-offs (Kitano, 2007, 2010; see Figure 2f). The evolution of 
modularity is a case in point. Individual modules become highly specialized for specific tasks or 
functions, so that performance increases (as well as efficiency); however, if a module is damaged 
the larger system may completely lose the ability to perform the corresponding task, with 
potentially dramatic consequences. Thus, selection for robustness may often work against the 
modularization of tasks, whereas selection for performance and efficiency tends to promote it 
(Rueffler et al., 2012; see also Clune et al., 2013).  

 
An example from cognitive science is the fact that participants usually exhibit suboptimal 

performance in decision tasks (e.g., they fail to maximize the rate of rewards as predicted by 
optimality models). The participants’ failure to achieve maximum performance can often be 
explained by their uncertainty about the parameters of the task (a form of noise), which prompts 
the adoption of robust worst-case strategies (Holmes & Cohen, 2014). More generally, 
pessimistic strategies that protect a system against the occurrence of rare outliers tend to 
diminish performance under normal operating conditions; they may also have significant 
opportunity costs, since risk-averse decision makers are more likely to forfeit favorable 
occasions when they unexpectedly present themselves (Dayan, 2012, Gluck et al., 2012). Of 
course, the performance costs associated with pessimistic strategies may be compensated for by 
the ability to avoid potentially disastrous mistakes. Design strategies that rely on multiplicity can 
also impair performance to some extent. Most notably, when multiple subsystems address the 
same task, the problem arises of how to arbitrate between their outputs. Mathematical models 
show that, since computational resources are always constrained, even a system designed to 
perform optimally may still experience systematic conflicts among its subsystems (Livnat & 
Pippenger, 2006). In less-than-optimal systems, internal conflicts between subsystems with 
divergent outputs have the potential to compromise performance, giving rise to inconsistent and 
possibly maladaptive results (Hagen et al., 2012). 

 
Trade-offs between performance and robustness include the ubiquitous phenomenon 

known as bias-variance trade-off (Geman et al., 1992; Hastie et al., 2009). The classic 
formulation of the trade-off arises in frequentist statistical inference: while more complex models 
with many parameters and/or a complex functional form (e.g., a high-order polynomial 
regression model) provide a closer fit to the data and less biased estimates of the model 
parameters, they are more easily swayed by noise and sampling error (overfit), with the result 
that their estimates vary widely from one sample to the next (high variance). Simpler models 
(e.g., a linear regression model with few predictors) underfit the data and introduce systematic 
errors (high bias), but their estimates are more robust and less variable across samples, which 
considerably increases their usefulness for out-of-sample prediction. In other words, more 
complex models are less robust against noise (crucially including sampling error), but also less 
biased as inference tools and—as we discuss in section 5—more flexible in the range of data 
they can potentially fit. The scope of the bias-variance trade-off is not limited to statistical 
modeling: the same principles apply whenever a cognitive system attempts to learn or predict 
from data (Austerweil et al., 2015; Brighton & Gigerenzer, 2015; Gigerenzer & Brighton, 2009). 
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For instance, studies of concept formation show that exemplar-based concepts (in which all the 
individual examples of the concept are retained in memory) show low bias but high variance 
when they are used to classify a novel object, whereas prototype-like concepts (which are 
abstracted from individual examples through averaging) reduce classification variance at the cost 
of larger biases (Briscoe & Feldman, 2011).  

 
From a certain perspective, absence of bias and low variance can be viewed as different 

components of accurate performance, roughly corresponding to trueness and precision (section 
3.1). The relative importance of the two components depends on whether the goal of the system 
is limited to correct inference or involves future prediction. At the same time, biased inference 
can significantly increase a cognitive system’s resistance to noise, and thus play a crucial role in 
enhancing its robustness (Austerweil et al., 2015). The dual functional role of high-bias, low-
variance inference illustrates the broader point that the boundary between performance and 
robustness is not always clear-cut, and may shift depending on the exact goal of a system. For 
another example, consider the functional role of signal-to-noise ratio in neural transmission (see 
Sterling & Laughlin, 2015). A high signal-to-noise ratio can be viewed as an aspect of robustness 
(as it reflects the ability to reduce the impact of stochastic perturbations), but also as an aspect of 
performance (as it permits more accurate input-output mappings). Sometimes the ambiguity may 
be resolved by specifying the level of analysis to which each property applies; however, it is 
important to remember that conceptual categories such as “performance” and “robustness” are 
meant to be heuristically useful rather than absolutely precise.  

 
Whereas robustness is defined as the ability to maintain performance against 

perturbation, the concept of antifragility (Taleb, 2012) refers to systems that improve their 
performance in response to perturbations, at least within a certain range. More precisely, Taleb 
(2012) defined antifragile systems as those that exhibit convex sensitivity to perturbations, so 
that stronger perturbations lead to disproportionally larger improvements. In a general sense, the 
ability to use perturbations to enhance performance is a pervasive feature of systems that learn 
from their failures and errors, including many cognitive systems. A less intuitive case is that of 
stochastic resonance, a fascinating phenomenon whereby adding a small amount of noise 
amplifies a weak signal instead of degrading it (see Hänggi, 2002). Stochastic resonance occurs 
in nonlinear systems that involve the crossing of a threshold, as in the action potential of 
neurons. Effects consistent with stochastic resonance have been demonstrated in various aspects 
of sensory processing in humans and other animals (Moss et al., 2004). While stochastic 
resonance does not meet Taleb’s narrow definition of antifragility, it does represent a partial 
exception to performance-robustness trade-offs. The exception is only partial because it only 
applies to small amounts of noise: when noise exceeds the optimal intensity for the system, it 
begins to degrade performance in the usual way (Hänggi, 2002).  
 
4.2. Trade-Offs Between Efficiency and Robustness 

 
Most robustness strategies based on multiplicity require additional and potentially costly 

machinery—backup components, redundant subsystems, distributed units—as well as the energy 
to build, operate, and maintain it (Frank, 2008; Gluck et al., 2012). The reduced efficiency of 
complex and/or redundant systems may itself constitute a source of fragility with respect to 
sudden shortages of energy or other resources (Kitano, 2007). For example, the brain needs to 
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maintain a steady energetic supply, which in humans accounts for about 20% of the resting 
metabolic rate in adults and up to 65% in children (Kuzawa et al., 2014). Vulnerability to 
temporary food shortages during development seems to have been an important factor limiting 
the evolution of larger brains in mammals (Isler & van Schaik, 2009).  

 
Depending on the architecture of a system, robust processes that rely on ensemble 

computations (e.g., running a sequence of models to average their outputs) may also take more 
time to produce a result (time inefficiency). Improving component quality, purging the system of 
defective units, and adding specialized mechanisms such as sensors and feedback control loops 
are similarly demanding in terms of resources. These pervasive trade-offs with efficiency have 
been labeled robustness-resource trade-offs (Kitano, 2007; see Figure 2c). An interesting 
example from the psychological literature is the distinction between two modes of cognitive 
control during goal-oriented tasks, labeled proactive and reactive. These two modes of control 
are thought to be implemented by distinct neural mechanisms, and their relative balance may 
contribute to stable individual differences in behavior (Botvinick & Braver, 2015; Braver, 2012; 
Braver et al., 2009; Coppens et al., 2010; Del Giudice, 2015; Huang et al., 2017). Proactive 
control depends on feedforward regulation: goal-related information is actively maintained in the 
attentional focus so as to anticipate or prevent interferences (“early selection”). In contrast, 
reactive control employs a form of feedback regulation: attention is recruited as needed after 
interferences are detected, so that corrective actions can be taken (“late correction”). While 
proactive control is more robust against disturbances, it is also more computationally demanding, 
and requires more attentional resources and working memory space. (As we discuss in section 
5.3, proactive/feedforward control strategies also tend to be less flexible). 

 
While robustness-resource trade-offs are very common, they are not always unavoidable; 

in some cases, a suboptimal system can be redesigned to use the same components in a more 
robust configuration (Khammash, 2016; Kitano, 2010). Also, it is often the case that design 
strategies that increase the overall robustness of a system (e.g., feedback loops, distributed 
computation) make it less sensitive to the quality or accuracy of its individual components. If so, 
the ability to use “sloppier” or lower quality components may contribute to reduce the system’s 
cost (i.e., increase its resource efficiency; Anderson & Doyle 2010; Flack et al., 2012). This 
principle likely applies to the brain, where individual neurons transmit information with limited 
precision and introduce significant amounts of noise—not least owing to the energetic trade-offs 
discussed in a previous section. However, the structure of brain circuits can shape patterns of 
correlations among neurons in ways that substantially reduce the impact of noise on neural 
coding, thus enhancing the performance and robustness of the system as a whole (e.g., 
Zylberberg et al., 2016).  

 
4.3. Trade-Offs Between Aspects of Robustness 

 
Noise and perturbations come in many forms, and no system can be rendered immune to 

all possible disturbances. Many design strategies for robustness involve the introduction of 
additional components—sensors, feedback loops, backup subsystems, error correction 
processes—which, as noted earlier in this section, inevitably bring about new points of fragility. 
For instance, the same inhibitory circuits that stabilize brain activity through negative feedback 
can trigger epileptic seizures when they are perturbed in particular ways (Suffczynski et al., 
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2004). The resulting vulnerability to uncontrolled oscillations is addressed by additional 
robustness mechanisms, including populations of astrocytes (a type of glial cells) that 
collectively regulate neural transmission and control the balance between excitation and 
inhibition in critical brain circuits. However, failure of this higher-order feedback system can 
severely destabilize the system; accordingly, astrocyte abnormalities play a significant role in the 
etiology of epilepsy (Amiri et al., 2011; Steinhäuser et al., 2016). 

 
Observation of natural and artificial systems indicates that, as a general rule, the more a 

system depends on an intricate network of communication and control mechanisms, the more it 
is exposed to catastrophic failure if those mechanisms fail or are hijacked (Anderson & Doyle, 
2010; Carlson & Doyle, 2002; Kitano, 2010). Paradoxically, systems that are especially well 
optimized to resist a specific kind of perturbation tend to become more vulnerable to 
unanticipated or rare events. The general principle that enhancing a system’s robustness against 
one type of perturbation often generates fragilities to other types of perturbation is summarized 
by the phrase “robust yet fragile” (Figure 4); the resulting trade-offs have been labeled 
robustness-fragility trade-offs (Carlson & Doyle, 2002; Kitano, 2007). Robust-yet-fragile effects 
can easily determine spirals of increasing complexity over time, both in the design of 
technological systems and in the evolution of natural ones (Anderson & Doyle 2010). As 
organisms started using oxygen to extract energy from nutrients, the problem of avoiding 
damage from oxygen toxicity was addressed by the evolution of regulatory systems that maintain 
stable, narrowly controlled O2 concentrations. Failure of these regulatory systems can be fatal to 
the organism—hence the evolution of multiple layers of physiological control with considerable 
redundancy. However, a stable internal environment becomes extremely favorable to parasites, 
prompting the evolution of complex immune systems with their own fragilities (including the 
problem of avoiding autoimmunity), and so on in a never-ending chain of new problems and 
solutions (the example is from Csete & Doyle, 2002).  

 
 

 

 
Figure 4. Schematic illustration of robust yet fragile effects. Enhancing a system’s robustness to perturbations of a 
certain kind or within a certain range (left side of the figure) leads to increased fragility to perturbations of a 
different kind, or outside the range (right side of the figure). 
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While functional complexity can give rise to vulnerabilities, it would be a mistake to 

think that less complex systems are immune from robustness-fragility trade-offs. In fact, a classic 
case of robust-yet-fragile effect is the “conservation of fragility” in controllers based on negative 
feedback (Csete & Doyle, 2002; see Bechhoefer, 2005; Khammash, 2016). The goal of a 
feedback controller is to eliminate disturbances, which in this context mean deviations from the 
reference value (e.g., changes away from the set temperature in a thermostat). The system’s 
performance can be regulated by adjusting the intensity of its response to deviations or gain. A 
higher gain improves the controller’s ability to eliminate disturbances below a certain frequency; 
however, disturbances above that frequency are not reduced but amplified, and each increase in 
low-frequency stability (robustness) is exactly compensated by an equal increase in high-
frequency instability (fragility). Consider the scenario of a thermostat connected to a 
heating/cooling unit, with the goal of keeping a room at a fixed set temperature. A thermostat 
that is extremely effective at canceling out slow temperature changes (e.g., between night and 
day) will break into uncontrolled oscillations if exposed to changes above a critical frequency 
(e.g., if another heater in the room is turned on and off every few minutes). In the case of 
feedback control, the conservation of fragility is an exact phenomenon that can be rigorously 
formalized; Kitano (2007) speculated that the same principle may apply more generally to 
biological systems that face a sufficiently broad range of perturbations, although this conjecture 
has yet to be thoroughly explored. 

 
A subtler manifestation of robustness-fragility trade-offs is the fact that a system’s 

robustness may be paradoxically enhanced by increasing the fragility of some of its components 
(Krakauer & Plotkin, 2004). This hierarchical version of the trade-off has many applications in 
engineering; a simple example is that of an electrical fuse that, precisely by virtue of its extreme 
vulnerability, protects the whole circuit from dangerous overcurrents. More generally, so-called 
“sacrificial parts” are engineered to fail first when they encounter perturbations that could 
compromise the functionality of the entire system. As well, when robustness is implemented 
through quality control (e.g., programmed cell death of defective neurons), fragility in the 
individual components can greatly contribute to the effectiveness of the selection process. 

 
Robustness-fragility trade-offs are a major focus of interest in systems biology and 

engineering, but have been largely neglected in neuroscience and cognitive science. This gap is 
also a major opportunity for research: our understanding of neural and cognitive systems could 
be greatly improved by explicit consideration of how mechanisms that enhance robustness also 
give rise to specific fragilities, and—conversely—how apparent vulnerabilities may be the price 
to pay to guarantee robustness in other aspects of the system’s performance. One area of research 
where these ideas could be fruitfully applied is error management theory, an evolutionary 
approach to decision-making that seeks to explain apparent cognitive biases (e.g., 
overconfidence in one’s chances of success) as adaptive strategies that balance the risk of 
committing alternative types of errors (e.g., false positives vs. false negatives) when those errors 
have different fitness costs for the organism (Johnson et al., 2013). In the present framework, 
trade-offs between alternative types of decision errors can be framed as trade-offs between 
different aspects of performance. However, to the extent that decisions are influenced by noise, 
computational failures, and other perturbations (see Costello & Watts, 2014; Hilbert, 2012), 
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adaptive error management is also likely to entail trade-offs between different aspects of 
robustness/fragility.  

 
5. Flexibility 

 
Of the functional properties examined in this paper, flexibility is the hardest to pinpoint 

with precision; even in the scientific literature the term is often employed intuitively, without an 
explicit definition. Generally speaking, a system or organism is regarded as flexible if it can 
perform in a broad range of conditions and/or successfully adjust to changes and novelties in its 
operating environment (e.g., Coppens et al., 2010; Gluck et al., 2012; Liljenström, 2003). For 
cognitive systems, we suggest that flexibility can be recast as the ability to maintain performance 
(i.e., produce the intended input-output relationship) over a broad range of inputs, potentially 
including novel or unanticipated ones. We construe inputs broadly to include variation in 
operating conditions, domains of application, task demands, and so on. 

 
Note that this working definition of flexibility focuses on the “signal” component of 

inputs, in contrast with robustness which is defined in relation to noise and perturbations. The 
definition highlights the main challenge faced by flexible systems—that is, distinguishing 
between novel/unusual but acceptable inputs (to which the system should adjust) and noise or 
other perturbations (that should be rejected or eliminated). While separating the signal from the 
noise is a universal cognitive problem, the task is easier for inflexible systems that accept a 
narrow range of inputs and discard much potentially valid information as noise. To illustrate, 
consider two hypothetical military systems designed to recognize different models of aircraft 
from pictures. The first can only recognize aircraft within a fixed set: each picture is matched to 
one of the models that are already known to the system (or a subset of the best matching ones). 
The second system is more flexible and has the capability of adding new models to the set as it 
encounters them. This system can potentially learn about the existence of previously unknown 
aircraft (e.g., secret or experimental models); however, it faces the additional problem of 
deciding whether unrecognized aircraft are merely familiar ones that have been distorted by 
noise (e.g., because they are viewed from an unusual angle), or are genuinely new models that 
should be added to the set. In many contexts, the distinction between novel/unusual inputs and 
noise is difficult or impossible to make a priori; this leads to pervasive trade-offs between 
flexibility and robustness, as we discuss in detail in section 5.3.  

 
In contrast with efficiency or robustness, there has been little systematic investigation of 

design strategies that promote flexibility. A recurring theme in the literature is the ability to 
quickly update the system’s operating parameters or stored information (e.g., Daw & Dayan, 
2014; Liljenström, 2003). For this reason, flexibility can be enhanced by accepting new inputs 
without filtering them and processing them in real time. Conversely, flexibility is markedly 
reduced when the system is controlled by feedforward processes that ignore or discount new 
inputs. An extreme example of the latter is offered by defensive reflexes (e.g., retracting one’s 
hand from a burning object), which once triggered tend to be carried out inflexibly and with little 
room for correction (Albertos & Mareels, 2010; Del Giudice, 2015). Less intuitively, slow-acting 
feedback processes can also stabilize a system, locking it in the current state and reducing the 
influence of new inputs. There are a number of neural feedback mechanisms (e.g., facilitation by 
recurrent excitatory synapses) that seem to play this role in the stabilization of memory traces 
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(Pereira & Wang, 2014). At a more abstract level of analysis, investing time in exploration (vs. 
exploitation; Mehlhorn et al., 2015) may contribute to increase the future flexibility of the system 
by broadening the range of inputs it is exposed to, as well as gathering information that can be 
stored and used later to improve performance in the face of change and novelty. 

 
5.1. Trade-Offs Between Performance and Flexibility 
 

The tension between performance and flexibility is captured by the adage “Jack of all 
trades, master of none” (Figure 2e). In behavioral ecology, this concept has been explored in the 
study of generalist-specialist trade-offs. Generalists are species or individuals who occupy a 
broad range of ecological niches (e.g., multiple food sources and foraging strategies), whereas 
specialists are restricted to a particular niche. A generalist lifestyle requires higher neural 
flexibility, including the ability to process different types of cues and keep track of more 
information about the environment. Because neural and cognitive resources (e.g., attention, 
memory) are inherently limited, specialists are expected to perform better than generalists when 
they operate in their particular niche—for example by making fewer errors and more accurate 
decisions during foraging (Bernays & Wcislo, 1994; Dall & Cuthill, 1997; Tosh et al., 2009). 
This prediction has been supported in a number of studies (mainly involving insects), although 
the evidence is not unequivocal (e.g., Bernays et al., 2004; Tapia et al., 2015; Tosh et al., 2011; 
Wee & Singer, 2007). Theoretical models suggest that the evolution of eco-cognitive 
specialization may require particular conditions, such as a low cost of decision errors (see Tosh 
et al., 2009, 2011).  

 
In human psychology, the possibility of cognitive trade-offs on a generalist-specialist axis 

has not been widely investigated. Perhaps the closest analogue is “Spearman’s law of 
diminishing returns,” the empirical observation that cognitive abilities become more strongly 
differentiated at higher levels of general intelligence (Spearman, 1927; see Jensen, 2003). People 
with low intelligence tend to show uniformly poor performance across tasks involving different 
abilities (e.g., verbal, visual, spatial, reasoning); in contrast, people at the high end of the 
intelligence range are more likely to perform significantly better in some areas than others, 
suggesting a higher degree of cognitive specialization (Blum & Holling, 2017; Molenaar et al., 
2017). More speculatively, levels of cognitive integration versus differentiation may correlate 
with personality traits, and partly reflect individual differences in evolved reproductive strategies 
(see Woodley, 2011). As with generalist-specialist trade-offs in ecology, the phenomenon of 
increasing differentiation at higher ability levels may depend on specific features and constraints 
of human cognition, and may not apply to other organisms—or even artificial agents 
(Hernández-Orallo, 2016). Finally, findings in neuroscience suggest that individuals who train 
for specialized performance may sacrifice some cognitive flexibility in the process. Most 
notably, Maguire et al. (2006) found that London taxi drivers (who need to learn complex spatial 
representations of the city) had an enlarged mid-posterior hippocampus compared with bus 
drivers (who follow constrained routes). However, they performed worse than bus drivers when 
they had to learn new spatial information, suggesting a loss of flexibility that correlated with 
diminished volume in the anterior hippocampus. In total, performance-flexibility trade-offs are 
both important and relatively understudied, making this an especially promising topic for future 
research. 
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5.2. Trade-Offs Between Efficiency and Flexibility 
 
In addition to performing better than their more flexible counterparts, specialized 

cognitive systems that process a narrow range of inputs often show improved efficiency (Figure 
2b). In ecology, there is evidence that specialists make faster decisions than generalists when 
faced with the same tasks (e.g., Bernays & Funk, 1999), and some theories of specialist 
advantages in cognition emphasize speed as well as accuracy (Bernays & Wcislo, 1994; Dall & 
Cuthill, 1997). To the extent that flexible cognition requires more intensive processing and a 
more spacious memory, one can also predict that—all else being equal—ecological specialists 
should have larger, more complex, and/or more energetically expensive brains than generalists. 
While the comparative study of brain structure is fraught with methodological difficulties (see 
Healy & Rowe, 2007), there is initial evidence that species that inhabit broader ecological niches 
tend to have larger and more complex brains, all else being equal (Lefebvre & Sol, 2008).  

 
In the area of learning and decision-making, a key trade-off between efficiency and 

flexibility emerges in the contrast between model-based and model-free algorithms (Daw & 
Dayan, 2014). Model-based algorithms build an explicit representation of the state of the world 
and the likely consequences of each decision, instead of simply keeping track of the most 
successful response in each situation. The computational and memory requirements of model 
building can be formidable; as a result, model-based algorithms are slower and require 
considerably more cognitive resources. At the same time, the explicit models on which these 
algorithms depend are extremely easy to update with new information: it is sufficient to change a 
single critical value in the model (e.g., the probability of a certain state, or the expected 
consequence of a given choice) to immediately adjust the entire behavior of the system, without 
the need to laboriously re-learn what the best responses are in each condition. The superior 
efficiency of model-free algorithms comes at the price of rigid, inflexible behavior once learning 
has occurred (Daw & Dayan, 2014; Keramati et al., 2011). In a similar vein, learning 
mechanisms that favor exploration over exploitation (Dayan & Daw, 2008; Mehlhorn et al., 
2015) make less efficient use of time, but may gain in flexibility and improve the system’s 
ability to deal with unexpected inputs. Another classic finding in psychology is that practicing 
skills to the point of automaticity leads to dramatic increases in efficiency (speed, low use of 
attentional resources; see Logan, 1985). At the same time, highly automatized behaviors (e.g., 
driving a car) become more difficult to adjust when conditions change abruptly (e.g., when 
switching from right-hand to left-hand traffic). 

 
A somewhat different illustration of the same basic trade-off is provided by fast-and-

frugal heuristics, a class of simple algorithms that make rapid decisions (fast) by discarding most 
of the available information and employing only a few cues from the environment (frugal). Fast-
and-frugal heuristics are defined by their efficiency; in many real-world conditions, they can 
outperform more complex algorithms that make full use of the available information, such as 
linear regression (see Neth & Gigerenzer, 2015; Todd et al., 2012). The key to the success of 
simple heuristics is their “ecological rationality:” each particular heuristic is matched to a 
specific kind of environment, and works by exploiting ecological regularities while avoiding 
overfitting (i.e., minimizing variance) by virtue of its computational simplicity. For example, 
heuristics that base decisions on a single cue while ignoring all other information—for example, 
only looking at meal price to choose the best restaurant—perform well when cues are correlated 
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and thus partly redundant, but some cues have much higher validity than others (Gigerenzer & 
Brighton, 2009). In other words, the efficiency of fast-and-frugal heuristics (as well as their 
robustness; see section 5.3) is partly a function of their lack of flexibility. Since each heuristic is 
tuned to specific characteristics of the environment and/or task, the main challenge for the 
decision-maker becomes that of selecting the appropriate heuristic for a given situation (Lieder 
& Griffiths, 2017; Marewski & Schooler, 2011). Interestingly, recent work indicates that fast-
and-frugal heuristics can themselves be outperformed by Bayesian models that use all the 
available information while heavily discounting some of it in order to match the structure of the 
environment or task, rather than discarding it altogether as heuristics do (Parpart et al., 2017). 
These models are somewhat more flexible than fast-and-frugal heuristics, but markedly less 
efficient owing to their computational complexity. 

 
5.3. Trade-Offs Between Robustness and Flexibility 
 

As discussed in section 4, a common strategy to increase a system’s resistance to noise 
and perturbations is to make it less sensitive to fluctuations in the input, which are rejected or 
eliminated. Since reducing noise effectively narrows the range of acceptable inputs, it is often the 
case that enhancing a system’s robustness simultaneously reduces its flexibility to some extent 
(Figure 2d). In psychology and neuroscience, this is often referred to as the stability-flexibility 
dilemma, with “stability” used as synonym for robustness as defined here (Goshke, 2000; 
Liljenström, 2003). Computational models of neural networks show that introducing a certain 
amount of spontaneously generated noise (e.g., through chaotic oscillatory dynamics) increases 
the network’s responsivity to new inputs and prevents the system from getting stuck in non-
optimal states—all while reducing its stability (Liljenström, 2003). In a neural model of short-
term memory, slowing down the time course of feedback mechanisms such as recurrent 
excitatory facilitation increases the stability of memory traces, making them more resistant to 
noise and interference. However, the network also becomes harder to reset and update with new 
information, and hence less flexible (Pereira & Wang, 2014). Some authors have argued that a 
key function of dopamine in the brain is to regulate the trade-off between cognitive flexibility—
which comes at the cost of distractibility—and robustness to interference, whose downsides are 
behavioral rigidity and lack of responsiveness to new information (Cools & D’Esposito, 2011; 
Hills, 2006). Specifically, dopaminergic activity in the striatum seems to promote flexibility, 
whereas prefrontal dopamine increases stability and persistence (Boot et al., 2017).  

 
Similar considerations apply to the distinction between proactive and reactive control 

mechanisms that was introduced in a previous section. Proactive control is more robust against 
perturbations and interference, but also less flexible; its anticipatory, feedforward nature makes it 
hard to adjust behavior if environmental conditions change unexpectedly. Reactive mechanisms 
can easily respond to change, but are also more vulnerable to the effects of environmental noise 
(Braver, 2012; see also Tops et al., 2010). The balance between proactive control (robust but 
inflexible) and reactive control (flexible but fragile) may contribute to broader individual 
differences in behavior, which in the animal literature are captured by the distinction between 
proactive and reactive coping styles (defined as stable patterns of behavioral and physiological 
responses to challenges; see Coppens et al., 2010; Del Giudice, 2015). Note that, despite their 
conceptual overlap, the modes of control described in the cognitive literature and the coping 
styles studied in behavioral biology are not identical. For example, reactive control mechanisms 
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are regarded as more computationally efficient (Braver, 2012), whereas animals with reactive 
coping styles tend to engage in more accurate but less efficient exploration—they are slower, 
more thorough, and store more detailed information in memory (Sih & Del Giudice, 2012). 
Despite these differences, the two constructs are linked by a shared emphasis on the central 
trade-off between robustness and flexibility. 

 
Fast-and-frugal heuristics manage to outperform more complex decision algorithms by 

minimizing variance—that is, maximizing robustness—at the cost of increased bias. In turn, the 
negative effects of bias are reduced by sacrificing flexibility and matching each heuristic to a 
particular kind of environment or task. This strategy succeeds when the input is noisy and 
uncertainty is high—for example when inference is carried out on small amounts of data, when 
the problem is exceedingly complex, and/or when the available information is unreliable. All 
these conditions magnify the benefits of robustness. When noise and uncertainty are low, more 
complex and flexible algorithms tend to outperform simpler heuristics (Gigerenzer & Brighton, 
2009). In the next section, we discuss the effectiveness of fast-and-frugal heuristics in more 
detail as an illustration of simultaneous trade-offs between multiple functional properties. 

 
6. Multiple Trade-Offs 

 
Up to this point, we have focused our analysis on trade-offs between pairs of functional 

properties—performance versus efficiency, robustness versus flexibility, and so on. However, 
several of the examples we discussed involve multiple trade-offs that jointly define the system’s 
design constraints. Ecological specialists are both faster and more accurate than generalists 
(Bernays & Wcislo, 1994; Dall & Cuthill, 1997); thus, the generalist-specialist trade-off entails a 
simultaneous trade-off of flexibility versus performance and efficiency. In the distinction 
between proactive and reactive control mechanisms, the trade-off is between the robustness of 
proactive control on the one hand, and the efficiency and flexibility of reactive control on the 
other hand (Braver, 2012; Mazza et al., 2018). Learning strategies that favor exploration sacrifice 
efficiency to increase both performance and flexibility (Mehlhorn et al., 2015).  

 
In many cases involving multiple trade-offs, the original trade-off between two properties 

A and B can be partially overcome by changing a third property C, as illustrated in Figure 3.  For 
example, trade-offs between performance and flexibility (such as those that underlie the 
generalist-specialist distinction) should become less stringent when time is abundant and 
organisms can engage in extensive exploration without significant costs. Or, increased energy 
availability (for example through better diet) may reduce efficiency constraints on brain structure 
and function, making it possible to simultaneously increase both the speed and the accuracy of 
neural transmission. In a previous section, we noted that IQ correlates with the integrity of white 
matter fibers; the resulting increase in overall efficiency likely contributes to explain why higher 
IQ predicts better cognitive performance but lower energetic consumption in the brain (Neubauer 
& Fink, 2009). Note that the effect of C on the trade-off between A and B can take two distinct 
forms. First, changing the level of C may increase both A and B simultaneously, but without 
altering the shape of the original trade-off (Figure 3b). Second, C may alter the underlying 
functional relation between A and B, so that the shape of the trade-off changes accordingly, for 
example becoming less severe (Figure 3c). In most of the examples discussed in this paper, the 
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evidence is insufficient to discriminate between the two scenarios; however, the distinction is 
conceptually important and could usefully inform future research in this area.  

 
An especially intriguing illustration of a multiple trade-off was discussed by Vakulenko 

and Radulescu (2012) in their formal analysis of genetic networks, which may also have 
implications for the organization of neural networks. These authors showed that centralized 
network architectures can be both highly flexible (i.e., capable of switching between many 
different states) and highly robust to random perturbations; however, such networks must 
necessarily function at a slow rate. In this case, the trade-off between robustness and flexibility 
can be overcome by sacrificing time efficiency. For a different example, consider statistical 
methods that make ensemble predictions by fitting a large number of semi-independent models 
and averaging their results (Hastie et al., 2009). Each individual model has low bias but high 
variance (overfitting); when their results are averaged, the overfitting features of individual 
models cancel out, and the resulting prediction can have both extremely low variance and low 
levels of bias. What ensemble methods do is sacrificing efficiency (in terms of time, 
computation, and memory space) to overcome the trade-offs between performance and 
robustness that constrain the potential of individual models. 

 
 

 
 

Figure 5. Less-is-more effects as triple trade-offs between efficiency, robustness, and flexibility. When conditions 
are sufficiently noisy, robust heuristics that use limited information and computational resources systematically 
outperform more complex and resource- or knowledge-intensive algorithms (right side of the figure). However, such 
efficient and robust heuristics lack flexibility, and perform well only when matched to a specific kind of 
environment and/or task. 

 
 
Finally, looking at fast-and-frugal heuristics from the standpoint of functional trade-offs 

helps clarify a crucial but counterintuitive phenomenon. Under the right conditions, simple 
heuristics can be more accurate than more complex algorithms that use all the available 
information, even with unlimited time and computational resources; so that increasing the 
amount of resources devoted to computation actually results in worse performance. This 
violation of the performance-efficiency trade-off (or effort-accuracy trade-off in the authors’ 
terminology) is an instance of what have been labeled “less-is-more effects” (Gigerenzer & 
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Brighton, 2009; Katsikopoulos, 2010). The violation is only apparent, however. The key to the 
superiority of fast-and-frugal heuristics lies in the combination of robustness—which boosts their 
performance in noisy conditions—and specialization for a particular kind of environment or task 
(ecological rationality). In other words, the lack of flexibility of these heuristics ultimately 
allows them to perform well despite their extreme efficiency. Figure 5 illustrates how less-is-
more effects can be understood as stemming from a triple trade-off between robustness, 
efficiency, and flexibility (Figure 5).  

 
7. Conclusions 

 
To understand the design of cognitive systems, it is imperative to think clearly about 

trade-offs and their implications. In this paper, we have sought to organize a large and diverse 
literature on trade-offs, using four basic properties of functional systems, performance, 
robustness, efficiency, and stability as a frame of reference and organization (Figure 1). Drawing 
on the shared vocabularies of systems biology and engineering, the framework, we have 
presented abstract descriptions of several crucial design problems (Figure 2). Such descriptions 
can be used to make sense of specific trade-offs encountered in cognitive research, as well as to 
extract general principles and insights that can be usefully transferred across disciplines and 
topics, fostering cross-fertilization and suggesting new directions for investigation. As it should 
be clear from the paper, we are not suggesting replacement of models for specific trade-offs with 
more general descriptions; rather, we believe it can be useful to examine specific trade-offs in the 
context of the broader design problems they represent, so that causes, effects, connections, and 
commonalities may more easily emerge.  

 
While the functional properties we examined in this paper are highly general, the scope of 

the framework is limited by its focus on single goal-oriented systems that perform an 
identifiable, relatively well-defined function. The framework does not directly apply to cases in 
which trade-offs occur between two or more cognitive systems with competing functions and no 
shared performance criterion. For example, trade-offs have been posited between “mechanistic” 
processes that model the behavior of predictable physical objects and “mentalistic” processes 
specialized to predict the behavior of intentional agents (Crespi & Badcock, 2008; see Baron-
Cohen, 2009). By this hypothesis, enhanced abilities on one of the two process domains (such as 
increased visual-spatial skills in autism) often involve reduced abilities in the other, due in part to 
neurologically-based tradeoffs in the engagement of anticorrelated brain regions and networks  
(e. g., Jack et al., 2013; Crespi & Go, 2015). The question of how different mechanisms with 
competing and partially conflicting functions compete for the control of behavior and shared 
cognitive resources (e.g., working memory) cannot be addressed in the present framework, and 
will require further theoretical work before it can receive a satisfactory answer. Interactions 
among multiple cognitive systems are especially relevant to approaches that view the mind as a 
rich collection of efficient domain- or task-specific mechanisms, such as the “adaptive toolbox” 
model of heuristics in the field of ecological rationality (Todd et al., 2012) or the massive 
modularity hypothesis in evolutionary psychology (Barrett & Kurzban, 2006; Carruthers, 2006).  

 
Another potentially fruitful direction for extending the framework is to consider 

collective cognition and the trade-offs it entails (Couzin, 2009). In collective cognition, 
information processing is distributed among multiple individuals who may have different 
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abilities and knowledge, but also partially different goals and biological interests (e.g., Conradt 
& Roper, 2009; Kameda et al., 2011). Typical problems that involve group decision-making 
include migration, foraging, predator avoidance, and nest building (Couzin, 2009; King & Sueur, 
2011). In humans, cooperation and collective information sharing occur on a massive scale, 
prompting research on the effects of different learning strategies and social network structures 
(e.g., Barkoczi & Galesic, 2016). Research in this area has explored trade-offs between speed 
and accuracy in group decision-making (Couzin, 2009; Franks et al., 2003); between exploration 
and exploitation in the spread of innovations throughout social networks (Mason et al., 2008; 
Wisdom et al., 2013); and between performance in simple versus complex tasks in human groups 
that follow different learning rules (Barkoczi & Galesic, 2016). Intriguingly, some theoretical 
models suggest the existence of collective less-is-more effects, so that—under certain 
conditions—performance can be higher in groups whose individual members are less 
knowledgeable and/or competent (Luan et al., 2013). 

 
The primary proximate sources of cognitive trade-offs, and variation among individuals 

and species in their forms and expression, are neural, neuroendocrine and bioenergetic systems, 
and the constraints that structure neurodevelopment. A key challenge in studies of the causes of 
cognitive trade-offs is thus to determine the genetic, neurological and developmental-level 
mechanisms of trade-offs in cognitive phenotypes (e. g., Heitz & Schall 2012). In human 
psychology, cognitive trade-offs and their mechanisms should contribute to explaining individual 
differences in aspects of personality, inelligence, memory, and other core phenotypes, given that 
individuals are expected to vary in traits that affect their positions along the dimensions and sides 
of tradeoffs (e.g., Crespi, 2015; Del Giudice, 2015; Sih & Del Giudice, 2012; Mehlhorn et al. 
2015; Woodley, 2011). Psychopathology is another important area in which explicit trade-off 
thinking can be expected to yield useful insights. Extreme expression or dysregulation of life 
history and cognitive trade-offs have been implicated in the origin of several mental disorders 
(e.g., Cools et al., 2011; Crespi, 2015; Crespi & Badcock, 2008; Crespi & Go, 2015; Del 
Giudice, 2014). Some of those specific trade-offs may be fruitfully framed in the context of the 
broad functional properties in Figure 1; for example, pathologically high flexibility at the 
expense of robustness may characterize the risk for conditions such as psychotic disorders 
(schizophrenia, bipolar with mania) and attention-deficit/hyperactivity (Hills, 2006). Studies of 
psychopathology might benefit by focusing more on variation in trade-offs between affected 
individual and controls, compared with the characterization of trait deficits per se.  

 
The analysis of cognitive trade-offs also draws attention to the issue of similarities and 

differences between biological and artificial intelligence systems with regard to trade-off 
architectures (e.g., Hernández-Orallo, 2016). For example, advanced neural networks optimized 
for accuracy and/or speed in object recognition can be surprisingly fragile against extremely 
small perturbations—sometimes consisting of a single pixel—that have been specifically 
engineered to “fool” their algorithms, but may be invisible to human observers (Akhtar & Mian, 
2018; Moosavi-Dezfooli et al., 2017). This finding is consistent with the idea that demands for 
robustness—including against attacks and interference by other organisms—are a critical source 
of constraints on the performance of natural intelligence systems, and may loom larger on 
artificial systems as they are employed more often in critical real-world applications and 
subjected to malicious attacks (Akhtar & Mian, 2018). Other important constraints on 
performance likely stem from biological organisms’ need to perform flexibly across a wide range 
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of tasks and novel inputs, with relatively little time for learning (see Edelman, 2016). Finally, 
future research on cognitive trade-offs in humans should inform the debate on cognitive 
enhancement by pharmacological and/or genetic means (Fox et al., 2017; Hills & Hertwig, 2011; 
Shulman & Bostrom, 2014). This is a complex issue whose myriad empirical, ethical, and policy 
ramifications cannot be meaningfully addressed without a deep understanding of the existing 
constraints on human cognition, their evolutionary underpinnings, and the costs and benefits that 
may result from novel interventions. In conclusion, we believe that the conceptual framework we 
have presented here will help to organize knowledge across wide-ranging, disparate areas of 
research, and we hope that it will find applications in a variety of domains, from cognitive 
science to psychiatry. 
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