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Elderly people affected by Mild Cognitive Impairment (MCI) usually report a perceived
decline in cognitive functions that deeply impacts their quality of life. This subtle waning,
although it cannot be diagnosable as dementia, is noted by caregivers on the basis
of their relative’s behaviors. Crucially, if this condition is also not detected in time by
clinicians, it can easily turn into dementia. Thus, early detection of MCI is strongly
needed. Classical neuropsychological measures – underlying a categorical model of
diagnosis - could be integrated with a dimensional assessment approach involving
Virtual Reality (VR) and Artificial Intelligence (AI). VR can be used to create highly
ecologically controlled simulations resembling the daily life contexts in which patients’
daily instrumental activities (IADL) usually take place. Clinicians can record patients’
kinematics, particularly gait, while performing IADL (Digital Biomarkers). Then, Artificial
Intelligence employs Machine Learning (ML) to analyze them in combination with clinical
and neuropsychological data. This integrated computational approach would enable
the creation of a predictive model to identify specific patterns of cognitive and motor
impairment in MCI. Therefore, this new dimensional cognitive-behavioral assessment
would reveal elderly people’s neural alterations and impaired cognitive functions, typical
of MCI and dementia, even in early stages for more time-sensitive interventions.

Keywords: gait analysis, kinematic, Mild Cognitive Impairment, Virtual Reality, Machine Learning, elderly, digital
biomarkers, Artificial Intelligence

INTRODUCTION

A categorical approach to diagnosing dementia struggles to capture subclinical conditions, such
as Mild Cognitive Impairment (MCI). Crucially, MCI can either revert to normal cognition,
stabilize, or slowly evolve toward other forms of dementia (Chiu, 2005; Walters, 2011; Morris,
2012; Díaz-Mardomingo et al., 2017; Vanacore et al., 2017). This construct indicates people affected
by an in-between condition between normal aging and early dementia (Petersen, 2004; Albert
et al., 2011; Mckhann et al., 2011; Seo et al., 2017) and is usually segmented into single- or
multiple-domain amnestic (aMCI) and non-amnestic (naMCI) subtypes, depending on whether
impairments concern only memory or other cognitive functions, e.g., executive and visuo-spatial
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abilities (Petersen, 2004; Apostolova and Cummings, 2008; Albert
et al., 2011; Hughes et al., 2011; Michaud et al., 2017; Facal
et al., 2019). Both patients and their caregivers can observe
and report clear signals of this subtle waning, undiagnosable as
dementia. Frequently, elderly people express concern over their
perceived worsening in one or more cognitive domains, such as
memory or language (Petersen et al., 1999, 2018). This waning
has a great impact on their quality of life, reducing their ability
to autonomously carry out activities. A key aspect concerns
the possibility of detecting an initial cognitive decline at the
behavioral level with a slowdown in execution of the instrumental
activities of daily life (IADL), such as grocery shopping and
medication and financial management (Kim and Kim, 2009; Gold
and Gold, 2012).

Changes associated with subclinical forms of dementia
manifest themselves through behavioral alterations. Usually,
caregivers are the first ones to notice these altered behaviors,
as shown by Van Vliet et al. (2011). The authors explored
the barriers hindering a timely diagnosis of dementia, focusing
on interviews conducted with caregivers of relatives that were
later diagnosed with early-onset dementia (EOD). Caregivers
frequently reported behavioral changes in relatives with EOD,
either alone or associated with neuropsychiatric symptoms
(NPS), such as apathy or depression, and personality changes.
Behavioral impairment then evolved toward a decline in IADL
and involved cognitive impairment, particularly memory loss
(Van Vliet et al., 2011). The broader detrimental impact
of behavioral changes generated familial/marital conflicts and
reduced job productivity, leading to a decreased income or even
dismissal (Van Vliet et al., 2011). Though valuable, this anecdotal
information rarely becomes part of a (categorical) diagnosis
based on medical and neuropsychological assessment. Over time,
caregivers have been considered a source of information that
is not always reliable, given their tendency to over- or under-
estimate elderly people’s deficits, possibly due to knowledge gaps
(Akl et al., 2015; Jekel et al., 2015). Caregivers might be absent
or suffer from physical or psychological conditions exacerbated
by their relative’s worsening (Okonkwo et al., 2008; Van Vliet
et al., 2011; Pfeifer et al., 2013; Akl et al., 2015; Jekel et al.,
2015). They might explain the elderly person’s decline and
behavioral, cognitive, and personality changes rather as a result
of aging. Sometimes, caregivers are not aware of the symptoms
because of their relative’s ability to cover them up, denying their
impairments or developing subsequent compensatory strategies
to disguise the difficulties. This, in turn, delays the consultation
of a practitioner and the diagnostic process as well (Okonkwo
et al., 2008; Van Vliet et al., 2011; Roehr et al., 2019). Early
detection of MCI, resulting in time-sensitive interventions, is
still an open issue.

In this regard, two components appear relevant. Firstly,
there is a need to rely more on rigorous and systematic
behavioral analysis for early detection of MCI. Secondly, there
is a need to integrate this new practice into current ones, i.e.,
neuropsychological evaluation. Including these data jointly in
MCI assessment can allow a more sensitive measurement of the
deficit by placing it on a continuum, reflecting a dimensional
approach accounting for several other subclinical conditions,

including Subjective Cognitive Decline (SCD; Roehr et al., 2019)
or Pre-Mild Cognitive Impairment (Pre-MCI; Crocco et al., 2018;
Grassi et al., 2018).

This is far more crucial when considering that MCI can
turn into dementia if the elderly person does not receive a
timely diagnosis (Chiu, 2005), which should be built upon finer
discrimination among the early stages of MCI and the collection
of behavioral data, moving beyond a categorical, dichotomous
approach rooted in previous diagnostic models, such as DSM-IV-
TR or ICD-10 (American Psychiatric Association, 2000; World
Health Organization, 2007; Negu et al., 2016), and the distinction
between aMCI and naMCI.

The exclusive implementation of neuropsychological
assessment tools cannot provide information on the finer
behavioral aspects of the early stages of MCI and, despite
their widespread use and efficacy, they fail to predict an
individual’s behavior in real life, and there is a need to
improve their ecological validity, sensitivity, and specificity
(Rizzo et al., 2004; Negu et al., 2016; Plancher and Piolino,
2017; Kim et al., 2019). The available objective methods for
assessing MCI are frequently based on informant-reports or
conducted in isolated and artificial situations, thus opening
the possibility for evaluation biases. A resounding change
might be fostered by a novel approach assembling in new
ways existing technologies and data analysis methodologies
that allow a refined assessment and the creation of a
continuum for MCI following a dimensional approach.
These technologies aim to integrate rather than replace existing
neuropsychological evaluation or caregiver/informant reports
in order to obtain a more complete and dynamic picture of
the strengths and critical aspects of the elderly person as they
evolve over time.

This perspective aims to propose the development of a
new integrated, multimethod, dimensional approach for early
detection of MCI on the basis of behavioral data that incorporates
existing, consolidated technologies, such as gait kinematic
analysis, Virtual Reality (VR), and Machine Learning (ML),
in the conventional assessment of MCI. The outcome would
be a finer, continuous, time-sensitive assessment of MCI, in
line with a dimensional approach compliant with new DSM-5
guidelines (American Psychiatric Association, 2013). Moreover,
it would draw on recent empirical evidence and scientific
groundwork, helping the clinician to tailor the rehabilitation
to the needs of the individual. This positive contribution
would improve their quality of life, decreasing both health care
assistance costs and hospitalization rates, thus opening up new
possibilities for primary and secondary prevention. Moreover,
it would facilitate the communication between practitioners
and researchers, providing a solid foundation and fostering
mutual exchange.

A NEW INTEGRATED APPROACH TO
MCI ASSESSMENT

We suggest that Virtual Reality would provide the most suitable
context (i.e., answering the question Where?) for the assessment
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of key behavioral variables indicating MCI onset (i.e., What?),
which can be analyzed in a systematic and accurate way in
relation to neuropsychological and clinical data by means of
Machine Learning (ML) (i.e., How?). We expand on all of these
aspects in the following sections.

“Where” Does the Assessment Take
Place? Virtual Reality
Usually, the assessment of cognitive functions does not take
place in daily-life contexts, potentially hindering an ecological
evaluation of the individual’s impairment (Rizzo et al., 2004;
de los Reyes-Guzmán et al., 2014). A promising integration
of conventional practices could rely on novel dimensional
assessment techniques, based on realistic immersive simulations
of daily situations, e.g., Virtual Reality (VR) – a 3D computer-
generated environment with some degree of immersion and
interactivity, along with a sense of being really present in it (Riva
and Mantovani, 2014; Riva et al., 2018, 2019a; Moreno et al.,
2019). VR has developed into a key technology that is able to
resemble even complex daily situations and interactions in a safe
and controlled setting, due to the feeling of immersion (i.e., the
number of senses stimulated within the environment, together
with the closeness of the stimuli employed in simulations to
reality) (Slater, 2009; Plancher and Piolino, 2017; Cipresso, 2018),
the sense of presence within the environment (i.e., the feeling of
being really “there” in the simulated environment, along with
the ability to realize our intentions within it), and the possibility
to interact with objects (Biocca, 1997; Heeter, 2000; Bailenson
et al., 2006; Sundar et al., 2010; Negu et al., 2016; Plancher and
Piolino, 2017; Cipresso, 2018; Kim et al., 2019). Depending on
the degree of immersion of the system employed, VR allows a
realistic experience through the use of multi-sensorial displays
(i.e., visual, auditory) along with tracking devices that detect
any movement of the individual and deliver the recorded data
to the visualization system for a real-time update of the virtual
environment (Chirico et al., 2016; Plancher and Piolino, 2017;
Cipresso, 2018). The most immersive 3D VR environments can
provide a high sense of presence also by isolating individuals,
facilitating natural interactions and exchanges that resemble
equivalent ones in daily life (Gold and Gold, 2012; Allain
et al., 2014; Riva and Mantovani, 2014; Chirico et al., 2016;
Riva et al., 2018).

The main features of VR allow the creation of ecological,
safe, standardized settings and exert a strict experimental control
over stimulus delivery and measurement (Rizzo et al., 2004; Gold
and Gold, 2012; Allain et al., 2014; Negu et al., 2016; Plancher
and Piolino, 2017). This, in turn, has supported its deployment
for both clinical and non-clinical samples of elderly people
and young adults (García-Betances et al., 2015; De Tommaso
et al., 2016; Plancher and Piolino, 2017). Within medical and
neuropsychological settings, VR has been extensively applied
as an assessment and a rehabilitation tool for elderly people
suffering from consequences of a traumatic brain injury (Aida
et al., 2018; Alashram et al., 2019; Maggio et al., 2019), for post-
stroke patients (Henderson et al., 2007; Saposnik and Levin,
2011; Laver et al., 2017), and for spatial memory and balance

(Allain et al., 2014; Serino et al., 2017; Gerber et al., 2018;
Soares et al., 2018), among other applications (see Plancher
and Piolino, 2017; Moreno et al., 2019). Crucially, VR allows
the therapy to be tailored in a controlled way, according to
each disease starting from a continuous assessment of the
individual’s behaviors. Only recently, VR has been employed
to assess IADL in MCI patients while including kinematic
measures that integrate a neuropsychological evaluation (Seo
et al., 2017). As previously mentioned, an initial cognitive
decline can be behaviorally manifested by a slowdown in the
execution of IADL (Kim and Kim, 2009; Millán-Calenti et al.,
2010; Gold and Gold, 2012), which implies a neurological
and cognitive alteration that is partially reflected in indexes
such as bodily movements or gait. Previous studies have
examined these behavioral alterations of IADL in order to
refine MCI assessment and have already delivered promising
results (Schröter et al., 2003; Montero-Odasso et al., 2009;
de los Reyes-Guzmán et al., 2014). Motion detectors, applied
to the elderly person’s leg joints allow gait kinematics and
their impairments to be tracked during the performance
of IADL within a VR environment. This could consolidate
preliminary findings of specific motor alterations that integrate
neuropsychological and cognitive evaluation to identify MCI.
In this perspective, the preliminary work of Seo et al. (2017)
is the closest application of the technologies proposed to refine
MCI assessment, although gait analysis was not included. The
recording of kinematic measures from the performance of
IADL within an immersive VR environment potentially adds
more discriminative value in distinguishing MCI individuals
from the healthy control group (Seo et al., 2017). Including
an evaluation where the elderly person him/herself performs
IADL might be essential for establishing more precise criteria
(Díaz-Mardomingo et al., 2017; Seo et al., 2017). Several authors
have tried to refine early MCI detection by combining two
out of the three variables considered in this paper: either
behavioral alteration (IADL, gait) within a VR environment
(Lee et al., 2003; Seo et al., 2017; Kim et al., 2019; Eraslan
Boz et al., 2019), gait kinematics extracted and analyzed by
means of ML, which will be discussed further (Begg and
Kamruzzaman, 2005; Pogorelc et al., 2012; Zhang and Wang,
2012; Eskofier et al., 2013; Akl et al., 2015; Costa et al.,
2016; Mannini et al., 2016; Caldas et al., 2017; Farah et al.,
2017; Ur Rehman et al., 2019), or ML techniques for predicting
MCI evolution (Filipovych and Davatzikos, 2011; Williams
and Weakley, 2013; Moradi et al., 2014, 2015; Bratić et al.,
2018; Grassi et al., 2018, 2019; Graham et al., 2020). Thus,
to our best knowledge, this is the first paper proposing an
integration of VR, gait kinematics, and ML in order to refine
early detection of MCI following a dimensional approach in
line with the most recent diagnostic systems and possibly
providing information on disease progression. However relevant,
traditional neuropsychological assessment does not provide this
extent of information and could serve as a starting point that
should be integrated with further information in order to detect
a subclinical condition otherwise undiagnosable following a
categorical approach. Crucially, some anecdotal evidence and
more systematic but scattered evidence from kinematic analysis
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of specific movements (i.e., What?) suggest the feasibility and
the relevance of an approach based on assessment of behavioral
variables for early detection of MCI. We present preliminary
evidence in this regard in the following.

“What” Variables Are Included in the
Assessment? Gait Kinematics
Is it possible to give relevance to behavioral data reported by
the caregivers, relying on the anecdotal description of the elderly
person’s daily functioning and their IADL performance, in a
scientific and rigorous manner?

A potential solution is to analyze the elderly individual’s
movements (kinematics) while performing IADL. Kinematic
analysis automatically records movements in a controlled setting
and assesses the underlying cognitive impairment. Preliminary
studies proved the feasibility of tracking the elderly person’s
head, dominant hand, or gait during the performance of
IADL to refine the assessment of MCI and other cognitive
conditions (Schröter et al., 2003; de los Reyes-Guzmán et al.,
2014; Akl et al., 2015; Seo et al., 2017). Among these
indexes, gait kinematic analysis has progressively received more
attention, despite the paucity of MCI-focused studies. The
work of Martín-Gonzalo et al. (2019) thoroughly explains
the contribution of considering gait alterations, beginning
in early cognitive decline, to an improved understanding of
neurocognitive disorders. In fact, gait kinematics are strongly
related to neurophysiological alterations (Persad et al., 2008;
Maquet et al., 2010; Martín-Gonzalo et al., 2019), brain volume
changes in specific areas (Tian et al., 2017; Allali et al.,
2019; Martín-Gonzalo et al., 2019), and subsequent cognitive
decline, predicting future risks of impairment (Martín-Gonzalo
et al., 2019). Kinematics assesses the sequential configuration
of the leg joints required to maintain the body’s center of
gravity above the stance base while a person is moving
forward. Compared to healthy subjects, the gait of a person
suffering from MCI shows decreased velocity, longer stride
time, increased stride-to-stride variability (Hausdorff, 2007;
Bahureksa et al., 2017; Byun et al., 2018; Martín-Gonzalo
et al., 2019), and spatiotemporal complexity (Ihlen et al., 2016;
Martín-Gonzalo et al., 2019).

A gait cycle is defined by ongoing changes in the sequential
configurations of the joints allowed by muscle activation, which
is controlled by neural mechanisms depending on the integrity
of somatosensory, motor, and cognitive integration cerebral
networks (Perry and Burnfield, 2010; Caldas et al., 2017; Costilla-
Reyes et al., 2020). Successful locomotion is indeed a dual
task requiring the ability to simultaneously perform a cognitive
task that could interfere with gait performance, particularly
in elderly people (Pedroli et al., 2018; Costilla-Reyes et al.,
2020). A decrease in attentional and executive functioning
is physiological in aging and could impact this simultaneous
execution (Hsu et al., 2012; Montero-Odasso et al., 2012;
Wang et al., 2015; Gwak et al., 2018; Pedroli et al., 2018).
In order to maintain walking capacity, damage to cerebral
networks involved in gait leads to an adaptation of the nervous
system, generating new signals reflecting the damage. Brain

signals to the muscles controlling joint movement may become
discontinuous and uncoordinated: this generates noise that could
be consequent to the failure of some neuronal networks and
produces configurations that respond to intentional cognitive
directives, such as changing gait pace, little or not at all (Martín-
Gonzalo et al., 2019). Indeed, kinematic data provide additional,
crucial information that increases the sensitivity and specificity
of MCI assessment. Paper-and-pencil neuropsychological tests
are not suitable for the detection of gait features and its
alterations, which appear relevant for more precise identification
of MCI individuals.

To date, gait analysis has been studied within a context
with little ecological validity: the walking task is generally
an end in itself and is not recorded while the subject is
completing a complex activity. Even the extraction of gait
kinematics from videos or home-based motion sensors could
provide only partial, bi-dimensional information or could be
less sensitive in detecting real-time movement adjustment
(Akl et al., 2015; Prakash et al., 2015; Neverova, 2016). The
use of VR enables continuous, tridimensional tracking of the
ongoing events within a highly immersive, safe, and standardized
environment, enhancing the methodological strength of the
procedure as well.

This introduces the need for a highly ecological and
immersive context that allows the elderly person’s kinematics
while performing IADL to be observed and detected. A plausible
solution comes from the implementation of Virtual Reality
(VR), as shown in Figure 1 (Pedroli et al., 2018). The
technological equipment illustrated in Figure 1 is a four-
walled Cave Automated Virtual Environment (CAVE), available
at Istituto Auxologico Italiano, which is routinely used for
cognitive and motor rehabilitation of elderly people. This
highly immersive technology is equipped with eight (4 × 2)
Vicon Bonita 10 cameras (Opti-Tracking system, 1MP) and
different Hi-res Hi-FOV head-tracked 3D HMDs and also
with a wide range of physiological and motion measures for
quantifying embodiment in VR and movements within the
environment. A virtual representation of, e.g., a city or a
supermarket can be projected on the four walls, and subjects
can actively navigate and interact with the environment.
This setting was used by Seo et al. (2017), which, as
previously mentioned, is the most similar procedure to the one
that we propose.

For the aims of this perspective, the most important feature
of VR is its ability to detect both real-time behaviors (e.g.,
specific bodily movements such as those of the head and upper
limbs and gait) and physiological indexes (e.g., skin conductance,
heart rate). The great amount of data collected with VR and
kinematics implies the need for a computational method of
analysis that is able to extract meaning from a large amount of
data. Thus, Machine Learning appears to be a viable solution,
as shown by previous research employing this technique to
discriminate between normal and pathological gait alteration
and for diagnostic purposes as well (Pogorelc et al., 2012;
Zhang and Wang, 2012; Eskofier et al., 2013; Costa et al., 2016;
Mannini et al., 2016; Caldas et al., 2017; Farah et al., 2017;
Ur Rehman et al., 2019).
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FIGURE 1 | Subject’s kinematic measures (gait) detected within a VR environment (CAVE) while performing instrumental activities of daily life (IADL) in order to refine
MCI assessment by following a dimensional approach.

“How” to Analyze Them? Machine
Learning
The massive amount of kinematic information extrapolated
from motion detectors, complemented by neuropsychological
and neuropsychiatric symptoms and signs, needs a similarly
powerful technology in order to process it and convert it
into an output intelligible for both clinicians and patients.
The employment of kinematic measures and VR within a
healthcare setting, i.e., a hospital, inevitably involves the use
of a large amount of electronic health records (EHR) of
patients’ evolution over time. Despite the challenges related
to the use of EHRs, several prediction algorithms and models
have been developed from their use (Häyrinen et al., 2008;
Miotto et al., 2016, 2017; Goldstein et al., 2017; Graham
et al., 2020). Among other advantages, EHR-based predictors
consider various metrics of multiple individuals, observed at
different time points: this makes use of a higher frequency of
data recording, facilitating the prediction of possible near-term
evolution; they also reflect real life more closely than cohort
studies (Goldstein et al., 2017).

The most suitable technique capable of administering a
volume of complex and extensive information may be Machine
Learning (ML). This scientific discipline stems from Artificial
Intelligence (AI), i.e., a computer science field performing tasks
capable of emulating human performance, generally learning
to understand complex data, an endeavor that requires human
intelligence (Bawack, 2019; Wang, 2019; Graham et al., 2020).
ML algorithms have progressively gained popularity for several
reasons, including their ability to automatically learn the inherent
structure of a dataset (Kononenko, 2001; Abu-Mostafa et al.,
2012; Facal et al., 2019) without requiring a priori hypotheses
about relationships between variables (Miotto et al., 2017;
Vieira et al., 2017; Graham et al., 2019, 2020). Conversely,
ML algorithms can discover and predict data trends and
patterns by building on existing information and highlight
unexpected relationships between variables (Vieira et al., 2017;
Graham et al., 2019, 2020). This “learning by processing”
approach generates increasingly accurate predictive models and,
so far, has demonstrated enormous potential for supporting
individual prognosis, risk estimation, and classification learning

Frontiers in Human Neuroscience | www.frontiersin.org 5 July 2020 | Volume 14 | Article 245

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-14-00245 July 23, 2020 Time: 17:24 # 6

Cavedoni et al. Kinematics and VR for MCI Assessment

for diagnosis (Lehmann et al., 2007; Patel et al., 2015;
Vieira et al., 2017; Dwyer et al., 2018; Facal et al., 2019).
Inevitably, ML techniques work with high-dimensional data,
which require a pre-processing step to remove redundant
information, reduce data dimensionality, and improve learning
accuracy and data comprehensibility (Khalid et al., 2014).
This can be achieved by means of (i) feature selection (i.e.,
the selection of the best and most optimal features from a
larger set of those useful for discriminating between classes
to increase accuracy and generalizability); and (ii) feature
extraction or dimensionality reduction (i.e., the transformation
of original features to generate other, more significant features
and reduce complexity) by means of Principal Component
Analysis (PCA) or Independent Component Analysis (ICA),
among other approaches (Khalid et al., 2014; Dwyer et al.,
2018). The application of ML for healthcare purposes has
been further developed into two main sub-classes, supervised
(SL) and unsupervised (UL) techniques. SL jointly employs
pre-labeled data, e.g., MCI versus healthy subjects, and
additional features derived from clinical or neuroimaging
sources to determine which feature predicts the pre-labeled
data the most (Dwyer et al., 2018; Graham et al., 2020).
SL operates with probabilistic and non-probabilistic classifiers
(Naïve Bayes and Support Vector Machine, respectively), as
well as with decision tree, linear, and logistic regression (Dhall
and Kaur, 2020). UL techniques, instead, sets unlabeled and
unstructured data, e.g., clinical notes, as a starting point to seek
relationships or patterns and to learn general representations
that enable the automatic extraction of information when
building predictors (Miotto et al., 2017; Dwyer et al., 2018;
Graham et al., 2020). The algorithms employed by UL include
K-means clustering, PCA, and Artificial Neural Networks (ANN)
(Dhall and Kaur, 2020).

However, at the time of data collection, it is unclear
whether MCI subjects will progress toward other forms of
dementia (e.g., AD) or convert back to normal cognition,
and this evolution could become more evident over the years.
This challenges data labeling: thus, researchers tackling MCI
detection have employed semi-supervised learning (SSL)
techniques capable of combining labeled and unlabeled data
to improve the classification procedure (Zhu, 2008; Filipovych
and Davatzikos, 2011; Moradi et al., 2015; Dwyer et al., 2018;
Van Engelen and Hoos, 2020). A semi-supervised approach,
therefore, allows cases to be managed by providing only
partial data labels (Filipovych and Davatzikos, 2011). Several
studies have employed MCI data as unlabeled data and
have shown an improvement in the predictive performance
of the model (Batmanghelich et al., 2011; Filipovych and
Davatzikos, 2011; Ye et al., 2011; Moradi et al., 2015): this
approach could be particularly feasible for the purpose
of the integrated dimensional approach offered in the
present perspective.

The ability to process raw data, the need for manual
engineering of features, and the extensive expertise needed
to perform the analyses represent the main limitations of
conventional (shallow) ML techniques (Lecun et al., 2015;
Vieira et al., 2017; Zhang et al., 2020). This has led to the

dissemination of deep learning (DL) algorithms, including
Deep Neural Networks (DNN), Convolutional Neural Networks
(CNN), and Recurrent Neural Networks (RNN) (Dhall and Kaur,
2020). DL outperforms ML in many ways, showing best-in-
class performance and increased complexity in the computed
function and addressing problems in multiple domains such
as language and speech (Zhang et al., 2020). Moreover, it
eliminates the need for manual feature engineering, reducing
possible human biases and removing the need for advanced
expertise (Zhang et al., 2020). DL is capable of learning data
representation in an unprocessed or raw form, and its high
performance and expressive power in one specific domain
can be transferred to other contexts, providing a flexible
adaptation to problems (Bengio, 2009; Lecun et al., 2015;
Miotto et al., 2017; Vieira et al., 2017; Chauhan et al., 2019;
Esteva et al., 2019; Costilla-Reyes et al., 2020; Zhang et al.,
2020). Despite all the advantages, it is crucial to consider that
DL techniques require very large datasets to perform, which
may be too hard to achieve, expensive, or time-consuming
to obtain; thus, ML may be more feasible and efficient
(Zhang et al., 2020).

To date, advanced statistical ML and pattern recognition
techniques have proved their usefulness in outlining
neurodegenerative patterns of mild symptoms manifesting
during the early stages of diseases, and MCI is no exception
(Davatzikos et al., 2008, 2010; Vemuri et al., 2009; Wee et al.,
2014). ML has been repeatedly applied to diagnostic transitions
from MCI to other forms of dementia, e.g., AD, employing
different types of information: mostly neuroimaging data (e.g.,
MRI, PET scan, Diffusion Tensor Imaging) (Batmanghelich
et al., 2011; Filipovych and Davatzikos, 2011; Ye et al., 2011;
Zhang and Shen, 2011, 2012; O’Dwyer et al., 2012; Shaffer et al.,
2013; Moradi et al., 2015; Bratić et al., 2018), cerebrospinal
fluid biomarkers (Davatzikos et al., 2010; Fjell et al., 2010;
Zhang and Shen, 2011; Shaffer et al., 2013; Bratić et al., 2018),
demographic and cognitive data (Moradi et al., 2015; Bratić
et al., 2018), and gait kinematics (Mannini et al., 2016; Farah
et al., 2017; Gwak et al., 2018). Broad variations in studies’
results have been reported, as has the lack of a gold-standard
ML algorithm to predict disease progression (Grassi et al.,
2018, 2019; Chiu et al., 2019; Facal et al., 2019; Mallo et al.,
2019). Specifically, Grassi and colleagues (Grassi et al., 2018,
2019) have recently developed clinically translatable ML
algorithms to identify which subjects with pre-MCI and MCI
will convert to AD (Grassi et al., 2018, 2019). ML likewise
appears promising for precision medicine: given the patients’
extreme heterogeneity of symptoms, medication response, and
prognosis, the implementation of ML to create computational
models of disease development tackles patients’ diverseness
(Fisher et al., 2019). Over the years, researchers have devised
a number of disease progression models for both MCI and
AD, relying on clinical and imaging data (Mueller et al., 2005;
Ito et al., 2011; Rogers et al., 2012; Moradi et al., 2015; Miotto
et al., 2017; Samper-Gonzalez et al., 2017; Fisher et al., 2019).
Previous applications of ML to clinical data have proven useful
in predicting a single outcome (e.g., the likelihood of conversion
from MCI to AD) (Fisher et al., 2019). From a clinical point
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of view, however, it would be important to predict the disease
progression and trajectory for everyone, which is difficult with
current data-driven modeling approaches.

In their latest work, Graham et al. (2020) support the
employment of AI and ML for ranking those variables crucial
for MCI assessment and cognitive impairment. The authors show
that clinical and psychometric assessments appear promising
for identifying individuals at high risk for cognitive impairment
(Lins et al., 2017; Senanayake et al., 2017; Moreira and Namen,
2018), which could be better identified by means of brain
imaging and neuropsychological data as well (Fan et al., 2018;
Iizuka et al., 2019). Even more importantly, Graham et al.
(2020) report on several studies employing novel techniques
to detect cognitive impairment in MCI subjects as well, such
as home-installed motion sensors (Akl et al., 2015) and multi-
modal wearable activity devices (Gwak et al., 2018), therefore
including behavioral data in ML analysis (Graham et al.,
2020). However useful, for providing real-world behavioral data
in an ecological context, the employment of motion sensors
alone has shown substantial heterogeneity (Graham et al.,
2020); therefore, VR appears a promising integrative solution
achieved by simulating a supervised and controlled real-life-
like environment.

DISCUSSION

Although both elderly people and caregivers notice and
report their concerns regarding behavioral, personality,
and cognitive changes, MCI is a subclinical condition that
remains undiagnosed by an official categorical system while
progressively compromising the independent functioning of
the elderly person. Although a possible regression to normal
cognition is desirable, more often, MCI evolves toward
other forms of dementia. A delayed diagnosis entails the
worsening of the individual’s conditions, greatly reducing
the extent of possible interventions and making primary and
secondary prevention essential (Van Vliet et al., 2011; Jekel
et al., 2015; Roehr et al., 2019). However, MCI assessment
should necessarily move beyond a stringent categorical
approach in favor of a dimensional one able to include
finer discrimination among early stages of MCI, thus reflecting
the complexity of this construct. So far, its assessment has
followed a dichotomous view, relying on neuropsychological
instruments to test MCI’s presence or absence. Despite their
proven efficacy, a dimensional approach would integrate
them by implementing existing technologies and data analysis
methodologies, placing MCI on a continuum. With this in
mind, this perspective aimed primarily to move forward,
proposing a novel assessment that could enable a more accurate
prevision of the trajectory of MCI decline, employing Virtual
Reality (VR) for a continuous dimensional assessment of MCI
behaviors in ecological and realistic tailored, safe, and controlled
simulated contexts.

Since the individual’s altered behavior reflects impaired
cognition (Martín-Gonzalo et al., 2019), this proposal would
allow early detection of MCI, enabling timely rehabilitative

interventions. Specifically, gait kinematics is a behavioral
index whose analysis has proved sensitive to cerebral and
cognitive alterations capable of discerning patients with cognitive
decline from healthy individuals (Martín-Gonzalo et al., 2019).
Nevertheless, few studies have specifically employed gait
measurement as a possible marker to refine MCI assessment,
and even then mainly in unfamiliar contexts, thus hindering
ecological validity (Jekel et al., 2015; Seo et al., 2017). So far,
MCI assessment has relied on neuropsychological measures
rather than behavioral ones, despite the importance of the
latter in revealing initial cognitive decline. When available,
these behavioral data are generally based on informant-report
questionnaires or reported as anecdotal information lacking
scientific rigor (Van Vliet et al., 2011; de los Reyes-Guzmán et al.,
2014; Kim et al., 2019). Behavioral data appear to provide a
relevant contribution to MCI assessment: further research should
deepen and consolidate the preliminary, promising evidence
reported (Seo et al., 2017; Martín-Gonzalo et al., 2019).

It appears evident that a mere conventional
neuropsychological assessment, however relevant, cannot
provide such a high degree of information, giving rise to
the necessity of integrating paper-and-pencil instruments
and anecdotal evidence with behavioral alterations evaluated
within a highly ecological and standardized setting, such as
VR. A plausible, practical implementation of the approach
could be structured as follows. During a first brief clinical
interview, the practitioner could collect anamnestic and
quantitative information from (i) the elderly person, relying on
neuropsychological/neuropsychiatric and cognitive measures as
well; and (ii) the caregiver, which could fill in informant-report
IADL measures. A second appointment would be dedicated
to VR-based assessment: the elderly person could perform
IADL (e.g., money withdrawal, grocery shopping) within the
CAVE virtual environment, while kinematic information of
their performance would be simultaneously collected. These
data could be provided by kinematics motion detectors placed
on the individual’s joints, as illustrated in Figure 1. The entire
VR-kinematic assessment would last a maximum of 20 min to
possibly avoid cybersickness, i.e., a form of motion sickness that

FIGURE 2 | Schematic illustration of the innovative model proposed.
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includes nausea, headaches, and disorientation, among other
symptoms (Laviola, 2000; Davis et al., 2014). Cybersickness
is a common side effect of VR and could interfere with the
completion of quantitative measures: thus, whenever it is
necessary to complete paper-and-pencil assessment in the second
appointment, this should be done before the VR procedure
starts. VR would allow the clinician to closely observe the
real life-like behavior of the individual and employ motion
detectors, which extrapolate a large amount of data computed
by means of Artificial Intelligence (AI) and, specifically, Machine
Learning (ML). As mentioned in the ML section, recently
developed, clinically translatable ML algorithms could help
to identify MCI subjects who will convert to AD (Grassi
et al., 2018, 2019). Thus, these algorithms could be tested
and implemented in the assessment procedure illustrated
in the previous section after collecting data from both the
quantitative evaluation and the VR procedure within the CAVE.
This could generate an accurate, predictive model proposing
a gradient of behavioral and cognitive decline: a subclinical
condition such as MCI could not be detected promptly by a
categorical approach. A schematic illustration of this model is
depicted in Figure 2.

The first and foremost added value of this approach
lies in moving one step forward toward refined MCI early
detection by integrating (i) behavioral (gait kinematics, IADL),
neuropsychological/neuropsychiatric and cognitive information;
(ii) a highly ecological and standardized setting, such as VR;
and (iii) a powerful method capable of analyzing an extensive
amount of data and predicting MCI progression over time.
This is the first dimensional approach jointly considering all
of the mentioned sources of information, whether previous
studies considered only two out of three variables at the
same time. The main focus is the relevance of building
an innovative assessment procedure that is data-fusion-based
and capable of identifying a subclinical condition that is
otherwise undetected. Many ML and DL algorithms exist to
analyze the extensive amount of data collected and, except
for some that were recently tested (Grassi et al., 2018, 2019),
there is no consensus regarding a gold-standard algorithm to
predicting MCI diagnostic transition. Moreover, several open-
source libraries for ML can provide information regarding
the most feasible programming language (e.g., Python) and
algorithms to use (Rathi, 2019).

We are aware that the integration of kinematic analysis, VR,
and ML, could be very expensive and may not be available in
a clinical setting, such as in a hospital. In addition, there may
be risk of initial acceptance resistance by elderly individuals
and healthcare providers due to the novelty of the equipment.
However, the implementation of this approach would offer a
crucial benefit by enabling the dimensional assessment of a
subclinical condition otherwise undiagnosable, and the trained
models, enriched by data of numerous patients, would easily
overcome the initial expense. Moreover, a hospital would be
the only setting where biological and neuroimaging data (e.g.,
MRI, PET scan, cerebrospinal fluid biomarkers) can be collected.
Although the method proposed, so far, does not include them,
these types of information could eventually be added to ML

analyses, since they have been previously indicated as plausible
contributors to MCI assessment (Fjell et al., 2010; Batmanghelich
et al., 2011; Filipovych and Davatzikos, 2011; Ye et al., 2011;
Zhang and Shen, 2011, 2012; O’Dwyer et al., 2012; Shaffer
et al., 2013; Moradi et al., 2015; Bratić et al., 2018; Chiu et al.,
2019). The employment of ML and DL methods usually requires
a large sample size, which may not always be feasible in the
healthcare setting. However, this limitation could be settled
by developing multi-centric studies, providing an adequate
sample size of patients and sharing data (Vieira et al., 2017).
The dimensional approach also needs to be applied carefully
in order to avoid hypervigilance for the slightest cognitive and
behavioral age-related alteration, which might lead to excessive
diagnosis and false-positives (Vanacore et al., 2017). Diagnosis
communication must be carefully handled, given the potential
harm of anxiety about a condition that may not progress
(Chiu, 2005; Díaz-Mardomingo et al., 2017; Vanacore et al.,
2017) prognostic possibilities can be discussed and planned
accordingly. Strengthening or rehabilitative interventions
could foster regression to normal cognition or decelerate the
progression toward other clinical conditions.

In summary, while the majority of the literature has studied
the application of several combinations of VR, gait kinematic
analysis, and ML, this is the first paper to integrate all of these
three methods and techniques in order to refine early detection
of MCI and possibly predict its evolution over time. VR allows
the collection of “Digital Biomarkers” – physiological/behavioral
data - by means of digital technologies, used as an indicator
of biologic processes or responses to therapeutic interventions
(Coravos et al., 2019) directly connected to brain functioning.
On the other side, AI, by applying ML techniques to
the individual’s digital biomarkers, allows the creation of
a predictive model – following a dimensional approach to
MCI – able to identify specific behavioral cognitive patterns
within an ecological and safe environment, for accurate early
detection of MCI and its potential evolutionary trajectory
(Riva et al., 2019b).
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