

Artificial Intelligence smelling: Can multidimensional chromatography play a (key) role?

Chiara Cordero¹

Simone Squara;¹ Andrea Caratti;¹ Nicola Spigolon;² Qingping Tao;³ Stephen E. Reichenbach;^{3,4} Carlo Bicchi¹

1: Dept. of Drug Science and Technology, University of Turin, Turin, Italy

- 2: Soremartec Italia, Ferrero Group, Alba-CN, Italy
- 3: GC Image LLC (Lincoln NE, USA)
- 4: Dept. of Computer Science and Engineering, University of Nebraska, (Lincoln NE, USA)

Foreword

Is <u>comprehensive two-dimensional gas chromatography</u> worthy to be adopted in <u>flavour characterization</u>? Is it simply a <u>more complicated approach to GC</u> separations? Does it <u>open new opportunities</u> to flavor analysis? *Opinions...*

Gestalt: something that is made of many parts and yet is somehow more than or different from the combination of its parts

Key-concepts

- ✓ Artificial Intelligence smelling based on sensomics (SEBES*)
- ✓ Analytical dimensions of a GC×GC platform
- ✓ Investigation strategies: a change of perspective from 1D -> 2D

Shelling nuts: an *omics* approach to unravel hazelnut quality and flavour by advanced chromatographic fingerprinting techniques based on GC×GC patterns

Conclusive remarks

GC: The State of the Art Chairperson: Pat Sandra Participants: John Hinshaw GC: The State of the Art

Steven Lehotav Hans-Gerd Janssen Chiara Cordero Frank David

November 01, 2017 By Chiara Cordero, Pat Sandra, John Hinshaw, Hans-Gerd Janssen, Frank David, Steven Lehotav

Pat Sandra: Comprehensive GC×GC has gained prominence at international meetings and in the literature in recent years. Do you expect a breakthrough in the coming years for routine analyses? Will modulation by temperature or by flow be mostly applied? Is the data handling sufficiently developed in terms of accuracy and speed for routine applications?

Steven Lehotay: GC×GC provides greater selectivity in separations, but as it is commonly used now, it adds too much time to the analysis. Another major problem is that a microbore second-dimension column is easily overwhelmed by high concentration matrix components which is nearly always the case in real-world samples. GC×GC is overkill in common applications and fails in many difficult ones, thus, it needs to be used in a different way to provide faster separations with more sample capacity. I think a breakthrough in $GC \times GC$ would have been possible many years ago if the drivers of the technology had decided to overcome its practical limitations, including excessive liquid nitrogen usage for cryogenic modulation, rather than demonstrate niche applications.

Frank David: GC×GC will definitely find its way to routine application, mainly in petrochemical analysis. All types of modulators can be used, but easier, user-friendly, intuitive software and data handling are needed. Moreover, the application potential of GC×GC should not be overestimated. One-dimensional GC and GC-MS are able to cover most GC-amenable applications.

Hans-Gerd Janssen: GC×GC is already routinely used in the mineral oil area and in the flavour and fragrance industry, simply because one-dimensional GC cannot do the job. For many other applications we are forced, by government policies or for company-internal reasons, to stick with one dimensional GC. I do not expect a dramatic breakthrough for GC×GC, but it could evolve to 10-15% of the GC market.

noun \g9•'stält

understanding the whole, not merely the sum of its parts. ...something that is made of many parts and yet is somehow more than or different from the combination of its parts¹...

[1] Merriam-Webster.com Dictionary, Merriam-Webster, https://www.merriam-webster.com/dictionary/gestalt. Accessed 5 Apr. 2022

AI Smelling

machine intelligence

ARTICLES https://doi.org/10.1038/s42256-020-0159-4

Rapid online learning and robust recall in a neuromorphic olfactory circuit

Nabil Imam¹ and Thomas A. Cleland²

Our noses are busy beasts.

At any given moment, multiple smells are competing for our attention, and somehow the brain can tell when it's smelling an orange even against a backdrop of other scents, say perfume or soap.

The brain's olfactory bulb has hundreds of receptors tracking odors all the time,

and yet somehow keeps everything straight.

Scientists at Cornell University working with researchers at Intel

have just created an AI algorithm trained to recognize 10 scents by mimicking the mammalian olfactory bulb (MOB).

Give the algorithm a computer chip to run on and it can learn to identify new odors.¹

AI Smelling

AGRICULTURAL AND FOOD CHEMISTRY Cree This: A Agric. Food Chem. 2019, 67, 4011–4022 Pubsacs.org/JAF4

Characterization of Key Aroma Compounds in a Commercial Rum and an Australian Red Wine by Means of a New Sensomics-Based Expert System (SEBES)—An Approach To Use Artificial Intelligence in Determining Food Odor Codes

Luca Nicolotti,[#] Veronika Mall,^{#©} and Peter Schieberle*^{&©}

Context: Sensomics¹ Principle: <u>key-odorants and odorants patterns evoke specific</u> <u>smells/aroma qualities while contributing to define the overall</u> <u>flavor perception of a food</u> - identity

Methods: <u>extract</u>, <u>isolate</u>, <u>quantify potent odorants by reliable and</u> <u>robust methodologies</u>

Outcome: Sensomics-Based Expert System² (SEBES) that predicts key-aroma signatures of food without using human olfaction.

Dunkel, A.; Steinhaus, M.; Kotthoff, M.; Nowak, B.; Krautwurst, D.; Schieberle, P.; Hofmann, T. Angew. Chemie - Int. Ed. 53 (28) (2014) 7124–7143.
 Nicolotti, L.; Mall, V.; Schieberle, P. J. Agric. Food Chem., 67 (2019) 4011–4022

Comprehensive 2D GC

- Separation power (peak capacity) is given by the product of the two chromatographic dimensions (GC×GC)¹
- Independent (almost) displacement in both dimensions produces rational retention patterns for homologue series¹
- Band compression (in space for thermal modulators) produces signal-to-noise ratio enhancement - sensitivity
- Bi-dimensional peak patterns exploits a 3D space where fingerprinting could be more accurate that in a 2D space (as for 1D-GC profiles)

[1] Giddings, J.C. (1987), Concepts and comparisons in multidimensional separation. J. High Resol. Chromatogr., 10: 319-323.

Profiling¹ detailed analysis of the chemical pattern

Target(ed) analysis²

GC-MS metadata (retention and spectra) analytes <u>identity</u> and <u>amount</u>

Chromatographic fingerprinting^{1,3} general and rapid high-throughput screening -> discriminate/classify samples

Limits

high chemical dimensionality⁴ complexity of food samples

isomers/isobars might co-elute and analytes discrimination becomes challenging

Need of multiple dimensions (separation / detection) to explore compositional complexity⁴

[1] Harrigan G., Goodacre R. (2003) Metabolic profiling: its role in biomarker discovery and gene function analysis. Kluwer Academic Publishers: Boston

[2] S.E. Reichenbach et al. J. Chromatogr. A 1226 (2012) 140-148

[3] Stilo, F., Bicchi, C., Jimenez-Carvelo, A.M., Cuadros-Rodriguez, L., Reichenbach, S.E., Cordero, C. TrAC Trends Anal. Chem. 134 (2021) 116133
 [4] Giddings, J. C. (1995) J. Chromatogr. A. 703, 3–15.

Comprehensive 2D GC

2D/3D Chromatographic fingerprinting¹ pattern recognition (forensics) comprehensive sample comparison

Group-Type Analysis Rational retention logic Ordered elution patterns

[1] Stilo, F., Bicchi, C., Jimenez-Carvelo, A. M., Cuadros-Rodriguez, L., Reichenbach, S. E., & Cordero, C. (2021). TrAC Trends in Analytical Chemistry, 134, 116133.

[1] J.C. Giddings J. Chromatogr. A 703(1995) 3–15.

Raw hazelnut volatiles - Rancid sample Origin Turkey HS-SPME (CAR/PDMS/DVB) - 125 mg - 50°C/50 min

¹D - polarity/volatility separation (PEG / Carbowax)

About 700 detectable features (2D peaks) over 20 S/N Of them 250 reliably identified by 70 eV spectrum and I^T coherence Various chemical classes highly correlated with autoxidation processes, enzymatic peroxidation, aroma compounds and potent odorants

Raw hazelnut volatiles - Rancid sample Origin Turkey HS-SPME (CAR/PDMS/DVB) - 125 mg - 50°C/50 min

Bifurcation

Ridge ending

A **fingerprint** is the pattern of ridges and valleys on the surface of a fingertip -> Everyone has unique fingerprints

Untargeted/Targeted Fingerprinting¹⁻⁴ - comprehensive mapping

1.6 Blob Properties Х Labels Statistics Analysis Qualifier/Quantifier Ions Compound Name Octanal Analysis CLIC (aCLIC) \sim Compound Library \sim Qualifier CLIC (qCLIC) 00.0) & (RMatch("<ms>") >= 700.0 ~ Group Na. odorants II Reference MS 334.0,550.0;339.0,340.0;349.0,860.0; Constellation Name Reference Peak \sim Compound Description saturated aldehydes 0.8 LRI (WAX) 1277±7 Auto Fill Flags 14.0 TTTT 14.5 15.0 Include Add Text Object Internal Standard Add Chemical Structure Exclude Set Color Custom Color OK and View Spectrum OK Hit List Cancel [1] Magagna, F., Valverde-Som, L., Ruíz-Samblás, C., Cuadros-Rodríguez, L., Reichenbach, S. E., Bicchi, C., & Cordero, C. (2016). Analytica Chimica Acta, 936, 245–258. [2] Reichenbach, S. E., Tian, X., Tao, Q., Ledford, E. B., Wu, Z., & Fiehn, O. (2011). Talanta, 83(4), 1279–1288 [3] Reichenbach, S. E., Zini, C. A., Nicolli, K. P., Welke, J. E., Cordero, C., & Tao, Q. (2019). Journal of Chromatography A, 1595, 158–167 [4] Cordero, C., Guglielmetti, A., Bicchi, C., Liberto, E., Baroux, L., Merle, P., ... Reichenbach, S. E. (2019). Journal of Chromatography A, 1597, 132–141

Untargeted/Targeted Fingerprinting - comprehensive mapping

Targeted and **untargeted** peak(-region) features are cross-aligned between all samples and metadata collected for further processing.

Investigator - G:\Markes 2017.2 ie Tools Help	018\Hazelnuts Spigolon 2018\Feature UT	hazelnuts.gca\c	default.bt		e e e						_	Fiduci a icor	× na
mages Compounds Attributes Su	mmary												
Statistical Summary	Blobs												
View: Compound Categories ~	Line Chart Scatter Chart Bubble Chart												
	V. Deterline I Mann	ing TI Mana	7. Deball	a 1 Oaa uu									6 m
obs	A: Retention Limean V Y: Retent	oon II.mean	V Z: Retentio	n 1.0ne-vs	~							٩	
eas													
mpound Sets										Reter	ntion I		
	Compound Name	Count	Mana	Chalan	000	Dainuina M	One us All	E Value	Mana(VO)	Mann(OK)	Chdau(VO)	Chilau (OV)	De S
	Diathud Blathalate (20)	0	F2 5105	0.0505	0.0010	Parwise Pl	0.0597	0.2415	F2 5119	F2 5202	5t0ev(((0))	5LUEV(OK)	P.4
	Methyl 2-octupoate (3)	9	32.5195	0.0505	0.0010	0.0587	0.0587	2 7350	31.0050	32,5293	0.0639	0.0337	<u> </u>
	Octanoic acid (36)	4	44 5668	9.4116E-6	2 11185-7	0.6522	0.6522	1 3044	44 5668	44 5668	1.2186E-5	3 51225-6	<u></u>
	1-Octanol (5)	12	29,9265	0 1226	2.11100-7	0.0522	0.0322	2 5299	79, 7902	79,0199	0.1427	0.0292	-
	Hevenal (74)	8	11 0761	0.1355	0.0040	0.3031	0.3031	1 5710	11.0056	11 2876	0.2967	0.0292	-
	Hentanoic acid (53)	3	41,5140	0.0337	0.0008	0.5000	0.5000	0.3333	41 5043	41.5334	0.0413	0.0000	<u></u>
	(E)-2-Decenal (64)	10	31,9201	0.1192	0.0037	1 2013	1 2013	2 1968	31,8938	32 0251	0.1198	3 5122E-6	-
	(E)-2-Octenal (30)	5	24,4418	8.4176E-6	3.4439E-7	1,1779	1,1779	2.2827	24,4418	24,4418	8.6202E-6	3.5122E-6	<u>-</u>
	Pentanal (109)	11	8.0289	0.1794	0.0223	0.8548	0.8548	2,9010	7,9772	8,1668	0.1784	0,1010	
	1-Octanol (94)	4	24.4855	0.0292	0.0012	0.5006	0.5006	1.0013	24,4709	24.5001	0.0412	3.5122E-6	
	(E)-2-Nonenal (41)	5	28.2218	0.1908	0.0068	0.4770	0.4770	0.8715	28.1556	28.3209	0.2358	0.0412	2
	2(3H)-Furanone, 5-butyldihydro- (16)	11	40.3774	0.0573	0.0014	1.2888	1.2888	3.6153	40.3595	40.4251	0.0578	2.7121E-6	
	(E)-2-Undecenal (25)	6	35.5154	0.1070	0.0030	0.7207	0.7207	1.2813	35,4813	35.5834	0.1203	3.5122E-6	<u>i</u> – 1
	2(3H)-Furanone, dihydro-5-pentyl- (29)	10	43.6393	0.0580	0.0013	0.4441	0.4441	1.4639	43.6251	43.6723	0.0624	0.0337	/—
	Acetone (52)	11	5.1069	0.0840	0.0164	0.3613	0.3613	1.5951	5.0834	5.1480	0.0918	0.0558	i –
	Butyl Butanoate (32)	11	16.3175	0.2623	0.0161	0.6909	0.6909	2.8268	16,2251	16.4793	0.2846	0.1117	
	Butyl benzoate (15)	12	38.9133	0.0723	0.0019	1.1144	1.1144	4.2454	38.8865	38.9668	0.0760	9.2700E-6	1
	2(3H)-Furanone, dihydro-5-propyl- (57)	9	36.9575	0.0880	0.0024	1.0164	1.0164	3.0708	36.9251	37.0223	0.0904	0.0337	/
	(60)	10	32.3284	0.1160	0.0036	0.9506	0.9506	2.7961	32.2918	32.4140	0.1208	0.0337	
	2(3H)-Furanone, 5-ethyldihydro- (45)	11	33.6955	0.1115	0.0033	1.2164	1.2164	4.3344	33.6584	33.7945	0.1034	0.0674	1
	Ethyl benzoate (72)	10	32.6551	0.1058	0.0032	0.5205	0.5205	2.0412	32.6181	32.7105	0.1247	0.0292	1
	Acetonitrile (14)	12	8.6577	0.1869	0.0216	1.3439	1.3439	5.4946	8.5824	8.8084	0.1830	0.0674	ł
	(49)	10	23.7651	0.2320	0.0098	1.2887	1.2887	2.3565	23.7126	23.9751	0.2312	3.5122E-6	i i
	Benzaldehyde (17)	12	27.6161	0.1621	0.0059	0.7737	0.7737	3.1145	27.5626	27.7230	0.1736	0.0559	1
	4-Hydroxybutyric acid (7)	12	31.2181	0.1288	0.0041	1.3631	1.3631	6.0196	31.1647	31.3251	0.1198	0.0674	ł
	Toluene (37)	5	9.7768	0.2244	0.0230	0.1619	0.1619	0.1295	9.7563	9.8584	0.2537	0.0000	1
	Dichloremethane (108)	10	6.8951	0.1284	0.0186	1.9287	1.9287	7.8551	6.8251	7.0001	0.1167	0.0476	
	L	,					1						-
	Citerra Company of Manua				Example Frank	an Terrelaka							

Artificial Intelligence smelling: Can multidimensional chromatography play a (key) role?

- Industrial partner world leader in the production of confectionery products based on hazelnuts
- ✓ Need for <u>objective</u>
 <u>evaluation</u> of <u>quality</u>

Quality assessment at **industrial level** focuses on morphological aspects, presence of damaged kernels, perceivable sensory defects (mould, rancid, *cimiciato*, stale etc..)

Corylus aveilana L.

Step-ahead in quality assessment *molecular resolution* probes:

- ✓ <u>qualification</u> (oxidation status, shelf-life storage effectiveness, bacterial and mold grow)
- ✓ <u>identitation¹</u> (cultivar, origin, harvest area)
- ✓ definition of *aroma potential*²

AI decision makers

- 1. Computer Vision in defected hazelnuts VOCs patterns
- 2. Smelling machine aroma blueprint
- 3. Aroma precursors pattern

 Cuadros-Rodríguez, L.; Ruiz-Samblás, C.; Valverde-Som, L.; Pérez-Castaño, E.; González-Casado, A. *Anal. Chim. Acta* **2016**, *909*, 9–23.
 Cialiè Rosso, M.; Mazzucotelli, M.; Bicchi, C.; Charron, M.; Manini, F.; Menta, R.; Fontana, M.; Reichenbach, S. E.; Cordero, C. J. Chromatogr. A **2020**, *1614* (460739)

Volatiles < 0.01%

- Hydrocarbons
- Terpenoids
- Alcohols (linear and branched)
- Carbonyl derivatives
- Carboxylic acids
- Esters
- Lactones

Encrypts a lot of information

- geographical origin
- <u>phenotyping</u> and chemotyping
- multitrophic interactions (plantsinsects)
- presence of bacteria and moulds
- scent and odorous compounds
- distinctive aroma blueprint

Quality assessment at industrial level focuses on morphological aspects, presence of damaged kernels, perceivable sensory defects (mould, rancid, *cimiciato*, stale etc..)

AI decision makers *Computer Vision* in defected hazelnuts volatilome patterns

10000	Contents lists available at the events of	FOOT
1999 B	Food Chemistry	CHEMISTR
ELSEVIER	Journal homedage: www.atenvier.com/lacate/feed/herr	

An effective chromatographic fingerprinting workflow based on comprehensive two-dimensional gas chromatography – Mass spectrometry to establish volatiles patterns discriminative of spoiled hazelnuts (Corylus avellana L.)

Federico Stilo", Erica Liberto", Nicola Spigolon", Giuseppe Genova", Ginevra Rosso Mauro Fontana", Stephen E. Reichenbach'", Carlo Bicchi", Chiara Cordero".

Untargeted/Targeted (UT) fingerprinting on single chromatograms

Generation of composite class-images from samples groups - one for each sensory defect

✓ patterns re-alignment by reliable 2D peaks and raw data summation (composite image)

Cumulative class-image "Mould"

The effect of dominant variables (origin, harvest year, cultivar, shelf-life etc..) is minimized while the "signature" of *mold* sensory defect emphasized - easier detection

Composite class-images from samples groups - one for each sensory defect

An effective chromatographic fingerprinting workflow based on comprehensive two-dimensional gas chromatography – Mass spectrometry to establish volatiles patterns discriminative of spoled hazelnuts (*Corylas* avellana L.) Federics Riberto, "Kirela Lberto," Nicela Spigelon", Giuseppe Genova", Ginerra Rosso", Muser Fontana, "Spepten E. Richenburg", Cardo Bieft, "Ginas Coefford"

Datapoint features fingerprinting combined to peak-regions UT fingerprinting

Computer vision and chemical patterns

VOCs patterns distinctive of spoiled hazelnuts guide effective classification into seven classes.

- Octanoic acid guides the classification tree being positively correlated to mould;
- y-nonalactone, y-hexalactone, acetone, and 1-nonanol are decisive to classify OK and rancid samples;
- heptanoic and hexanoic acids and y-octalactone are present in high relative abundance in rancidsolvent and rancid-stale samples

Quality assessment at industrial level focuses on morphological aspects, presence of damaged kernels, perceivable sensory defects (mould, rancid, *cimiciato*, stale etc..)

AI decision makers *AI Smelling machine* - aroma blueprint

Develop a sensomics-based expert system acting as AI smelling machine

Aroma profile of raw hazelnuts from different cultivar/origin¹

Key-aroma compounds - raw hazelnuts odorants occurring in amounts that exceed the OT (Odor Activity Value > 1). Their omission in aroma recombinates does not reproduce the flavour blueperint of the original product.

	'Tonda Romana'	'Tonda Gentile'	Akçakoca
hexanal	3	<1	8
3-methyl-4-heptanone	141	126	93
5-methyl-(E)-2-hepten-4-one	2	2	2
2-acetyl-1-pyrroline	24	24	24
dimethyl trisulfide	1	1	1
2-propionyl-1-pyrroline	22	22	22
2-furfuryl mercaptan	8	8	8
3-(methylthio)propionaldehyde	15	15	15
3,5-dimethyl-2-ethylpyrazine	1	1	1
2,3-diethyl-5-methylpyrazine	9	9	9
3,7-dimethylocta-1,6-dien-3-ol	12	12	12
2-acetyl-1,4,5,6-tetrahydropyridine	46	46	46
2-acetyl-3,4,5,6-tetrahydropridine	36	36	36
3-methylbutanoic acid	2	1	1
(E,E)-2,4-nonadienal	6	3	29

1. Kiefl, J.; Schieberle, P. J. Agric. Food Chem. 2013, 61 (22), 5236-5244.

Storage quality markers 1-heptanol (green, chemical), 2-octanol (metal, burnt), 1-octen-3-ol (mushroom), (E)-2-heptenal (fatty, almond), hexanal (leaf-like, green), heptanal (fatty), octanal (fatty) and nonanal (tallowy, fruity).

Spoiled hazelnuts markers

octanoic acid positively correlated to mould; γ-nonalactone, γ-hexalactone, acetone, and 1-nonanol are decisive to classify OK and rancid samples; heptanoic and hexanoic acids and γ-octalactone are present in high abundance rancid-solvent and rancid-stale samples.

Strategy

Multiple Headspace SPME Accurate quantification / ESTD and RF

46 analytes key-aromas

markers

Differential-flow modulator parallel detection qMS/FID

UNIVERSITÀ DEGLI STUDI DI TORINO

Step-ahead in quality
assessment
molecular resolution probes:
✓ definition of <u>aroma potential</u>

Al decision makers Aroma precursors pattern

QUESTIONS ON AROMA POTENTIAL

1) Is there a <u>robust correlation</u> <u>between non-volatile precursors</u> <u>and key-aroma compounds in</u> <u>roasted hazelnuts</u>?

2) Are precursors patterns distinctive of hazelnut origin?

3) Is it possible to assess the"potential" of aromadevelopment through precursorspatterns in raw hazeInuts?

4) Have precursors patterns a predictive potential to assess raw hazelnut quality toward its industrial processing trajectory?

Food metabolomics domain

Collaboration with Max Rubner Institut Max Rubner-I Department of Safety and Quality of Fruit and Vegetables Food Quality Area Metabolism Dr. Sabine Kulling and Dr. Christoph Weinert

2-FFT

¹D - Apolar (HP5 -)

60 m × 0.25 mm × 0.25µm

He carrier @ 1.3 mL/min

Sample preparation

Tools

MDPI

Adaptation and validation of a sample preparation procedure from *Nature Protocols* [6, 1483–1499 (2011)]

Extraction with H₂O/CH₃OH 98:2;

Metoximation with MOX solution in pyridine - 60°C for 2 h Silylation (N,O- bis(trimethylsilyl)trifluoroacetamide) BSTFA -60°C for 1 h.

Adding extra-dimensions to hazelnuts primary metabolome fingerprinting by comprehensive two-dimensional gas chromatography combined with time-of-flight mass spectrometry featuring tandem ionization: Insights on the aroma potential

Marta Cialiè Rosso⁴, Maria Mazzucotelli², Carlo Bicchi⁴, Melanie Charron^b, Federica Manini¹, Roberto Menta^b, Mauro Fontana^b, Stephen E. Reichenbach¹d, Chiara Cordero^{Aa}

Article

TOF-MS -70 and -12 eV

²D - Medium polarity OV17

2.0 m × 0.15 mm × 0.10μm

He carrier @ 1.3 mL/min

Combined Untargeted and Targeted Fingerprinting by Comprehensive Two-Dimensional Gas Chromatography to Track Compositional Changes on Hazelnut Primary Metabolome during Roasting

Marta Cialië Rosso ¹, Federico Stilo ¹⁽⁹⁾, Carlo Bicchi ¹⁽⁹⁾, Melanie Charron ², Ginevra Rosso ², Roberto Menta ², Stephen E. Reichenbach ^{3,4}⁽⁹⁾, Christoph H. Weinert ³⁽⁹⁾, Carina I. Mack ³, Sabine E. Kulling ³ and Chiara Cordero ^{1,4}⁽⁹⁾

The primary metabolome of raw hazelnut kernels is complex and accounts for: 1,000 UT features 130 reliably identified metabolites (80 standard confirmation - 50 by LRI and spectra similarity 70 eV and MI confirmation by low energy ionization at 12 eV)

15 amino acids; 25 organic acids; 10 polyols; 16 mono/di saccharides; 5 sugar acids, etc.

Italian Tonda Gentile Trilobata - Raw Harvest 2017 - mono-saccharides elution region

GC×GC set-up: ¹D: **Rxi-5SilMS** 60 m x 0.25 mm ID x 0.25μm - ²D: **BPX50** 2.2m x 0.15mm ID x 0.15μm - GC Oven: 90°C to 160°C @2°C/min to 290 °C @3.25°C/min to 320 (10') @6°C/min. Run Time: 90' - OPTIC4 injector: 90°C to 280°C, split ratio 1:5, after 1' 1:100, after 20' 1:30 - Modulation settings: modulation time 2,7s, hot-jet pulse jet 250 ms

ALL SHE

2) Are precursors patterns distinctive of hazelnut origin?

3) Is it possible to assess the"potential" of aromadevelopment through precursorspatterns in raw hazeInuts?

4) Have precursors patterns a predictive potential to assess raw hazelnut quality toward its industrial processing trajectory?

Hierarchical clustering based on Euclidean distances of 112 targeted metabolites normalized responses (Pareto scaling and Z-score normalization). Heat-map visualization in blue-red scale. Hazelnut samples: T-GE: Tonda Gentile Trilobata from Georgia (2017-2018)

T-IT: Tonda Gentile Trilobata from Piedmont Italy (2017-2018) AN-GE: Anakliuri Georgia (2017-2018).

Cultivars and pedoclimatic condition of harvest region influence precursors pattern.

- ✓ <u>Tonda Gentile Trilobata</u> hazelnuts_harvested in <u>Georgia</u> are grouped together (light blue - <u>cluster A)</u>
- ✓ <u>Tonda Gentile Trilobata</u> <u>harvested in Italy (T_IT tagcluster B) is connoted</u> by a higher relative distribution of <u>several analytes</u>, especially sugar, polyalcohols and amino acids (light green box)

Univariate statistics (i.e., box-plots) illustrating the average normalized response for targeted precursors in the selected hazelnut samples

QUESTIONS ON AROMA POTENTIAL

2) Are precursors patterns distinctive of hazelnut origin?

3) Is it possible to assess the "potential" of aroma development through precursors patterns in raw hazelnuts?

4) Have precursors patterns a predictive potential to assess raw hazelnut quality toward its industrial processing trajectory?

T-GE: Tonda Gentile Trilobata from Georgia (2017-2018) T-IT: Tonda Gentile Trilobata from Piedmont Italy (2017-2018) AN-GE: Anakliuri Georgia (2017-2018)

2) Are precursors patterns distinctive of hazelnut origin?

3) Is it possible to assess the "potential" of aroma development through precursors patterns in raw hazelnuts?

4) Have precursors patterns a predictive potential to assess raw hazelnut quality toward its industrial processing trajectory?

2) Are precursors patterns distinctive of hazelnut origin?

3) Is it possible to assess the"potential" of aromadevelopment throughprecursors patterns in rawhazeInuts?

4) Have precursors patterns a predictive potential to assess raw hazelnut quality toward its industrial processing trajectory?

Heat-map based on the Pearson correlation coefficient (r) calculated between primary metabolites % responses (GCxGC-TOF MS) and volatiles % responses after lab-scale roasting. Pareto scaled data - matrix 245 × 45 (features × samples).

R: Tonda Gentile Romana of Italy (2017); O: Ordu blend of Turkey (2015) P: Tonda Gentile Trilobata from Piedmont Italy (2015); T-GE: Tonda Gentile Trilobata from Georgia; T-IT: Tonda Gentile Trilobata from Piedmont Italy AN-GE: Anakliuri of Georgia.

1. Native volatiles, dicarbonyls and furans

2. Roasting markers, above all alkyl pyrazines (Maillard reaction signature)

QUESTIONS ON AROMA POTENTIAL

aldehydes) 4) Have precursors patterns a **4.** Printary metabolites (F20.89) % hazelout cuality towards to vidences its industrial diagnostic patients related to cultivars and origin.

4) Have precursors patterns a predictive potential to assess raw hazeInut quality toward its industrial processing trajectory?

noun \ g9•'stält

understanding the whole, not merely the sum of its parts.

Chiara Cordero: GC-GC cannot be an alternative to GC×GC! They are both capable of expanding the potentials of 1D-GC where a single dimension is not sufficient or selective enough to solve an analytical challenge. (However, one is still a multiple 1D-GC approach (that is, GC-GC) and does not require a change of mindset or skills for new users while, as already mentioned, GC×GC requires a "jump" towards new measurement concepts. Once we overcome this gap, we cannot turn back!

GC: The State of the Art Chairperson: Pat Sandra Participants: Steven Leho

Steven Lehotay David, Steven Lehotay Hans-Gerd Janssen Chiara Cordero Frank David John Hinshaw

GC: The State of the Art

November 01, 2017 By Chiara Cordero, Pat Sandra, John Hinshaw, Hans-Gerd Janssen Frank

Chiara Cordero: I see GC×GC growing in core application areas, including petrochemical, environmental, food and flavours, natural products, and metabolomic studies, and in my research activity I've met new users approaching this technique with curiosity but also with many prejudices and false convictions. My feeling is that we still are in the "induction period".

The possibility of applying dedicated pattern recognition approaches to the analysis of 2D chromatographic data opens new perspectives for fingerprinting studies. This last aspect is a key feature of the technique and it will soon trigger the widespread use of GC×GC in many fields. As experts and passionate chromatographers we have to continue research in the direction of making this technique more intuitive and easy to use with new data analysis tools and approaches to create a "toolbox" for various applications.

Thank you for your attention

Prof. Stephen E Reichenbach

CIMAC

Dr. Qingping Tao

Software for Multidimensional Chromatography

G

Lincoln

Dr. Andrea Caratti Dr. Simone Squara

Dr. Marta Cialiè Rosso PhD Agilent Technologies

Dr. Federico Stilo PhD Tentamus Group

Dr. Nicola Spigolon PhD Soremartec

Acknowledgments

Applications and Core Technology University Research (ACT-UR) Project #4294

