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1. Introduction

In this paper we focus on studying statistical properties of a response-adaptive
design, described in terms of two-color urn model, able to target any fixed
asymptotic allocation probability. The model considered in this work is the
Modified Randomly Reinforced Urn (MRRU) introduced and studied in [4].
The generality of the mathematical setting allows this experimental design to
be applied to a broad set of areas of applications. However, since urn models are
usually adopted to compare two or more competitive treatments, this work will
be illustrated within a clinical trial framework. In this context, adaptive designs
are attractive because they aim to achieve two simultaneous goals, concerning
both statistical and ethical points of view: (a) collecting evidence to determine
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the superior treatment, and (b) increasing the allocation of units to the supe-
rior treatment. For a complete literature review on response adaptive designs
see [18] and [28]. Urn models are some of the most attractive adaptive designs,
since they guarantee the randomization of allocations [28]. Asymptotic results
concerning urn models with an irreducible mean reinforcement matrix could be
found in [5, 6, 8, 20] and [28]. This irreducibility assumption is not satisfied, for
example, by the Randomly Reinforced Urn (RRU) studied in [22, 26, 27] that
is described by a diagonal mean replacement matrix. The RRU models were
introduced by [10] for binary responses, applied to the dose-finding problems
in [11, 12] and then extended to the case of continuous responses in [7, 26]. In
these models, an urn is sequentially sampled and virtually reinforced by adding
a random quantity of balls that depends on the response to the treatment as-
sociated to the sampled color. For instance, among these models we have the
generalized Polya urn models with different reinforcement means. RRU designs
have been usually adopted to compare competing treatments in a clinical trial
framework, when the main goal is to minimize the number of subjects assigned
to the inferior treatment. In fact, an interesting property concerning RRU mod-
els is that the probability to allocate units to the superior treatment converges
to one as the sample size increases. However, because of this asymptotic behav-
ior, RRU models are not in the large class of designs targeting a fixed proportion
η ∈ (0, 1), that usually is chosen to satisfy some optimal criteria. Hence, all the
asymptotic desirable properties concerning these procedures presented in liter-
ature (see for instance in [24] and [25], are not straightforwardly fulfilled by the
RRU designs. Moreover, the asymptotic behavior of RRU design presents other
drawbacks, that are relevant for the inferential phase of the trial. For large sam-
ples, RRU designs generate treatment groups with very different sample sizes.
Hence, inferential procedures based on these designs are usually characterized
by a very low power. For these reasons, in [4] the urn scheme of the RRU design
has been opportunely changed, in order to construct a new urn model, called
Modified Randomly Reinforced Urn design (MRRU), that asymptotically tar-
gets an allocation proportion η ∈ (0, 1), still minimizing the number of subjects
allocated to the inferior treatment. Other papers have described urn models that
can target any desired allocation. For instance, in [8] a general class of immi-
grated urn models with this feature is presented. In this paper, we provide some
asymptotic results concerning reinforced urn models that in [8] are approached
under very particular conditions.

In Section 2 we describe the MRRU model, which this work is based on.
Visualize an urn containing balls of two colors (red,white) that is sequentially
sampled. Each time, the extracted ball is reintroduced in the urn together with
a random number of balls of the same color. To fix the notation we call µR and
µW the laws of the random reinforcements of red and white balls, respectively,
and mR, mW the corresponding means. Let us call X = (Xn)n∈N (Xn ∈ {0, 1},
n = 1, 2, . . .) the sequence of the colors sampled by the urn and Z = (Zn)n∈N

(Zn ∈ (0, 1), n = 0, 1, 2, . . .) the sequence of urn proportions before each draw.
We report the main result proved in [4], concerning the almost sure convergence
of the process (Zn)n∈N to a fixed parameter η ∈ (0, 1), whenever the means
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of the reinforcements’ distributions are different. We prove that the proportion
of colors sampled by the urn converges to the same limit of the urn composi-
tion. Since this proportion represents also the proportion of patients assigned
to treatments, we are able to rule the asymptotic patient’s allocation.

Section 3 is focused on the rate of convergence of the process (Zn)n∈N in
the MRRU model. Important results on the asymptotic behavior of the urn
proportion (Zn)n∈N for a RRU model were developed in [13], in the case of rein-
forcements with different expected values. In [13] it was proved that the rate of
convergence of the process (Zn)n∈N to one (i.e. its limit in the case mR > mW )
is equal to 1/nγ (with γ = 1 − mW

mR
< 1). Moreover, the quantity nγ(1 − Zn)

converges almost surely to a positive random variable, whose behavior has been
studied in [19] and [23]. In Theorem 3.1 of this paper it is proved that the rate of
convergence of the process (Zn)n∈N to its limit η ∈ (0, 1) is 1/n for the MRRU
model. This asymptotic result was achieved after defining a particular Markov
process denoted (T̃n)n∈N, based on the quantities that rule the urn process.
The study of stochastic properties of the process T̃n (see Appendix and Propo-
sition 3.1) has been crucial for proving Theorem 3.1. Moreover, Theorem 3.1
shows that the sequence n(η − Zn) converges in distribution to a real random
variable, whose probability law is related to the unique invariant distribution π
of the process (T̃n)n∈N.

Section 4 is devoted to the inferential properties of the design described in
Section 2. We deal with a classical framework testing the null hypothesis that
reinforcement’s means are equal (mR = mW ) against the one-side alternative
hypothesis (mR > mW ). We consider different statistical tests, based either
(a) on adaptive estimators of the unknown means or (b) on the urn proportion.
Under the null hypothesis, the asymptotic behavior of statistics of type (a) has
been studied in many works (see for instance [25] and the bibliography therein)
for adaptive designs with target allocation η ∈ (0, 1) and in [13] for RRU designs.
On the other side, asymptotic properties of statistics of type (b) in a RRU
design were investigated in [1, 2, 3]. However, under the null hypothesis the
asymptotic distribution of the urn proportion’s limit is still unknown, except in
a few particular cases. Under the alternative hypothesis the behavior of statistics
based on adaptive estimators of the unknown parameters has been investigated,
for instance, in [29, 18] for adaptive designs with target allocation η ∈ (0, 1). For
RRU designs, the asymptotic properties of both types of statistics have been
studied in [13]. We compare statistical properties of tests based on RRU design
and tests based on the MRRU design.

In Section 5 we illustrate some simulations studies on the probability distri-
bution π and on the statistical properties of the tests introduced in Section 4.

Section 7 contains a final discussion and concludes the paper. To ease the
comprehension the most technical proofs are postponed in Appendix.

2. The modified randomly reinforced urn design

Consider a clinical trial with two competitive treatments, say R and W . In this
section we describe a response adaptive design, presented as an urn model, able



Statistical properties of a MRRU design 711

to target any fixed asymptotic allocation. This model called MRRU, introduced
in [4], is a modified version of the RRU design studied in [26]. In both the
cases the reinforcements are modeled as random variables following different
probability distributions. In the MRRU model we modify the reinforcement
scheme of the urn to asymptotically target an optimal allocation proportion.
The term target refers to the limit of the urn proportion process. Let us consider
two probability distributions µR and µW with support contained in [αR, βR] and
[αW , βW ] respectively, where 0 < αR ≤ βR < +∞ and 0 < αW ≤ βW < +∞.
Let (Un)n∈N be a sequence of independent uniform random variables on (0, 1).
We interpret µR and µW as the laws of the responses to treatment R and W ,

respectively. We assume that both the means mR =
∫ βR

αR
xµR(dx) and mW =

∫ βW

αW
xµW (dx) are strictly positive. Moreover,

Assumption 2.1. At least one of these two conditions is satisfied:

(a) there exists a closed interval [α0, β0] ⊂ [αW , βW ] such that, ∀ x ∈ [α0, β0],
the measure µW is absolutely continuous with respect the Lebesgue mea-

sure and the derivative is strictly positive, i.e. ∃ µW (dx)
dx > 0

(b) there exists a closed interval [α0, β0] ⊂ [αR, βR] such that, ∀ x ∈ [α0, β0], the
measure µR is absolutely continuous with respect the Lebesgue measure

and the derivative is strictly positive, i.e. ∃ µR(dx)
dx > 0

Consider an urn initially containing r0 balls of color R and w0 balls of color
W . Set

R0 = r0, W0 = w0, D0 = R0 +W0, Z0 =
R0

D0
.

At time n = 1, a ball is sampled from the urn; its color is X1 = 1[0,Z0](U1),
a random variable with Bernoulli(Z0) distribution. Let M1 and N1 be two in-
dependent random variables with distribution µR and µW , respectively; assume
thatX1,M1 andN1 are independent. Next, if the sampled ball is R, it is replaced
in the urn together with X1M1 balls of the same color if Z0 < η, where η ∈ (0, 1)
is a suitable parameter, otherwise the urn composition does not change; if the
sampled ball is W , it is replaced in the urn together with (1 −X1)N1 balls of
the same color if Z0 > δ, where δ < η ∈ (0, 1) is a suitable parameter, otherwise
the urn composition does not change. So we can update the urn composition in
the following way

R1 = R0 +X1M11[Z0<η],

W1 =W0 + (1 −X1)N11[Z0>δ],

D1 = R1 +W1, Z1 =
R1

D1
.

(2.1)

Now iterate this sampling scheme forever. Thus, at time n+1, given the sigma-
field Fn generated by X1, . . . , Xn,M1, . . . ,Mn and N1, . . . , Nn, let Xn+1 =
1[0,Zn](Un+1) be a Bernoulli(Zn) random variable and, independently of Fn

and Xn+1, assume that Mn+1 and Nn+1 are two independent random variables
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with distribution µR and µW , respectively. Set

Rn+1 = Rn +Xn+1Mn+11[Zn<η],

Wn+1 =Wn + (1−Xn+1)Nn+11[Zn>δ],

Dn+1 = Rn+1 +Wn+1,

Zn+1 =
Rn+1

Dn+1
.

(2.2)

We thus generate an infinite sequence X = (Xn, n = 1, 2, . . .) of Bernoulli
random variables, with Xn representing the color of the ball sampled from the
urn at time n, and a process (Z,D) = ((Zn, Dn), n = 0, 1, 2, . . .) with values in
[0, 1]×(0,∞), where Dn represents the total number of balls in the urn before it
is sampled for the (n+ 1)-th time, and Zn is the proportion of balls of color R;
we call X the process of colors generated by the urn while (Z,D) is the process
of its compositions. Let us observe that the process (Z,D) is a Markov sequence
with respect to the filtration Fn.

In [4] it was proved that the sequence of proportions Z = (Zn, n = 0, 1, 2, . . .)
of the urn process converges almost surely to the following limit

lim
n→∞

Zn =





η if mR > mW ,

δ if mR < mW .

Since the urn proportion Zn−1 represents the conditional probability of assign
the subject n to treatmentR, this result shows that the target allocation depends
on which is the superior treatment. The parameter δ will represent the desired
limit whenW is the superior treatment (mR < mW ), while η will be the desired
limit when R is the superior treatment (mR > mW ). The dichotomy among the
possible limits 0 − 1 in the RRU designs turns to the dichotomy among δ − η
in the MRRU design. The parameters δ and η can be arbitrarily fixed by the
experimenter, either to assign asymptotically a small proportion of subjects to
the inferior treatment or to balance the allocations. In [16] is studied a way to
set δ and η, in order to improve the statistical performances of tests based on
the trial.

In this paper we study the urn process under the hypothesismR > mW , since
the casemR < mW is specular. Let us notice that in this case P (Zn < δ, i.o.) = 0;
then, since we will deal with asymptotic results, from now on we can assume
without loss of generality δ = 0.

In this section we study some interesting features of the urn process. The first
result concerns the proportion of colors sampled from the urn. Here we prove
that it converges to the same limit of the urn proportion Zn.

Proposition 2.1. ∑n
i=1Xi

n

a.s.→ η (2.3)

Proof. Let us denote ξn = Zn−1−Xn

n for any n ≥ 1, with ξ0 = 0. Then, (ξn)n∈N

is a sequence of random variables adapted with respect to the filtration (Fn)n∈N
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such that
∞∑

i=1

E [ξi |Fi−1] =

∞∑

i=1

E

[
Zi−1 −Xi

i

∣∣∣Fi−1

]
= 0

∞∑

i=1

E

[
ξ2i

∣∣∣Fi−1

]
=

∞∑

i=1

E

[(
Zi−1 −Xi

i

)2 ∣∣∣Fi−1

]
≤

∞∑

i=1

1

i2
< ∞

Applying Lemma 7 of [1] we have that
∑
ξn <∞ almost surely.

Now, we have that

1

n

n∑

i=1

Zi−1 −Xi =
1

n

n∑

i=1

iξi
a.s→ 0,

by using Kronecker’s lemma, and so

η −
∑n

i=1Xi

n
= η −

∑n
i=1 Zi−1

n
+

∑n
i=1 Zi−1 −Xi

n

a.s.→ 0

where the first term goes to zero thanks to the Toeplitz Lemma, since Zn con-
verge to η almost surely.

The following proposition shows the rate of divergence of the total number
of balls in the urn. The sequence (Dn/n, n = 0, 1, 2, . . .) converges almost surely
to the mean of the inferior treatment.

Proposition 2.2.
Dn

n

a.s.→ mW (2.4)

Proof. Notice that
∑n

i=1 1−Xi

n

[
W0 +

∑n
i=1(1−Xi)Ni∑n

i=1 1−Xi
−mW

]
=

∑n
i=1(1−Xi)Ni

n
− mW

∑n
i=1 1−Xi

n
=

∑n
i=1 [(1−Xi)Ni − mW (1−Xi)]

n
=

∑n
i=1(1−Xi)(Ni −mW )

n

a.s.→ 0

where the almost sure convergence to zero of the last term can be proved with
the same arguments used to prove Proposition 2.1. This result implies that

W0 +
∑n

i=1(1 −Xi)Ni∑n
i=1 1−Xi

a.s.→ mW (2.5)

since from Proposition 2.1 we have that
∑n

i=1(1−Xi)

n

a.s.→ 1 − η. Then, we have
that

Wn

n
=

W0 +
∑n

i=1(1 −Xi)Ni∑n
i=1(1−Xi)

·
∑n

i=1(1 −Xi)

n

a.s.→ mW · (1− η)
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Since Zn
a.s.→ η, we get

Rn

n
=

Wn

n

Zn

1− Zn

a.s.→ µW (1 − η) · η

1− η
= mW · η

Globally we obtain

Dn

n
=

Rn

n
+

Wn

n

a.s.→ mW · η + mW · (1 − η) = mW

Remark 2.1. Notice that in a RRU model the sequenceDn/n converges almost
surely to the mean of the superior treatment. In fact, in a RRU model, when
mR > mW , we have that

lim
n→∞

Dn

n
= lim

n→∞

Rn

n
= lim

n→∞

R0 +
∑n

i=1XiMi∑n
i=1Xi

= mR (2.6)

on a set of probability one. The result (2.6) is proved following the same argu-
ments of (2.5).

Here, we show that the proportion of times the urn proportion Zn is under
the limit η converges almost surely to a quantity that depends only on the
reinforcements’ means mR and mW .

Proposition 2.3. ∑n
i=1 1{Zi<η}

n

a.s.→ mW

mR
(2.7)

To prove Proposition 2.3 we need the following lemma

Lemma 2.1. ∑n
i=1Xi+11{Zi<η}∑n

i=1 1{Zi<η}

a.s.→ η (2.8)

Proof. Notice that

∑n
i=1 1{Zi−1<η}

n

[∑n
i=1Xi1{Zi−1<η}∑n
i=1 1{Zi−1<η}

− η

]
=

∑n
i=1Xi1{Zi−1<η}

n
− η

∑n
i=1 1{Zi−1<η}

n
=

∑n
i=1

[
Xi1{Zi−1<η} − η1{Zi−1<η}

]

n
=

∑n
i=1[Xi1{Zi−1<η} − Zi−11{Zi−1<η}]

n
+

∑n
i=1[Zi−11{Zi−1<η} − η1{Zi−1<η}]

n

a.s.→ 0

where the almost surely convergence to zero of the last terms can be proved
with the same arguments used to prove Proposition 2.1. Moreover this result
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implies (2.8) due to the fact that
∑n

i=1 1{Zi<η}

n cannot be asymptotically closed
to zero. This fact can be proved by contradiction: suppose that

P

(
lim inf

n→∞

∑n
i=1 1{Zi<η}

n
= 0

)
> 0. (2.9)

We have that

lim inf
n→∞

∑n
i=1 1{Zi<η}

n
≥

lim inf
n→∞

1

βR

R0 +
∑n

i=1Xi+1Mi+11{Zi<η}∑n
i=1Xi+11{Zi<η}

·
∑n

i=1Xi+11{Zi<η}∑n
i=1 1{Zi<η}

·
∑n

i=1 1{Zi<η}

n
≥

lim inf
n→∞

1

βR

Rn

n
=

mW η

βR
> 0

on a set of probability one. This contradicts the assumption (2.9).

Remark 2.2. By following the same arguments used to prove Proposition 2.1
and Lemma 2.1 it can be proved also that

R0 +
∑n

i=1Xi+1Mi+11{Zi<η}∑n
i=1Xi+11{Zi<η}

a.s.→ mR (2.10)

Proof of the Proposition 2.3. Let us observe that on a set of probability one

0 = lim
n→∞

η − Zn = lim
n→∞

η − Rn/n

Rn/n+Wn/n
=

η − mR · η · limn→∞

∑n
i=1 1{Zi<η}

n

mR · η · limn→∞

∑
n
i=1 1{Zi<η}

n +mW · (1− η)

(2.11)

where the last equality is based on the result of Lemma 2.1. Finally, we note
that the equality (2.11) holds if and only if

∑n
i=1 1{Zi<η}

n

a.s.→ mW

mR

3. Asymptotic results

We want to study the asymptotic behavior of the quantity n · (η − Zn). To do
this, let us introduce a real stochastic process (Tn)n∈N, whose features depend
on the random variables ruling the urn process:

{
T0 = ηW0 − (1− η)R0

Tn+1 = Tn + η(1−Xn+1) Nn+1 − (1− η)Xi+1 Mi+1 1{Zn<η}
(3.1)
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∀n ∈ N. Let us note that

n · (η − Zn) =
n(η − Zn)Dn

Dn
=

ηWn − (1− η)Rn

Dn

n

=
Tn
Dn

n

(3.2)

where Tn = ηWn − (1− η)Rn satisfies the iterative equations in (3.1).
The process (Zn, Tn)n∈N is an homogeneous Markov sequence. Then, there

exists the transition probability kernel K for the process Tn such that for any
(z0, t0) ∈ (0, η]× [0,∞) ∪ (η, 1)× (−∞, 0) and for any A ⊂ R

P (Tn+1 ∈ A | (Zn, Tn) = (z0, t0)) =

∫

A

Kz0(t0, dt)

The analytic form of the transition probability kernel is the following

Kz0(t0, dt) = z0 µR

(
d

(
t0 − t

1− η

))
1{z0<η ∧ t<t0} +

z0 δt0(t) 1{z0>η} + (1− z0) µW

(
d

(
t− t0
η

))
1{t>t0}

(3.3)

If the probability measures µR and µW are absolutely continuous with respect
to the Lebesgue measure, we can write as well

• µR(d(
t0−t
1−η )) = fR(

t0−t
1−η )

1
1−η dt

• µW (d( t−t0
η )) = fW ( t−t0

η ) 1
η dt

where fR(·) and fW (·) are the Radon Nikodym derivatives of the measures µR

and µW with respect to the Lebesge measure.
Since the marginal process Tn needs to be coupled with the process Zn to

obtain a Markov bivariate process (Tn, Zn), the application of many results on
Markov processes in the case of continuous state space it’s not straightforward.
Then, we define a new auxiliary process T̃n strictly related to Tn, in this way:

{
T̃0 = ηW0 − (1− η)R0

T̃n+1 = T̃n + η(1 − X̃n+1) Nn+1 − (1− η)X̃n+1 Mn+1 1{T̃n>0}

(3.4)

∀n ∈ N, where (X̃n)n∈N are i.i.d. Bernoulli random variables of parameter η
independent of the sequences (Mn)n∈N and (Nn)n∈N. It’s easy to see that T̃n is
a Markov process. In fact, the transition kernel Kη of T̃n is independent of the
quantity z0

Kη(t0, dt) = η µR

(
d

(
t0 − t

1− η

))
1{t0>0 ∧ t<t0} + η δt0(t) 1{t0<0} +

(1− η) µW

(
d

(
t− t0
η

))
1{t>t0}

(3.5)

Using Assumption 2.1 we can prove (see Appendix) that the Markov process
T̃n is an aperiodic recurrent Harris chain. So, the following holds:
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Proposition 3.1. Let call π the stationary distribution of the recurrent aperi-

odic Harris Chain T̃ = (T̃n)n∈N. Then, for every t0 ∈ R, we have that

lim
n→∞

sup
C∈B(R)

|P (T̃n ∈ C | T̃0 = t0) − π(A)| = 0 (3.6)

Proof. The Markov process T̃n is a recurrent aperiodic Harris Chain (see Appen-
dix). This result implies that there exists a unique invariant distribution prob-
ability π and (3.6) holds for any t0 such that

P (τA <∞ | T̃0 = t0) = 1 (3.7)

The thesis is proved since (3.7) holds for any t0 ∈ R (see Appendix).

Now, we can state the main result

Theorem 3.1. For any initial composition (r0, w0) ∈ (0,∞)× (0,∞), we have

that

n · (η − Zn)
L→ ψ

mW
(3.8)

where ψ is a real random variable with probability distribution π.

Proof. Using equation (3.2), Proposition 2.2 and Slutsky’s theorem we have

that it’s sufficient to prove that Tn
L→ ψ, where ψ is a real random variable with

probability distribution π. Notice that for any interval C ⊂ R

|P (Tn ∈ C|T0 = t0)− π(C)| ≤
|P (Tn ∈ C|T0 = t0)− P (T̃n ∈ C|T̃0 = t0)|+ |P (T̃n ∈ C|T̃0 = t0)− π(C)|

From the Proposition 3.1 we have that the second term converges to zero as
long as n goes to infinity. Then, to prove the thesis we have to study the first
term.

Let us take α, β ∈ R
+ such that α0 < α < β < β0; then, let us introduce the

set

B = [(β − α+ α0)η, β0η] ⊂ R

and the probability measure

ρ(C) =
1

(β0 − β + α− α0)η

∫

C

dt

defined for every set C ⊂ B. Then, it is easy to see that there exists a sequence
of positive numbers (ǫzn)n∈N such that, if t0 ∈ A, then Kzn(t0, C) ≥ ǫznρ(C)
∀n ∈ N. By following the same procedure adopted in the proof of Proposi-
tion A.1, a possible choice for the terms of the sequence is

ǫzn = (β0 − β + α− α0)η(1− zn) min
x∈(α0,β0)

[
µW (dx)

dx

]
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Since the sequence Zn is strictly less than one and converges to η almost surely,
we have that ǫ := infn∈N{ǫzn} > 0. Besides, it is trivial to see that Kη(t0, C) ≥
ǫρ(C), because P (

⋃∞
n=1{Zn > η}) = 1.

Let us now introduce two sequences of i.i.d. Bernoulli variables (ξi)i and (ξ̃i)i,
both of them with parameter ǫ. Let us define two random variables which count
the number of times the processes Tn and T̃n are in the set A

νn :=

n∑

i=1

1{Ti∈A} and ν̃n :=

n∑

i=1

1{T̃i∈A}

Then, let us construct two sequences of stopping times
{
τ0 = 0
τi := inf{n > τi−1 : {Tn ∈ A}⋂{ξνn = 1}}, i ≥ 1

{
τ̃0 = 0

τ̃i := inf{n > τ̃i−1 : {T̃n ∈ A}⋂{ξ̃ν̃n = 1}}, i ≥ 1

Naturally, the times (τ̃i)i∈N are all almost surely finite because the process T̃n
is a recurrent Harris chain. It is easy to show that also the times (τi)i∈N are
almost surely finite. The procedure to prove the recurrence of the process Tn
it’s analogous to the one used for the process T̃n.

Let us imagine that when the process (either Tn or T̃n) is in the set A, we flip
a Bernoulli with parameter ǫ: if it comes up one, the process evolves by using
the probability law ρ(dt); otherwise, if it comes up zero, the process moves

according to the modified transition kernel
Kη(t0,dt)−ǫρ(dt)

1−ǫ . The sequences ξn

and ξ̃n represent the outcomes of the Bernoulli trials when the process is in A.
Let us denote as λτi and λ̃τ̃i the probability measures of the random variables
Tτi and T̃τ̃i respectively, when both the processes start from the same initial
point t0 ∈ R. Hence, we have that

∫

A

λτi(dt)Kzτi
(t, C) =

∫

A

λτi(dt)ρ(C) = ρ(C) =

∫

A

λ̃τ̃i(dt)ρ(C) =

∫

A

λ̃τ̃i(dt)Kη(t, C)

for any C ∈ B(R).
By comparing the transition kernels of the processes Tn and T̃n we have that

|Kzn(t0, dt)−Kη(t0, dt)| = |(zn − η) µR

(
d

(
t0 − t

1− η

))
1{t0>0 ∧ t<t0} +

(zn − η) δt0(t) 1{t0<0} − (zn − η) µW

(
d

(
t− t0
η

))
1{t>t0}| ≤

ωnη µR

(
d

(
t0 − t

1− η

))
1{t0>0 ∧ t<t0} + ωnη δt0(t) 1{t0<0} +

ωn(1− η) µW

(
d

(
t− t0
η

))
1{t>t0} = ωnKη(t0, dt)
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for any ωn ≥ |zn−η|
min{η;1−η} . Therefore, since Zn converge to η a.s., there exists a

sequence (ωn)n∈N, going to zero as n goes to infinity, such that for any t0 ∈ R

|Kzn(t0, dt)−Kη(t0, dt)| ≤ ωnKη(t0, dt) (3.9)

For any integer k, n, n0 ∈ N, any t0, s0 ∈ R and any set C ∈ B(R), we have

(i) P (Tτn+k ∈ C | T0 = t0) =

∫

A

λτn(ds0) · P (Tτn+k ∈ C | Tτn = s0) =

∫

A

∫

Rk−1

∫

C


λτn(ds0)

k∏

j=1

Kzτn+j−1(sj−1, dsj)


 =

∫

Rk−1

∫

C


ρ(ds1)

k∏

j=2

Kzτn+j−1(sj−1, dsj)




and

(ii) P (T̃τ̃n0+k ∈ C | T̃0 = t0) =

∫

A

λ̃τ̃n0
(ds0) · P (T̃τ̃n0+k ∈ C | T̃τn0

= s0) =

∫

A

∫

Rk−1

∫

C


λ̃τ̃n0

(ds0)
k∏

j=1

Kη(sj−1, dsj)


 =

∫

Rk−1

∫

C


ρ(ds1)

k∏

j=2

Kη(sj−1, dsj)




Now, let us define the quantities S and Q as follows

S :=

∫

Rk−1

∫

C


ρ(ds1)

k∏

j=2

(1 + ωτn+j−1)Kη(sj−1, dsj)


 +

−
∫

Rk−1

∫

C


ρ(ds1)

k∏

j=2

Kη(sj−1, dsj)




Q :=

∫

Rk−1

∫

C


ρ(ds1)

k∏

j=2

Kη(sj−1, dsj)


 +

−
∫

Rk−1

∫

C


ρ(ds1)

k∏

j=2

(1 + ωτn+j−1)Kη(sj−1, dsj)
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By using (i), (ii) and (3.9), we obtain

|P (Tτn+k ∈ C | T0 = t0) − P (T̃τ̃n0+k ∈ C | T̃0 = t0)| ≤ max {S; Q} ≤
k∑

j=2

(
k−1
j−1

) [
max

i∈{1,2,...,k−1}
(ωτn+i)

]j−1 ∫

Rk−1

∫

C


ρ(dt1)

k∏

j=2

Kη(sj−1, dsj)


 ≤

(
2k−1 − 1

)
max

i∈{1,2,...,k−1}
(ωτn+i)

Therefore, we can prove that, for every k, n0 ∈ N,

lim
n→∞

sup
C∈B(R)

|P (Tτn+k ∈ C | T0 = t0) − P (T̃τ̃n0+k ∈ C | T̃0 = t0)| = 0

Let define the stopping time

τ∗n := sup {τi ≤ n, i ∈ N}

We have

lim
n→∞

sup
C∈B(R)

|P (Tn ∈ C | T0 = t0) − P (T̃n ∈ C | T̃0 = t0)| ≤

lim
n→∞

sup
C∈B(R)

|P (Tτ∗
n+(n−τ∗

n)
∈ C | T0 = t0) − P (T̃τ̃m+(n−τ∗

n)
∈ C | T̃0 = t0)| +

lim
n→∞

sup
C∈B(R)

|P (T̃τ̃m+(n−τ∗
n)

∈ C | T̃0 = t0) − P (T̃n ∈ C | T̃0 = t0)| = 0

where the second term converges to zero if we let m = mn goes to infinity as n
increase, since P (T̃n ∈ C|T̃0 = t0) is a Cauchy sequence.

4. Testing hypothesis

In this section we focus on the inferential properties of the MRRU design. Let
us introduce the classical hypothesis test aiming at comparing the means of two
distributions µR, µW :

H0 : mR −mW = 0 vs H1 : mR −mW > 0. (4.1)

We approach to the statistical problem (4.1) considering first a no-adaptive
design, and then the MRRUmodel. Let (Mn)n∈N and (Nn)n∈N be i.i.d. sequences
of random variables with distribution µR and µW , respectively. For a fixed design
with sample sizes nR and nW , the usual test statistics is

ζ0 =
MnR

−NnW√
s2
R

nR
+

s2
W

nW

(4.2)

where MnR
and NnW

are the sample means and s2R and s2W are consistent
estimators of the variances. When the no-adaptive design allows both the sample
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sizes nR and nW go to infinity, by the central limit theorem we have that, under
the null hypothesis, ζ0 converges in distribution to a standard normal variable.
Then, fixing a significance level α ∈ (0, 1), we define

Rα = {ζ0 > zα} (4.3)

as the critical region of asymptotic level α, where zα is the α-percentage point
of the standard Gaussian distribution. Now, let us assume that the rate of
divergence of the sample sizes is such that nR

nR+nW
→ η, for some η ∈ (0, 1).

Then, the power of the test defined in (4.3) can be approximated, for large nR

and nW , as

P


Z +

√
n
mR −mW√

σ2
R

η +
σ2
W

1−η

> zα


 , (4.4)

where Z is a Gaussian standard random variable.
Now, let us consider an adaptive design described in term of an urn model.

Let us denote NR(n) and NW (n) as the sample sizes after the firsts n draws,
M(n) and N(n) the corresponding sample means and s2R(n) and s2W (n) the
adaptive consistent estimators. Plugging in (4.2) the corresponding adaptive
quantities, we obtain the statistics

ζ0(n) =
M(n)−N(n)√
s2R(n)

NR(n) +
s2W (n)

NW (n)

(4.5)

Using Proposition 3.1 of [4] and Slutsky’s Theorem, it can be proved that for
the MRRU model, when mR = mW , the statistics ζ0(n) converges to a standard
normal variable. Hence, the critical region (4.3) still defines a test of asymptotic
level α. Moreover, calling η the limit of the urn proportion Zn under the alter-
native hypothesis, the power of the test defined in (4.3) can be approximated,
for large n, as (4.4).

Remark 4.1. The behavior of the statistics ζ0 defined in (4.5) in the case of
RRU model was studied in [13]. In that paper, the asymptotic normality of ζ0(n)
under the null hypothesis was proved; then (4.3) defines a test of asymptotic
level α also in the RRU case. However, under the alternative hypothesis ζ0(n)
converges to a mixture of Gaussian distributions, where the mixing variable ϕ2

is a strictly positive random variable such that

NW (n)

nmW /mR

a.s.→ ϕ2 (4.6)

Therefore, it follows that in the RRU case the power of the test defined in (4.3)
can be approximated, for large n, as

P

(
Z + n

mW
2mR ϕ

mR −mW

σW
> zα

)
, (4.7)

where Z is a Gaussian standard random variable independent of ϕ.
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Remark 4.2. Let us rewrite the power of the test defined in (4.3) as follows

P

(
Z +

√
n
mR −mW

σW

1√
γn

> zα

)
, (4.8)

with

γn :=

(
σR
σW

)2
1

1− NW (n)
n

+
1

NW (n)
n

.

Let us notice that, γn represents the part in (4.8) that depends on the particular
adaptive design rules the trial. When the RRU design is used, the (4.6) allows
us to approximate the quantity γn as

(
σR
σW

)2
1

1− ϕ2+o(1)

n
1−

mW
mR

+
n
1−

mW
mR

ϕ2 + o(1)

that diverges as n goes to infinity. In the same way, when the MRRU design is
applied, we can approximate γn as

(
σR
σW

)2
1

η + o(1)
+

1

1− η + o(1)

that converges to a constant. Therefore, when both MRRU and RRU designs
are applied with the same sample size n, and n is large enough, the power of
the test (4.3) using MRRU design is greater then the one obtained using RRU
design.

A different test statistics based on the urn proportion of a RRU model has

been investigated in [14, 15]. Let us denote as c
(0,1)
α the α-percentage point of

the distribution of the limiting proportion Z∞ under the null hypothesis in a
RRU model. Then, the critical region

{Zn > c(0,1)α } (4.9)

defines a test asymptotically of level α. As explained in [15], the power of this
test can be approximated, for large n, as

P

(
ϕ2 < (1− c(0,1)α )

mR

mW
n
1−

mW
mR

)
(4.10)

where ϕ2 is the random quantity defined in (4.6).
Now, we consider the statistics Zn as the urn proportion of a MRRU model,

with parameters δ and η. Let us denote as c
(δ,η)
α the α-percentage point of the

distribution of the limiting proportion Z∞ when the mean responses are equal.
Then, the critical region

{Zn > c(δ,η)α } (4.11)

defines a test of asymptotic level α. Under the alternative hypothesis, the asymp-
totic behavior of the proportion Zn is shown in Theorem 3.1. The power of the
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Fig 1. Histograms of ψ obtained simulating the empirical distribution of n(η − Zn)mW for
large n, with superimposed the density of ψ obtained by numerically solving the discrete
version of (5.1). Left panel: n = 102. Right panel: n = 104.

test {Zn > c
(δ,η)
α } can be approximated, for large n, as

P
(
ψ < (η − c(δ,η)α )mWn

)
(4.12)

where ψ is the random quantity defined in Theorem 3.1.

5. Simulation study

This section is devoted to present the simulation studies aimed at exploring the
asymptotic behavior of the urn proportion Zn. In this section, all the urns are
simulated with the following parameters: δ = 0.2 and η = 0.8. Further studies
based on changing the values of δ or η can be of great interest, but this is not
the main purpose of the paper.

First, we focus on supporting the convergence result proved in Theorem 3.1.
The reinforcement distributions µR and µW are chosen to be Gaussian, with
means set to mR = 10 and mW = 5 respectively. The variances are assumed to
be equal and fixed at σ2

R = σ2
W = 1. Theorem 3.1 shows that, when mR > mW ,

the quantity n(η − Zn)mW converges in distribution to a random variable ψ,
whose probability law is π. Through some simulations, we compute the empirical
distribution of n(η − Zn)mW for n = 102 and n = 104. The corresponding
histograms are presented in Figure 1.

In proposition 3.1 it was proved that the probability measure π is the unique
invariant distribution of the process (T̃n)n∈N. This means that π is the unique
solution of the functional equation

∫

R

Kη(x, dy)π(dx) = π(dy) (5.1)
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where Kη is the transition kernel of the process T̃n defined in (3.5). Taking
the discrete version of (5.1) we compute the density of the measure π, which is
superimposed on both the histograms in Figure 1. The quite perfect agreement
between the empirical distribution of n(η−Zn)mW and the discrete estimation
of π gave to the authors the impetus to prove the convergence result described
in Theorem 3.1.

Then the simulation study encouraged the authors to prove some further
theoretical results. The first we present is related to an easy expression of a
quantile of the probability law of ψ. In general, the asymptotic distribution
of the quantity n(η − Zn) depends on the value η and on the reinforcements
distributions µR and µW . Nevertheless, the following proposition state that 0 is
always the mW

mR
-percentage point of the distribution π, regardless η or the types

of distributions involved.

Proposition 5.1.

P (ψ > 0) =
mW

mR
(5.2)

Proof. Since P (Zn < η) = P (Tn > 0) we know that P (Zn < η) is a convergent
sequence. In particular

lim
n→∞

P (Zn < η) = P (ψ > 0) = π([0,∞))

Therefore, by using the dominated convergence theorem, the Toeplitz Lemma
and Proposition 2.3, we obtain

P (ψ > 0) = lim
n→∞

P (Zn < η) = lim
n→∞

∑n
i=1 P (Zi < η)

n
=

lim
n→∞

∑n
i=1 E[1{Zi<η}]

n
= E

[
lim
n→∞

∑n
i=1 1{Zi<η}

n

]
= E

[
mW

mR

]
=

mW

mR

Another interesting result, that came out from the simulation analysis, con-
cerns the correspondence between the asymptotic distribution of Zn and a linear
transformation of the reinforcement laws. This property is explained in the fol-
lowing proposition

Proposition 5.2. Let Zn and Ẑn be the urn proportions of two MRRU models

with reinforcements distributions (µR, µW ) and (µ̂R, µ̂W ) respectively. Assume

that there exists c > 0 such that, for any a, b ∈ R with a < b
{
µ̂R( (a, b) ) = µR( (ca, cb) )
µ̂W ( (a, b) ) = µW ( (ca, cb) )

(5.3)

i.e. M̂n
L
= c ·Mn and N̂n

L
= c ·Nn for any n ∈ N.

Then, for any a, b ∈ R with a < b, we have

π̂( (a, b) ) = π( (c · a, c · b) ) (5.4)

i.e. ψ̂
L
= c · ψ.
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Proof. Let us call the initial compositions of the two urn processes as (r0, w0)
and (r̂0, ŵ0). The proof will be based on the particular choice r̂0 = c · r0 and
ŵ0 = c · w0. However, since from Proposition 3.1 the invariant distribution π is
independent of the initial composition, the generality of the result still holds.

For any n ≥ 1, by conditioning to the event {(T̂n, Ẑn) = (c ·Tn, Zn)}, we have
that

T̂n+1 = T̂n + η(1 − X̂n+1)N̂n+1 − (1− η)X̂n+11{T̂n>0}M̂n+1 =

= c · Tn + η(1 − X̂n+1)N̂n+1 − (1− η)X̂n+11{Tn>0}M̂n+1
L
=

L
= c · Tn + η(1 −Xn)c ·Nn+1 − (1 − η)Xn+11{Tn>0}c ·Mn+1 = c · Tn+1

(5.5)

Ẑn+1 =
R̂n+1

R̂n+1 + Ŵn+1

=

=
R̂n + X̂n+1M̂n+1

R̂n + Ŵn + X̂n+1M̂n+1 + (1− X̂n+1)N̂n+1

=

=
c ·Rn + X̂n+1M̂n+1

c ·Rn + c ·Wn + X̂n+1M̂n+1 + (1 − X̂n+1)N̂n+1

L
=

L
=

Rn +Xn+1c ·Mn+1

Rn +Wn +Xn+1c ·Mn+1 + (1−Xn+1)c ·Nn+1
= Zn+1

(5.6)

For ease of notation, let us denote λ(Tn,Zn) and λ(T̂n,Ẑn)
as the bivariate laws

of the couple of random variables (Tn, Zn) and (T̂n, Ẑn) respectively. Then, let
us notice that the equivalence of the initial compositions of the two processes
Zn and Ẑn implies that the event {(T̂0, Ẑ0) = (c · T0, Z0)} has probability one.
Hence, for any n ≥ 1, we have

λ(T̂n,Ẑn)
=

∫

Rn−1×(0,1)n−1

n∏

j=1

λ(T̂j ,Ẑj)|(T̂j−1,Ẑj−1)
=

=

∫

Rn−1×(0,1)n−1

n∏

j=1

λ(cTj ,Zj)|(cTj−1,Zj−1) =

= λ(cTn,Zn))

The thesis is proved since the equivalence λ(T̂n,Ẑn)
= λ(c·Tn,Zn) implies that

π̂ = π.

The assumption (5.3) implies also that m̂R = c · mR and m̂W = c · mW .
Then, from Theorem 3.1 we deduce the equivalence between the asymptotic
laws of Zn and Ẑn. Propositions 5.1 and 5.2 suggest that urn processes with
the same reinforcement means ratio present a similar asymptotic behavior. For
this reason, we prefer to use the ratio mR

mW
as parameter measuring the means’

distance, instead of the usual mean difference mR −mW .
Finally we present some simulations concerning the hypothesis test (4.1).

In particular, we focus on comparing the power of the tests defined in (4.9)
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Fig 2. The empirical power functions of test (4.9) (line with crosses) and of test (4.11) (line
with triangles).

and (4.11). The empirical power is computed using n = 104 subject, in corre-
spondence of different values of the ratio mR

mW
. The empirical power functions are

reported in Figure 2. As shown in Figure 2, the MRRU design constructs a test
more powerful then the one based on the RRU design with the same sample size,
for any choice of the reinforcement means. Although this property makes the
MRRU design very attractive, the RRU model has the advantage that, with the
same sample size, it allocates less subject to the inferior treatment. Hence, what
is really interesting is studing the power functions of the tests (4.9) and (4.11),
in correspondence of a different values of NW , i.e. the number of subjects as-
signed to the inferior treatment. We compute the empirical power functions for
NW = 20, 50, 100, 500 and we report the graphics in Figure 3.

By inspection of Figure 3 we can conclude that for high values of mR

mW
the

power of the tests (4.9) and (4.11) are very similar. When the ratio mR

mW
is small

the power of the test based on MRRU design seems to be considerable greater,
for any value of NW .

6. A case study

In this section we show a case study that aims at comparing two different treat-
ments. In particular, we conduct the analysis following both the subjects al-
location strategy of a RRU model and of a MRRU model. Our data consist
in treatment times of patients affected by ST-Elevation Myocardial Infarction.
The main rescue procedure for these patients is the Primary Angioplasty. It is
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Fig 3. The empirical power functions of test (4.9) (line with crosses) and of test (4.11) (line
with triangles). Top left panel: NW = 20. Top right panel: NW = 50. Bottom left panel:
NW = 100. Bottom right panel: NW = 20.

well known that to improve the outcome of patients and reduce the in-hospital
mortality the time between the arrival at ER (called Door) and the time of inter-
vention (called Baloon) must be reduced as much as possible. So our treatment’s
response is represented by the Door to Baloon time (DB). We distinguish two
treatments: the patients managed by the 118 (toll-free number for emergency
in Italy) and the self presented ones. We design our experiment to allocate the
majority of patients to treatment performing better, and simultaneously collect
evidence in comparing the means of DB time distributions.

The dataset gathers data concerning 1179 patients. Among them, 657 sub-
jects have been managed by 118, while the others 522 subjects reached the hos-
pital by themselves. We identify the treatment W with the choice of calling 118
and the treatment R with choice of going to the hospital by themselves. Treat-
ment responses are represented by DB times (in minutes). Since the lower are the
responses (DB time) the better is the treatment, without loss of generality we
transform the responses through a monotonic decreasing function. The means of
treatments R andW have been estimated using all data, obtaining:mR = 1.503,
mW = 1.996. The true difference of the means ∆ = mR −mW = −0.493 is neg-
ative, so W is the best treatment in this case.

We consider the following one-sided hypothesis test

H0 : mR −mW = 0 vs H1 : mR −mW < 0. (6.1)

The statistics ζ0, defined in (4.2), has been used to construct the critical re-
gion (6.1): Rα = {ζ0 < −zα}, where zα is the 1 − α quantile of the stan-
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Fig 4. For sample size n ∈ {1, . . . , 75} we compute the empirical power functions of test (6.1)
constructed with RRU design (red dotted line) and MRRU design (blue solid line).

dard normal distribution (level α set to 0.05). For both urn designs (RRU and
MRRU), and for different values of sample size n, we realized 5000 simulation
runs of the urn procedure to compute the empirical power of the test. Each
replication uses a subset of responses selected by permutation from the whole
dataset. The results are depicted in Figure 4. Notice that the MRRU design
requires a smaller sample size to achieve any power than the RRU design.

7. Conclusions

In the present work, we have completed the study of asymptotic statistical prop-
erties of the MRRU design, a response adaptive design, expressed in term of a
randomly reinforced urn model, able to target asymptotically any prespecified
allocation. This urn design overcomes the difficulties faced by the RRU design
whose asymptotic allocation degenerates to the singular values 0 or 1. Never-
theless we are able to obtain also in this case the rate of convergence of the urn
proportion to its limit. So doing we can construct suitable asymptotic hypothe-
sis tests of treatment’s difference and make a comparison of the performance of
this design with the RRU one in term of statistical efficiency. There are a lot of
interesting open problems whose solution could help in the research on optimal
randomized adaptive designs; in particular, further studies based on changing
the values of the parameters δ and η can contribute to explore the possibilities
offered by the MRRU design. As ongoing work, we are currently studying the
asymptotic properties of the urn process when δ and η are defined as time-
dependent function of some unknown parameters modeling the reinforcements
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distributions, and their adaptive estimators are used to update the estimates of δ
and η adopted in the urn procedure. Although the formal study of the extension
of his MRRU model to a multi-treatment setting is outside the aim of this work,
the main results of this paper may be extended to the case of urn composed
by an arbitrary number of colors. When there is a unique superior treatment,
the asymptotic behavior of the dominant color may be studied by considering
a two-color urn design, whose reinforcement distribution of the inferior color is
modeled as a mixture of all the distributions of the inferior treatments. In this
case the extension is straightforward.

Appendix

In the following we assume, without loss of generality, that condition (a) of the
Assumption 2.1 is satisfied; the symmetric case (b) is straightforward.

Lemma A.1. For any t0 ∈ R, there exists t̄ > t0 such that

∀ t > t̄, ∀ ǫ > 0, P

(
∞⋃

k=1

{
T̃k ∈ [t, t+ ǫ]

}
| T̃0 = t0

)
> 0 (A.1)

Proof. Let us take α, β ∈ R
+ such that α0 < α < β < β0. At first, notice that

if t ∈ (t0 + αη, t0 + βη), then

P
(
T̃1 ∈ (t, t+ dt) | T̃0 = t0

)
= (1− η) µW

(
d

(
t− t0
η

))
> 0

since t−t0
η ∈ (α, β).

For the same reason, for any k ∈ N, we have that if t ∈ (t0 + kαη, t0 + kβη),
then

P
(
T̃k ∈ (t, t+ dt) | T̃0 = t0

)
≥ (1− η)k µW

(
d

(
t− t0
kη

))k

> 0

Let us introduce the sequence of sets (Ak)k such that

Ak =

{
(t0 + (k − 1)βη, t0 + kαη) if k < β

β−α ,

∅ otherwise.

for k ≥ 1. Then, for any n ∈ N, we have that if

t ∈ (t0, t0 + nβη) /

n⋃

k=1

Ak,

then

t ∈
n⋃

k=1

(t0 + kαη, t0 + kβη),
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and

P

(
n⋃

k=1

{T̃k ∈ (t, t+ dt)} | T̃0 = t0

)
≥ (1− η)n0 µW

(
d

(
t− t0
n0η

))n0

> 0,

where we choose

n0 =

[
t− t0
βη

]
+ 1

Therefore, a sufficient condition for P (
⋃∞

k=1{T̃k ∈ [t, t+ ǫ]}|T̃0 = t0) > 0 is

t ∈ (t0,∞) /

[ β
β+α

]⋃

k=1

(t0 + (k − 1)βη, t0 + kαη),

so the thesis holds for any t̄ ≥ t0 + [ β
β−α ]αη.

Proposition A.1. The Markov process T̃ = (T̃n)n∈N on the state space R is a

Harris Chain.

Proof. Let us start reminding that the Markov process T̃n on the state space R
is a Harris chain if there exist A,B ⊂ R, a constant ǫ > 0 and a probability
measure ρ with ρ(B) = 1, such that

(a) If τA := inf{n ≥ 0 : T̃n ∈ A}, then P (τA < ∞ | T̃0 = t0) > 0 for any
t0 ∈ R.

(b) If t0 ∈ A and C ⊂ B, then Kη(t0, C) ≥ ǫρ(C).

Let us prove the condition (a). Let A = [0, (β − α)η].

• First case: t0 ∈ [0, (β − α)η]

The condition (a) is trivial, since P (τA = 0 | T̃0 = t0 ∈ A) = 1.

• Second case: t0 > (β − α)η

We fix t̄ ≥ t0 + [ β
β−α ]αη and we define n̄ ∈ N, I ⊂ R as follows

n̄ =

[
t̄

(1− η)x0

]
+ 1,

I = [n̄(1− η)x0, n̄(1− η)x0 + (β − α)η] ,

where x0 ∈ [αR, βR] is chosen such that, for every ǫ > 0, µR([x0, x0 + ǫ]) > 0.
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Fixing t̃ ∈ I, we have from the previous lemma that for every ζ > 0

P

(
∞⋃

k=1

{
T̃k ∈ [t̃, t̃+ ζ]

}
| T̃0 = t0

)
> 0,

since t̃ ≥ n̄(1 − η)x0 ≥ t̄. Then, let fix ζ small enough, such that t̃+ ζ ∈ I. Let

ñ := inf

{
n ≥ 1 : P

(
n⋃

k=1

{
T̃k ∈ [t̃, t̃+ ζ]

}
| T̃0 = t0 > (β − α)η

)
> 0

}

We can write

P (τA <∞ | T̃0 = t0) ≥ P (T̃ñ+n̄ ∈ (0, (β − α)η) | T̃0 = t0) ≥

P (T̃ñ+n̄ ∈ (0, (β − α)η) | T̃ñ ∈ [t̃, t̃+ ζ]) · P (T̃ñ ∈ [t̃, t̃+ ζ] | T̃0 = t0)

We have already proved that the second term of this product is strictly positive,
so we focus on the first term. Let us call

t̃min := arg min
t∈[t̃,t̃+ζ]

P (T̃ñ+n̄ ∈ (0, (β − α)η) | T̃ñ = t)

we have

P (T̃ñ+n̄ ∈ (0, (β − α)η) | T̃ñ ∈ [t̃, t̃+ ζ]) ≥
P (T̃ñ+n̄ ∈ (0, (β − α)η) | T̃ñ = t̃min) ≥
n̄∏

s=1

Kη

(
t̃min − (s− 1)(1− η)x0,

[t̃min − s(1− η)x0; t̃min − s(1− η)x0 + dt]
)

=

(η · µR(dx0))
n̄ > 0

because t̃min − n̄(1− η)x0 ∈ (0, (β − α)η).

• Third case: t0 < 0

We fix t̄ ≥ max{t0 + [ β
β−α ]αη; 0} and then we follow the same strategy used

in the second case (t0 > (β − α)η).
Let us prove the condition (b) Let

B = [(β − α+ α0)η, β0η] ⊂ R

and the probability measure

ρ(C) =
1

(β0 − β + α− α0)η

∫

C

dt

for any set C ⊂ B. For every t0 ∈ A,

Kη(t0, C) ≥
∫

C

(1 − η) µW

(
d

(
t− t0
η

))
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≥ (1− η)

∫

C

min
(t0,t)∈A×B



µW

(
d
(

t−t0
η

))

dt


 dt

= (1− η)

∫

C

min
x∈(α0,β0)

[
µW (dx)

dx

]
dt

Now if we define

ǫ = (β0 − β + α− α0)η(1 − η) min
x∈(α0,β0)

[
µW (dx)

dx

]

we obtain

Kη(t0, C) ≥ ǫ · 1

(β0 − β + α− α0)η

∫

C

dt = ǫ · ρ(C)

In what follows, for any interval I ⊂ R, we will refer to (τIi )i as the sequence
of stopping times

{
τI0 = 0

τIi := inf
{
n > τIi−1 : T̃n ∈ I

}
, i ≥ 1

For ease of notation, we will denote τI as τI1 .

Proposition A.2. The Harris chain T̃ = (T̃n)n∈N on the state space R is

recurrent.

Proof. Let us remind that T̃n is recurrent if P (τA < ∞ | T̃0 ∈ A) = 1, for
any initial probability distribution λ̃0, where τ

A := inf{n ≥ 1 : T̃n ∈ A}. In
particular, we are able to prove a stronger property, that is P (τA < ∞ | T̃0 =
t0) = 1 for any t0 ∈ R, which implies the condition we need.

Let

• I be the closed interval defined as

I := [−(1− η)βR, 0],

• c be the constant defined as

c := min
t∈I

P
(
τA <∞ | T̃0 = t

)

c is strictly positive because, the process T̃n is an Harris chain and so
P (τA <∞ | T̃0 = t0) > 0 ∀t0 ∈ R,

• ñ be the integer defined as

ñ := inf

{
n ≥ 1 : min

x∈I
P

(
ñ⋃

k=1

{T̃k ∈ A} | T̃0 = x

)
≥ c

2

}
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Now, we focus on proving that the stopping times (τIi )i are almost surely finite:

P
(
τI = ∞ | T̃0 = t0

)
= 0 (A.2)

(a) First case: t0 ∈ (0,∞)

Looking at the transition kernels (3.3) and (3.5) of the processes Tn and T̃n
respectively, we note that for any t0 ∈ (0,∞), P (T̃1 ≤ T1 | T̃0 = T0 = t0) = 1.
This implies that

P (T̃1 > 0 | T̃0 = t0) ≤ P (T1 > 0 | T0 = t0) (A.3)

Then, we have that

P
(
τI = ∞ | T̃0 = t0

)
= P

(
τ (−∞,0) = ∞ | T̃0 = t0

)
=

P

(
∞⋂

n=1

{
T̃n > 0

}
| T̃0 = t0

)
≤ P

(
∞⋂

n=1

{Tn > 0} | T0 = t0

)
= 0

where the passage from T̃n to Tn is due to the relation (A.3) and the latest
probability is equal to zero because P (Tn < 0 i.o. | T0 = t0) = P (Zn > η
i.o. | T0 = t0) = 1 for any t0 ∈ R.

(b) Second case: t0 ∈ (−∞, 0]

Looking at the transition kernels (3.3) and (3.5) we have that for any t0 ∈
(−∞, 0],

P (T̃1 < 0 | T̃0 = t0) ≤ P (T1 < 0 | T0 = t0) (A.4)

and following the same arguments of the case (a) this leads to

P
(
τ (0,∞) = ∞ | T̃0 = t0

)
= 0 (A.5)

Hence, we have

P
(
τI = ∞ | T̃0 = t0

)
=

P
(
τI = ∞ | {τ (0,∞) <∞}

⋂
{T̃0 = t0}

)
=

P

(
∞⋂

n=1

{T̃n /∈ I} | {τ (0,∞) <∞}
⋂

{T̃0 = t0}
)

≤

P




∞⋂

n=τ (0,∞)+1

{T̃n /∈ I} | {τ (0,∞) <∞}
⋂

{T̃0 = t0}


 ≤

sup
x∈(0,∞)

P

(
∞⋂

n=1

{T̃n /∈ I} | T̃0 = x

)
=

sup
x∈(0,∞)

P
(
τI = ∞ | T̃0 = x

)
= 0
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since from the case (a) we have that ∀t0 > 0, P (τI = ∞ | T̃0 = t0) = 0.
Therefore, we conclude that P (

⋂∞
i=1 τ

I
i <∞ | T̃0 = t0) = 1, which means (τIi )i

is sequence of stopping times almost surely finite.

Then, let us define the sequence of stopping times

{
τ0 = 0

τi := inf
{
n > τi−1 + ñ : T̃n ∈ I

}
, i ≥ 1

Since
⋃∞

n=1 τn ⊂ ⋃∞
n=1 τ

I
n , the stopping times (τn, n = 0, 1, 2, . . .) are almost

surely finite.

Therefore, for any t0 ∈ R we have that

P
(

τA = ∞ | T̃0 = t0
)

= P

(

∞
⋂

n=1

{Tn /∈ A} | T̃0 = t0

)

≤

P





∞
⋂

i=0

τi+ñ
⋂

n=τi+1

{T̃n /∈ A} | T̃0 = t0



 =

∞
∏

i=1

P





τi+ñ
⋂

n=τi+1

{T̃n /∈ A} |

i−1
⋂

j=0

τj+ñ
⋂

n=τj+1

{T̃n /∈ A}



 =

∞
∏

i=1



1− P





τi+ñ
⋃

n=τi+1

{T̃n ∈ A} |

i−1
⋂

j=0

τj+ñ
⋂

n=τj+1

{T̃n /∈ A}







 =

∞
∏

i=1



1−

∫

I

P





τi+ñ
⋃

n=τi+1

{T̃n ∈ A} | T̃τi = x



P



T̃τi = dx |

i−1
⋂

j=0

τj+ñ
⋂

n=τj+1

{T̃n /∈ A}







 =

∞
∏

i=1



1−

∫

I

P

(

ñ
⋃

n=1

{T̃n ∈ A} | T̃0 = x

)

P



T̃τi = dx |

i−1
⋂

j=0

τj+ñ
⋂

n=τj+1

{T̃n /∈ A}







 ≤

∞
∏

i=1

[

1−min
x∈I

P

(

n̄
⋃

n=1

{T̃n ∈ A} | T̃0 = x

)]

≤

∞
∏

i=1

[

1−
c

2

]

= 0

and so the thesis is proved.

Proposition A.3. The recurrent Harris Chain T̃ = (T̃n)n∈N on the state space

R is aperiodic.

Proof. The recurrent Harris chain T̃n is aperiodic if there exists n0 ∈ N such
that P (T̃n ∈ A | T̃0 ∈ A) > 0, for any integer n ≥ n0 and for any distribution
law λ̃0 on T̃0.

Let define the stopping time τA
−

1 as follows

τA
−

:= inf
{
n > τ (−∞,0) : T̃n ∈ A

}
(A.6)
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This stopping time is almost surely finite. In fact, since P (τ (−∞,0) < ∞|T̃0 =
t0) = 1 for any t0 ∈ R, we have that

P
(
τA

−

<∞ | T̃0 ∈ A
)

= P
(
τA

−

<∞ | {τ (−∞,0) <∞}
⋂

{T̃0 ∈ A}
)

=

P

(
∞⋃

n=τ (−∞,0)

{T̃n ∈ A} | {τ (−∞,0) <∞}
⋂

{T̃0 ∈ A}
)

≥

min
x∈(−∞,0)

P

(
∞⋃

n=0

{T̃n ∈ A} | T̃0 = x

)
= min

x∈(−∞,0)
P
(
τA <∞ | T̃0 = x

)
= 1

Hence, there exists n0 ∈ N such that P (τA
−

= n0 | T̃0 ∈ A) > 0. We notice also
that

P
(
T̃n0 ∈ A | T̃0 ∈ A

)
≥ P

(
{T̃n0 ∈ A}

⋂
{τA−

= n0} | T̃0 ∈ A
)

=

P
(
T̃n0 ∈ A | {τA−

= n0}
⋂

{T̃0 ∈ A}
)

· P
(
τA

−

= n0 | T̃0 ∈ A
)

=

P
(
T̃τA− ∈ A | T̃0 ∈ A

)
· P

(
τA

−

= n0 | T̃0 ∈ A
)

=

P
(
τA

−

= n0 | T̃0 ∈ A
)
> 0

Then, for every n ≥ n0, we have

P
(
T̃n ∈ A | T̃0 ∈ A

)
≥ P

(
τA

−

= n | T̃0 ∈ A
)

≥

ηn−n0 · P
(
τA

−

= n0 | T̃0 ∈ A
)
> 0

and so the thesis is proved.
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