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Abstract

Davide MARNETTO

Investigating the Evolution of the Human Genome at Different
Scales

In this thesis, I will first introduce the reader to the framework of my research, briefly
reviewing players, modes and times through which the human genome has been
shaped, and tools to detect them, with a focus on gene regulation. Secondly, two
projects at the opposite ends of the temporal and spatial spectrum previously de-
scribed will be presented.

In the first we estimated the age of each region of the human genome by applying
maximum parsimony to genome-wide alignments with 100 vertebrates. We then
studied the age distribution of several types of functional regions, with a focus on
regulatory elements, in order to assess the role of genome expansion in the evolu-
tion of gene regulation. Many transcription factors have expanded their repertoire
of targets through waves of genomic expansions that can be traced to specific evolu-
tionary times. Repeated elements contributed a major part of such expansion, with
features which suggest that several binding sites were available as soon as the new
sequence entered the genome, rather than being created later by accumulation of
point mutations. By comparing the age of regulatory regions to the evolutionary
shift in expression of nearby genes we show that rewiring through genome expan-
sion played an important role in shaping human regulatory networks.

In the second working case we presented Haplostrips, a tool to visualize polymor-
phisms of a given region of the genome in the form of independently clustered and
sorted haplotypes. This tool can reveal hidden patterns of genetic variation without
losing the basic information encoded in variant sequences, and can be applied to
visualize complex effects of, among others: introgression, domestication, selection,
demographic events. We showed how Haplostrips helped in the investigation of the
LCT region, a quintessential example of adaptive selection in humans, and in the
discussion of regions likely subject to adaptive introgression from archaic hominins.

The study of molecular evolution at different scales in time and space involves the
use of different tools and approaches, which are not trivially transferable to study
the same functional features , as in the case of gene regulation analysis.
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Chapter 1

Introduction

In this thesis, I will first introduce the reader to the framework of my research, briefly
reviewing players, modes and times through which the human genome has been
shaped, and tools to detect them, with a focus on gene regulation. Secondly, two
projects at the opposite ends of the temporal and spatial spectrum previously de-
scribed will be presented.

Especially for people outside evolutionary biology, it is never too much to restate
that, as in a paper suggestively called "Non-Darwinian evolution" [1]:

"The stream of spontaneous alterations in DNA, continuously fed into
the genetic pool, should include far more acceptable changes that are
neutral than changes that are adaptive [...]: the genome becomes virtu-
ally saturated with such changes as are not thrown off through natural
selection."

Thus, this is a story about the relentless struggle between genetic drift and natural
selection, to shape our genome starting from the unceasing emergence of mutations
in individual organisms throughout life history.

1.1 Introduction to our focus organism: us.

Evolutionary biology is a basic science that studies the evolutionary processes that
produced the diversity of life on Earth, starting from a single common ancestor. As
a basic science, it has the enjoyable property of being free to study organisms other
than human, as its results are not expected to give an immediate application on
health and medicine. Nevertheless this thesis, and my research interests behind it, is
about Homo sapiens because it obeys to the extreme fascination of advancing towards
the solutions to our all-time unanswered questions: why are we human? where we
come from, why are we like this, at all scales?

We will start this story half a billion years ago (540-510 Million Years Ago; Mya),
when the first vertebrates originate in a period called "Cambrian Explosion" and
known for a swift rise in organism diversity [2] . These animals had a basic ver-
tebrate body plan: a notochord, rudimentary vertebrae, and a well-defined head
and tail, but lacked jaws in the common sense, resembling modern-days lampreys.
Indeed the first organism to part ways with us in the vertebrate phylogenetic tree
that we will consider in the following is the Petromyzon marinus, or lamprey. In the
first case study presented we will explore the story of our genome from here, fol-
lowing it as all other vertebrates split progressively from our ancestral species: first
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the fishes, the amphybians, reptiles and birds together, and later, zooming on mam-
mals, monotremes, marsupials, and so forth. Each one of these splits define a human
ancestor, which is shared with smaller and smaller groups of organisms, bit by bit
more similar to us. We have for example the Ur-Primate, which is the most recent
common ancestor of all primates, that in turn will evolve into a plethora of species,
defining several human ancestors: the Ur-Haplorrine, Ur-Simian, Ur-Catarrhine...
We reach in time another human ancestor: the Ur-Homininae. This is the ancestor
that we have in common with only three other living species (Gorilla, Bonobo, Chim-
panzee), probably originated in Africa sometime during the early-middle Miocene
and lived as a unique species until gorillas split, some 10-15 Mya [3]. This period
witnesses a rapid radiation sequence where the most recent common ancestor of
Chimpanzees and Humans is still in contact with the first Gorillini, still exchanging
genetic material, but is splitting in two already: the Pan tribe, that will later develop
into two species, and the future human species [3]. Through this process, sometime
around 6-8 Mya, we lost contact with our closest living relatives, Chimpanzees and
Bonobo; but the story to reach us, the anatomically modern humans, does not stop
yet.

The earliest fossils candidate to reside in the exclusively human lineage belong to
Sahelanthropus, Orrorin, Ardipithecus genera. The subsequent Australopithecus genus
evolved in eastern Africa around 4 Mya before spreading throughout the continent
and eventually becoming extinct 2 million years ago [4]. Another step towards the
anatomically modern humans is represented by the onset of the genus Homo some
2.8 Mya in nowadays Ethiopia [5]: Homo habilis, ergaster and erectus were the first
to use stone tools and to develop increased brain dimensions, likely following the
duplication of the SRGAP gene [6]. Homo erectus is also thought to be the first to leave
Africa and colonize the rest of the world as rests were found in western and eastern
Asia dating back to 1.8 Mya [7] and 780 thousand year ago (kya) [8] respectively.

With a jump to 200 thousand years ago in Eurasia we might encounter some spo-
radic group of archaic humans that look and behave very closely to modern ones.
They are not Homo erectus descendants, that probably disappeared everywhere with
the possible exception of Indonesia [9]. These sturdy archaic humans are the well
known Neanderthals, likely the result of a second migration out of Africa given that
their split time with anatomically modern humans is estimated to be around 600 kya
[10]. They are not alone, as individuals belonging to a sister group called Denisova
have been found in the Altai mountains. Meanwhile in Africa the last remaining
lineage of the Homo genus already started to move its first steps: the deepest dif-
ference among anatomically modern humans, from recent estimates, happened no
later than 260 kya [11]. Africa is therefore the cradle of our species but we find mod-
ern human samples in Siberia already 45 kya [12]. Is under discussion if all modern
day non-african populations are the result of a single emigration out of Africa, or
the result of multiple events [13, 14]. What is known is that certain modern hu-
man populations admixed with archaic groups of humans after expanding out of
Africa. In particular, non-African populations have 1-2% Neanderthal ancestry [10,
15], and Melanesians and East Asians have 3% and 0.2% ancestry, respectively, from
Denisovans [10, 16, 17]. Some of these contributions were adaptive [18, 19] though,
a larger proportion of introgressed genetic material was likely maladaptive to mod-
ern humans, and therefore selected against [20]. The simultaneous decline of the
archaic humans has been an enigma for long, though these and other data suggest
that they were instead integrated in our ancestry [21]. The subsequent peopling of
the whole world, first Europe, Asia and Oceania, then the Americas through Bering
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strait, concludes for now this story, as the unceasing migrations and admixtures of
our populations defines what we are now and what we will be in the next future.

1.2 Evolution at Different Spatial and Temporal Scales

1.2.1 “Chromosomal” Evolution: Gain and Loss of Genomic Regions

The largest spatial scale in terms molecular evolution of the genome, is represented
by chromosomal rearrangements. Such changes are usually caused by a breakage in
the DNA double helix at two distant locations, followed by a disordered rejoining
of the broken ends. This can produce the classical deletion, duplication, inversion or
translocation events, but also a relatively smaller scale events generically described
as segmental rearrangements [22]. Such events can either result in lethal or danger-
ous effects for the organism, chromosomal rearrangements are a hallmark of tumoral
cell lines [23], or turn out to be neutral and even advantageous, giving rise to a lin-
eage of organisms that incorporate these changes.

Another group of players in shaping the genome at this scale is represented by
the transposable elements (TEs), which are repeated and mobile DNA sequences,
with the ability to invade genomes: they generally represent a substantial fraction
of the genome, but vary depending on the species [24, 25]. Class I TEs, or retro-
transposons, use reverse transcriptase to copy an RNA genome into the host DNA,
they are divided into Long Terminal Repeat (LTR) and non-LTR elements; among
LTR-elements, the human endogenous retroviruses (HERVs) resemble retroviruses,
among the non-LTRs, some lost their mobile autonomy, becoming shorter. Class II
elements, or DNA transposons, use the DNA element itself as the template for trans-
position; see figure 1.1, extracted from Kazazian et al. [25] for a depiction of elements
that we can find in our genome.

Segmental duplications and TEs thus generate elements which are resembling to
each other and scattered around the genome, collectively named repeated elements.
They can give place to gene paralogs, gain other functionalities, remain neutral: in
any case they are recognisable as insertions when comparing genomes of species
affected or unaffected by one of these events; not infrequently they can as well get
deleted in time. Any genome is hence the result of unceasing insertions and dele-
tions, which define the genome size in a perpetual arms-race [26]: e.g. in Amniotes
the (often large) amount of DNA gained via lineage-specific transposition is essen-
tially balanced by the amount of DNA lost over the same time frame. Is then straight-
forward to segment the human genome in regions of different age, that means which
were inserted in different human ancestors and never deleted from our genome (see
Chapter 2). Some of these regions might even have been inserted after the split be-
tween Human and Chimpanzee (or gained before and deleted elsewhere than Hu-
man) emerging as Human-Specific genomic regions.

These changes, altering the genome on a wide scale, very often break apart some
cellular mechanism, disfavouring or killing the bearer, tending therefore to be pre-
served relatively seldom during evolution. The rate of chromosome rearrangement
along the vertebrate lineage has been estimated to be between 0.1 to 2.3 changes per
million years (My) [27] while, in terms of quantity, an analysis on Amniotes evaluate
the insertion of sequence from 0.1 to 11 Mb gained per My and genomic loss at a rate
of 2 to 13 Mb lost per My, mainly through large scale deletions (> 10kb) [26]. This
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does not necessarily mean that these changes do not happen as frequently as lower
order mutations, only that they are likely to be discarded at a higher rate.

Lastly, since mutations at this spatial scale have been historically studied compar-
ing genomes of different species, researchers relied on a single genome representing
each one of them, i.e. the reference genome, thus losing intra-species nuances. The
advent of whole genome intra-species variation studies already began to change
this, as these projects already catalogued these large scale events, defined Structural
Variants, in several human populations (see Section 1.3.2).

FIGURE 1.1: Classes of transposable elements. From Kazazian et al. [25].

1.2.2 Evolution at Single Positions

As we zoom in, reducing the spatial scope, we enter the realm of single nucleotide
mutations, which evolutionary speaking can be subdivided into substitutions or
polymorphisms.

Substitutions

A substitution is a point mutation that, after appearing in a population as novel
allele, reaches fixation replacing the original allele. On the other hand single nu-
cleotide polymorphism (SNP) refers to mutations which are variable within the pop-
ulation of interest. It goes without saying that the substitution is the smallest dif-
ference observable when comparing different species using a reference genome, as
there is no knowledge of the intra-species frequency of that mutation. Consequently
some of the substitutions identified by Comparative Genomics may instead be poly-
morphic within a species. Nonetheless, we can exclude that these account for the
majority of the cases, given that the chance of these variations of being incorporated
in the reference genome increases linearly with their frequency [28], and that the vast
majority of SNPs has low frequency. Furthermore, as the average time to fixation is
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often much smaller than the evolutionary distance between two species, the pres-
ence of heterospecific SNPs, or SNPs in common between two species, is negligible
[29]. The study of substitutions had countless implications, e.g. the popular theory
of the Molecular Clock: under the classical Wright-Fisher model the substitution rate
is dependent only on the mutation rate µ, so substitutions should happen regularly
in time, although recent experimental advances suggest that the substitution rate
and the mutation rate do not always trivially coincide [30].

Polymorphisms

If we focus on smaller evolutionary times, then, the fundamental process to look at
is how we go from the emergence of a mutation to its fixation within a species. How
two principal mechanisms, genetic drift and natural selection, have shaped genetic
variation during this process remains a pivotal question at the crossroads of Evolu-
tionary and Population Genomics. Given that the average time to fixation of neutral
alleles in a diploid population, conditional on the allele fixing, is approximately 4Ne
generations [31], if we assume human Ne = 10, 000, this scope translates for humans
into the last million of years, time-wise speaking. Nevertheless, in the presence of
selection, this process can be much faster, proportionally to the selection coefficient,
which in turn depends on how much an allele is beneficial, see figure 1.2 A extracted
from Otto et al. [32].

The main quantity studied at this end of the spectrum is the allele frequency (AF),
which can be compared across populations and time points, to infer distances be-
tween samples and strength of selection coefficients at single positions. AF repre-
sents the basis for a great deal of summary statistics as the Site Frequency Spectrum
(SFS; see Section 1.3.2), because is one of the quantities that are more affected by
natural selection. To have an intuitive idea of how selective regimes affect the fre-
quency spectrum, see figure 1.2 B extracted from Nielsen [33]. Unfortunately a very
well known problem in using SFS and other measures mentioned below, is that de-
mographic events like bottlenecks and rapid population expansions dramatically
influence them, making difficult to disentangle selection from demographic effects.

Recombination and Linkage Disequilibrium

Thus far we considered the study of evolution as based only on the evolutionary
mutations themselves, but within small time scales the appearance and rise in fre-
quency of a mutation is accompanied by unequivocal effects at nearby positions.
Indeed a mutation will be inherited together with its surroundings and recombina-
tion takes time to break them down, defining haplotypes, which are arrangements of
specific alleles occurring in the same chromosome within a given genetic segment.
The size of ancestral haplotypes around a mutation is inversely correlated to the
time, in generations to the common ancestor. The rationale is apparently simple:
small haplotypes indicate ancient mutations, even if some substantial difficulties are
encountered in deciphering past events [34, 35]. This phenomenon can be used to
infer very recent ancestry or pedigree relations, as in Fu et al [12] where the authors
used it to validate recent Neanderthal ancestry in a 40,000 years old modern human
sample.
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A B

FIGURE 1.2: (A) Mean time to fixation in a diploid population. From Otto et al. [32]. The
average time to fixation, conditioned on the fact that the allele does fix, is a decreasing function of |s|
where s is the selection coefficient. Alleles will also fix faster, on average, in populations of smaller
effective size. Note that the mean time in generations, to fix neutral alleles (s = 0) is 4Ne. (B)
Frequency spectrum under a selective sweep, negative selection, neutrality, and positive
selection. From Nielsen [33]. For the selective sweep, the frequency spectrum is calculated in a
window around the location of the adaptive mutation immediately after it has reached fixation in the
population. In all cases, a demographic model of a population of constant size with no population

subdivision is assumed.

The measurable quantity often used in exploring this phenomenon is the Linkage
Disequilibrium, which is simply the correlation between two nearby alleles: LD has
the property to decay geometrically with the relative distance of the two markers,
and the extent of this decay can be altered by demographic events and natural se-
lection, generating wide regions with many SNPs at high frequency showing highly
correlated allelic states. In fact, dips in genetic diversity along the genome have been
associated with the effects of both negative and positive selection, delivering the ba-
sis for many summary statistics for selection [33, 36]. It is noteworthy that as the LD
is a useful clue for detecting recent evolutionary events, it represents a great compli-
cation in functional studies as well: see Section 1.4.3 for a brief introduction to this
issue.

Genetic Flow and Admixture

A species is not a well defined group of individuals that suddenly, when speciation
occurs, split forming two independent phylogenetic branches [37]. It has instead
an internal structure composed by populations that can interbreed (hybridization),
exchange genetic material (genetic flow), fuse together introducing new genetic lin-
eages (admixture), incorporate each other alleles (introgression). It is only when
these process are impossible, due to physical separation or genetic divergence (of-
ten resulting in sterile offspring), that two populations can be considered separate
species [38]. These phenomena leave traces as well, resulting for example in local
phylogenetic trees that differ from the species phylogeny [39] or in stretches of alleles
that segregate at a frequency consistent with one population followed by sequences
more consistent with another one. This idea is exploited in many methods for an-
cestry inference, where we interpret each chromosome in an individual genome as
a mosaic of segments that originate from different ancestral populations [40]. On
the other hand, isolated segments deriving from one entity (population or species)
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found into the gene pool of a second, divergent entity, might be better described as
introgressions, as shown for archaic human introgressions in modern humans [10].

1.3 Tools to Investigate Evolution at Different Scales

1.3.1 Genome Wide Alignments

The most important and basic tool used in evolutionary biology and probably the
most accomplished in the whole bioinformatics field, is sequence alignment. Nowa-
days this is frequently declined in the form of Genome Wide alignment, as it allows
A) to perform scans on the whole genome to focus a posteriori on the most interesting
features and B) capture biological effects on the genome in their completeness.

One of the most popular publicly available alignments across vertebrate species is
the Multiz 100-way [41], also accessible through the UCSC genome browser. This
particular case is a multiple alignment, but also pairwise alignments between many
published reference genomes are publicly available in the form of NET alignments
[42] on the same Genome Browser.

The main use of genome wide alignments is the same of classical local alignments,
i.e. to identify regions of similarity that may be a consequence of functional, struc-
tural, and moreover evolutionary relationships between the sequences. In this way
we can compare the behaviour of orthologous regions and ultimately of the single
nucleotidic bases in different species, a task that allows to identify substitutions and
that poses the basis for comparative genomics. Accordingly, countless applications
focused on the regions that can be aligned, e.g. infer strength of natural selection on
different lineages [43], mutation rates [44], to compute conservation scores [45], to
identify ultra-conserved sequences of putative biological significance [46, 47].

It is also possible to focus on those region that cannot be aligned between species.
This is what we did in our first case study [48], where we used gaps in multiz 100
way alignment to develop a segmentation of the human genome based on sequence
age. Each region can be present or absent in each of the extant aligned species and
one can use, let us say, a parsimony algorithm to infer present/absent/unknown
state in each ancestral node, thus defining a likely time of birth for any window
of the genome considered. We used this method to analyse the traces of sequence
expansion in the human genome since the common ancestor of all Vertebrates, at-
tempting to reconstruct its role in rewiring regulatory networks. If we are interested
in species-specific regions we can simply consider those regions that are gaps in all
the other aligned species, ignoring any deeper stratification, as we did in Marnetto et
al. [49].

Lastly, alignments can be coupled with functional annotation, to compare elements
with same function, e.g. genes, as is done in phylostratigraphy [50], where align-
ments of genes across species and within the same genome are used to describe
gene phylogeny and age.



8 Chapter 1. Introduction

1.3.2 Variation Studies

As we can align genome of different species to identify orthologous regions, we
can trivially do so among individuals of the same species, using the same refer-
ence genome as scaffold. In this case the small differences encountered identify
intra-species polymorphic traits, which can be small scale, SNPs and short inser-
tions/deletions (indels), or large-scale, i. e. structural variants (SV).

These variation studies gained popularity as the cost of whole genome sequencing
decreased and represent nowadays a milestone in the whole biology field. It is worth
remembering that before sequencing, other techniques as SNP genotyping arrays
[51] allowed variations studies of remarkable proportions, like the HapMap project
[52]. The gold standard in human variation studies is currently represented by the
1000 Genomes project [53] which reconstructed the genomes of 2,504 individuals
from 26 populations using a combination of low-coverage whole-genome sequenc-
ing, deep exome sequencing, and dense microarray genotyping, discovering in total
84.7 million SNPs, 3.6 million indels and 60,000 SVs. Lastly, as these projects now
focus on rare mutations [54] and previously excluded populations in humans [13,
14], variations analyses are being applied other organisms like the Great Apes [28]

Methods in Population Genetics

Determining the contributions of natural selection in the evolution of a population is
one of the central questions in human evolutionary biology since way before the ac-
cess to these data. As result a vast body of theoretical literature available for over 50
years [1, 56, 57] is now applied on empirical data under the form of diverse summary
statistics that exploit haplotype or frequency information. For example, haplotype-
based statistics such as iHS (integrated haplotype score [58]), EHH (extended hap-
lotype homozygosity [59]), XP − EHH (cross- population extended haplotype ho-
mozygosity [60]), and the nSL statistic (number of segregating sites by length; [61])
(see Table 1, extracted from [55]) are based on the observation that haplotype ho-
mozygosity should be greater around a positively selected locus than in a neutrally
evolving locus. In parallel, statistics depending on allele frequencies such as the SFS
(site frequency spectrum; [33, 62]), FST (fixation index [63]), and PBS (population
branch statistic; [64]) (Table 2, extracted from [55]) can be applied to one, two, and
three populations respectively to identify regions under positive selection. Note-
worthy higher level summary statistics based on the SFS are the Tajima’s D, Fay
and Wu’s H and similars [65]. These methods keep updating to investigate even the
most recent human history: a good example is the Singleton Density Score (SDS),
a method to infer very recent ( 2,000-3,000 years ago) changes in allele frequencies
from contemporary genome sequences [66].

These summary statistics are greatly valuable as they provide meaningful knowl-
edge, but come at the cost of sacrificing the incredible amount of basic information
encoded in the genetic sequences. The alternative to this is having to deal with raw
data, i.e complex patterns of genetic variation, thus tools to examine these patterns
in their completeness are also needed to further elucidate the underlying evolution-
ary processes. As our second case study we present Haplostrips [67], a tool to assist
researchers in visualizing the polymorphisms of a given region of the genome, pro-
viding the user with a few options to reveal hidden haplotype structure that may
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Table 1. Haplotype-Based Methods to Detect Positive Selection From Antelope et al. [55].

not be apparent when the haplotypes are plotted in a random order. We will then
briefly review two applications of this tool from [55] and [19].
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Table 2. Frequency-Based Methods to Detect Positive Selection From Antelope et al. [55].

1.3.3 Ancient Genomics

The advance of sequencing and amplification techniques has made possible retriev-
ing ancient DNA (aDNA) from old specimens: after the death of an organism, nor-
mally sequestered catabolic enzymes, bacteria, fungi, degrade all macromolecules,
but when a tissue becomes rapidly desiccated or the DNA becomes adsorbed to a
mineral matrix, it may escape this degradation. Still, the aDNA analysis presents
great complications due to damage and contamination [68].

An obvious example of damage is the high fragmentation of the sequence. Estimates
of decay rates of mtDNA in bone under the best preservation conditions predict that
no intact bonds (average length = 1 bp) will remain in the DNA strand after 6.8 Myr,
and that nuclear DNA should degrade twice as fast [69]. Nevertheless this degra-
dation estimate is subject to great individual variability and is dramatically reduced
when considering conservation at higher temperatures. Another example of dam-
age is the deamination that can occur on DNA bases causing misincorporations of
nucleotides during the amplification process, typically A instead of G, and C instead
of T [68].

Contamination in turn represent another extremely serious concern in the study of
aDNA. Many ancient samples contain no endogenous DNA detectable with cur-
rent techniques, but exposure to other organisms, as well as excavators, museum
personnel, or laboratory researchers, fill the sample with exogenous DNA. This is
even more serious in the study of human aDNA, where primers that amplify con-
temporary human DNA are used to perform amplifications. The weapons to face
this complication are to date: the evolution of techniques to avoid contamination,
bioinformatics pipeline to asses its degree [70], the adoption of severe criteria of au-
thenticity [68].
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All these obstacles do not reduce the profit of using ancient samples: these snapshots
from the past provide an unprecedented level of resolution to delineate in detail how
genetic variation changed through time. We can look for signatures of positive selec-
tion in the ancient populations and ask whether we also observe those in the current
populations or vice-versa [55]. For example, [71] sequenced 101 ancient humans
from across Eurasia from the Bronze age and compared them to populations from
different time periods (Paleolithic, Mesolithic, and Neolithic) to study population
migrations, as well as the temporal dynamics of selected genetic variants. Another
study [72] investigated data of 230 ancient individuals from West Eurasia from 6,500
to 1,000 BCE. These and other studies [73] resolved previous highly variable esti-
mates on the timing of selection, revealed the potential origin of the putative ben-
eficial genetic variants and underlined how present-day populations were created
by a complex history of admixture and population movement. Although Improved
methods for DNA extraction have now started to yield some ancient data sets from
regions until now left aside due to challenges with the rate of DNA deterioration, as
the African continent [11].

1.4 A Focus on the Regulation of Gene Expression

The investigation of regulatory evolution has been of pivotal importance in the
human evolution since the observation that, considering Human and Chimpanzee
"Their macromolecules are so alike that regulatory mutations may account for their biological
differences" as stated in 1975 with a seminal paper by King and Wilson [74]. Empir-
ical evidence and theoretical arguments suggest indeed that the rewiring of gene
regulatory networks plays an important role in the evolution of metazoan anatomy
[75, 76]. Such arguments are supported by a large body of experimental evidence
demonstrating, in specific cases, how the evolution of anatomical traits is triggered
by adding or subtracting targets to a trans-acting regulatory element [77–82]. Ge-
netic events affecting gene regulation can be classified between two extremes: exap-
tation of existing sequence through the accumulation of small-scale mutations, and
de-novo appearance of regulatory DNA through genome expansion driven for ex-
ample by transposable elements (TE). Both mechanisms have been shown to be rel-
evant in the evolution of human regulatory DNA[83–90].

1.4.1 Regulatory Features

What are the features on which we want to focus? A very well known operative unit
in the task of regulating gene expression is the Transcription Factor Binding Site,
which can be identified with two main approaches. The first, that we can define
"theoretical" is the adoption of tools that recognise binding motifs on the genome
sequence, a classical example of which are the Positional Weight Matrices [91]. This
method is inferring binding sites, which can optionally be validated a posteriori, but
allows to investigate the molecular nature and affinity of the binding: an extension
of this is the Total Binding Affinity approach [92]. The second is the "empirical" way:
the use of Chromatin Immuno Precipitation, coupled with sequencing (ChIPseq) to
target a Transcription Factor of interest and obtain the cross-linked positions. this
result in less precise, but validated and cell-line specific, binding "peaks": the EN-
CODE ChIPseq datasets are the gold standard for such analysis.
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Is very well known that TFBS cluster together in defining regulatory regions: this
genomic feature can be studied as well with the use of ChIPseq, but targeting chro-
matin markers known to be present in active regulatory elements. These include
H3K27ac for active regulatory states, H3K4me3 for promoters of active genes, H3K4me1
for enhancers: the NIH Roadmap Epigenomics Mapping Consortium [93] is pro-
viding an incredible dataset of such and other markers (e.g. Dnase Hypersensitive
Sites which describe windows of open chromatin). In the past downstream analy-
ses were made to combine these data [94], but has been difficult to summarize them.
Now is more common to see them used independently, although is known that these
and other markers (coregulatory complexes, nucleosomes, DNA methylation...) are
largely redundant and likely predictive of each other [95].

These data are available for human and some model organism (mouse, drosophila)
but remain generally missing for other species. To perform comparative studies
the researchers can project human data on other species, taking into account the
uncertainty about the regulatory activity in these species (this is what we did in
Chapter 2) or perform ad hoc data generation. A beautiful example of this approach
is presented in Villar et al. [87] where they compared regulatory histone marks in 20
mammals.

Lastly it is of the utmost importance to underline that not only regulatory features
can be identified and then projected onto the evolutionary scope: historically the
opposite has been much more common. Indeed, the identification of non-coding
conserved elements [47, 96] has led the researchers to consider these important in
the regulation of nearby genes [97].

1.4.2 Effects of Regulatory Evolution

As the reason-of-being of coding elements, that is to code for proteins, is important
in the study of their evolution, the effects on gene expression of regulatory elements
are key in investigating theirs. Under the comparative point of view this generated
some brilliant studies as the one published in [98] where they use the expression of
orthologous genes in 9 amniotes to infer dramatic expression shifts at precise ances-
tors in specific tissues. To correlate these shifts to the evolution of nearby regulatory
regions is not trivial, as the relation between a regulatory element and its target
genes remains somewhat elusive (see a partial success in Chapter 2). By the way,
this task is likely to improve markedly, given the revolutionary importance of recent
studies on topologically associated domains, insulator binding factors and highly
dimensional functional correlations [99].

On the population genetics side, the study of the functional effects of regulatory
variation was recently revolutionized by the systematic identification of expression
Quantitative Trait Loci (eQTL). As Genome Wide Association Studies (GWAS) for
disease traits were burgeoning, the researchers realized that many of the variants as-
sociated with phenotypes or diseases were falling in non-coding sequences. There-
fore the same principle of GWAS has been adopted to find variants associated with
a more basic trait: the expression of a gene in a particular cell line [100, 101]. More
specifically, the expression level of a gene is tested against the allelic state of all SNPs
or at least, to reduce the combinations to be tested, of the SNPs nearby (in cis) in or-
der to find a correlation. The rationale is that if they correlate, the SNP tested might
regulate the expression level of the gene, even if correlation alone cannot prove the
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causal relationship. In this case again an effect of evolution (intra-species variation)
has been used to identify regulatory features, that can in turn be used to investigate
the evolution of expression of target genes.

1.4.3 Critical Points at Different Time Scales

Traditionally, GWAS have been hampered by the Linkage Disequilibrium: intu-
itively, relying on correlation between genetic variant and phenotypic trait, GWAS
cannot discern among causal variants and other markers correlated with the causal
one, i.e. in high LD. eQTLs claim to be slightly better, perhaps because they corre-
late with a clearly quantitative and simpler trait (gene expression), their association
Pvalue has often enough power to discern the causative variant, nevertheless this
is not always true and can be confounded by several factors[100]. Moreover, even
in this case, when the causal variant is at low frequency in the analysed population
or is in nearly perfect association with other variants, is virtually unrecognisable.
Variants which have undergone interesting evolutionary stories are even more diffi-
cult to pinpoint: regions under adaptive selection are known for their low diversity
stretches that can extend for hundreds of kilobases (see above). Notwithstanding,
when we learn that the median length of completely independent blocks is over
1MB [102] and that the LD decays reaches plateau at about 60kb in Africans and
100kb in Europeans and Asians [53], we can grasp how problematic can be this issue
also for human variants with common evolutionary histories.

Especially when comparing the average gene length (10-15kb) to the distances listed
above, we can understand why the difficulty of discerning the feature that is under
selection for recent evolutionary times is crucial. Indeed, we cannot exclude that
the traces of recent selection are due to the coding part of the genes, unless we de-
velop specific methods to focus on regulatory features, e.g. TFBS [103–105]. Another
difficulty is tied to the fact that, contrary to coding sequences, where synonymous
positions can be used as neutral reference [106], identifying a neutral region to com-
pare with the selected regulatory feature is not trivial. The practice usual for other
evolutionary scales (see below) is to use putatively neutral flanking regions, but LD
can force us to go so far that these flanks have no more biological meaning.

Over larger evolutionary times, many of these problems are absent, thus explaining
the large number of studies about regulatory evolution in comparative genomics
(see introduction to this Section (1.4)). One of the problems that remain is the small
size of some regulatory features, e.g. TFBS, that can be overcome when consider-
ing sets of small coherent elements, an approach exploited by INSIGHT [107]. This
approach relies on the comparison with flanking regions, thus having difficult ap-
plication on intra-species distances, but also makes not trivial the process of extrap-
olating conclusions obtained genome wide for the application to a single regulatory
element.
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Chapter 2

Evolutionary rewiring of human
regulatory networks by waves of
genome expansion

2.1 Introduction

Evolution of regulatory networks is believed to underlie a significant fraction of the
phenotypic divergence between vertebrates [75, 76, 79]. Genetic events affecting
gene regulation can be classified into two classes: exaptation of existing sequence
through the accumulation of small-scale mutations, and de-novo appearance of reg-
ulatory DNA through genome expansion driven for example by transposable ele-
ments (TE). Both mechanisms have been shown to be relevant in the evolution of
human regulatory DNA [83–89].

In particular, information-rich binding sites (BS) such as the one recognized by CTCF
[MIM 604167] are much less likely to arise through the accumulation of random
point mutations than simpler binding motifs: indeed it was shown [85] that the ex-
pansion of lineage specific transposable elements efficiently remodeled the CTCF
regulome. The activity of TEs in generating transcription factor binding sites (TFBS)
was studied more generally by Sundaram et al. [86], where it was observed that about
20% of BS were embedded within TEs, thus revealing the latent regulatory potential
of these elements [84]. The role of a specific class of TEs in generating transcrip-
tion factor binding sites was recently investigated by Ito et al. [89]. On the other
hand, it was shown [87] that recent enhancer evolution in mammals is largely ex-
plained by exaptation of existing, ancestral sequence rather than by the expansion
of lineage-specific repeated elements. A systematic investigation of the role of ge-
nomic sequence expansion in rewiring regulatory networks is however still missing.

In previous works we investigated the most recent evolution of human regulatory
networks by looking at both promoter sequence divergence [108] and genomic ex-
pansion after the split from the chimpanzee [49]. Here we attempt to reconstruct a
much longer evolutionary history, focusing on regulatory evolution through genome
expansion since the common ancestor of all Vertebrates. To this aim we develop
a segmentation of the human genome based on sequence age. By overlaying this
segmentation onto Transcription Factor (TF) binding data we can reconstruct how
successive waves of genome expansion modified the regulome of each TF.

We then examine some signatures that can help determine whether the binding sites
were present at the time of the appearance of the new sequence, or were created
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later by progressive accumulation of point mutations. For repeated elements, these
signatures include the specificity of the TFs binding each class of repeated elements,
the existence of preferred locations of the binding sites within the repeated elements,
and of distinctive motif words. Finally, we use comparative transcriptomics data to
determine the effect of such waves on the evolution of gene expression.

2.2 Methods

2.2.1 Classifying the human genome based on sequence age

For each base of the human genome (hg19 release) we assigned presence/absence
in modern vertebrates using the Multiz 100-way aligment [41]. A base of the human
genome is present in another species if it aligns to sequence (regardless of matching)
rather than a gap in such species. We defined regions of the genome as maximal
stretches of consecutive bases sharing the same presence/absence vector. The state
of each region in ancestral nodes was reconstructed through a parsimony algorithm
on a fixed tree. The tree was obtained from the Multiz 100-way documentation,
and led to the definition of 19 ancestral nodes ranging from Homo sapiens to the ur-
Vertebrate.

For each region, the parsimony algorithm uses as input the present/absent state of
the region in each of the extant aligned species and returns a present/absent/unknown
state in each ancestral node. We defined the age of the region as the oldest ancestor
where the algorithm returned a non-absent state (present or unknown). All analyses
were repeated with the opposite choice (age as the oldest ancestor with a present
state) to check that our results do not depend on such bias.

For most of the genome regions (99.5% of the sequence) the reconstructed history is
consistent with a single birth event (that is the region is reconstructed as absent in
all ancestors older than its assigned age). The regions for which this did not happen
were discarded. We also removed from our genome all regions annotated within the
Gap track (downloaded on 11/22/13) in the UCSC database.

2.2.2 Overlap with repeated sequence and preferential insertions

For Repeat Elements (RE) annotation we used the Repeat Masker (downloaded on
11/19/12) and Simple Repeat (downloaded on 10/20/15) tracks, from UCSC database.
We labeled as ’Transposable Elements’ those belonging to DNA, LINE, LTR, Other,
and SINE classes. The overlap of inconsistently reconstructed regions to repeat
classes was tested against 1000 randomizations obtained by shuffling their genome
positions.

To test whether insertions happen preferentially into recent genome we removed
all regions smaller than 50bp and we defined as insertions all regions such that the
two flanking regions are older and of equal age. We then counted the insertions
happening inside regions of all possible ages, and tested their distribution against
the null model in which the probability of insertion into a given age is proportional
to the total genomic sequence of that age, using a χ2 test.
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FIGURE 2.1: Genome segmentation in ages. Maximum parsimony applied to a multiple align-
ment of the human genome to 100 vertebrates is used to infer the presence of a genomic region in each
ancestor and thus the evolutionary age of the region. A green bar indicates that the human genome
region aligns to sequence, rather than to a gap, in the non-human genome. Each region can be classi-
fied into one of three classes. "Inconsistent": The reconstructed ancestral states are incompatible with
a single birth event for the region; "Age Interval": The reconstruction is compatible with single birth
but only a time interval can be estimated; "Precise Age": The precise time of the birth of the region

can be estimated. The fraction of genome sequence falling into each class is shown.

2.2.3 Evolutionary age of functional classes of sequence

To each RefSeq gene we attributed five functional classes of sequence: coding exons,
non-coding exons and introns were defined based on RefSeq annotation. To define
regulatory classes we used the genome segmentation of Ernst et al. [94]: we consider
as regulatory sequence all sequence that is not inside an exon and falls into one of
the regulatory classes (classes 1-8) in at least one cell line, after removing the cancer-
derived cell lines Hepg2 and K562. We then classified as promoters all regulatory
sequence within -5kbp and +1kbp of a RefSeq transcription start site and extended
regulatory all regulatory sequence within the extended regulatory region defined as-
sociated by GREAT [109] to the gene.

2.2.4 Evolutionary age and gene expression

We used the expression profiling of human tissues from the RNA-seq Atlas [110] and
we defined a gene as expressed in a tissue if its RPKM was > 1. We then compared
the mean genomic age of tissue-specific or ubiquitary genes vs. all other genes with a
Wilcoxon-Mann-Withney test, separately for each sequence functional class. We also
evaluated the Spearman correlation between mean genomic age and gene expression
expressed as RPKM.
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2.2.5 TFBS distribution in age

To investigate the age distribution of TFBS we collected all ENCODE ChIP-seq datasets,
merged all the binding sites of the same TF from different cell lines and removed
data from non-sequence-specific binding events (PolII and general transcription ma-
chinery) or non endogenous (GFP-conjugated proteins).

We removed peaks wider than 5kb and set a minimum peak width of 100bp, enlarg-
ing narrower peaks up to this size. We repeated the analysis with 0 or 500 minimum
peak width cutoff. To each TFBS we attributed the age of its median point, after dis-
carding all peaks of the same TF overlapping a narrower peak. We then compared
the age distribution of the binding sites of each TF to a null model defined by the
age distribution of all TFBSs taken together, using a χ2 test. The chi squared residu-
als are visualized in Figure 2.3 and Supp. Fig. A.6 and represent the enrichment of
binding sites of a given TF in regions of each evolutionary age. To generate an em-
pirical P-value, we performed 5000 times the following randomization: divide the
genome into (unequal) windows, each containing exactly 200 TFBS; each window
defines a sequence of 200 TF names; randomly permute these sequences of names
among the windows. In this way the TFs are assigned randomly to genomic regions
while conserving the local clustering of binding sites of the same TF.

2.2.6 TFBS enrichment in Gene Ontology categories

TFBS were associated to genes using GREAT [109]. We evaluated the enrichment
of TFBS of each evolutionary age in genes belonging to GOs where specific peaks
of regulatory innovations had been identified [83]: GO:0003700 (transcription factor
activity), GO:0032502 (developmental process), GO:0005102 (receptor binding) and
GO:0043687 (post-translational protein modification). The enrichment was defined
as the fold enrichment of the number of TFBS of each age associated to genes in each
GO category compared to the number of TFBSs of the same age regardless of GO
association.

2.2.7 TFBS enrichment in RE classes

To evaluate the enrichment of RE classes we used Fisher’s exact tests: for each
TF/age/RE combination, we tested whether the binding sites of the specific TF tend
to overlap instances of the RE more often than binding sites of the same age irre-
spective of the identitiy of the bound TF. P-values were Bonferroni corrected. Repeat
coordinates were obtained from RepeatMasker. We also explored the possibility of
testing the overrepresentation across ages, rather than across TFs: that is testing
whether the binding sites of a given TF and age tend to overlap instances of the
RE more often than binding sites of the same TF irrespective of the age. However
the age-specificity of most REs drives the significance of this test in most cases, so
that we find a much larger number of significant results which include virtually all
results obtained with the the test across TFs. We thus deemed safer to use the test
across TFs.



2.2. Methods 19

2.2.8 TFBS position in REs

We kept all REs overlapping a TFBS, of length between 80% and 120% of the RE
model length obtained from RepeatMasker metadata, discarding shorter and longer
instances. We tested only those TF/age/RE combinations which after this filter re-
tained at least 10 instances: only transposon classes survived after this process. We
annotated the positions of the TFBS peak median point, normalized them over the
length of the TE instance, and built a distribution with bins of about 50bp: the pre-
cise size of the bin ensured that the TE model could be divided into bins of equal
length. For each TF/age/TE combination, call A the set of the binding sites of any
TF falling in the specified age and overlapping the RE, and S its subset where the
TF is the one under investigation. We computed the entropy of the binned position
distribution of S and compared it to 10,000 random subsamplings of A, each of size
equal to #S.

2.2.9 TFBS word composition

Using the JASPAR Core Vertebrates set [111], we were able to associate a Positional
Weight Matrix (PWM) to 66 of the 127 TFs to be tested. For each TF/age/RE triplet to
be tested, we searched each Chip-seq peak with the corresponding PWM, keeping
the top scoring site and discarding peaks where such site scored less than half of
the highest possible score. Accounting separately for TFBS falling on instances of
the enriched RE class and for TFBS placed elsewhere, we computed a contingency
matrix for all occurring words and obtained a P-value for it with a Monte Carlo
simulation with 100,000 replicates, using χ2 as the test statistic.

2.2.10 TFBS and gene expression shifts

TFBSs determined as above were associated to genes using GREAT [109]. For all
the genes which underwent an expression shift in exactly one human ancestor (in
any tissue) according to Brawand et al. [98] we counted the associated TFBSs of each
evolutionary age. These counts were compared to those obtained in the same way
after randomly shuffling 5,000 times the age of the expression shift and thus trans-
formed into z-scores shown in Figure 2.7. Statistical significance of the enrichment
of the diagonal element of each row was determined empirically by comparing the
fraction of TFBSs of the same age as the expression shift to the distribution of the
same number in the 5,000 randomizations.

2.2.11 Repeat-driven targets of FOXP2 and FOXA2

Putative TFBS targets were determined using GREAT [109], which was also used to
determine the functional enrichemnt of repeat-driven targets compared to all targets.
Gene expression data in human tissues were obtained from the GTEx consortium
[101]: we used the median expression of each gene in a given tissue across all GTEx
samples of that tissue.
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2.3 Results

2.3.1 Segmentation of the human genome by sequence age

To estimate the age of each region of the human genome we used a published multi-
ple alignment of 100 vertebrate genomes [41]. Each region was classified as present
or absent in each non-human species depending on whether it aligns to sequence
or to a gap in the multiple alignment: therefore each region is characterized by a
present/absent binary vector of length equal to the number of non-human species
in the alignment (see Methods for details).

For each region the present/absent vector was used as input to a maximum parsi-
mony algorithm to determine the most likely (most parsimonious) history of appear-
ance/disappearance of the region during vertebrate evolution that explains what is
observed in extant species. Note that parsimony was not used to reconstruct the
phylogenetic tree, which was instead fixed, but only to reconstruct the presence
or absence of the sequence in each ancestral node. We thus obtained a new vec-
tor expressing the presence of the region in progressively older ancestors, from the
human-chimpanzee common ancestor to the common ancestor of all vertebrates (see
Figure 2.1).

Similar principles have been used in previous works [83, 87, 88]. All of them eval-
uated the age of windows of interest using the most distantly related species with
an alignable sequence. The use of a parsimony algorithm allowed us to exploit in a
controlled way genomic alignments with a large number of species and thus provide
a segmentation of the human genome by age that is more robust and dense in terms
of the human ancestors considered.

For 70% of the genome this method allowed us to determine a precise age of birth
and for another 29.5% an age interval (when the parsimony algorithm reported the
presence of the sequence in some ancestors as uncertain). For this latter fraction
we defined as age the upper end of the interval. While this leads to a systematic
overestimation of genomic ages, all results reported in the following were essentially
unchanged when the opposite choice was made.

Only for 0.5% of the genome the reconstructed history was inconsistent with a sin-
gle birth event, and this fraction was enriched in Low Complexity, Simple and tRNA
repeats (P < 0.001, permutation test), possibly reflecting sequencing and alignment
problems; this part of the genome was excluded from further analysis. The age seg-
mentation of the genome obtained in this way turned out to be robust with respect to
the choice of the initial alignment data: using a collection of 47 pairwise "net" align-
ments obtained from the UCSC Genome Browser in place of the multiple alignment
gave very similar results ( A.1).

2.3.2 The age distribution of the human genome and the role of transpos-
able elements

The age distribution of the human genome is shown in Figure 2.2A. Most of the
human genome appeared after the split between placentals and marsupials: indeed
only 13.5% of the human genome aligns with the opossum genome, while 43% aligns
with the elephant (among the farthest eutherians from humans). The figure also
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FIGURE 2.2: Genomic age distribution and properties. (A) Age distribution of the genome.
Most of the human genome appeared after the split between placentals and marsupials. Note the
increasing relative importance of TEs as we move towards younger regions. This is partly due to
the difficulty in recognizing TEs that have been integrated in the genome for very long times. (B)
Length distribution of reconstructed insertions of each age. Colors are associated to ages as in (A).
The major peaks at length ∼ 300 and ∼ 6000 correspond to ALU and L1 insertions respectively (C)
Comparison between the age of genomic regions (x axis) to the age of the surrounding genome (y axis)
shows that new genomic sequence is preferentially inserted in younger regions, possibly because these
are subjected to less selective pressure. The heatmap shows the chi squared residuals with respect
to a null hypothesis of no preferential insertion, in which the insertion probability in a region of a
certain age is simply proportional to the genome fraction of that age (D) Enrichment of genomic ages
in functional sequence classes. We show the coverage fold enrichment compared to what expected if

all functional classes shared the genome-wide age distribution.

shows the fraction of newly created sequence overlapping known TEs, which in-
creases as we get closer to the present time. Older TEs are difficult to recognize
today, and this probably explains at least in part their lesser prevalence in older re-
gions of genome; nevertheless, since the ur-Boreoeutheria, the majority of newly
gained sequence is still identifiable as TE. This indicates that TEs are an important
driver of new sequence acquisition at least since then, and possibly further back in
time. As expected, TEs are generally constant in age and their boundaries are close
to age breaks, as seen in A.2.

If, as expected, most newly acquired genomic sequence is neutral or almost neutral
we expect it to appear at an approximately constant rate in time. To verify whether
this is the case we plotted the amount of human sequence of each age with the esti-
mated time interval between the speciation events defining such age. The molecular
clock hypothesis following from neutrality appears to hold up to the common ances-
tor of all Eutherians ( Supp. Fig. A.3). For older ancestors it seems to break down, or
at least to hold with a much lower acquisition rate, possibly because sequence that
is conserved at very large evolutionary distances is unlikely to be neutral.
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The length distribution of reconstructed insertions of each age is shown in Figure 2.2
B and is driven, in particular, by waves of expansion of Alu (length ∼ 300) and L1
(∼ 6,000) retrotransposons in the ur-Primate and ur-Homininae respectively. New
insertions happen preferentially in younger regions (Figure 2.2 C), presumably be-
cause younger regions are subjected to weaker selective constraints, leading to the
appearance of insertion hotspots within young TEs [112].

When looking at the age distribution of various functional classes of the genome we
see, as expected, that age increases with functional constraint (Figure 2.2 D): cod-
ing exons are made by the oldest sequence, while introns are the newest. Moreover
we confirmed some known results relating age to expression patterns: older genes
are more expressed than younger ones [113] (see Supp. Fig. A.4 A), and the cod-
ing exons of ubiquitously expressed genes are older than tissue-specific ones [114]
( Supp. Fig. A.4 B). However the promoters of ubiquitously expressed genes are
younger than those of tissue-specific ones, perhaps due to the relaxed constraints on
their fine regulation. Indeed it was recently shown [115] that ubiquitously expressed
genes have broader promoters and greater variation among individuals, suggestive
of relaxed selective pressure, compared to the promoters of tissue-specific genes.
Within tissue-specific genes the newest are expressed in testes and the oldest in the
central nervous system. Importantly, the strategy by which we re-obtained these
known results is completely independent from gene annotation, in contrast with the
methods commonly used in classic phylostratigraphy [50, 116]. A comparison of
our gene dating results with the age classes defined by Neme et al. [117], and those
derived from the GeneTrees provided by Ensembl [118] is shown in Supp. Fig. A.5.

2.3.3 Genomic age enrichment of Transcription Factor Binding Sites

Newly acquired genomic sequence can contribute to the evolution of regulatory net-
works by creating binding sites for TFs [84–86]. To investigate this phenomenon in
a systematic way we superimposed the results of ChIP-seq experiments performed
on many TFs to the age segmentation and, for each TF, we asked whether significant
age preferences could be discerned. Specifically we used a χ2 test to compare, for
each TF, the number of TF binding sites (TFBS) found in each genomic age to what
expected under the null hypothesis where age preference is the same for all TFs. The
null model thus incorporates any deviation from the uniform distribution displayed
by TFBSs as a whole, and the test reveals the specific deviations of each TF.

Out of 139 TFs, 137 showed an age distribution significantly different than the null
model (P < 0.05 after Bonferroni correction for multiple testing), with only PPARGC1A
[MIM 604517] and STAT2 [MIM 600556] not significant. TFBS local clustering could
inflate the χ2 P-values, and can be due to technical reasons (e.g. a single binding site
interpreted as multiple peaks by the peak-calling software) or biological reasons (e.g.
the accumulation of multiple binding sites of the same TF in regulatory regions).
These effects can be controlled by counting as a single BS peaks closer than a given
cutoff. Reassuringly, the enrichment results are essentially unchanged whether we
use or not a cutoff, and with cutoffs of 100 bps and 500 bps. As an alternative strat-
egy, we replaced the χ2 P-values with empirical ones, by shuffling the TFBS in a
block-wise manner: within each block the succession of TFBS is maintained, so as to
maintain their local clustering, while blocks are randomly shuffled on the genome.
This results in 135 significant TFs, excluding only two more TFs, SIRT6 [MIM 606211]
and SMARCB1 [MIM 601607], compared to the χ2 analysis. These results show that
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most TFs show specific preferences in the age of the genomic sequence they bind.
Such preferences can be visualized using the chi squared residuals, and are shown
in Figure 2.3 and Supp. Figures A.6 and A.7.

Notably, such age enrichment in TFBS corresponds to specific functional enrich-
ments of their target genes. In agreement with what reported by [83] for conserved
non-coding regions, we observe significant TFBS enrichment near developmental
and transcription factor genes in ages preceding the appearance of mammals; near
receptor-binding proteins between the ur-Amniote and the ur-Eutherian; and en-
richment in more recent ages near genes involved in post-translational modifications
(see Supp. Fig. A.8).
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2.3.4 Age enrichment suggests waves of TFBS expansions

The enrichment of binding sites of a given TF inside genomic sequence of a given
age suggests an evolutionary process in which new genomic sequence extensively
rewires transcriptional regulatory networks by providing existing TFs with abun-
dant new targets. This mechanism was shown to have operated in the evolution of
the CTCF regulome in mammals [85]. However, the fact that a human TFBS resides
in a region that appeared at a certain time in evolution does not necessarily mean
that the binding sites have the same evolutionary age. Indeed it is well known that
TFBS can be generated within pre-existing sequence [87, 119–121]. In this mecha-
nism new genomic sequence could simply provide raw material for evolution to act
upon by accumulation of point mutations, possibly aided by relaxed negative selec-
tion, and create TFBS that were not there when the sequence entered the genome.
Other effects, such as functional characterization of genomic regions with same ori-
gin and age, could also contribute to the age enrichments shown above. In the fol-
lowing we will use various signatures to identify the cases in which waves of ge-
nomic expansion indeed generated an immediate rewiring of regulatory networks.

Repeated elements carry specific motifs for specific TFs in specific portions of
their sequence

If repeated elements (RE) carried TFBS at the time of their insertion in the genome,
we expect to detect three signatures that are, instead, difficult to reconcile with TFBS
creation by accumulation of point mutations. First, we expect each class of repetitive
elements to be enriched with binding sites of just one or a few specific TFs; second,
we expect such binding sites to be preferentially located in a specific portion of the
repeated elements; and third, we expect the TFBS located in the RE to use a spe-
cific subset of the set of all possible motif-words (DNA k-mers compatible with the
binding [85]).

We thus asked which of the age enrichments shown in Figure 2.3 could be ascribed
to the expansion of a specific, recognizable repetitive element. We considered all
TF/age pairs (cells in the heatmap shown in A.6) and for each of them we eval-
uated the number of TFBS overlapping each repeat class. We then tested whether
such overlap was significantly enriched with respect to all TFBSs of the same age
irrespective of the identity of the TF. That is, we asked whether the instances of a
repetitive element appearing at a certain time tended to be associated to TFBSs of a
specific TF.

We found a total of 3625 significant TF/RE/age triplets, involving 888 TF/age pairs.
In Figure 2.3 these are shown as bordered cells. In most cases (2887 involving 600
cells) the enriched RE class is a TE. In Figure 2.4 we show the TFs whose binding
sites are significantly enriched in each RE class, and the distribution of the number
of TFs associated to each RE class. For most classes the enrichment in binding sites
are restricted to one or a few TFs.

To determine whether TFBS occur in specific positions within repeated elements we
considered all the enriched TF/RE/age triplets determined above and computed the
entropy of the position distribution of the TFBS (represented by the median point of
the ChIP-seq peak) within instances of the RE of the appropriate age. We then used a
permutation test (see Methods) to determine whether such entropy was significantly
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lower than that of the position distribution of all TFBS (of all TFs) on the instances
of the same RE of the same age. The test thus shows whether the enriched TF is
more precisely localized inside the RE compared to all TFs that bind the RE. In 1377
out of 1970 cases tested (involving 399 out of 495 TF/age combinations), we found a
significantly lower entropy in the enriched TF/age/TE combination (Benjamini FDR
0.05, see Material and Methods for further details), as shown in Figure 2.5.

Considering again the set of enriched TF/RE/age triplets, we then examined if bind-
ing sites lying on the enriched RE used a specific set of motif-words with respect to
binding motifs placed elsewhere, similarly to what was shown for CTCF [85]. To do
so we identified the top scoring motif within all ChIP-seq peaks with a Positional
Weight Matrix corresponding to the TF of interest and annotated whether the peak
was falling on the enriched RE class or not. We then asked wether the two sets of
TFBS differed in word composition: 523 out of 1707 TF/RE/age triplets tested (199
out of 366 TF/age combinations) were found significant against 100,000 simulations
(Benjamini FDR 0.05, see Material and Methods for further details), as shown in Fig-
ure 2.6 A.

Altogether, in most cases of RE enriched in the binding sites of a TF we observe that
the enrichment is not only specific for the identity of the TF, but also for the position
of the binding within the RE and/or the word composition of the binding motif.
Such specificity is difficult to reconcile with a process in which point mutations cre-
ate binding sites in the ages after the appearance of the new sequence, and suggests
instead that at least the genetic component of the regulatory rewiring was effected
directly by the insertion of new sequence.

Network rewiring by genome expansion causes gene expression evolution

An important question is whether the TFBSs created by waves of genomic expansion
are functional, that is whether they lead to changes in gene expression. Brawand et al.
[98] used comparative RNA-seq data to identify genes whose expression underwent
a shift at a certain point of the evolutionary history of mammals. By comparing the
timing of expression shifts to the age of surrounding TFBSs we can investigate the
role of genomic expansion in effecting gene expression evolution.

We considered all genes which underwent an expression shift [98] in exactly one hu-
man ancestor (except ur-Mammal and ur-Hominoidea for which the shift cannot be
attributed to a branch [98]). We determined their associated regulatory region using
GREAT [109] and, in such region, counted the TFBSs falling within each genomic
age (Figure 2.7).

Such counts were then compared to 5,000 randomizations of the age of the gene
expression shift, and thus transformed into z scores, shown in Figure 2.7. Given a
genomic age aG and an expression shift age aE, the z score z(aG, aE) is positive when
TFBSs of age aG are enriched in the regulatory region of genes which shifted their ex-
pression in aE. Conversely, the z score z(aG, aE) is negative when TFBSs of age aG are
depleted in the regulatory region of genes which shifted their expression in aE. For
the three evolutionary ages with the largest number of gene expression shifts (Hu-
man, Primates and Therians) we observed a statistically significant enrichment of
TFBS with aE = aG (permutation test based on the randomizations described above).
These results show that the rewiring of regulatory networks by newly acquired ge-
nomic sequence results in an immediate, detectable change in the transcriptome. The
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result holds when considering tissue-specific expression shifts, and ChIP-seq results
limited to relevant cell lines, at least when the number of shifted genes is enough to
provide reasonable statistical power, as in brain and liver (see Supp. Fig. A.10).
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2.3.5 Transcription factors that underwent binding site expansion

By looking at Figure 2.3 we can observe several examples of transcription factors
which gained targets through RE expansion. A sizable cluster of TFs preferentially
bind Hominini-specific regions (that is, originating in the human-chimpanzee com-
mon ancestor). These include immune-related TFs such as IRF4 [122] [MIM 601900],
PAX5 [123] [MIM 167414] and POU2F2 [124] [MIM 164176] and TFs involved in the
regulation of metabolism, such as RXRA [125, 126] [MIM 180245] (see Figure 2.6 C)
and USF1 [127] [MIM 191523]. A few of these TFs gained new targets through TE
expansion, including PAX5 (see Figure 2.5 D), FOXA2 [MIM 600288] (see Figures 2.5
C and 2.6 B), SPI1 [MIM 165170] (see Figure 2.6 D), HEY1 [MIM 602953], GATA2
[MIM 137295].

The expansion of TRIM28 (aka KAP1) [MIM 601742] binding sites during primate
evolution is also evident: its newly formed binding sites in the ur-Simiformes, ur-
Catarrhine and ur-Hominoidea are preferentially found within TEs of various classes
(especially LTR) in agreement with its role in repressing newly arising TEs [128], see
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also Figure 2.5 E. Among the TFs showing a marked target expansion in the ur-
Eutherian we find CTCF and MAFF [MIM 604877], which is involved in parturition
by regulating the oxytocin receptor [129]. In agreement with Schmidt et al. [85], CTCF
shows both ancestral binding sites predating the origin of vertebrates and several
waves of expansion in mammals. Our results confirm in particular a role of MER20
and MER20B in the expansion of CTCF sites in the ur-Eutherian, as previously re-
ported [130], see Figure 2.5 F.

To gain some insight in the possible functional impact of TFBS creation by genomic
expansion we examined in more detail the cases of FOXP2 [MIM 605317], a TF in-
volved in speech and language which underwent significant mutations in the hu-
man lineage after the split with the chimpanzee [131], and which shows a large
number of human-specific sites inside ALR/Alpha and HSATII satellite repeats; and
FOXA2, a TF involved mostly in regulating gene expression in liver, that provides
one of the clearest examples of regulome expansion through transposable elements,
specifically L1PA3 (Figure 2.5 C). In particular we evaluated, using GREAT [109],
possible functional enrichment of the putative gene targets created by the repeated
element (repeat-driven targets) compared to all putative targets.

Very few genes were associated by GREAT to the FOXP2 binding sites, and these
genes did not show any functional characterization, suggesting that these new bind-
ing sites might have very limited functional effect. On the other hand many repeat-
driven targets could be identified for FOXA2: compared to all FOXA2 target genes,
these show a strong enrichment in neural function, represented by GO terms such as
"serotonin receptor" activity (fold enrichment 5.3, FDR ∼ 4 · 10−4 ) and Disease On-
tology terms including "Intellectual disability" (fold enrichment 2.1, FDR∼ 4 · 10−4).
While FOXA2 is mostly known as a liver-specific TF, it is known to have a role in neu-
ron differentiation [132, 133]. These results suggest that L1PA3 expansion could have
contributed to the rewiring of the FOXA2 regulome specifically in the brain. Analy-
sis of the expression pattern of the repeat-driven targets in human tissues shows that
brain tissues are indeed the ones where the expression ratio between L1PA3-driven
and other FOXA2 targets is the highest (see Supp. Fig. A.11).

2.4 Discussion and conclusions

We classified the human genomic sequence based on its evolutionary age, that is the
ancestor in which the sequence first appeared. We then examined the age of regula-
tory sequences, defined as transcription factor binding sites determined by ChIP-seq
experiments. Many transcription factors appear to have acquired new binding sites
through genomic expansion, a fact that was known for some of them [85] but that
we could establish in a systematic way.

Transposable elements play a crucial role in generating these waves of regulatory
expansions, and in many cases specific families of them can be associated to specific
waves of expansion, especially when these are relatively recent so that the originat-
ing TE can still be recognized. However our approach does not rely on databases
of TE sequence, and thus is able to identify ancient waves of expansion such as the
ones involving several transcription factors in the ur-Therian.

Several features of the TFBS located in repeated elements suggest they were already
present at the time of genomic insertion: binding sites of specific TFs appear in
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fixed positions inside each class of repeated elements and use a distinctive set of
motif-words, a pattern difficult to reconcile with a process in which binding sites are
formed by the gradual accumulation of point mutations.

Between the exaptation of pre-existing sequence and the immediate recruitment of
new sequence for regulatory rewiring, various intermediate scenarios are possible,
including for example new sequence carrying quasi-binding sites needing some
point mutations to become effective, or binding sites that are not immediately ef-
fective because they reside within closed chromatin. Our age-enrichment map (Fig-
ure 2.3) undoubtedly reflects also some of these intermediate cases.

While our results suggest that most transcription factors obtained a relevant part of
their binding sites during specific waves of genomic expansion, they do not imply
that most binding sites are generated in this way. For example, only about 4.9% of
all the TFBSs used to build Figure 2.3 contribute to the enrichment of a TF/RE/age
triplet, and can thus be specifically attributed to the expansion of the RE in a specific
evolutionary age. This must be considered as a lower bound since our strict control
of false positives in evaluating enrichment certainly leads to many false negatives.
However, this relatively low percentage shows that our results are not in contradic-
tion with those of Villar et al. [87] where it is shown that most regulatory elements
are created by exaptation of existing sequence: while this is the dominant mecha-
nism, most human transcription factors have also undergone waves of rapid target
expansion driven by newly acquired genomic sequence.

It is also worth stressing that the binding of transcription factors to DNA is by no
means always functional (see e.g. [104]), so that we do not expect all the TFBSs
generated through genomic expansion to significantly alter the transcriptome. For
example the lack of functional characterization of the repeat-driven FOXP2 targets
might suggest that these binding sites have little if any effect on the regulatory net-
work. On the other hand the results on FOXA2 and, more generally, the significant
concordance between age of regulatory elements and age of gene expression shifts
suggest that the effect of genomic expansion on the human transcriptome is real and
measurable.
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Chapter 3

Investigating Adaptation In
Modern Humans Through
Haplotype Visualization

3.1 Introduction

A haplotype is an arrangement of specific alleles occurring in the same chromosome
within a given genetic segment. Often genetic variation is studied through sum-
maries of single nucleotide polymorphisms (e.g. frequency of mutations). However,
haplotypes provide more information because we can see the combination of alleles
that are present on a single chromosome. Access to tools to examine the complete
patterns of genetic variation in these regions, and not just summary statistics, will
help further elucidate the underlying evolutionary processes.

To our knowledge, the first tool to fulfill this need is inPHAP [134]. It features a
graphical interface to show sequences of alleles and to aggregate them interactively
and according to meta information. Although it is useful for basic haplotype visu-
alization and analysis, it requires manually supplying groupings to observe sum-
maries, and does not provide allele polarization, dataset merging, and a command-
line environment. Therefore, inPHAP is less suitable for automated hypothesis gen-
eration in population genetics.

Other methods to visualize haplotype structure provide insights on the abundance
of several haplotypes in a population [135], or on the linkage disequilibrium between
variants [136]. However, these methods generate a data summary, and do not show
the full sequence of variants directly. Here we present a tool to assist researchers
in visualizing the polymorphisms of a given region of the genome. In particular,
this tool provides the user a few options to reveal hidden haplotype structure that
may not be apparent when the haplotypes are plotted in a random order. Therefore,
beyond being a visualization software, Haplostrips can be used to gain information
about the evolutionary processes responsible for the observed haplotype patterns
(e.g. positive selection, introgression etc.).

We will then briefly showcase how Haplostrips has been applied in two different
projects: the first, Antelope et al. [55], features LCT as quintessential example of
positive selection and the second, Racimo et al. [19] is one of the first investigations
into the joint dynamics of archaic introgression and positive selection.
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Adaptive Selection: the evolution of Lactase Persistence

One of the key features of mammals is the ability to produce and digest milk, in
order to feed newborn offspring. The need of breaking down lactose, the only car-
bohydrate found in milk, is fulfilled by the lactase enzyme (LCT), whose expres-
sion level starts declining after weaning and is then very low in all adult mammals
[137], with the notable exception of humans. Instead, in approximately a third of
humans [138], the expression of lactase persists throughout life, a phenotype known
as lactase persistence (LP). The frequency of LP varies greatly among populations,
ranging from 5% to almost 100%, with the highest frequencies found in people of
northern European descent and some populations from West Africa, East Africa,
and the Middle East [137, 138]. In 2002, a study of Finnish families by Enattah et
al. [139] identified the first mutation associated with the LP phenotype: -13.910:C>T
(rs4988235), located in a intron of MCM6, a gene immediately upstream of LCT. Soon
after, Bersaglieri et al. [140] showed that haplotypes carrying the -13.910:T variant
present typical characteristics of recent and local positive selection in Europeans.
The time of the onset of the LP allele has been evaluated with different methods
[141],[140] [142], also integrating data from ancient genomes in Europe [71, 72]. De-
spite huge confidence intervals and minor differences, the consensus is that an ap-
preciable frequency of this lactase persistence allele in Europe only dates to the last
4,000 years, and possibly later. By observing the haplotype pattern with haplostrips,
measuring the haplotype shared tract length and the FST between North Western
European and Han Chinese populations, we draw attention to a background hap-
lotype, previously observed by Bersaglieri et al. [140] and Enattah et al. [143], the
length of which was never analyzed thoroughly. This observation triggered further
study, published in Antelope et al. [55], which showed that the observed haplo-
type structure among the NW European and Han populations cannot be explained
by selection on de novo mutation or standing variation under current demographic
models.

Archaic Adaptive Introgression in Present-Day Human Populations

There is now a large body of evidence supporting the idea that certain modern hu-
man populations admixed with archaic groups of humans after expanding out of
Africa. In particular, non-African populations have 1 − 2% Neanderthal ancestry
[10, 15], while Melanesians and East Asians have 3% and 0.2% ancestry, respectively,
from Denisovans [10, 16, 17]. Recently, it has become possible to identify the frag-
ments of the human genome that were introgressed and survive in present-day in-
dividuals [10, 144, 145]. Researchers have also detected which of these introgressed
regions are present at high frequencies in certain present-day non-African popula-
tions. Some of these regions are likely to have undergone positive selection in those
populations after they were introgressed, a phenomenon known as adaptive intro-
gression (AI). One particularly striking example of AI is the gene EPAS1 [146] which
confers a selective advantage in Tibetans by making them less prone to hypoxia at
high altitudes [64, 147, 148]. The selected Tibetan haplotype is likely to have been
introduced in the human gene pool by Denisovans or a population closely related to
them [18].

In this study, we first use simulations to assess the power to detect AI using different
exploratory summary statistics that do not require the introgressed fragments to be
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identified a priori: U and Q95. They rely on two signatures that proved to be the hall-
mark of AI, and that were observed in EPAS1. First, in a region under AI, one would
expect the sequence divergence between an individual from the source population
and an admixed individual to be smaller than the sequence divergence between an
individual from the source population and a non-admixed individual. Second, we
would expect a large number of sites containing archaic alleles at high frequency in
the admixed population, but absent or at low frequency in a non-admixed popula-
tion., We then apply these statistics to real human genomic data from phase 3 of the
1000 Genomes Project [53], to detect AI in human populations, and find candidate
genes. While these statistics are sensitive to adaptive introgression, they may also be
sensitive to other phenomena that generate genomic patterns similar to those gener-
ated by AI, like ancestral population structure and incomplete lineage sorting. These
processes, however, should not generate long regions of the genome where haplo-
types from the source and the recipient population are highly similar. As additional
confirmation that the candidates we found with our statistics are generated by AI,
we explored the haplotype structure of some of the most promising candidates with
Haplostrips. Finally, to have a grasp on how much uniquely shared archaic alleles at
high frequencies in non-Africans were affecting functional regions of the genome,
we tested their enrichment in genic versus intergenic human DNA.

3.2 Methods

3.2.1 Haplostrips: Revealing Population Structure Through Haplotype
Visualization

Haplostrips handles variation data, selecting the window of interest, extracting the
haplotype data from the phased genotypes, polarizing variant sites and filtering
them for mapping and genotype qualities. It keeps the samples belonging to popula-
tions of interest and chooses only the most informative sites, eliminating variations
with very low frequency in all the populations to be plotted. Finally it produces
a heatmap plot that displays the haplotypes in rows while each column represents
a SNP within a region of interest. Haplotypes are labeled with a color defined by
metadata, e.g. populations, from a file supplied by the user. Derived alleles are
represented as black spots and ancestral alleles are represented as white spots (see
Figure 3.1).

A key feature of Haplostrips is being able to sort and cluster haplotypes using only
the distance between the genetic sequences, regardless of the meta information sup-
plied. This turns the disorganized heatmap, of which an example is represented in
Figure 3.1 A, into an informative plot that reveals hidden haplotype structures, as
seen in Figure 3.1 B.

Haplostripsis a command-line tool written in Python and R. It takes advantage of the
preexisting Python package Pandas [149] and the R package gplots to manage input
data and draw the plot, respectively.

The software is downloadable at https://bitbucket.org/dmarnetto/haplostrips .
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A B

FIGURE 3.1: Haplostrips plot of LCT and MCM6. (A) unsorted haplotypes, (B) haplotypes
clustered and sorted by increasing distance with CEU consensus. Rows are haplotypes and columns
are variable sites. Black denotes derived alleles, and white denotes ancestral alleles. The arrows
indicate the position of rs4988235 and rs182549, associated with lactase persistence. This region
spans 88-kb encompassing LCT and MCM6 in their entirety. CEU = Utah residents with north-
western European ancestry, GBR = British, FIN = Finnish, TSI = Toscani in Italia, IBS= Iberian in

Spain, CHB = Han Chinese in Beijing, YRI = Yoruba in Ibadan, Nigeria.

Input

The user can supply as input a VCF genotype file, similar to those produced by the
1000 genome project [53]. This format has become a standard for genetic variation
data, and this makes our tool portable, versatile and simple to use. In addition,
where Tabix indexes are available, Haplostrips uses the pysam package [150] to per-
form a fast retrieval of the region of interest. More VCF files can be supplied to the
tool, which is capable of merging them using the reference allele of variants present
in one VCF to infer missing data in others, or simply working on the intersection.
Haplostrips can run iteratively over many windows of interest supplied with a file
that contains the genomic intervals and populations to be plotted: this can be use-
ful to visualize windows resulting from genome wide scans, e.g. GWAS. Another
accepted input is the format generated by ms [151], a widely used software to gen-
erate samples under a variety of neutral models. This feature allows one to observe
the direct effects of particular demographic histories without any further parsing or
coding.

Clustering, sorting and other options

The clustering is optional and is performed hierarchically via the single agglomera-
tive method based on Manhattan distances, using the stats library in R. The Manhat-
tan distance is simply the number of SNPs with different alleles in two sequences.
The clustering brings together similar haplotypes, generating a thicker row in the
plot for those that are more abundant, and a thicker row in the label column for the
populations where they are more represented. The resulting dendrogram, which
can be visualized as well, is re-ordered by decreasing similarity with a reference
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haplotype or a consensus sequence of a defined population. The reordering is per-
formed using the minimum distance method, to ensure that the closest haplotype to
the reference is always shown at the top. Available ordering options also include (1)
performing the clustering after the population grouping, (2) sorting the haplotypes
for increasing differences from the reference one or (3) keeping the input order. The
first option can be used to investigate population specific Linkage Disequilibrium
or other effects, while the second one allows the comparison the heatmap with a
plot showing the increasing number of differences to the reference haplotype, also
reported in a separate file. This method lets the user deal with a simpler quantity,
avoiding the clustering step. The heatmap and the distances to the reference haplo-
type can be optionally output to tab-delimited files.

The user can define the populations or groups of interest to be plotted, which are
associated to the samples by another input file. Alleles at variant sites can be po-
larized for ancestral/derived status, using the ancestral allele provided in the INFO
field of the VCF file. Knowing the ancestral or derived state of the allele is impor-
tant for understanding the time of arrival of the mutation in the human lineage,
and informs what the correct evolutionary models need to be applied in analysing a
dataset. Sites can be filtered for genotype and mapping qualities or for having a low
intra-population minor allele frequency in all populations plotted, as cited above.
This last filter is particularly important because usually only a small portion of the
polymorphic sites is informative, while most of them have frequency so low that
would result in nearly uniform columns (white or black) in the plot. As an example
only 344 out of 2463 polymorphic sites were plotted in Figure 3.1, while all sites with
a maximum within-population MAF below 0.05 were removed.

Choice of the region to be plotted

It is worthwhile to point out that Haplostrips is useful for inspecting local patterns.
Selecting a region that is too long can make the interpretation and haplotype cluster-
ing difficult, to the point where the plot loses its meaning. Consequently Haplostrips
is not optimized for large regions and the RAM usage is dependent on their dimen-
sion. Windows of around 1000 sites before the filtering steps tend to provide good
resolution, though this depends on the nature of the region that will be plotted and
on the SNP density of your dataset.

3.2.2 Calculating the Length of the Shared Track of Homozygosity

We defined the pairwise shared track of homozygosity length around a position x
(hereafter “track length” around x) as the sum of the maximum number of base
pairs to the left and right of position x until the two chromosomes differ by a base
pair. We filtered out all SNPs under 5% frequency and calculated the track length by
lexicographically sorting the chromosomes from the edge up to the base pair next
to site x and calculating the shared length between every adjacent pair [152]. For
the LCT locus, we first partitioned all sampled chromosomes into three types: the
ones carrying the derived allele in NW Europeans, the ones carrying the ancestral
allele in NW Europeans and the Han haplotypes, which all carry the ancestral allele.
We then calculated the within-type shared track length and the between-type shared
track length.
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3.2.3 Summary Statistics to detect Adaptive Introgression

According to [19], for a window of arbitrary size, let UA,B,C(w, x, y) be defined as
the number of sites where a sample C (the “bait”) from an archaic source popu-
lation (which could be as small as a single diploid individual) has a particular al-
lele at frequency y, and that allele is at a frequency smaller than w in a sample A
(the “outgroup”) of a population but larger than x in a sample B (the “target”) of
another population. In other words, we are looking for sites that contain alleles
shared between an archaic human genome and a test population, but absent or at
very low frequencies in an outgroup (usually non-admixed) population. For ex-
ample, suppose we are looking for Neanderthal adaptive introgression in the Han
Chinese (CHB). In that case, we can consider CHB as our target panel, and use
Africans as the outgroup panel and a single Neanderthal genome as the bait. If
UAFR,CHB,Nea(1%, 20%, 100%) = 4 in a window of the genome, that means there are
4 sites that are shared at more than 20% frequency in Han Chinese and at 100% Ne-
anderthal, but at less than 1% in Africans.

Another statistic introduced in [19] is Q95A,B,C(w, y), and is defined for a window
of arbitrary size, as the 95th percentile of derived frequencies in an admixed sample
B of all SNPs in that window that have a derived allele frequency y in the archaic
sample C, but where the derived allele is at a frequency smaller than w in a sample
A of a non-admixed population. For example, Q95AFR,CHB,Nea(1%, 100%) = 0.65
means that if one computes the 95% quantile of all the Han Chinese derived allele
frequencies of SNPs where the Neanderthal genome is homozygous derived and
the derived allele has frequency smaller than 1% in Africans, that quantile will be
equal to 0.65. In other words, it is a summary of the allele frequency spectrum in the
introgressed population, conditional on only looking at alleles uniquely shared with
the source population and at low frequency in the non-admixed population.

If we have samples from two different archaic populations (for example, a Nean-
derthal genome and a Denisova genome), we can define UA,B,C,D(w, x, y, z) and Q95A,B,C,D(w, y, z).
In this way we can filter for sites where the archaic sample C has a particular allele
at frequency y and the archaic sample D has that allele at frequency z. For example
we could set y = 100% and z = 0% to find alleles uniquely shared with Nean-
derthal, but not Denisova. If we were interested in archaic alleles shared with both
Neanderthal and Denisova, we could set y = 100% and z = 100%.

In [19] we use simulations to assess the power of these summary statistics to detect
AI.

3.2.4 Testing for enrichment in genic regions

We used two different Linkage Disequilibrium pruning methods. In one (called “LD-
1"), we downloaded the approximately independent European LD blocks published
in ref. [102]. For each set of high frequency derived sites, we randomly sampled
one SNP from each block. In a different approach (called “LD-2"), for each set of
high frequency derived sites, we subsampled SNPs such that each SNP was at least
200 kb apart from each other. We then tested these two types of LD-pruned SNP
sets against 1,000 SNP sets of equal length obtained permuting allele frequencies,
pruning for LD and collecting SNPs in the same ways as described above.
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3.3 Adaptive Selection: the evolution of Lactase Persistence

We applied Haplostrips to the locus responsible for lactase persistence in Europeans,
that includes the genes LCT and MCM6. Data are from 1000 Genomes phase 3 [53].
Figure 3.1 B shows a sequence that encompasses both genes: this plot allows us to vi-
sually distinguish a haplotype at high frequency in all Europeans populations, but at
very low frequency in Africans. Interestingly, the Italian Toscani population possess
a different and more variable set of haplotypes, consistent with a higher incidence
of lactose intolerance in this population. We can observe that Han Chinese carry an
almost exact copy of the North Western European haplotype at moderate frequen-
cies. However 2 out of 3 sites where they differ are rs4988235 and rs182549, which
have previously been associated with lactose intolerance [139] and are featured only
by Europeans. We thus set out to analyze more thoroughly the differences between
North Western Europeans and Han Chinese.

3.3.1 NW Europeans and Han Haplotype Pattern, Shared Length and Di-
versity

If we inspect the haplotype patterns restricting to NW Europeans and Han, as in
Figure 3.2 A, we can isolate 4 main families of haplotypes present in in both NW
Europeans and Han, plus one exclusive of Han. The most common haplotype, is
subdivided in two versions: one that carries the ancestral allele of rs4988235 (LP an-
cestral), and one with the derived allele at the same site (LP derived). The latter is
absent in Han but vastly predominant in Europe, in fact, the haplotype patterns in
Europeans at this locus are often used as the canonical example of what happens
under a selective sweep [58, 140]. However, this comparison shows that the Han
also carry a haplotype with striking similarity to the NW European population at
intermediate frequencies even though the Han haplotype is missing the two puta-
tively beneficial mutations. In addition, we can observe that these haplotypes never
recombine, in concordance with this being a region of positive selection [33, 36]. We
therefore set out to find how long this similarity region is.

One way to summarize the observed haplotype similarity between NW European
and Han individuals, and evaluate how long it continues, is by computing the hap-
lotype shared tract length at this locus, a pairwise measure that is simply the num-
ber of shared base pairs from the site of interest until a mismatch is encountered
(see Methods). Therefore, a “Derived-Derived” shared tract length is generated
from comparing two chromosomes both with the derived allele at the site of inter-
est (rs4988235, blue arrow in Figure 3.2). On the other hand, “Derived-Ancestral” is
the shared tract length generated from comparing two chromosomes, one with the
derived allele and the other with the ancestral allele at the site of interest. If on one
hand the derived allele is present only on NW Europeans, we computed the shared
tract length separately for "Han Ancestral" haplotypes and "NW European Ances-
tral" haplotypes. We found that most haplotypes with the derived allele are identical
(see Figure 3.2 B) at least within 200 kb of distance and often more than 500 kb (this is
the maximum given the 1 Mb size of the region considered). Indeed, "Derived-NW
European Ancestral" shared no similarity,as shown in Fig. 3.2 C, whereas a pro-
portion of the "Han Ancestral" haplotypes resulted similar to the putative selected
haplotype in the NW Europeans up to 100 kb of distance (see Figure 3.2D).
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FIGURE 3.2: (A) Haplotype structure at LCT and MCM6. Similar to Figure 3.1 but restricting
to 103 Han individuals and 99 NW European individuals. The red arrow points to rs4988235, the
site with the derived allele present at high frequency in NW European haplotypes and absent in Han
haplotypes. Data are from 1000 Genomes phase 3. Sample sizes are 103 Han individuals and 99 NW
European individuals. (B-D) Haplotype-sharing comparisons. The x-axis shows the one-sided
shared length, with pairwise comparisons starting at the selected locus until 500 kb to the left or right
of the locus. (Note that the length of sharing could be longer than 500 kb.) The y-axis indicates the
proportion of pairs of haplotypes in a 10-kb bin of length sharing. "Han Ancestral" is a haplotype in
the Han population which do not have the ancestral allele in the putatively selected position, “NW
European Ancestral” is the NW European haplotype with ancestral allele in the selected position, and

“Derived” is the NW European haplotype with the selected allele.

Inspecting the patterns of genetic differentiation (as measured by FST between the
NW European and Han populations) in a region of 1 Mb (see Figure 3.3) shows a re-
gion of size 200-400 kb around the putative selected site that exhibits many variants
with constant level of genetic differentiation (FST) around 0.3 that is maintained for
at least ± 100 kb (200 kb total length). Secondly, we can observe a small sequence of
100 kb withFST similar to rs4988235, therefore embedded within the NW European
LP haplotype and, next to it, a low diversity region that extends until a position
around 136.4 Mb.

These results, taken together, suggest that the haplotype background may have been
an ancestral haplotype, i.e. preceding the Han-NW European split, and that after
this split a mutation arose on that haplotype background in the NW European pop-
ulations only. Previous haplotype studies of LCT have examined haplotype lengths
and the relationship to the lactase persistence allele. [143] remarked on this observa-
tion of the similarity and frequency of selected and nonselected haplotypes (within
a 30-kb region) and hypothesized that a Central Asian haplotype (which does not
have the lactase persistence allele) may in fact be the haplotype background of the
current European selected haplotype. [140] also summarized LCT haplotypes from
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FIGURE 3.3: FST between NW European and Han populations. FST for all SNPs in the region
around rs4988235 (±500 kb; position of SNP denoted by black vertical line). Each SNP is a dot/point
with x-coordinate given by the position on chromosome 2 and y-coordinate representing the FST com-
puted according to Weir and Cockerham (1984). Blue SNPs have a minor allele frequency >0.05;
gray SNPs have a minor allele frequency ≤0.05. Diamonds (in dark blue or black) represent the 101

SNPs included by Bersaglieri et al. [140].

101 genotyped SNPs across a 3.2-Mb region, noting that the parental core haplo-
type is present in Asians, but did not make the observations described above, which
challenges the underlying assumption that the extended high-frequency haplotypes
in this locus are solely due to a selective sweep on the putatively selected lactase
persistence allele.

To understand if the haplotype similarity between populations is to be expected un-
der our current demographic out-of-Africa model [153], in [55] we simulated chro-
mosomes of length 1 Mb under the reference demographic model and applied selec-
tion on the European branch consistent with the estimated selection parameters on
LCT from other studies. The simulated statistic values were then compared with the
real ones, finding that a standard model of demographic history coupled with strong
selection parameters does not reflect the high level of shared similarity between the
selected European haplotype and a subset of the Han haplotypes. Therefore, other
scenarios for LP evolution are possible, for instance the LP Ancestral haplotype may
already have had some positive effect with respect to lactase persistence or some
other adaptive phenotype.

3.4 Candidates of Archaic Adaptive Introgression in Present-
Day Human Populations

Bringing together similar haplotypes and ordering them with respect to a reference
has been proven productive in previous work [18] where visualization of the data led
to the observation that the haplotype at high frequency in Tibetans originated from
another population, a conclusion that was not evident from statistical summaries
of the data. Furthermore, Haplostrips has been applied in a recent project [19], to
substantiate Denisovan and Neanderthal adaptive introgressions in modern human
populations.
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Chapter 3. Investigating Adaptation In Modern Humans Through Haplotype

Visualization

3.4.1 Genome wide identification of adaptively introgressed regions

To identify adaptively introgressed regions of the genome, we computed UA,B,C,D(w, x, y, z)
and Q95A,B,C,D(w, y, z) (see Methods for details) in 40 kb non-overlapping windows
along the genome, using the low-coverage sequencing data from phase 3 of the 1000
Genomes Project [53]. We used this window size because the mean length of in-
trogressed haplotypes in ref. [10] was 44,078 bp. We conditioned on observing the
archaic allele at less than 1% frequency in a non-admixed outgroup panel (A) com-
posed of all the African panels (YRI, LWK, GWD, MSL, ESN), excluding African-
Americans, and then looked for archaic alleles at high frequency in particular non-
African populations (B). We used the high-coverage Altai Neanderthal genome [10]
as bait panel C and the high-coverage Denisova genome [17] as bait panel D. We
deployed these statistics in three ways: a) to look for Neanderthal-specific AI, we
set y = 100% and z = 0%; b) to look for Denisova-specific AI, we set y = 0% and
z = 100%; c) to look for AI matching both of the archaic genomes, we set y = 100%
and z = 100%. We can see in Figure 3.4 A the 40kb regions in the 99.9% highest quan-
tiles of both the UA f r,Pop,Nea,Den(1%, 20%, y, z) and Q95A f r,Pop,Nea,Den(1%, y, z) for dif-
ferent choices of target introgressed population (Pop).

3.4.2 Inspecting candidate loci

Below we analyze in detail three candidates extracted from the outliers in Figure 3.4
A , inspecting their haplotype patterns with the help of Haplostrips. The plots in Fig-
ure 3.4 B, C, D cover continental populations that show a large number of uniquely
shared archaic alleles, and include YRI as a representative African population. The
haplotypes are clustered and ordered by similarity to the closest archaic genome
(Altai Neanderthal or Denisova).

As can be observed all these regions tend to show sharp distinctions between the
putatively introgressed haplotypes and the non-introgressed ones. This is also evi-
dent when looking at the cumulative number of differences of each haplotype to the
closest archaic haplotype, where we see a sharp rise in the number of differences,
indicating strong differentiation between the two sets of haplotypes. Additionally,
the YRI haplotypes tend to predominantly belong to the non-introgressed group, as
expected.

The most extreme example according to the U statistic is a 120 kb region containing
the LARS gene, with 76 uniquely shared Neanderthal alleles at < 1% frequency in
Africans and > 50% frequency in Peruvians, which are also at > 20% frequency in
Mexicans. LARS codes for a leucin-tRNA synthetase [154], and is associated with
liver failure syndrome [155].

Another case with an extreme U statistic, is the one containing genes OAS1 and
OAS3, involved in innate immunity [156]. This region was previously identified as
a candidate for AI from Neanderthals in non-Africans [157].

Looking at the haplotype patterns of these candidate loci in Figure 3.4 B, C, we can
appreciate that the introgressed haplotype is covering less than half of the panel
of individuals included, and is quite evenly distributed across populations of the
same continent, except for LARS in Peruvians, where is slightly enriched (this might
be related to the higher proportion of native american ancestry in Peruvians [53]).
The distance with the Neanderthal haplotype is minimal, thus giving a very high
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FIGURE 3.4: Candidates of Adaptive Introgression. (A) 40kb regions in the 99.9% highest
quantiles of both the Q95Out,Pop,Nea,Den(1%, y, z) and UOut,Pop,Nea,Den(1%, x, y, z) statistics for in-
dividual non-African populations within the 1000 Genomes data, using all African populations (ex-
cluding African-Americans) as the outgroup, and a cutoff x of 20%. We used three different symbols
for Nea-only, Den-only, and Nea-Den-shared configurations of the statistics. (B-D) Haplotype struc-
ture of three candidate regions. For each region, we applied a clustering algorithm to the haplotypes
of particular human populations and then ordered the clusters by decreasing similarity to the archaic
human genome with the larger number of uniquely shared sites (see Section 3.2.1). We also plotted
the number of differences to the archaic genome for each human haplotype and sorted them simply by
decreasing similarity. In the latter case, no clustering was performed, so the rows in the cumulative
difference plots do not necessarily correspond to the rows in the adjacent haplotype structure plots.
LARS: chr5:145480001-145520000. OAS1-OAS3: chr12:113360001-113400000. LIPA-CH25H:

chr10:90920001-90980000.

number of uniquely shared alleles (hence a very high U), but the fact that only 30%
of the individuals carry this haplotype causes Q95 to be less than extreme, resulting
in these candidates being in the left side of the plot in 3.4 A.

Another interesting candidate region contains two genes involved in lipid metabolism:
LIPA and CH25H. We find a 40 kb region with 11 uniquely shared Denisovan alleles
that are at low (< 1%) frequency in Africans and at very high (> 50%) frequency
in various South and East Asian populations (JPT, KHV, CHB, CHS, CDX and BEB).
The Q95 statistic in this region is very high across all of these populations, and we
also find this region to have extreme values of these statistics in a broader Eurasian
scan, see [19]. This is also visible from 3.4 D, where the introgressed haplotype is cov-
ering the plot nearly to its entirety. In fact, Q95, being the 95th percentile of the SNP
distribution in terms of frequency, is correlated to the frequency of this haplotype,
whereas U uses the frequency as cutoff thus having a more ambiguous interaction
with this quantity. Furthermore, with Haplostrips we can realize that the introgressed
haplotype is quite far to the Denisovan one, thus reducing the number of shared al-
leles in this region. These two facts are encapsulated in a not particularly striking
U statistic in this case. A possible cause of this distance between the bait and the
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admixed population might be the fact that the bait used here (Denisova) was not the
real source of the introgressed haplotype, but only related to it: the actual source
could be another Denisovan subpopulation, as yet unsampled. Another hypothesis
could be that the introgressed region started as neutral, accumulating some muta-
tions before that this slightly mutated haplotype became adaptive.

The LIPA gene codes for a lipase [158] and is associated with cholesterol ester storage
disease [159] and Wolman disease [160]. In turn, the CH25H gene codes for a mem-
brane hydroxylase involved in the metabolism of cholesterol [161] and associated
with Alzheimer’s disease [162] and antiviral activity [163].

It is worth to note that this analysis identified the region containing genes TBX15
and WARS2 as a very strong candidate of adaptive introgression in whole Eurasia.
This region has been associated with a variety of traits, (adipose tissue differentia-
tion [164], body fat distribution [165], skeletal development [166],...) and was previ-
ously identified as positively selected in Greenlanders [167]: this finding triggered a
separate study devoted to its analysis [168].

3.4.3 Testing for enrichment in genic regions

We aimed to test whether uniquely shared archaic alleles at high frequencies were
enriched in genic regions of the genome. We looked at archaic alleles at high fre-
quency in any of the Non-African panels that were also at low frequency (< 1%)
in Africans. As background, we used all archaic alleles that were at any frequency
equal or larger than 1% in the same Non-African populations, and that were also
at low frequency in Africans. We then tested whether the high-frequency archaic
alleles tended to occur in genic regions more often than expected.

SNPs in introgressed blocks will tend to cluster together and have similar allele fre-
quencies, which could cause a spurious enrichment signal. To correct for the fact that
SNPs at similar allele frequencies will cluster together (as they will tend to co-occur
in the same haplotypes), we performed linkage disequilibrium (LD) pruning using
two processes, see Methods for details. Regardless of which LD method we used,
we find no significant enrichment in genic regions for high-frequency (> 50%) Ne-
anderthal alleles (LD-1 P=0.706, LD-2 P=0.161) or Denisovan alleles (LD-1 P=0.348,
LD-2 P=0.192). Similarly, we find no enrichment for medium-to-high-frequency
(> 20%) Neanderthal alleles (LD-1 P=0.553, LD-2 P=0.874) or Denisovan alleles (LD-
1 P=0.838, LD-2 P=0.44).

3.5 Discussion

We presented a tool to visualize the polymorphisms of a given region of the genome
in order to reveal the haplotype structure within or across populations. We followed
briefly exposing two examples where the use of Haplostrips proved proficient.

The first was about one of the most celebrated examples of human adaptation: the
evolution of lactase persistence. Many of the insights about of this case of adaptation
come from considering the frequency of the putative selected SNP (rs4988235) that
carries the derived allele [71, 72]. However, the inspection of the genetic variation
around the putative beneficial alleles provided additional information regarding the
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adaptive history of the region, even in the case of a highly studied example such as
LCT. With Haplostrips we clearly restated that the LP haplotype in Europeans also
exists in a version carrying the LP ancestral allele, a fact previously introduced [140,
143]. The presence at a relatively high frequency and the length in an Asian pop-
ulation of such a haplotype, that triggered the subsequent analyses shown in [55],
caught our attention thanks to this visualization approach. Note that these observa-
tions would not be derivable from a haplotype network view [135], for example, as
the SNPs contributing to the haplotypes are not presented, and one cannot distin-
guish clearly between the selected European haplotype and the very similar moder-
ate frequency Han haplotype.

A second work here presented that involved the use of Haplostrips was one of the
first investigations into the joint dynamics of archaic introgression and positive se-
lection, which developed statistics that are informative of AI and found candidates
in the human genome, [19]. Here we look at both the number and allele frequency
of mutations that are uniquely shared between the introgressed and the archaic pop-
ulations. Such mutations should be abundant and at high-frequencies in the intro-
gressed population if AI occurred. In particular, two novel summaries of the data
that capture this pattern quite well have been identified: the statistics Q95 and U.
Identified candidates mostly include genes involved in lipid metabolism, pigmenta-
tion and innate immunity, as observed in previous studies [144]. Phenotypic changes
in these systems may have allowed archaic humans to survive in Eurasia during the
Pleistocene, and may have been passed on to present-day human populations dur-
ing their expansion out of Africa. Haplostrips has been used to inspect selected can-
didates, of which we report 3 cases: LARS, OAS1/OAS3 and LIPA/CH25H. Using this
visualization we were able to verify that the statistics cited above were working as
expected, identifying tracts at high frequency with strong similarity between archaic
humans and modern populations, but absent from a modern outgroup. In addition,
these plots also explained the values of these statistics in terms of haplotype struc-
ture, distinguishing which patterns could give a high U and relatively low Q95 or
vice-versa.

On a functional genomics side, with a specific focus on gene regulation, the low
spatial resolution of these phenomena and therefore analyses (40kb for each intro-
gressed window, see Section 3.4.1), make difficult to investigate anything at a sub-
gene level (average gene size in human: 10-15 kb; BioNumbers, see Web Resources).
Therefore, we tested whether uniquely shared archaic alleles at high frequencies in
non-Africans were significantly more likely to be found in genic regions, relative
to all shared archaic alleles, but did not find a significant enrichment. Though this
suggests archaic haplotypes subject to AI may not be preferentially found near or
inside genes, it may also be a product of a lack of power, or of the fact that not
all uniquely shared archaic alleles may be truly introgressed. Some of these alleles
may be present due to incomplete lineage sorting, which could add noise to the test
signal. However, in this study, we did not pursue this line of research further.

To conclude, Haplostrips can be used to conduct exploratory analyses, confirm hy-
potheses about candidate regions, or even substantiate findings in scientific publi-
cations. It can be applied in all living systems for which haploid or phased diploid
genotype datasets are available to visualize complex effects of, among others: intro-
gression, domestication, selection and demographic events. Although existing tools
already address the task of visualizing haplotypes, Haplostrips includes the ability of
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independent haplotype clustering and providing meaningful plots without sacrific-
ing the basic information encoded in the genetic sequences.
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Chapter 4

Conclusions

We started this thesis briefly reviewing the human evolutionary history. On one
hand this gives us the possibility to introduce the reader to our evolutionary history,
allowing everyone to start on common ground despite their diverse experience in
this field. On the other hand allows us to emphasize that peculiar aspects of the
evolution of our species introduce precise issues and that the study of other organ-
isms might rise different questions and complications. We briefly introduced the
modes and times through which the evolution shapes genomes, sometimes defin-
ing spheres of application of different approaches, sometimes underlining questions
that are peculiar to the human evolution as we know it, e.g: rapid radiations in the
great apes family, introgressions from archaic genomes...

Then we focused on the tools that can be used to investigate molecular evolution and
variation, underlining methodological differences necessary to study different time
scales. We mentioned the contribution that classical population genetics delivered
to today’s questions and the advantages that technological improvements granted
e.g. in the study of intra-species variation and ancient genomics.

We presented two projects at both ends of the time span that we set out to review [48,
67]. Both focus on investigating evolution at a molecular level, trying to evaluate the
effects that genetic changes might have on the human phenotype. But the most no-
ticeable take-home message form the comparison of these works come from their im-
pressive methodological differences, that come primarily because of the time-scale
that they set out to investigate. If on one end we compare reference genomes, focus-
ing on huge gaps that the alignment might reveal and completely ignoring single
nucleotide variants, on the other end we are conscious that considering only refer-
ence genomes is a serious oversight, therefore we use variation datasets and investi-
gate the traces that recombination did not already break. This comes at the huge cost
of reducing our resolution, with implications in the study of regulatory evolution.

4.1 A Focus on the Regulation of Gene Expression

In our analysis presented in Chapter 2, as well in previous literature (see Carroll [75])
we can observe how changes at a non-coding level are of paramount relevance in
explaining diversity throughout the whole vertebrate history. Nevertheless, issues
like low conservation on one end and Linkage Disequilibrium on the other, need to
be addressed properly.
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In Chapter 2 we performed a systematic investigation of the role of genomic se-
quence expansion in rewiring regulatory networks, focusing on TFBS as our regu-
latory units. The same would have needed a specific approach if transferred to the
time span studied in Chapter 3. Using the study of Structural Variations to inform
us on the insertions/deletions in the human genome we can build a phylogeny to
trace expansions, but would be much more difficult given the continuous admix-
tures among human populations, also we do not expect many highly functional
genome expansion at high frequency, even less than the human-specific ones pre-
sented in [49] and the modern human ones in [169], thus reducing our power in
finding genome wide signals. Furthermore, if we were looking for signals of se-
lection at TFBS, using the methods in Chapter 3 we would have impacted into low
resolution issues. The selected haplotype at the LCT locus in Europeans extends for
over 1 Mb, and including Asians where supposedly no selection happened, the same
haplotype extends up to 100 kb (see Chapter 3). Also introgressd haplotypes from
archaic humans have a median lenght, 44 kb [10], well over the median gene length.
Thus special methods need to be developed in order to analyze the same features at
different evolutionary scales [103–105].

4.2 Concluding Remarks

The study of molecular evolution at different scales in time and space involves the
use of different tools and approaches, which are not trivially transferable to study
the same functional features, as in the case of gene regulation analysis. I focused
on several aspects, inevitably going quickly over some others, without the expecta-
tion of being fully exhaustive. Conversely, with this thesis I tried to give a glimpse
of how diverse the approaches in evolutionary biology could be, to explain why
two working examples at both ends of the temporal and spatial scales could be so
methodologically different.
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Median expression ratios among targets of FOXA2, for different subsets of Binding Sites
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