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Suspended particles can significantly alter the fluid properties and, in particular, can modify
the transition from laminar to turbulent flow. We investigate the effect of heavy particle
suspensions on the linear stability of the Kolmogorov flow by means of a multiple scale
expansion of the Eulerian model originally proposed by Saffman (1962). We find that,
while at small Stokes numbers particles always destabilize the flow (as already predicted by
Saffman in the limit of very thin particles), at sufficiently large Stokes numbers the effect is
non-monotonic in the particle mass fraction and particles can both stabilize and destabilize
the flow. Numerical analysis is used to validate the analytical predictions. We find that in a
region of the parameter space the multiple-scale expansion overestimates the stability of the
flow and that this is a consequence of the breakdown of the scale separation assumptions.

1. Introduction

Particles transported in flow are ubiquitous in many natural environment, from protoplanetary
disks (Armitage 2011), to aerosol in the atmosphere (Shaw 2003), from volcanic eruptions
(Bercovici & Michaut 2010) to sediment transport (Burns & Meiburg 2015).

Dispersed particles are not only transported by the flow, but they exert forces on the fluid
that, depending on the mass loading, can modify the flow itself. As discovered long ago
(Sproull 1961), at high Reynolds number heavy particles can alter turbulence by attenuating
or enhancing it depending on their size and mass fraction and on the scale considered
(Balachandar & Eaton 2010; Gualtieri et al. 2017; Bec et al. 2017). In channel flow, they
can change the turbulent drag (Li et al. 2019; Ardekani et al. 2017). At low Reynolds
numbers, the presence of particles affects the stability of laminar flow and the transition
to turbulence. Indeed, as first realized by Saffman (1962), tiny particles, characterized by
small Stokes number, typically anticipate the onset of the instability while coarser ones retard
it. This intuition was later confirmed by other studies in the context of pipe (Michael 1964;
Rudyak et al. 1997) and channel (Klinkenberg et al. 2011) flows. However, in wall bounded
flows the analysis is complicated by the interaction of particles with the boundaries and by
the fact that the transition is subcritical and thus finite amplitude perturbations are required
to destabilize the flow.
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In this work we study the effects of a particle suspension on the stability of a periodic
Kolmogorov flow. This sinusoidal flow was proposed by Kolmogorov as a simple model
to understand the transition to turbulence and, after seven decades of studies, it is still a
attracting a broad scientific interest (for a recent review see, e.g., Fylladitakis (2018)). From
a theoretical point of view, it has the advantage, with respect to other parallel shear flows,
to be analytically tractable for studying its linear stability and weakly non-linear dynamics
(Sivashinsky 1985). In numerical simulations, it is widely used as a prototype of shear
flow with periodic boundary conditions which can be easily implemented in pseudo-spectral
codes. Moreover, the Kolmogorov flow can be considered as a simplified channel flow
without boundaries, since it displays a mean velocity profile which remains monochromatic
even in the turbulent regime (Musacchio & Boffetta 2014). For these reasons, analytical and
numerical studies have extended the Kolmogorov flow to the V-plane (Legras et al. 1999), to
stratified (Balmforth & Young 2002) and viscoelastic flows (Boffetta et al. 2005). We remind
that, beside the numerical and analytical studies, the Kolmogorov flow is also realizable in
experiments (Suri et al. 2014). Recently, the Kolmogorov flow has been also used to study
numerically the clustering of inertial particles (De Lillo et al. 2016; Pandey et al. 2019) as
well as the effect of an heavy particle suspension on turbulent drag (Sozza et al. 2020).
The latter numerical study has been performed by using an Eulerian approach originally
developed by Saffman (1962), valid in the limit of small volume fraction for mono-disperse
heavy particle suspensions.

In the present work we consider the laminar stationary solution of the Saffman model
forced by a Kolmogorov flow. We show that it is possible to study the stability problem
perturbatively, by exploiting a multiple-scale expansion (Bensoussan et al. 2011). The
analytical result, which extends the Newtonian one (Sivashinsky & Yakhot 1985), predicts
a rich phenomenology with both enhanced and reduced stability as a function of the control
parameters, namely the particle Stokes number and mass fraction. In particular, we confirm
the known phenomenology that tiny (coarse) particles tend to destabilize (stabilize) the flow
with respect to the Newtonian case. Moreover, we show that for coarse enough particles the
effect is non-monotonic in the mass fraction: at small mass fractions the flow is stabilized
while it is destabilized at large enough mass fractions. A similar phenomenology was
observed for neutrally buoyant particles in pipe flows (Matas et al. 2003; Agrawal et al.

2019). We compare the analytically predicted critical Reynolds number with the results of an
extended numerical investigation and we explain the observed discrepancies for some values
of the parameters with the breakdown of the scale separation assumption.

The remaining of this paper is organized as follows. In Section 2 we introduce the Saffman
model. In Section 3 we perform the linearization around the Kolmogorov base flow. Section 4
is devoted to the multiple-scale approach for the linear stability problem. In Section 5 we
discuss the dependence of the critical Reynolds number of the control parameters and
compare the analytical predictions with the numerical results. Finally, Section 6 is devoted
to conclusions.

2. Saffman model for a dusty Kolmogorov flow

We consider an Eulerian model for a dilute suspension of heavy particles with two-way
coupling introduced by Saffman(1962) long ago. The model considers a dilute mono-disperse
suspension of small, heavy, spherical particles with density d? and radius 0 transported by a
Newtonian fluid with density d 5 and viscosity `. Particle size is assumed to be much smaller
than any scale in the flow such that the particle Reynolds number is negligible. The particle
volume fraction qE = #?E ?/+ , defined in terms of the volume of each particle E ? = 4c03/3
and the number of particles #? contained in the total volume + , is assumed to be negligible



3

while the mass fraction q = qEd?/d 5 can be of order one since it is assumed d? ≫ d 5 (as
in a dilute suspensions of water droplets in air).

Within the model, the fluid density field remains constant because of the assumption of
vanishing qE and it is transported by the incompressible velocity field of the fluid phase
u(x, C). The solid phase is described by a number density field \ (x, C) = =(x, C)/(#?/+),
where =(x, C) is the local number of particles per unit volume. The normalization gives
〈\〉 = 1, where the brackets 〈[·]〉 denote the average over the volume + . The number density
field \ is transported by a compressible particle velocity field v(x, C).

For small volume fractions (qE < 10−3) the dynamics of the particle-laden flow can
be described by a two-way coupling, which takes into account the interactions between
individual particles and the surrounding flow, but neglects the interactions between particles
(collisions and friction) and the particle-fluid-particle interactions (fluid streamlines com-
pressed between particles) (Elghobashi 1994). In the two-way coupling regime, the exchange
of momentum between the two phases can no longer be neglected (Balachandar & Eaton
2010). For small heavy particles, such an exchange is mainly mediated by the viscous drag
force which is proportional to the difference between particle and fluid velocities.

The accurate modeling of the coupling between the particles and the flow is a challenging
task. In Lagrangian-Eulerian approaches based on the point-particle method, it requires
to take into account the local perturbation to the fluid due to the presence of the particle
(Horwitz & Mani 2016). The Eulerian model proposed by Saffman is based on a simplified
assumption, namely that the coupling is obtained by imposing the local conservation of
the total momentum of the fluid and particle phases. This leads to the following equations
(Saffman 1962):

mCu + u ·∇u = −∇? + a∇2u + f + q
g
\ (v − u) (2.1)

mCv + v ·∇v = −1

g
(v − u) (2.2)

mC\ +∇ · (v\) = 0 (2.3)

where g = (2/9)02d?/(d 5 a) is the relaxation time of the particles, a = `/d 5 is the kinematic
viscosity and f is an external forcing.

In the limit of very tiny particles, i.e. small g, the Saffman model reduces to the Navier-
Stokes equation for an incompressible flow with an increased density, and thus a smaller
viscosity (Saffman 1962). Indeed when g → 0 from (2.2) one has v = u. For small g one can
expand v = u + gṽ +$ (g2) and (2.2) gives, at leading order, ṽ = −(mCu +u ·∇u) +$ (g).
Substituting now v = u − g(mCu + u · ∇u) in Eq. ((2.3) one obtains that the particle
density field remains constant at leading order. Finally, using \ = 1 +$ (g) and (v −u)/g =
−(mCu + u ·∇u) +$ (g) in (2.1) gives:

mCu + u ·∇u = −∇? + a

1 + q∇
2u + f

1 + q , (2.4)

i.e. the Navier-Stokes equation for an incompressible velocity field with forcing and viscosity
rescaled by the factor (1 + q).

Remarkably, we show that the same result is also recovered in the limit of large q. Indeed,
from Eq. (2.1) one can write

u = v + g
q

1

\

(
−mCu + u ·∇D −∇? + a∇2u + f

)
, (2.5)

showing that the difference betweenu andv is of order 1/q ≪ 1. Substitutingv = u+$ (1/q)
in Eq. (2.3) implies \ = 1+$ (1/q) which, together with Eq. (2.5) in Eq. (2.2), yields Eq. (2.4)
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multiplied by (1+ q), i.e. again a Navier-Stokes equation with rescaled forcing and viscosity.
We remark that the limit of large q is physically questionable since it could violate the
assumption of negligible volume fraction. Nonetheless, it is mathematically well defined and
we will use it the following to discuss our results.

We consider the case of a monochromatic periodic forcing f = � cos( H)x̂ which
produces the Kolmogorov laminar fixed point u(x) = v(x) = U (H) ≡ * cos( H) with
* = �/(a 2) and \ (x) = 1. We remark that in general the Kolmogorov flow is a stationary
solution also for \ (x) = 6(H) with 6 arbitrary function. Nonetheless, the solution with
uniform density \ is physically the more relevant as it survives to the presence of an arbitrarily
small diffusivity.

The non-dimensional parameters of the model are the Reynolds number '4 = */(a ),
defined in terms of the amplitude of the laminar flow * and on the only characteristic
length of the flow  −1, the Stokes number (C = ga 2, defined as the ratio between the
particle relaxation time g and the viscous time ga = 1/(a 2), and the mass fraction q. In the
following, we will study the linear stability of the laminar fixed point as a function of '4, (C
and q.

We conclude this Section with a comment about the limitations of the Saffman model.
Beside the assumption of small volume fraction, in the case of turbulent flows at high Reynolds
numbers the validity of the model (2.1-2.3) is in general limited to small Stokes numbers
(C < 1. This is due to the phenomenon of caustics (Wilkinson & Mehlig 2005) which would
imply a multi-valued particle velocity field breaking the validity of the continuum description.
Nonetheless, for the specific case of the linear stability of a laminar parallel flow considered
here, in the laminar fixed point the particle velocity field is equal to the fluid velocity field,
and therefore the model is well defined for arbitrary value of (C.

3. Linear stability analysis

We study the linear stability of an infinitesimal perturbation of the basic Kolmogorov flow. To
this aim we expand Eqs. (2.1-2.3) around the laminar fixed point u(x, C) = U (H) +u′(x, C),
v(x, C) = U (H) + v′(x, C), \ (x, C) = 1 + \ ′(x, C), and obtain the linearized equations for the
perturbations:

mCu
′ +U ·∇u′ + u′ ·∇U = −∇?′ + a∇2u′ + q

g
(v′ − u′) (3.1)

mCv
′ +U ·∇v′ + v′ ·∇U = −1

g
(v′ − u′) (3.2)

mC\
′ +U ·∇\ ′ +∇ · v′

= 0 . (3.3)

We observe that, at this order, the density field becomes a passive scalar since it does not
enter Eqs. (3.1-3.2). Therefore, the evolution of \ ′ can be neglected.

A remarkable simplification of the linear stability analysis can be achieved by invoking
the Squire’s theorem for parallel flows (Squire 1933), which states that it suffices to consider
two-dimensional perturbations, since three-dimensional perturbations are more stable. From
the original formulation, the theorem has been extended to various systems, including
MHD equations (Hughes & Tobias 2001), stratified flows (Balmforth & Young 2002) and
viscoelastic flows (Bistagnino et al. 2007). In the Appendix A, we report the derivation of
the Squire’s theorem for the dusty fluid model (3.1-3.2).

In the following we will therefore consider the two-dimensional version of the linearized
equation. It is convenient to rewrite the fluid velocity fluctuation in terms of a stream
function u′

= (mHΨ,−mGΨ) and the compressible particle velocity in terms of a particle

Focus on Fluids articles must not exceed this page length
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stream function Ψ? and potential Φ? as v′
= (mHΨ? + mGΦ?,−mGΨ? + mHΦ?). In terms of

these fields the linear equations (3.1-3.2) read

mC∇2
Ψ +* cos( H) ( 2 + ∇2)mGΨ − a∇4

Ψ + q
g
∇2(Ψ−Ψ?)=0 (3.4)

mC∇2
Ψ?+* cos( H)

[
( 2+∇2)mGΨ?− 2mHΦ?

]
−*: sin( H)∇2

Φ?+
∇2(Ψ?−Ψ)

g
=0 (3.5)

mC∇2
Φ? +* cos( H)mG∇2

Φ? − 2* sin( H)
(
mGmHΦ?−m2

GΨ?

)
+ 1

g
∇2

Φ?=0 . (3.6)

For a Newtonian fluid (q = 0), the laminar solution is known to be linearly stable to
perturbations at wavenumbers larger than , and to become unstable to large-scale transverse
perturbations (i.e. in the direction G transverse to the direction of modulation I) above
the critical value '42 =

√
2 (Meshalkin & Sinai 1961; Sivashinsky & Yakhot 1985). As

discussed in Sec. 2, in the limit of small inertia (g ≪ 1) or large mass fraction (q ≫ 1)
the Saffman model recovers the Navier-Stokes equation with a rescaled viscosity a/(1 + q).
Therefore, in these limits we expect the critical Reynolds number to become '42 =

√
2/(1 +

q), i.e. the presence of tiny particles, or a large mass fraction of particles, makes the flow
more unstable.

4. Multiple scale analysis

The general dependence of the critical Reynolds number on the parameters g and q can
be obtained by a standard multiple-scale analysis (Bensoussan et al. 2011) of the linearized
equations (3.4-3.6). The main idea of the multiple-scale method is to search for a perturbation
which varies on spatial scales much larger than those of the base flow. For this purpose, beside
the small-scale variables G,H and C, the multiple scale method introduces the large-scale spatial
variables - = YG,. = YH and a corresponding slow time ) = Y2C, where the small parameter
Y is the ratio between the characteristic scales of the basic flow and the perturbation. The
relative powers of Y in the space and time variables reflect the diffusive dynamics expected at
large scales. The two sets of variables are then assumed to be independent, so that by averaging
over the small scales it is possible to obtain an effective diffusion-like equation for the large
scales, which defines an eddy viscosity. A change of sign of the eddy viscosity corresponds
to a change of the stability of the perturbation. In particular, the system becomes unstable
when the eddy viscosity becomes negative (Sivashinsky & Yakhot 1985; Dubrulle & Frisch
1991).

The choice of the multiple-scale method to study the stability of the dusty Kolmogorov flow
is motivated by the fact that in the Newtonian case (at q = 0) the most unstable perturbation
is indeed at large scale, and the multiple-scale prediction for the critical Reynolds number
is correct. For simplicity of the calculation, and in analogy with the Newtonian case, we
also assume that the most unstable perturbation is transverse, i.e. depends on the large-scale
variable - only and not on . . The validity of these assumptions for the dusty gas at q > 0
will be checked by extensive numerical simulations of the linear systems in Section 5. In
particular, we anticipate that while the transverse nature of the most unstable perturbation was
always confirmed, in certain parameters region the scale separation appears to be violated,
when this happens the multiscale approach is not providing the correct prediction.

Before proceeding, it is convenient to rewrite Eq. (3.4) in terms of a co-stream function
defined as j = Ψ + qΨ?. Such a choice allows to remove the apparent singularity of the
Stokes drag in the limit g → 0 in Eq. (3.4). Indeed, by combining Eq. (3.4) and Eq. (3.5) we
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obtain

mC∇2j + * cos( H) ( 2 + ∇2)mGj − q* 
(
 cos( H)mHΦ? + sin( H)∇2

Φ?

)

− a∇4(j − qΨ?) = 0 (4.1)

which removes the explicit dependence of (3.4) on g. The linear systems for the perturbative
analysis is hence formed by the set of equations (4.1), (3.5) and (3.6).

Following the multiple scale method, we assume a perturbative expansion of the fields:

j(-, H, )) = j0 (-, H, )) + Yj1(-, H, )) + Y2j2(-, H, ))
Ψ? (-, H, )) = Ψ?,0(-, H, )) + YΨ?,1(-, H, )) + Y2

Ψ?,2(-, H, )) (4.2)

Φ? (-, H, )) = Φ?,0(-, H, )) + YΦ?,1(-, H, )) + Y2
Φ?,2(-, H, )).

The derivative operators are transformed as mG → Ym- , mC → Y2m) . Notice that the base
flow does not depend on G and C and therefore the same holds for the perturbation. By
inserting the expansions (4.2) and the fast/slow variables decomposition into Eqs. (4.1),(3.5)
and (3.6) we obtain, at order Y0, that the zero-order fields do not depend on the fast variable,
i.e. j0 (-, H, )) = 00(-, )), Ψ?,0(-, H, )) = 10(-, )) and Φ?,0(-, H, )) = 20(-, )). At the
order Y2, the absence of secular terms requires 20 = 0.

The solvability condition is obtained by integrating Eqs. (3.5-4.1) over one period of the
fast variable H. The first non-trivial condition is obtained at order Y3 and gives a relation
among the large-scale fields

00(-, )) = (1 + q)10(-, )) . (4.3)

At order Y4, we finally get the diffusion equation for the slow field 00

2

'4
(1 + q)m) m2

-00(-, )) + a'4
(
1 − 2

'42
+ 2q + q2 − q(C

)
m4
-00(-, )) = 0 , (4.4)

which defines the eddy viscosity

a4 = a
'42

2(1 + q)

(
2

'42
− (1 + q)2 + q(C

)
. (4.5)

The critical Reynolds number is finally obtained by the condition a4 = 0 at which
the eddy viscosity becomes negative, indicating that the basic flow is linearly unstable
(Sivashinsky & Yakhot 1985; Dubrulle & Frisch 1991)

'42 =

√
2

(1 + q)2 − q(C . (4.6)

For q = 0 the critical Reynolds number predicted by Eq. (4.6) recovers correctly the
Newtonian value '42 =

√
2. Interestingly, the same value is recovered also on the neutral

curve (C = 2 + q. For (C → 0 we obtain the Saffman limit '2 =
√

2/(1 + q). For (C < 2,
Eq. (4.6) predicts a monotonic decrease of '42 as a function of q ('42 (q) 6 '42 (0))
indicating that tiny particles always destabilize the flow. On the contrary, for (C > 2 the
critical '4 depends on q in a non-monotonic way: for q < q<0G = ((C −2)/2, '42 increases
monotonically above the Newtonian value

√
2, it reaches a maximum at q<0G after which

it monotonically decreases and for q > (C − 2 it goes below
√

2. Therefore, increasing the
mass fraction particles first stabilize the flow up to a maximum then the stabilizing effect
decreases and, finally, for large enough mass fraction particles make the flow more unstable
than the in the Newtonian case. We remark that according to Eq. (4.6) the dusty Kolmogorov
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Figure 1: Critical Reynolds number (a) as a function of the Stokes number (C for different
values of q and (b) as a function of the mass fraction q for different values of (C. The
values of the parameters q and (C are reported in the legend. Solid curves denote the
multiscale prediction (4.6); symbols the numerical results; dashed lines display the

Newtonian value
√

2; dash-dotted line in panel (b) shows the Saffman limit
√

2/(1 + q).

flow should always be stable (i.e. '42 → ∞) for (C > (1 + q)2/q > 4. We will see that
this is actually an overestimation of the stability due to the fact that the main assumption of
the multiple-scale analysis (instability to large-scale perturbations) does not hold in a certain
region of the parameter space (q,(C).

5. Numerical analysis

To check the validity of the analytical result (4.6) obtained with the multiple-scale analysis,
we performed an extensive numerical study of the linearized equations in two dimensions
(3.4-3.6) by means of a pseudo-spectral method in a square domain of size ! = 2c with
periodic boundary conditions. For each set of values of the parameters q and (C in the range
0 6 q 6 6 and 0 6 (C 6 6 we have studied the stability of the system at varying the '4
number. The latter has been varied by changing the amplitude of the forcing � while keeping
fixed the viscosity a = 10−3 and the scale of the base flow 1/ . Simulations have been done
at two different resolutions, with 1282 and 2562 grid points and forcing wavenumber  = 32
and  = 64, respectively, to check finite size effects. A random initial perturbation has been
imposed to each Fourier mode (: G , :H) in the range 0 6 |k| 6  . The stability of each mode
and its growth rate is determined by the temporal evolution of its amplitude after a short
transient. The critical Reynolds number was determined by means of the bisection method
based on the total kinetic energy of the fluid.

In Figure 1(a) we plot the critical Reynolds number as a function of the Stokes number
for different mass fraction values q. At small (C, '42 is smaller than that of the single-
phase fluid ('42 =

√
2 for q = 0) and the numerical results are in agreement with the

theoretical prediction (4.6). In particular, in the limit (C ≪ 1, the critical Reynolds number
recovers the Saffman limit '42 =

√
2/(1 + q) (not shown). The critical Reynolds number

increases monotonically with (C at fixed q, eventually becoming larger than
√

2, meaning that
large particle inertia has a stabilizing effect on the flow. At a qualitative level, the physical
mechanisms of the stabilizing/destabilizing effect of the particles have been already discussed
by Saffman (1962). Particles with small (C follow the flow almost like tracers, so that their
effect is simply to increase the density of the suspension. Therefore, the dusty gas behaves
as a Newtonian flow with a reduced kinematic viscosity (see Eq. 2.4) which makes the flow
more unstable. Conversely, particles with large inertia do not follow the perturbation of the
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Figure 2: Panel (a): Non-dimensional growth rate f/(a 2) as a function of the
G-wavenumber :G at the onset of the instability '4 = '42 for (C = 4 and different values
of the mass fraction q as labeled. Panel (b): First unstable mode :2 normalized by  as a

function of q for different values of (C as labeled.

flow, but they "carry on with the velocity of the base flow" (Saffman 1962). The disturbance
has therefore to flow around the particles, dissipating its energy because of the viscous drag.
Our numerical results show that the stabilizing effect at large (C is weaker than the prediction
(4.6). In particular, the multiple-scale predicts unconditioned stability (i.e. '42 = ∞) for
(C > (1 + q)2/q, while in the numerical simulations '42 remains finite.

The behavior of '42 as a function of the mass fraction q for fixed values of (C, shown in
figure 1(b), gives further insights on the stability of the system. In agreement with Eq. (4.6),
we find that '42 is monotonically decreasing for (C 6 2 (i.e. tiny particles always destabilize
the flow). Conversely, at (C > 2 the particles at low concentration stabilize the flow while at
sufficiently large concentrations q > (C − 2 they have a destabilizing effect. It is interesting
to note that a similar non-monotonic behavior as a function of the mass loading has been
observed also for the skin-friction coefficient in Lagrangian-Eulerian simulations of inertial
particles in a vertical channel flow (Capecelatro et al. 2018). The physical mechanism of the
destabilizing effect at large q is similar to that of the case of small (C. The strong drag exerted
by the large mass fraction forces the fluid to follow closely the particle velocity (see Eq. 2.5).
As a consequence the dusty gas behaves almost as a single-phase fluid with a larger density
and therefore a smaller kinematic viscosity, which reduces its stability. From Fig. 1(b) it is
evident that the agreement between the multiple-scale result and numerical simulations is
very good for any q up to (C = 3. For (C > 4, the multiple-scale result (4.6) overestimates
the '42 for an intermediate interval of values of q around q<0G = ((C − 2)/2. Nonetheless,
also in these cases ((C = 4 and (C = 5) the multiple-scale prediction works well for small and
large values of q.

In order to understand why the multiple-scale analysis fails in predicting the correct '42
at large (C, we computed numerically the growth rate f as a function of the wavenumber : G
of the perturbation (i.e. the dispersion relation) for different values of the parameters q and
(C. In Figure 2(a) we show the dispersion relation computed at the critical point '4 = '42
for (C = 4 and three values of the mass fraction. For small and large mass fraction (q = 0.1
and q = 5) we observe that the growth rate f is a monotonically decreasing function of : G
and the unstable mode is the smallest available wavenumber :2 = :<8= ≡ 2c/!. In these
cases, the hypothesis of large scale separation is justified and indeed the predictions of the
multiple-scale analysis are in agreement with the numerical results. Conversely, for q = 1 the
curve f(: G) is non-monotonic and the unstable mode appears to be at :2 ≃ 0.3 , therefore
the instability is no more triggered by large-scale perturbations and multiple scale analysis
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denotes regions more stable (unstable) than the Newtonian flow in which '42 >

√
2

('42 <
√

2). Solid black line is the neutral curve (C = q + 2 at which '42 =
√

2. Dashed
line represents the border of the region of unconditioned stability predicted by the

multiple-scale analysis (C > (1 + q)2/q.

fails to predict the instability. Similar behaviors have been observed also for (C = 5 and
(C = 6 (not shown). To systematically investigate the region of parameters for which the
multiple-scale analysis is not expected to work we numerically studied the dependence of the
unstable (transverse) mode :2 on q and (C at '4 = '42 , shown in Figure 2(b). For (C > 4 and
intermediate values of q we found :2 ≃ 0.3 , while for (C 6 3 (not shown) we always found
:2 = :<8= in agreement with the multiple-scale assumption. By comparing Figures 2(b) and
1(b) we clearly observe the correspondence between the theoretical-numerical agreement in
Figure 1(b) and the fact that :2 ≪  .

6. Conclusions

We have investigated the linear stability of a dilute suspension of heavy particles in the
Kolmogorov flow within the Eulerian model proposed by Saffman (1962). In the absence
of particles, it is well known that the value of the critical Reynolds number '42 =

√
2 for

the stability of the laminar base flow can be obtained by means of a multiple-scale analysis.
Here we have adopted the same approach to extend the study of the linear stability to the full
parameter space of the Saffman model given by the Reynolds number '4, the mass fraction
q and the Stokes number (C. The multiple-scale prediction for the onset of the instability,
'42 =

√
2/((1 + q)2 − q(C), as a function of (C and q has been compared with the results

of numerical simulations of the linearized system. Figure 3 summarizes the main results.
Particles with small inertia ((C < q + 2, blue region) reduce the stability of the base laminar
flow. Conversely, the presence of particles with large inertia ((C > q + 2, red region) retard
the onset of the instability. The prediction of the neutral curve (C = q + 2 in which the effect
of the particles on the linear stability vanishes is confirmed by numerics. In general, we have
found that the multiple-scale analysis correctly predicts the values of '42 in a large part of the
parameter space. It correctly recovers the limit of a Newtonian flow with rescaled viscosity
a/(1 + q) both for (C ≪ 1 and q ≫ 1. Nonetheless, for large (C it overestimates '42 in an
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intermediate range of q. In particular, the region of unconditioned stability (C > (1 + q)2/q
is not observed in the numerics. By investigating numerically the dispersion relation at the
critical Reynolds number, we have found that the failure of the multiple-scale prediction is
due to the lack of scale separation between the most unstable mode and the wavenumber of
the base flow, thus invalidating the assumptions of the perturbative approach in that parameter
region. A natural extension of the present work would be to investigate the weakly non-linear
dynamics of the Kolmogorov-Saffman system and the structure of the secondary flow above
'42 (Sivashinsky 1985).

We conclude with two comments concerning the choice of the Kolmogorov base flow and
the Saffman model. The first is related to the preferential concentration of inertial particles,
which, in principle, can be observed also in laminar flow. For a parallel flow (such as
Kolmogorov one), the fixed point solution of the model has a uniform particle density field
and the infinitesimal perturbation of the density is passively transported in the linearized
dynamics. Therefore, preferential concentration does not influence the linear stability of the
Saffman model. To investigate such effects requires the choice of a different base flow.

The second concerns the relevance of our results to real-world systems. Modeling the
coupling between the particles and the fluid in particle-laden flows is a challenging task which
requires a compromise between accuracy and simplicity. The simplicity of the Saffman model
combined with that of the Kolmogorov flow allowed us to obtain an analytic prediction for
the critical Reynolds number. Our results could, in principle, differ quantitatively from those
of more refined models (e.g., Lagrangian models with accurate implementation of the two-
way coupling). Nonetheless, our work offers a qualitative benchmark for future experimental
studies and numerical simulations based on Lagrangian approaches which allow to include
additional effects, such as finite particle size or particle-particle interactions, which are not
captured by the Saffman model. The comparison between our results and those obtained by
means of more accurate models could improve our understanding concerning the impact of
such complex processes on the stability of laminar flows.
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Appendix A. Squire’s theorem for the Saffman model

We consider a generic parallel basic flow U = (* (I), 0, 0) in a three-dimensional domain.
The linearized Saffman model around the basic flow (3.1-3.2) written in non-dimensional
form is

mCu + (U ·∇)u + (u ·∇)U = −∇? + 1

'4
∇u + q

'4(C
(v − u) (A 1)

mCv + (U ·∇)v + (v ·∇)U = − 1

'4(C
(v − u) (A 2)

where '4 = */(a ) and (C = ga 2 and 1/ is the characteristic scale of * (I). We
now perform a Fourier transform in the directions G, H and C and write {u,v, ?} ={
û(I), v̂(I), ?̂(I)

}
exp(8kℎ · xℎ − 8lC), where xℎ = (G, H)) and kℎ = (: G , :H)) , with

Rapids articles must not exceed this page length
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) denoting the transpose. Introducing the notation Uℎ = (* (I), 0)) , ûℎ =
(
D̂G, D̂H

))
, and

v̂ℎ =
(
ÊG , ÊH

))
, the linearized equations in normal modes take the form

(−8l + 8kℎ ·Uℎ)ûℎ + ûI

3Uℎ

3I
= −8kℎ ?̂ +

1

'4

(
32

I2
− k2

ℎ

)
ûℎ +

q

'4(C

(̂
vℎ − ûℎ

)
(A 3)

(−8l + 8kℎ ·Uℎ)D̂I = −3 ?̂
3I

+ 1

'4

(
32

3I2
− k2

ℎ

)
D̂I +

q

'4(C
(ÊI − D̂I) (A 4)

(−8l + 8kℎ ·Uℎ)v̂ℎ + v̂I

3Uℎ

3I
= − 1

'4(C

(̂
vℎ − ûℎ

)
(A 5)

(−8l + 8kℎ ·Uℎ) ÊI = − 1

'4(C
(ÊI − D̂I) (A 6)

The linearized dynamics described by the Eqs. (A 3-A 6) is independent for each mode kℎ .
Therefore, for each mode kℎ it is possible to perform a rotation of the Fourier amplitudes of
the velocity fields ûℎ and v̂ℎ in the direction of the wave-vector kℎ by means of the following
transformation:

: G = |kℎ |, l =
:G

:G
l, '4 =

:G

:G

'4 6 '4,

DG =
kℎ ·ûℎ

|kℎ | , DI = D̂I , ? =
: G

:G
?̂, EG =

kℎ ·v̂ℎ

|kℎ | , EI = ÊI ,

(A 7)

From Eqs.(A 3-A 6) one obtains the equations for the new variables

[
−8l + 8: G*

]
DG + DI

3*

3I
= −8: G? +

1

'4

(
32

3I2
− :2

G

)
DG +

q

'4(C
(EG − DG) (A 8)

[
−8l + 8: G*

]
DI = −3?

3I
+ 1

'4

(
32

3I2
− :2

G

)
DI +

q

'4(C
(EI − DI) (A 9)

[
−8l + 8: G*

]
EG + EI

3*

3I
= − 1

'4(C
(EG − DG) (A 10)

[
−8l + 8: G*

]
EI = − 1

'4(C
(EI − DI) (A 11)

The new system of equations (A 8-A 10) is formally identical to the original one (A 3-A 6)
in which one imposes a purely two-dimensional perturbation with D̂H = ÊH = 0 and :H = 0.
Therefore, three-dimensional perturbations which are unstable at a given '4 correspond to
two-dimensional disturbance at smaller Reynolds number '4 (and at the same q and (C) with
larger growth rate (ℑ(l) > ℑ(l) > 0).
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