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Abstract

We present some essential properties of solutions to the homogeneous Landau-
Fermi-Dirac equation for moderately soft potentials. Uniform in time estimates for
statistical moments, L”-norm generation and Sobolev regularity are shown using
a combination of techniques that include recent developments concerning level set
analysis in the spirit of De Giorgi and refined entropy-entropy dissipation functional
inequalities for the Landau collision operator which are extended to the case in
question here. As a consequence of the analysis, we prove algebraic relaxation of
non degenerate distributions towards the Fermi-Dirac statistics under a weak non
saturation condition for the initial datum. All quantitative estimates are uniform
with respect to the quantum parameter. They therefore also hold for the classical
limit, that is, the Landau equation.

1. Introduction

1.1. Setting of the problem

In the ensuing pages we study the essential properties of a dilute gas satisfying
Pauli’s exclusion principle in the Landau’s grazing limit regime. More specifically,
we study the Landau-Fermi-Dirac (LFD) equation in the homogeneous setting for
moderately soft potential interactions described as

Wf,v)= QU v),  (tv) e 0,00 xR, f(0) = fin, (L)

where the collision operator Q is given by a modification of the Landau operator
which includes Pauli’s exclusion principle. This is defined as

Q) () =V, - fR W — v (v — v,)
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{ra-2rvr-ra-envs.}a, (1.2)

with the usual shorthand f := f(v), f«x := f(v4), and

72Qz
lz|?

W —vy) =|v—v"™,  T(z)=1d—

The Pauli exclusion principle implies that a solution to (1.10) must a priori satisfy
the bound

0< flt.v)<e™!,
where the quantum parameter

Qnh)3
€ =
m3p

depends on the reduced Planck constant 7 &~ 1.054 x 1073*m?kgs~!, the mass
m and the statistical weight B of the particles species; see [1, Chapter 17]. In the
case of electrons & ~ 1.93 x 107!9 « 1. The parameter & quantifies the quantum
effects of the model. The case & = 0 corresponds to the classical Landau equation.

In this paper, we are interested in moderately soft potentials, corresponding to
the case when y € (—2, 0). The main original features of this paper are:

o Itis the first systematic study of the LFD equation for moderately soft potentials,
which are a class of potentials essentially closer to the most relevant case of
Coulomb interactions than the recently studied hard potentials case, see [2].

e Pointwise bounds are obtained thanks to a variant of the De Giorgi method,
which leads to an elegant proof in which no high-order derivatives are manip-
ulated. Such L*°-estimates are actually independent of the quantum parameter
€ and yield the following pointwise lower bound

inf (1 —¢ef(t,v))>x9>0, Ve > 1, (1.3)
veR3

which plays a fundamental role in the long-time behaviour analysis.

e Stretched exponential decay towards equilibrium is recovered thanks to a careful
analysis of the constants pertaining to the moments bounds and to a complex
interpolation procedure involving a nonstandard Gronwall-like lemma; we point
out that, for soft potentials, exponential decay is not expected.

e All estimates are uniform with respect to the quantum parameter (lying in a
range fully determined by properties of the initial datum such as statistical
moments and entropy), so that the statements and proofs also hold for the
Landau equation with moderately soft potentials. This provides a new approach
for classical and novel results concerning this equation, in particular related to
the long time behaviour.
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Concerning the smallness of the parameter in the above point, let us make clear to
the reader that our approach does not resort to any kind of perturbation argument.
The smallness of e has to be interpreted rather as a saturation condition since we
need to ensure that € lies in some physical range for which the above (1.3) holds.
In particular, this restriction on the range of parameters will be needed here only
for the results regarding convergence towards equilibrium.

Before going further in the description of our results and the related literature
on the field, let us comment a little bit on the terminology we adopt and the physi-
cal relevance of our results. As far as the classical Landau equation is concerned,
the physically relevant potential interaction is the one associated to Coulomb in-
teractions, corresponding to the choice y = —3. This is well-documented in the
plasma physics literature, and has been observed for instance in [3] in the context
of the derivation of the Landau equation from a N particles system. Under such a
premise, it may appear artificial to choose the range of parameters y € (-2, 0) for
our analysis and to refer to it as “moderately soft potentials”. The choice of this
terminology is motivated by the fact that the Landau-Fermi-Dirac equation (1.10)
can be derived at the formal level from the Boltzmann-Fermi-Dirac equation in the
grazing collision limit (see [1,4,5] for details in the classical case) and, as such,
inherits the terminology in use for the Boltzmann Equation [6]. Besides the termi-
nology, the choice of the range of parameters —2 < y < 0 corresponds to a case in
which a well understood theory exists for global, non-perturbative strong solutions
of the classical (that is, when & = 0) Landau equation (such a theory exists in fact
when —2 < y < 1, cf. [7,8]). For y < —2, only weak (or H-) solutions are known
to exist [9]. Since the main bounds presented in this work are uniform with respect
to e, we expect that they cannot easily be extended to the case when y < —2,
at least using the same methods. Possible extensions of the De Giorgi approach
to derive pointwise bounds will nevertheless be the object of future work by the
authors, for models related to the Landau equation. We finally mention the recent
work [10] which deals with (1.10) for y = —3 in a framework different from ours
since the work [10] is dealing with some fixed € and is not concerned with uniform
bounds with respect to &.

1.2. Thermal equilibrium

The relevant steady state of the LFD equation is the so-called Fermi-Dirac
statistics.

Definition 1.1. (Fermi-Dirac statistics) Given ¢ > 0, u € R3,0 >0 satisfying

2

360\ 3

50 > (2) , (1.4)
47

we denote by M, the unique Fermi-Dirac statistics (see [11, Proposition 3] for
the proof of existence and uniqueness of such a function)

de exp(—be|v — M|2) . M,

M = = s
) = e exp(—balv —ul) - T+eM,

(1.5)
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with ag, be defined in such a way that

1 0
/ M (v) v dv=| ou
R} v —ul? 300

Note that M, is here a suitable Maxwellian distribution that allows us to recover in
the classical limit & — 0 the Maxwellian equilibrium.

Besides the Fermi-Dirac statistics (1.5), the distribution

1
30€)\3
_1 .
e ifjlv—ul<|—1 ,
| | <|S2|>

1
3 3
0 if|v—u|>(§)

can be a stationary state with prescribed mass o = fR3 F.(v)dv (where |S?| =
4r is the volume of the unit sphere). Such a degenerate state, referred to as a
saturated Fermi-Dirac stationary state, can occur for very cold gases (with an
explicit condition on the gas temperature). For such saturated states, the condition

Fe(v) = (1.6)

1 0
/gFe(v) v dv=| ou
R: v —ul? 300

makes the inequality (1.4) an identity which enforces

4 (56)>
30

The fact that an initial distribution close to such degenerate state makes 1 — e f
arbitrarily small in non negligible sets affects the diffusion mechanism and the reg-
ularisation process induced by the parabolic nature of (1.10). As such, the existence
of such saturated states impacts the gas relaxation towards the corresponding Fermi-
Dirac statistics in a close-to-saturation situation. It was shown in reference [2] that,
for hard potentials, explicit exponential relaxation rates exist when & € (0, ¢ &g41)
for some universal ¢ € (0, 1). One of the central results of this work is the proof of an
analogous statement for moderately soft potentials (with algebraic rates). Proving
explicit relaxation rates for ¢ = 1 remains an open problem for any potential.

& = €4yt - —

1.3. Notations

Fors € Rand p > 1, we define the Lebesgue space L! (R?) through the norm

1fllp = (/ KOl <u>de) "
R3

LR i={f 1R > R 1/l < oo},
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where (v) := /14 |v|2, v € R?. More generally, for any weight function @ :
R?> — R, we define, for any p > 1,

L (w) = {f RIS R; ||f||f,,(w) :=/R3‘f]pwdv<oo}.

With this notation, one can write for example LP@R3}) =LP ((-)S ), forp>1,s5s2>
0. We define the weighted Sobolev spaces by

WEP(R3) = {f eLIRY; af fe LR V|| < k} , with keN,
with the standard norm
1
P
1f llyer = ( > / 08 F)|” (v)* dv) :
NS 3
where B = (i1, i2,i3) € N3, |B] = iy 4 iz + i3 and 3] f = 9118205 f. For p = 2,
we will simply write HYk (R3) = Wsk ’2(R3), k € N, s > 0. An additional important
shorthand that will be used when specifically referring to moments and weighted

L2-norm of solutions is defined in the following:

Definition 1.2. Given a nonnegative measurable mapping g : R> — R*, we
introduce for any s € R,

mg(g) = / g)(v)du,  M(g) = f g2 (v)(v)* dv,
R3 R3
and
1 s 2
Eig)=m(@) + 3D, Du(oi= [ [7(0ew)| av.
R3

Moreover, if f = f(¢, v) is a (weak) solution to (1.10), we simply write

1
my(t) = mg(f(0),  Ms(0) = M (f@).  Eg(t) :=ms(0) + S (1),

and D (1) := D (f(1)).

1.4. Weak solutions for the moderately soft potential case y € (—2,0)
In the sequel we perform the calculations in the following functional framework:
Definition 1.3. Fix &g > 0 and a nonnegative fi, € L;(R3) satisfying
0 <l finllw =:65" <00 and  Sgy(fin) >0,  [H(fin)l < o0,(1.7)

where Sg,(fin) denotes the Landau-Fermi-Dirac entropy while H ( f;,) is the clas-
sical Boltzmann entropy (see Section 2.1 for precise definition).
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Forany ¢ € [0, eg], wesay that f € YVe(fin)if f € L%(R3) satisfies 0 < f < e
and

1 1 0
, f () v dv = \ fin(v) v dv = ou , (1.8)
R v R v]? 300 + olul?

and Ss(f) 2 Se(fin)'

By a simple scaling argument, there is no loss in generality in assuming that
o=60=1, u=0. (1.9)

This assumption will be made throughout the manuscript and M, will always
denote the Fermi-Dirac statistics corresponding to this normalisation.

It is important to clarify the role of the class Y. (fi,) in the sequel of the paper
as well as that of €. In all the subsequent results, the parameter g > 0 is fixed and
fin satisfying (1.7) is chosen. Then, in several results, we will consider a smaller
threshold parameter, say &, € (0, 9], and solutions f = f(¢, v) to (1.10) for all
€ € (0, &,]. Such solutions will belong to the class Ve ( fi,) and properties of such
solutions as well as various bounds for them will be derived uniformly with respect
to e € (0, &,]. We also wish to point out that, even though our analysis is performed
in the physical space R3, there is no obstruction to reformulate all our results by
considering v € R? with d > 2. The main tools used in our analysis (Sobolev
embedding, Nash inequality, etc.) would still apply to this case, yielding only in a
change of some of the threshold values &, &, appearing in the paper. For the clarity
of exposition, we restrict ourselves to the case d = 3.

We adopt the notations of [2], namely,

) Zilj
a(z) = (ai,j(z))l»,,- with a; j(z) = |z|" 2 <5i,j - ﬁ) '

bi(z) =) dkaix(z) = =2z |z,
k

c@) = fari() = -2y +3) [zl
k,l

1

2ty (R?), we define then the matrix-valued mappings o[ f]and X[ f]

Forany f € L
given by

olf1=(oi;LA1);; = (aij * ), If1=0olf(1—e /)]
In the same way, we set b[ f] : v € R3 — b[f](v) € R? given by
bilf1v) = (b % f)(v), YveR) =123
We also introduce

Blf1=blf(1—-€ef)], and ¢ [fl=cx*f
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We emphasise the dependency with respect to the parameter y in ¢, [ f] since, in
several places, we apply the same definition with y 4 1 replacing y.

With these notations, the LFD equation can then be written alternatively under the
form

0.f =V (SUIVF = BL f(1— &),
{f(t = 0) = fin. (1.10)

Definition 1.4. Consider a non trivial initial datum fi, € L%(R3) satisfying (1.7)—
(1.9) with &g > O and let € € (0, eg]. A weak solution to the LFD Equation (1.10)
is a function f : Rt x R® — R satisfying the following conditions:

(i) f € LY®RT; LyRY) NECRT, 7'(R?)),

(1) f(t) € Ve(fin) forany > 0 and f(0) = fin,
(iii) The mapping r — Se(f(¢)) is non-decreasing,
(iv) For any ¢ = ¢(t,v) € %62([0, T) x R?),

T
—/ dt/ f(t,v)orp(t,v)dv —/ fin(0)e (0, v)dv
0 R3 R3

T
:/0 dr /R%ZE,‘,J-[f(t)]f(t, v)dy, ¢, v)dv
s

3 T
+y | de | F@ o fw A =B w)bi(v — w)
i=1 70 RO

[0u 0 (1, v) — B, (2, w)] dv dw. (1.11)

Notice that, since f(¢) € Ye(fin), one has in particular 0 < f(¢) < e~ ! for any
t > 0. Since ¢ has compact support together with its derivatives, all the terms in
(1.11) are well defined.

1.5. Main results

As mentioned, we study the existence, uniqueness, smoothness, large velocity
and large time behavior of solutions to the spatially homogeneous Landau-Fermi-
Dirac Equation (1.10) with moderately soft potentials. We now present our main
results and insist that all estimates provided are uniform in the vanishing limit of
the quantum parameter €.

We start with a result regarding the existence of weak solutions.

Theorem 1.5. Let y € (=2, 0]. Consider an initial datum f;, € L§0 R3) for some
so > 2 satisfying (1.7)—(1.9) with &9 > 0. Then, for any & € (0, &q] there exists a
weak solution f to (1.10) and one has f € L (R4, Lio (R3)).

loc

The proof of this existence result can be found in Appendix B. It follows the
same lines as the proof of the analogous theorem in the hard potential case in [12].
We recall that for the classical Landau equation (that is for & = 0) the theory of
existence for the case when y < —2 (very soft potentials) is substantially different
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from the case y > —2 (moderately soft potentials) [8,9]; we do not investigate the
LFD equation with very soft potentials in this paper.

We now turn to a result of smoothness which holds uniformly with respect to
&, for any given time interval [0, T'], with 7 > 0. Uniformity with respect to T is
not obtained at this level, and is considered only in next result.

Theorem 1.6. Let y € (=2, 0). Consider an initial datum f;, € L} (R3)N L9 (R?)
for all s > 0 and some qo > 2, satisfying (1.7)—(1.9) with &y > 0. Then, for any
€ € (0, &gl, any weak solution to Equation (1.10) constructed in Theorem 1.5 lies
in L*°([0, T; L?(R3))for alls >20,q €[l,q0) and T > 0.

Moreover if the initial datum f;, also lies in Wsl’p(R3) for all s > 0 and all
p € [1, 00), any weak solution constructed in Theorem 1.5 is unique and lies in
L®([0, T1; Wy P R3)NL2([0, T1; HX(R3)) foralls >0, p € [1, 00)and T > 0,
as well as in €%%([0, T] x R3) for some a € (0,1) and all T > 0. Finally, all
the norms of f in the spaces described in this Theorem are uniform with respect to
€ € [0, o] and depend on the WSLP(R3) norms of fin as well as H( fin).

The fact that the solution f = f(, v) belongs to %9([0, T]x R3) can be used
to show that f is in fact a classical solution. The proof of this result of propagation
of regularity can be found in Appendix A, see in particular Corollary A.8. It follows
the methods used in [8] and [9]. Notice that stability (for finite intervals of time)
and consequently uniqueness can be investigated thanks to the study of smoothness
(for sufficiently smooth initial data).

It can be improved in many directions: The assumptions on initial data can be
changed (cf. the various propositions in Appendix A); Appearance of regularity
can be shown (this can also be seen in the various propositions in Appendix A);
The dependence w.r.t. time of the estimates can be obtained explicitly (and involves
only powers and no exponentials, since Gronwall’s lemma is not used), we refer to
next theorem for the use of the large time behavior for obtaining uniformity w.r.t.
time when (polynomial) moments of sufficient order are initially finite. Note that
stretched exponential moments can be considered instead of algebraic moments,
as is done in Section 6.

Concerning the long-time behaviour of the solution to (1.10), the main result
of this work can be summarised in the following theorem:

Theorem 1.7. Assume that y € (—2, 0) and consider a nonnegative initial datum
fin satisfying (1.7)-(1.9) with &9 > 0, with moreover fi, € Lg (R3) with s >
14 4 6|y |. Then, there exists &, € (0, e9] depending only on fi, through its L},—
norm such that for any € € (0, &,], any nonnegative weak solution f := f(t,v) to
(1.10) constructed in Theorem 1.5 satisfies

(1) No Saturation :

Ko = 1 — & SllP ”f(t)”OO > 0
=1
(2) Algebraic Relaxation :there exists C > 0depending only on ||fin||Lé’ H(fin)
and s such that
s—8—06|y|

He(f(D)I Me)<C (1 +1) T, 1>1,
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which implies, in particular, that

s—8—6|y|

If@) — Mellpp < V2C (A +1) T, =1
Finally, if

2
fn€ L'\®®  with r > max <2s +8 42yl S—) ,
s = 2|yl
then there exists a constant C(y, s, fin) depending on H(fi,), s, ||fi,,||L; and
||f,-n||L'! such that, for any € € (0, &,)

sup Eg (1) +sup | f ()|l < C (v, s, fin) - (1.12)
t>1 t>1

We emphasise that the constants used above do not depend on e.

Notice that it is possible to interpolate the decay towards equilibrium in L'
and estimate (1.12) in order to get a decay towards equilibrium in L?, for any
p € (1, 00), for suitable initial data.

The result of no saturation described above is crucial for the LFD equation. It
was obtained in [2] in the case of hard potentials using an indirect approach based
on the analysis of higher regularity of solutions to ensure an L°°-bound independent
of & by Sobolev embedding. In this work the approach is direct; it uses on one hand
a careful study of the L' and L? moments of the solution of the equation, and on
the other hand an original use of De Giorgi’s level set method, see Theorem 1.10
hereafter for more details. In both cases, a repeated use of the following technical
result will be made.

Proposition 1.8. Assume that —2 < y < 0 and f;, satisfies (1.7)—(1.9) with
ey > 0. For any ¢ € (0, 0], any g € Ye(fin) and any smooth and compactly
supported function ¢, there is Co > 0 (depending only on || fin | L ) such that

—/RS ey [gldv < 8 /R \V(<v>%¢<v>)\2dv

+Co(1+5ﬁ)/ d*()dv, V8§=>0. (1.13)
R3

The above inequality (1.13) has been established in [13, Theorem 2.7] with
harmonic analysis tools and study of A ,-weights. This inequality is referred to as
a §-Poincaré inequality in [13]. The proof of [13] can be applied without major
difficulty to the Landau-Fermi-Dirac context. We nevertheless provide here an
elementary proof, based in particular on Pitt’s inequality [ 14], with a slightly sharper
estimate (1.13). On the counterpart, our method seems to apply only for the range
of parameters considered here, i.e. —2 < y < 0. Related convolution inequalities
will be then established in Section 2.3 and exploited for the implementation of the
De Giorgi method in Section 4.

The aforementioned proposition plays a fundamental role in the establishment
of the following L'-L% moments estimates for the solutions to (1.10):
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Theorem 1.9. Assume that —2 < y < 0 and let a nonnegative initial datum f;,
satisfying (1.7)—(1.9) for some ey > 0 be given. For € € (0, &g], let f(t,-) be a
weak-solution to (1.10). Assume that

my(0) < o0, s >4+ |y

Then, there exists a positive constant Cy; > 0 depending on s and fi, through
mg(0), ”fin”L%y H(fin) such that

E,(t) < C; (f%+t), my(t) < Cs(141) t>0. (1.14)

Moreover; there exists 1 > 0 depending only on ||fm||L|, H(fin) and m 3y (0)
2
such that, fors > 6 + |y/|,

< B [(ﬂls)ﬁfv(”y‘”“ 201 (1 +s)2ms(0)] (1.15)

It is worth noticing that Theorem 1.9 shows the instantaneous appearance
of weighted L*-norms independent of e. Similar to hard potentials [2], we are
required to investigate simultaneously the evolution of the L' and L?> moments
through the evolution of E(f) = m(t) + %]MS () since the quantum parameter &
induces a strong coupling between the two kinds of moments. Our estimate shows
a linear time growth of the combined L' and L? moments which depends on the
moment of order s only through the pre-factor C,. Such a bound is fundamental for
the proof of the main Theorem 1.7 which combines its slowly increasing character
with an interpolation technique based upon an entropy/entropy production estimate
established in [15]. The use of such an interpolation process is typical of soft
potential cases for kinetic equations (and briefly described in [15]). Notice that
combining the relaxation result together with the aforementioned slowly increasing
bound proves, a posteriori, the uniform-in-time estimate (1.12).

In fact, to prove the no-saturation result of Theorem 1.7, the key point is the fol-
lowing pointwise estimate:

Theorem 1.10. Assume that f;, satisfies (1.7)—(1.9) with &g > 0. For & € (0, &¢],
let f(t,v) be a weak solution to (1.10). Let s > %|y| be given and assume that
fin € L; (R3). Then, there is a positive constant C depending only on s, || fin ||L%,
H (fin) such that, forany T > t, > 0,

3 3ly]
sup | f (@)l <C (1 1, M = 4) [ sup ms(t)] B (1.16)
te[ty,T) t€[0,T)

We mentioned previously that we prove Theorem 1.10 thanks to an original
use of the level set method of De Giorgi [16] which is a well-known tool for
parabolic equations, see the recent surveys [17,18], and became quite recently
efficient for the study of spatially inhomogeneous kinetic Equations [13,19]. In the
spatially homogeneous situation considered here, the method has the flavour of the
approach introduced in [20] for the Boltzmann equation, and recently extended to
the inhomogeneous framework in [21]. The implementation of the level set method
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uses a new critical parameter y = —%, which is possibly of technical nature,

but could be significant even if the physical meaning of such a threshold value
remains unclear. We also point out that, this special value y = —% is specific to the
physical dimension d = 3 and, very likely, another threshold value would appear
in dimension d # 3. If y > —% indeed, one can pick here above s = 2 so that
sup, > ms(t) < oo, and, of course, (1.16) yields a pointwise estimate for f(¢)
independent of both 7 and e, proving in a direct way the saturation property in
Theorem 1.7.

It is worth noticing that a related pointwise estimate has been obtained in the
classical case & = 0 in [13] for the range —2 < y < 0. Namely, for solutions f(¢)
to the classical Landau equation in R3, [13, Theorem 2.1] asserts that there exists
C > 0 such that

3

AR 3
f,v)<C 1+? (v)2 t>0, velR’

Clearly, our method of proof applies directly to this case and, in some sense, im-
proves the result of [13] since combining (1.16) with the uniform bound on the
moments (1.12) yields the bound

3s

_ _3
sup [| £ (1)l < c(1 St ) >0,

1>ty

This eliminates the need of the polynomial weight (v) ™ 31y , at the price of a slightly
worse estimate for the short-time behaviour (notice that since s > %|y |, we have
1= D
s=3y] 47 2

We indicate that if stretched exponential moments initially exist, then the con-
vergence towards equilibrium can be proved to have a stretched exponential rate as
well, similar to related works on the Landau equation, see for example [22]. A pre-
cise result is given in Theorem 6.10. We mention here that such a result uses again
interpolation technique between slowly increasing bounds for L' and L? weighted
estimates for the solution to (1.10) and the entropy/entropy production. The slowly
increasing bounds for moments associated to stretched exponential weights is de-
duced directly from Theorem 1.9 by exploiting the fact that we kept track of the
dependence of Cy in terms of s in (1.15).

1.6. Organization of the paper

After this Introduction, the paper is organized as follows. Section 2 collects
several known results about the Fermi-Dirac entropy and the entropy production
associated to (1.10) and solutions to (1.10). We also present in this Section the
proof of the technical result stated in Proposition 1.8 as well as some other related
convolution estimates. Section 3 is devoted to the study of both the L' and L?
moments of solutions to (1.10), culminating with the proof of Theorem 1.9. In
Section 4 we implement De Giorgi’s level set methods resulting in Theorem 1.10
whereas in Section 5 we collect the results of the previous sections which, combined
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with the study of the entropy production performed in [15], allow to derive the
algebraic convergence towards equilibrium in Theorem 1.7. We upgrade this rate
of convergence in Section 6 showing a stretched exponential rate of convergence for
solutions associated with initial datum with finite stretched exponential moments.
The paper ends with two Appendices. Appendix A is devoted to some additional
regularity estimates for solutions to (1.10) resulting in Theorem 1.6. The full proof
of Theorem 1.5 is then postponed to the Appendix B.

2. Preliminary Results

2.1. Boltzmann and Fermi-Dirac Entropy and entropy production

Recall the classical Boltzmann entropy

H(f)=/RSf10gfdv-

The Fermi-Dirac entropy is introduced as

Se(f)=—¢"! /R [ertozen +a ez —epa
=—e(HEefH)+H(1—ef)).

2.1

The Fermi-Dirac relative entropy is defined as follows: given nonnegative f, g €
LIR) with0 < f<eland0< g <el,set

He(flg) = — Se(f) + Se(g).

For the Fermi-Dirac relative entropy, a two-sided Csiszar-Kullback inequality holds
true (see [23, Theorem 3]). There exists C > 0 (depending only on & and || g|| L )
such that

lg — Mel7, < (ZfR3g(v)dv) He(gl Me) < Cllg — Mellp. (22)

The long time behaviour of the solutions of the equation will be studied using
the classical method consisting in comparing the relative entropy with the entropy
production. In our case, the entropy production is defined as

De(g) = — /1@3 Q(f)[log f(v) —log(l — & f(v))]dv. (2.3)
One can show that

De(g) = lf/ W —v) Eelglv, v dvdo,,  W(z) =|z]" 224
2 R3XR3
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for any smooth function 0 < g < e~!, with

[

algl(v, v 1= T = v) (g.(1 - Eg)Ve — g(1 - )V, )

( Vg _ Vg )
g(1—8g) g1 —€gs) ) (2.5)

M - v,) ( Vg_’ _ Vg*_) >‘
gl —eg) g«(l —egy)

=gg+(1 —€g)(1 — egy)

=0.

A thorough analysis of the link between the Landau-Fermi-Dirac entropy and its
entropy production Z, has been established by the authors in a previous contribution
[15], and we refer to the op. cit. for more details on the topic.

2.2. General estimates
One has the following result, refer to [2, Lemma 2.3 & 2.4].

Lemma 2.1. Let 0 < fiy, € LY(R?) be fixed and satisfying (1.7)~(1.9) for some
&0 > 0. Then, for any e € (0, &g], the following hold:

(1) For any f € Ye(fin), it holds that

inf / FA —ef)dv=n(fi) >0, (2.6)
oI <R(fin)

0<e<eg

for some R( fi) > 0and n(fi,) depending only on || fi, ||L% and H ( fin) but not
one.
(2) For any § > 0 there exists n1(5) > 0 depending only on || fin ||L% and H(fin)

such that for any f € Ye(fin), and any measurable set A C R3,

Y <n(5):/ J —ef)dv <. 2.7)
A

A consequence of Lemma 2.1 is the following technical result which will be used
for the study of moments.

Lemma 2.2. Let 0 < f;, € LY(R?) be fixed and bounded satisfying (1.7)~(1.9) for
some €y > 0. Let y < 0. Then, there exists n, > 0 depending only on H (fi) and
”fln”Lé such that, for any € € (0, egl and any f € Ye(fin), one has

f (1 +lv— v*|2)7 f) (1 —e fw))dvs > nu(v)?,  VveR. (28
R3

Proof. Forsimplicity, given f € Ye(fin),weset F = f(1—e f).FromLemma?2.1,

OF ::/ F(vy) dve > n(fin) > 0.
R3
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Let v € R? be fixed and define the probability measure diu over R? by

duy
u(dvy) = F(v — vy) —.
OF

We introduce the convex function ®(r) = (1 + r)%, r > 0. One has, thanks to
Jensen’s inequality,

/R} (1+|v—v*|2)

Y
2

F(vs)dv, = or / O (v (dvy)
R3

> o @ ( f Iv*lzu(dv*)> .
]R3

Now,

v, |2 i (dvy) = 1 — v, |? dv, < 2|v]? s
«|“p(dvy) = [V — vg|" F (vy) dvy < 2|0]° + s
R3 OF JR3 OF

and, since & is nonincreasing,

6+6|v|2)
OF

6
or / O (v P(dvy) > or® (2|v|2 + —) > 0r® (
R3 OF

_Y
> 1250, 7 (0)

where we used that o < 1 thanks to (1.9) and ®(r) > (2r)% for r > 1. Since
_Yr — _
0 2 > n(fin) 2" the result follows with 5, = 125 n(fin) 2" > 0. o

The following coercivity estimate for the matrix X[ f] holds. Its proof is a
copycat of [24, Proposition 2.3] applied to F' = f(1 — e f) after using Lemma 2.1
appropriately.

Proposition 2.3. Let 0 < fi, € L) (R?) be fixed and satisfying (1.7)~(1.9) for some
&y > 0. Then, there exists a constant Ky > 0, depending on H ( f;,) and ||fin||L£
but not €, such that

Vo, £ eR D EIfI) & & > Ko() (&,

ij
holds for any € € [0, eg]l and f € Ye(fin).
2.3. Convolution inequalities
We establish here some of the main technical tools used in the paper. We begin

with the proof of Proposition 1.8 stated in the introduction, which provides suitable
estimates on the zero-th order term ¢y, [g] = —2(y +3)| - |” x g.
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Proof of Proposition 1.8. Letg € Y.(fin) be fixed. For a given nonnegative ¢, set
I[¢] := —/ pPcylgldv =2(y + 3)/ v — 0.7 $% ()8 (v) dv .
R3 R3xR3

For any v, v, € ]RG, if lv—vy| < %(v), then (v) < 2(v,), and we deduce from this,
see [25, Eq. (2.5)],

— =Y (Y Y1y — o |Y
[v — ve|” <277 (V) <1{|v_v*|>(;>] 4+ (Vi) v — vy l{lv—v*|<(§'>}) . (2.9)
Thanks to this inequality, we get I[¢] < 6 - 277 (11 + I7), with
n= [ weEwe g dve < [ finlln 107620,
R3 lo—v.| >

while

b= [ w7 ewdn, [ o= val? (0 $2(v) dv.
R? lv—vsl<3 ()
Set ¥ (v) = (v)%¢(v), from which we get that

12</ <v*>‘yg<v*>dv*/ v — vl Y2 () dv.
R3 R3

Accor(iing to Pitt’s inequality which reads, in R", [, [x|7%| £ (0)|?dx < [pa €17
| f(&)|” d& forany O < & < n, [14], there is a universal constant ¢ > 0 such that,
for any v, € R3,

— 2
[e=vrvroaw= [ wrve-vpwse [ e mve] e
R3 R3 R3

where 7,, () = ¥(- — vs). Since |7, ¥ (£)] = [ (€)], we get

/ |v—v*|yw2<v>dv<c/ B 5@ e
R3 R?

C(/ (v*)_”g(v*)dv*)f €177 1 (5)17dg
R3 R3

<cllfinllpy fR E17 [9©)Pdg =: el finll 1,

This results in

I

N

where we used that —y < 2. Now, for any R > 0, we split the above integral J in
Fourier variable as

J=/ |s|*y|$<s>|2ds+/ E17Y 19 (6)1PdE = Jy + o
[§[<R |E|I=R
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On the one hand, using Parseval identity, J; < R™7 ||1/f||i2 =RV ||(~)V¢>2||L1 .On
the other hand,

Ja = / 117 1g12 9 (8)|Pde < RTCHY) / HEGI
EI=R R3

thatis, J, < R~ |Vy |2, . Thus,
T <RG0+ R-Evy |3,
and
161 < 627 | iy (14 cRIGY @10 + ¢ R V|2,

for any R > 0. This proves (1.13) with § = 6 - 2*?’||f,-n||L5cR*(2+V) =6-
22=YcR—CHY), O

An alternative version of the above estimate involving L”-norms instead of Pitt’s
inequality is given by the next Proposition, which now holds for the whole range
of parameters between (—3, 0). In the sequel, we call the parameter A € (=3, 0)
instead of y since we will apply the inequality laterto A = y, A = y + 1, etc..

Proposition 2.4. Let . > —3 and p > 1 be such that —A q < 3 where % + é =1
Then there exists C,, (1) > 0 such that

/1&3 (11" % g) We) dv

Cr@IO gl (10l + 1) eller) if 2 <0,
(2.10)

N

) gl () el if > 0.
Proof. For A > 0, the result is trivial since |v — vy| < (v) (v4) for any v, v, € R3.

Let us consider the case —3 < A < 0. We can assume without loss of generality
that ¢ and g are nonnegative. Write

I 1=/ g(0)P@)|v — v.|*dudus.
RG

Using the inequality (v) < ﬁ(v — v4)(vy), which holds for any v, v, € R3, we
get

2% g/ (v*ﬂg(v*)dv*/ v — vl (v — ) M) p(v) dv
R3 R?

= /R}(v*>”g(v*)dv*/ v — vl (v — v) M (V) o (v) dv

lv—vy|<1

4 / (o) g (v )dvs / v — vl o — v o)) d
R3 [v—vy| 21
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v=:.9 + 9.

For a given v, € R3, on the set {|v — vy| > 1}, we have [v — v,| < (v — vy) <
V2 |v = vy so that

I < 2_%/ (vi) g (vs)dv
]R3

/ (v)*p(v) dv < 2_7II<) Yol i) gl
[v—vi 21

For a given v, € R>, on the set {|[v — vy| < 1}, we have (v — vy) < < +/2. Then,
thanks to Holder’s 1nequa11ty,

/ v — v (v — v) (V) (v) dv
[v—vy|<1

-4 Ao
<2 2/ [v — v " (V) @ (v) dv
lv—vy|<1

1
_A q _
<272 ellLr (/ Iv—v*l“fdv> =2
[v—v,|<1

from which we deduce that

[STE

1
IS?1 \* .
(HM 1 llLe,

1
ISP\ _
S <2 2(3+u,) 1Y ollLe 1) gl

1
This gives the result with C,, (1) := 27 max <l, (;fi'q) q> . O

2.4. Consequences

An important first consequence of Proposition 1.8 is the following weighted
Fisher estimate. Notice that a similar result can be deduced (for a larger range of
parameters y < 0) from an alternative representation of the entropy in the spirit of
[26, Theorem 2], refer to [15] for further details.

Proposition 2.5. Let 0 < fiy € L (R3) be fixed and bounded satisfying (1.7)~(1.9)
for some eg > 0. Assume that —2 < y < Oand e € (0, &ol. Then, there is a positive
constant Cy(y) depending only on fi, through || f;, ”L; and H (fi,), such that for

all f € Ye(fin)
2
L oVFe] w7 av < o+ 2. vee .zl

Proof. Letus fix € € (0, e9] and f € YVe(fin). Recall from (2.3) that

7u(f) == [ QU [tog (1) ~log(1 — e/ @)] do
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where werecall that Q(f) = V-(X[fIVf = b[f]F),F = f(1—e f). Therefore,

Ze(f) = /11@3 (ZLFIVS = bIf1F) -V [log f(v) — log(1 — & f(v)] dv

- / (LAY S~ B F) - Lo
R3

=/ lZ[f]Vf~Vfdv+/ fV-b[f]dv. (2.11)
R3F R3

Using Proposition 2.3, because f € Ye(fin), one has

\Y K
BUIVS > 2007 VAP > 4kt |9

and, recalling V - b[ f] = ¢, [ f], we deduce from (2.11) that

2
)

2
ako [ w7 [WF@[ <z - [ etrira

Then, applying Proposition 1.8, with g = f and ¢ = /f, there is Cy > 0 such
that, for any § > 0,

2 ) 2
4K0/R3<v>y\vw<v>\ dv<%(f)+<3/RS)V(W)?«/f(v))‘ a
+c0(1+5ﬁ)/ F ) () dv.
R3

Using that

f v (5 vFw)| dv<2f W [VTw| dv+y;/ ()7 £ (v) dv,
R3 R3 R3

we can choose § > 0 small enough so that

2
2K /R3(U)V ‘Vm‘ dv < Ze(f) + Cl(V)/ﬂg}(v)Vf(v)dv 2.12)

for some positive constant C1(y) depending only on fi,. This gives the result. O

A significant consequence of the above result is the following corollary which
regards solutions to the Landau-Fermi-Dirac Equation (1.10).

Corollary 2.6. Assume —2 < y < 0 and let f;, be a nonnegative initial datum

satisfying (1.7)—(1.9) for some €y > 0. Let € € (0, &9] and f(t,-) be a weak
solution to Landau-Fermi-Dirac equation, then for 0 < t; < fp,

1) ) n
/ ‘”/Ra V70 <v>ydv<Co(y)/ (I+ Ze(f () dr.
1 f
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where Co(y) is defined in Proposition 2.5. As a consequence, there exist positive
constants Cy and Cy depending only on || fin ||L£, H(fin) so that for0 <t < 1y,

Y

® SN v))‘ dv < Co(l+12—11),

and
n
/ [OY fa )] dt <Ci(1+0—1) 0<n <. (2.13)
1
Proof. The first inequality follows by simply integrating the inequality in Propo-

sition 2.5. In order to get the second inequality, we use part (iii) of Definition 1.4,
which ensures that

15}
/ Dol O)t < Sol Me) — Ss(fi).
141
Now, on the one hand,

1
Se(Mg) = —loge —logae + 3be + ;/ log(1 4+ eMc(v)) dv,
R3

3
1 2
—f 10g(1+eM€(v))dv§/ Me(v) dv = ag (l> .
RS R3 be

On the other hand,

and

1
Se(fin) = —log(e) — H(fin) — - fR3(1 — € fin(v)) log(1 — € fin(v)) dv
—loge — H(fin).

Hence,

3
2
Se( Me) — Selfin) < —logag + 3be + ae (bl) + H(fw).

&

It follows from [2, Appendix A] that a, and b, are uniformly bounded with respect
to €. This means that Sg( M) — Se(fin) < ¢o < 00, and the second inequality
follows with 50 = Co(y) max(1, cp) independent of . To prove (2.13), we recall
that the following Sobolev inequality

lulls < Csop IVull2,  u e HY(RY), (2.14)

holds for some positive universal constant Csop > 0. Applying this with u =
( ) J/ f (¢, -) which is such that ||1,¢||L6 = [[(-)Y f(t, )|I13, one gets the result with
C 1= CSobCO- m|

One can get rid of the degenerate weight in (2.13) to get a mere L? bound. We
refer to [13, Proposition 5.2] for a complete proof.
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Lemma 2.7. Assume —2 < y < 0 and let f;, be a nonnegative initial datum
satisfying (1.7)—(1.9) for some €y > 0. Let € € (0, eo] and f(t,-) be a weak
solution to Landau-Fermi-Dirac equation. Then, there exists C > 0 depending
only on ”ﬁn”lé’ H(fin) such that for 0 < t; < 1,

5]
/ I £ )N pdt < C(1+1— 1),
141

. _ (5 3Q+lyD
holds with p = min <§ 2+3[y| ) ’

3. Moments Estimates

We study here the evolution of both L! and L2 moments of weak solutions to
(1.10). Our goal is to prove Theorem 1.9.

3.1. L'-Moments
We start with the following basic observation for the study of moments.

Lemma 3.1. Assume —2 < y < 0 and let f;, be a nonnegative initial datum
satisfying (1.7)—(1.9) for some ey > 0. Let € € (0, &g] and f(t,-) be a weak
solution to Landau-Fermi-Dirac equation. For any s > 2, one has

d
7 fR3 fe,vwYdv= _g(f.F)= _Fs1(f, F)+ Fo(f, F), (3.1

where F = f(1 — e f) and, for any nonnegative measurable mappings h, g > 0
and s > 2, we use the notations

St =2 [ [ b el (072 - 0)72)
R3xR3
<|v*|2 —(v- v*)> dv dvy,
Fuathg=ss=2 [ [ @@l - vl
R3xR3
(1P .2 = v+ 0.0%) dvdv,.
Moreover, for any nonnegative g,
S =2 [ [ sl - o w7 (007 - 02) d do.
R3xR3
Proof. For a convex function ® : RT — R™, we get from (1.10)

d
—/ f(t,v)<b(|v|2)dv=4/ dv/ F Fulv = vl? A%, vdus,
dr R3 R3 R3
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where F = f(1 —ef), and
A0 = [0 = - 00| [ @10 = &' ()]
[P = @ v0?] @ (o).

Picking ®(r) := (1 + r)%, one sees that

4/ dv/ [ Flv — vl A® (v, v)dv, = _Z(f, F).
R3 R3

Now, a symmetry argument shows that

[ [, geteu[®0P) = o] 1o vl dvav, 0.
R3xR3

that is,

Fii(g.8) =2s f/ g8 lv—val? (012 = () 2) o2 dvdos,
R3xR3

and, using symmetry again, we get

S =2 [ [ getv— v w2 - wk]a

~——————
=(v4)2—(v)?
) dv*»
which gives the new expression for Z; 1(g, g). O

Remark 3.2. According to Young’s inequality, for s > 2 one has (v)*~2(vy)? <
S2(0)" + 3 (vs)". Thus,

N

_ s—2

/ g 8|V — vy |V (v)* 2(v*>2dvdv* < —/ g glv — vi|” (V) dv du,
RO S RO

2 S

+- g 8|V — vV (vs)® dv duy

S JR6

Z/ 8 8V — vi|” (v)® dv du,
RO

where we used a simple symmetry argument for the last identity. In particular, one
sees that

/s,l(g’ g) < 0

Let us now estimate _Z,(f, F). The basic observation is the following:
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Lemma 3.3. Foranys >0, f >0, F = f (1 —¢ f),
1
Joalf Py = 5(Sea(F. P + Fui(f 1)
1
(SN = S D) = 362 S (2 .G

with
fy,l(fz,ﬂ—fv,l(f,f%=2sff F2) f (vl — v,V 2
R3xR3

(<v>s—2 - <v*)s—2) dv dv,.
Proof. This is proven by direct inspection, using that F = f(1 — e f), so that
Tsalf F) = Fia(f. ) = e Jsa(f. f2),
and also

Is1(f F) = Zs1(F, F) +e g 1(f*, F)
= S (F,F)+e 7 1(f2 ) — & 7 1(f 1.

Taking the mean of these two identities gives (3.2). Now, write for simplicity
L= Jsa(f ) = Jsalf f).
One has

I=2s / / FOF@) (F@) = f@) o=l (072 = (0)°?)
R3xR3

(|v*|2 —(v- v*)> dv dvy,
from which we deduce, by a symmetry argument, that
I= S//R3 - FO F @) (F) = F)) v — v ((0) 72 = (v)°72) dvdu,,

which gives the desired expression using symmetry again. O

We estimate separately the terms involvedin (3.2) starting with the terms _Z; | (F, F)

and Zs,1(f, /).

Lemma 3.4, If fy, satisfies (1.7)-(1.9) for some e > 0, for any & € (0. &) and
any f € Ye(fin), it holds

Is1(F, F) <2s <||ﬁn||L;/ F(v)* 2 dv — ”*/3 Fv)(v)™ du> , Vs >2,
< JR3 R
3.3)

where F = f(1 — e f) and n, > 0 is the constant in Lemma 2.2 which depends
only on || fin ”Li and H (fi,). In the same way,

Foa(f ) < 2s (nfan; /R Fr e = A FEE dv) . Vss2
(3.4)



About the Landau-Fermi-Dirac Equation 801
Proof. For f € Ye(fin) fixed, we recall that
S a(F.F) :=2s / FFoo = vl (02 ()2 = (0)?) dudo,
RO

and replace, as in [24], |v — v,|? with its regularized version (v — v, )?. This gives

SalF Py =25 [ F Fo =07 (072 (0 = o) dud,
R
+25 /6 F . (Jo = vel?” = (0= 0.07) (072 ((02)2 = (v)2) dodv.
R

(3.5)

Recall that |[v — v,V — (v —v,)” > 0. Using Holder’s inequality with the measure
du(v, vi) = F Fy (Jv — vi|” — (v — v4)") dvdvg and p = 5, g = 5 so that
1/p+1/g =1, one gets

/ FF (0= vl = (0 = 0.)7) (0) (1) dvdo,
R

s—2

s=2 2
(/ <v>fdu<v,v*>>’ (f (v*)sdu(v,v*)),
RS RS

which, by symmetry, reads

N

L PPl = = o) 2w dudo, < [ ) duco, o).
Consequently, the second term in the right-hand side of (3.5) is nonpositive. Thus,
S a(F,F) <2 /R F R =) 0 (00— 02) dudvs,
=2s /Rﬁ F Fo(v — 1) (v) % (vy)? dudu,

- 2s/ F Fo{v — vy)? (v)* dvdv,.

RO
For v € R3 fixed, one has
fR} Fie(v = v2)7 (ve)duy, < fR Fi(v)*dv, < | finll 3= 4.

whereas, thanks to Lemma 2.2, fR3 Fo(v — vi)Vdvy = 0 (v)Y. This easily gives
(3.3). One proves the result in the same way for _Z 1(f, f), noticing that the above
lower bound still holds if f replaces Fy, since fi > F. O

One can evaluate the other terms in (3.2) as presented in the following lemma.
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Lemma 3.5. Assume that —2 < y < 0 and let fi, satisfy (1.7)—(1.9) for some
eo) > 0. Lete € (0,e9]l and f € Ye(fin) be given. There is a positive constant
Co > 0 depending only on ||fin||L; such that, for any 6 € (0, 1) and any s > 2,

——/u(f /A< 5]Ds+y(f)+C052+yIMs+y(f) (3.6)

whereas,

(A1 (2 = Fea(f 1) < 258l full 3 My ()

<
< 2S||fin”]_%ms+y . 3.7

| ®

Proof. Recall that
—&? Zoa(f?. %) = 25 / PR =l )7 (07 = (02)?) dudu.
R
Neglecting the negative term and using that & f*2 < fx, we obtain

— & 7i1(f2, 5 < 2se / . F2) felv — vi” (v)* dud,. (3.8)
R

Inequahty (3.6) is obtained usmg Propos1t10n 1.8 with ¢ = f, and d)(v)

f(v) and noticing that (1 + 82+V) <26 Ty for any § € (0, 1) since m < 0.
The proof of (3.7) is obvious since (thanks to Lemma 3.3)

(A D= A )
=ées /WX FRO) f v — vy ]V T2 (( )y = <v*>s_2> dvdu,

<es / F20) f Wl = v 2 (0) 2 dv du,
R3xR3

< 2es / )" du / £ (0)7 2 dv,,
R3 R3

where we use that, since y + 2 € (0, 2), we have [v — v, |7 T2 < 2(v)7 T2 (v, )V 2.
This proves inequality (3.7) where the last inequality obviously comes from & f2 <

I o

Let us now investigate the second term _Z »(f, F) in the right-hand side of (3.1).

Lemma 3.6. Assume that —2 < y < 0. Let fi, satisfy (1.7)—(1.9) for some &g > 0,
e € 0,e9land f € Ye(fin), F = f (1 —ef) be given. Then for any s > 2,

Hs2(f, F) < 6s(s —2) /R3 Sy av. (3.9
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Proof. Let f € YVe(fin) be fixed. Recall that

Ssalf. F)i=s(s = 2)f6 fFelo = vl @y (1ol oo = - 00%) dvdu,
R
and split the integral according to [v — v,| < 1 and |v — v,| > 1. Since
0 < WP [oal? = - v < PPl

one sees that

/ f Felv — v |” ()4 (|v|2 v? — (v - v*>2) dvdu,
[v—vg] 21
< / £ E ) ol vl dvdv,
]R6

< M finllzy /R3 flu)y—2 dv:4/R3 Fw) 2 dv.

For the integral on the set [v — v,| < 1, one uses that [0]% [ve]? — (v - vy)? <
[v] [vg] v — vs]? to get

// f Fylv — vs|” (0)*™* (|v|2|v*|2—(v~v*)2) dv do,
[lv—vy|<1
<// F Fulv = 072 (0) o] |vs] dvdv,

[v—vy| <1

<[ fra / Fylveldu, |
]R3 R3

where we used that y + 2 > 0 to deduce |v — v>,<|V"’2 < 1. Since, from Young’s
inequality,

1 5 1
/R3 F*|v*|dv*<§/;§3 Fi(vy) dv*éi”fin”]‘é:z,
one deduces the result. O

We apply the previous results to solutions f (¢, v) to (1.10) to obtain the following
proposition.
Proposition 3.7. Assume that —2 < y < 0 and let a nonnegative initial datum f;,
satisfying (1.7)—(1.9) for some ey > 0 be given. For € € (0, &g], let f(t,-) be a
weak-solution to (1.10). Then, there is a positive constant C > 0 depending only
on ||f,‘n||L£, such that, for any s > 2 and é € (0, 1), there are positive constant K
which depend on s and H ( f;;) and ||f,'n||L% satisfying

d N ) s

Ems @) + szmﬂ_y () <2sK; + 7IDS+)/ (t) + Csértry MS-H/ (). (3.10)
Moreover, there exists B > 0 depending only on H( fi,) and ”ﬁ"”Li such that, for
s =3

sty
K, < B (Bs — 2752 (ﬁ) < BB 3.11)
s+y
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Proof. According to (3.1) and (3.2), one has
d
—my(0) = 3 A (F P + F(f. 1)

2
(a2 D = S D) = 5 I D + Fualf P,
with f = f(t,v) and F = f(1 — & f). One sees from (3.3)—(3.4) that

%(/S,I(F, Fy+ Zaa(f, f)) <s <||fin||L5 /R3(f+F)<v)s—zdv

_— f (F + ) () dv) ,
R3
whereas, from (3.6) and (3.7),
= (2D = S F D) < 256l finll Mgy (1) < 85D (1),

=5 At (2 £ < 5 (8Dsty (0 + Co8™7 My ().

for any § € (0, 1). Using then (3.9) to estimate _Z; »(f, F), we deduce that

S < (4 [+ P 2av—n [+ por dv)
dr R3 R3

+% (5 Dy (1) + (coaﬁ + 16) IMW(r)) +65(s — 2)my_o(0).

Since y + 2 > 0, the mapping v € R3 > 4(v)*~% — %n*(v)”” is bounded by
some positive constant Ky > 0 which depends on f;, through n,. Thus, we deduce
that

S Na
2

ims(f) + / (f + F)()™ dv
dr R3

§6 N
< 5Ky + 5 Doy (1) +5C (577 4 1) Moy (1) + 65(s = 2ms (0.

with C = max (%‘l, 8) . Again, since y > —2, up to a modification of K, we have

6(s —2)my;_»(t) < K + 'Zt—*mS_H, (#), from which we easily deduce (3.10). Let us
now explicit K. One observes from the aforementioned computations that one can
take K; = max(sup,. g #s(x), sup,. o ws(x)), where

ug(x) = 4x°"2 — %x”‘” , wy (x) := 6(s — 2)x* 2 — %x”y, x > 0.
It is clear that sup,. o us(x) = us(x) and sup,. o ws(x) = wy(X), where
1
i <8(s—2) )z+'y i (24(s—2)2)2+v
x=— , Xi=—— ,
N.(s +¥) ns(s +9)

-2 y+42 52 yt2
and consequently, sup, . us(x) = 4x° zi;—y, SUp,- o Ws(x) = 6(s —2)x° 2;’+—y.

Therefore, for any s > 3, we see that Ky = sup,.ws(x), and one checks that
(3.11) holds for some explicit 8 > O. O
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3.2. L*-Estimates

We now aim to study the evolution of weighted L?-norms of f(z, v). Keeping
previous notations, we have the lemma.

Lemma 3.8. Assume that —2 < y < 0 and let a nonnegative initial datum f;,
satisfying (1.7)—(1.9) for some €y > 0 be given. For € € (0, &g], let f(t,-) be a
weak-solution to (1.10). For any s > 0, it holds that

1d K 1 €
5 M) + TOJDW () <2(y +3) A;_%w)s <§f2 - §.f3> (117 % f) dv

+s / (v)~ (f2 - 2—€f3) (BLf1-v) dv
R3 3
+Ko(s +7)° / ST dv
R

~Z w2 v
2 ]R3
+%/ W)™ f2 Trace (B[ f]- A(v)) dv, (3.12)
R3

where A(v) = (V)2 Id+ (s —2) v®v, v € R3 and K is defined in Proposition 2.3.

Proof. As in [2], for any s > O,
o / £ 0 (v / P (EL/IVS) - VS dv
—s / F¥2EIFIVS) -vdv
R3
4 /R ) F = eIV dv
b /R BUTw 0N,

Using the uniform ellipticity of the diffusion matrix X[ f] (recall Proposition 2.3),
we deduce that

/ W) (ELFIVS) - Vf dv > Ko / W)+ (VP dv.
R3 R3

Moreover, writing

V(0T ) =T s+

from which

WP VP> % ‘V (<v>s3y f)(2 — s+ ), (G13)
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we also have

K _ 1 2 € 3 K
/R3<v> FL=efIBLAT-Vfdv = —/ﬂ@ <5f -<f )V-(b[f1<v> )dv

_ s—2 lz_f 3 )
_ sz3<v> <2f 3f)b[f]vdv

sl €3
- [Lwr (32 -50) v sina

Therefore, recalling that V - b[ f] = ¢, [ f]1 = =2(y +3)| - |” = f, we get

1d

Ky
7 Ms (@) + —"Dsy () < 2(J/+3)/ <f2 sf)(l-ly*f)dv

s / vy 2 (lf2 2€f)(b[f] v) dv
R3 2

+Ko(s +y)? / 3<v>s+y—2f2(v)dv
R

—s / 2 F (ZIFIVS - v) do.
R3

Let us investigate more carefully the last term. Integration by parts shows that

= [ @y o d==3 [ v (E[f] 0 2) do

/ v ):[f] v) dv.

Using the product rule
V(B0 20) = @2 BIf] v + Trace (E(£1- Dy (0 72)).

where Dv((v)s’2v) is the matrix with entries Bvi((v)s’zvj),i,j =1, 2,3, or more
compactly,

Dy ((v)* ") = ()’ *A),
one gets the desired inequality, recalling that B[ f] = b[f] — e b[ f 2. O
We deduce from the previous arguments

Proposition 3.9. Assume that —2 < y < 0 and let a nonnegative initial datum f;,
satisfying (1.7)—(1.9) for some &y > 0 be given. For € € (0, &g], let f(t,-) be a
weak-solution to (1.10). There exists some positive constant C( fin) depending on
”fi"”Lé and H ( fin), such that

1d

yis
IO+ 20D, 0 < CU (145 IO T AR 319

holds for any s > 0.
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Proof. We denote by I, I, I3, 14, I5 the various terms on the right-hand-side of
(3.12), i.e.

1d

Ky
2dIM(t)+ Dyyy®) <+ L+ I3+ 14 + I5,

; ; 2 1 3 1 2
and Ke control each term starting from /;. Since 0 < ¢ L2 < <3 N 517 < 517,
one has

il < (y +3) // v — vel? £, v)(0)* £ (2, vs)dvy dv,
R3xR3

so that, using Proposition 1.8 with g = f(¢) and ¢ = (-)* f2(¢), we deduce that,
forany § € (0, 1),

|| < 81Ds+y(t)+C152+yIMs+y(1)

where C1 depends on ||fin||L£. For the term I, since 0 < %fz < fz— 2{]” < f2,
it holds that

1< [ 070 B Olw
<25 [ WP 0 - w6 vdudo,
RO

Therefore, if y + 1 < 0, applying Proposition 1.8 with ¢, 11[g] instead of ¢, [g],
and g = f(t,v),¢* = ()" f2(1), we get

+1
bl <s (mw(r) +c1<1 +5§+y> Ms+y(r>),

whereas, if y + 1 > 0, one has obviously |I7]| < s]|(- )V+1f(t)||L11MA+y (t). In both
cases, for any 6 > 0,

+1
L] <s <3 Ds1y (1) + C (1 + 3%) ]Ms+y(t)> .

In the same way,

L] < % / W) £t v) B2 1) do
R3
<3 / 1 20, 0) 1BLF (1) do,
R3

since ef2 < f. Then, as before, for any § > 0, there is C; > 0 such that

+1
| < s (5 Ds1y (1) + Ci (1 + 3%) ]MH),(I)) .

For the term /s, one checks easily that, for any i, j € {1, 2, 3},

IZi 1 <20 PP s 0 AL )] < ()P,
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and
|Is| < 952/ W22, v) v — vV £ (2, vy) dudu,.
R6

One has, since y + 2 > 0,

15| < s2CUG 2N 16T 2Ol = s CUE T2 £ Ol Myt ().

Finally, it is easy to see that |I3| < Ko(s + y) Mj., (2). Overall, recalling mass
and energy conservation to estimate all the weighted L!-terms, one sees that, for
any § € (0, 1), there is some positive constant C( fi,) depending on || fin|| L) and
H(fiy) (through K() such that

35 MO+ 2D, 0 < Clfn) (57 4577 45 45557 ) My, ()
+(25 + 18Dy 4 (1) . (3.15)

For s € [0, 1], (3.15) can be rephrased simply as

d v v+l
EEIMS (t) + s+y (t) C(fm) (8 r+2 44 VH) IMS—H/ (t) + 351Ds+y (t)

and, picking § € (0, 1) such that 36 < =2, one deduces that

1d

Ko ~
@ — DM (1) + —Dyiy (1) < Cy (fin) Mgy (), s €[0,1],  (3.16)

for some positive constant CV (fin) depending only on || f;, ||L£, H(fin) and y. For

s > 1, since 25 + 1 < 3s, choosing 6 := min (112 , ) we deduce from (3.15) that
there is Cy, ( fin) depending only on ||ﬁn||L1 , H(fin) and y > 0 such that

1d

Ko 2
¥ ]M(t)+ Dyyy (1) < Cy(fin) (s +s 2+V+s+s *) My (1), t2>0.

(3.17)

From Nash inequality, there is some universal constant C > 0 such that

V(7o) L ,

which, thanks to Young’s inequality, implies that there is C > 0 such that, for any
o >0,

My () = 10T fOI2 < € ) f(t)H

My (1) < Ca™3|() f(t)IIU + aDsy (7). (3.18)

Choosing now « > 0 such that ay(fm)ot = % if s € [0,1] or Cy(fin)

_r 2 .
(s2 +s5 Hr4s+s y+3> o= % whenever s > 1, we end up with

d K yts
5 M0 + Doy (1) < Al FI
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where, according to estimate (3.17) and (3.18),

2
CS(fi") = Ca_%cy(fin) (S +s 2+7+S+ 73) s> 1

2 N\ —1
and the last choice of o« = ¢ f(‘}m) (s +s iy +s+s 7*) gives that

[l

Colfin) = CCfin) (557775 4575 )T < Cfim (14577,

since max(1, 2, === 2+y 3+y) < 2+y for any —2 < y < 0 and with C(fi;) and
C(fin) depending only on || fi, ||L% and H ( fin) but not on s. This shows (3.14). O

Corollary 3.10. Assume that —2 < y < 0 and let a nonnegative initial datum fi,
satisfying (1.7)—(1.9) for some €y > 0 be given. For € € (0, &g], let f(t,-) be a
weak-solution to (1.10). Given s € [0, 4 + |y |] there exists some positive constant
C(fin) depending on fi, only through ||fin||L%, H( fin), and such that

4]

K
M, (1) + TO/ ]Ds-&—y (D)dr < M (1) + C(fin) (2 — 1),

1

holds for any 0 < t; < t.

Proof. When VTJFS 2, it holds that ||(-) f It < |l finll L which gives the
statement after integration of (3.14). |

3.3. Short-time estimates and appearance of L*>-moments
Before trying to get global-in-time estimates for both m () and M (¢) (with a
growing rate independent of s), let us start with the following non-optimal growth
that has to be interpreted here as a short-time estimate.
Proposition 3.11. Assume that —2 < y < 0 and let a nonnegative initial datum

fin satisfying (1.7)—(1.9) for some €y > 0 be given. For € € (0, &ol, let f(t,-) be
a weak-solution to (1.10). Then, for any s > 3,

my (1) < [mxms-+CUﬁnwsq7’ 10, (3.19)

where the constant C( fi,) depends on fi, only through || finll; ! but does not depend
ons. Ifs € (2,3) (3.19) still holds for y € [—1, 0) whereas, for y € (=2, —1),

mg(t) <ms(0)+C(fin)t, 120, (3.20)

for a constant C( fi,) depending only on || fin, ||L£.
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Proof. Recall that, accordingto (3.1), ms(t) = Zo1(f, F)+ _Zs2(f, F) where,
forany s > 2,

1
Joilh Py = 5(FaF P + fui(f )
+2 (SN = A 1) S )
2 S,l 1) S,] LI 2 S,l ’ .

Recall (see Remark 3.2) that

Hsa(F, F) <0, Hsa(f. ) <0. (3:21)

We neglect such absorption terms since we are interested here in the short time
propagation of moments. We also recall that, according to (3.7),

Ia(f5 )= Zalf, [ < —||fanums+y<r> (3.22)

Now, to deal with the term _Z; | (f 2, f 2), we observe that there is ¢ > 0 (indepen-
dent of s) such that

02— 7 el = (O + D)o -wl. (23
which implies,
(02 = w2 (w02 = 027)

<els =20 = u2((0) 7 + (@) () + (v)
<3e(s = 2)[v — v P((0)* 2 4 ()* 72 fors > 3.

where we used that a* b < $=3a° "2+ b2 < a* 2+ b2 forany a, b > 0,
s > 3 in the last estimate. Usmg then a symmetry argument, this yields

~ Ia (A fH=2s A PR =l @) () = (0)?) dudo

= sf A fv = v*ly(w)s*2 - (w)”) ((v)* = (vs)?) dvdu,
R6

(3.24)

s(s —2)

<3e / Fe £ (072 4 (0)72) Jo = vl P dvdu,
RS

s(s —2)
< be T Il fin ”Lé My .

Therefore, adding estimate (3.21), (3.22), and (3.24), there is some C; > 0 such
that

Ja(fF) < Cists = Dmgiy (1), Vs >3, (3.25)

Furthermore, recall from Lemma 3.6 that

fs,Z(fv F) < Cys(s —2)ms_»(2).
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Consequently, there exists C(f;,;) > 0 depending only on || fin|| L) such that

d sty
ams(t) < C(fin) s(s — Dmgyy (1) < C(fin) s(s — D (my (1)) >,

for any + > 0 and any s > 3. This leads to (3.19) after integration. Let us now
investigate the case s € (2, 3). If y € [—1, 0), one simply uses that

(012 = 0 2) (0% = ©22) < o = 0l (0072 + @ 72) (0) + (0.))

to obtain

3
— Za (2 < s—i /R (T ) o — v dudo,
< Sl nlly mosy ().

This estimate is similar to (3.24) and yields again (3.19). For s € (2,3) and y €
(=2, —1), (3.23) implies

(072 = @ 2) (1002 = (00)2) < 265 = Dl = 02(w) + (),
which yields

s(s —2)

62
o2 (3.26)

c
Sde =g inligymsry () < 7 [ finll Ly masy )

A D < 2 /R e )+ ) o — vl dud,

We have m,y, (1) < ma(t) and m31, (t) < ma(t) since s € (2,3) and y €
(=2, —1). Consequently, adding estimate (3.21), (3.22) and (3.26) leads to

Isa(fs F) < Cima(1),

for some C; > 0 depending on ||f,-,,||L% (recall s € (2, 3)). Then,

d
ams(l) < Cima(t) + Zs2(f, F) < Crma(t) + Cors(s —2)mg_» (1)
< Cimz(0) +3Com (1) < (C1 +3C2) ma(0) =: C(fin) .

This yields the desired estimate after integration for s € (2,3) and y € (-2, —1).
O

Notice that, besides the above Corollary 3.10, one can also provide the following
appearance and short-time bounds for M (-):
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Proposition 3.12. Assume that —2 < y < 0 and let a nonnegative initial datum
fin satisfying (1.7)—(1.9) for some &y > 0 be given. For € € (0, &ol, let f(t,-) be
a weak-solution to (1.10). Assume additionally that

m -3y (0) < oo, s >4 4|yl
7
Then, there exists a constant cs( fin) such that

M(1) < es(fi) 77, 1€ (0, 7], (3.27)

with moreover,
_6
¢s(fin) < C(fin)21 [m 53 (0) + CV'} (14577) Vs> 64|y[,(3.28)

for some positive constants C( fin), Co depending only on || fin || L) and H( fi,) (but
notons).

Proof. Letus pick s > 0 and set T := % Recall estimate (3.14)

d Ko 10 )
5 M) + Dy () < Cfin) (1+s2+r>m%(1‘), 1>0,

for some positive constant C( fin) depending only on || fill ! and H(fi,). Using a
classical interpolation inequality (see (4.6) in the next section), one has

2

1O F Ol < 16T O ol \CSObmzrﬂ(t)Dm(r)m,

where we used Sobolev’s inequality (2.14). Thus,

Dsyy (1) 2 CSob m, 2: 3, () IM ().

Fors > 4—y > 44 371’, we estimate m 2,3, (t) and m sty (t) using Proposition 3.11.
7

We assume for simplicity that both @ and %~
only. This amounts to pick s > 6 + |y|. One has

are larger than 3 to use (3.19)

mas 3y (1) < 22m(mzv 3 (0) + (C(fim)ly 1252 1) 7 %)

;L3 (3.29)
<2 (masy O + (CUIY) W), 1€ O,
and, in the same way, fors > 4 — y,
N S
ey () < 2077 (my, O + (CCUIY)TT) . 1€ .7

(note thatmwy (0) < oo because ng < %). Therefore,

d 5

—M; (@) +as(fin)Ms(1)3 < kg(fin), t€(0,T5], (3.30)

dt
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where
1

I

2s
=273 C Ky 3y_ 0 +(C in ﬁ+1 ’
— fo Ko (mis, O+ (€U )T ) .

ki) = CCfin) (14537 ) 207 (2, © + (CCnly)PT).

L A
T3

The conclusion then follows by a comparison argument. Namely, introducing

£(x) = ks (fin) — as(fi)x3, x>0,

i

and ¥ = (Z‘jzr((f,fm)) one has ¢ (x) < —%4u)y3 for x > k. Fixing 1, € (0, Ty,

one has according to (3.30) that
d
EM‘v(t) < C (Ms(t)) ’ te (tn Tv)

Three cases may occur:

i) if M (%) < X, then since ¢ (x¥) < 0, one has M (¢) < x forany r > f1,,
i) if M (z,) > x and M (¢) > x for any ¢ € (¢, Ts), then one has

d S n
ML) < ¢ (M) < - (f

which, after integration, yields

M,()3, 1€t T

3
ag(fin)(t — o)

iii) if IM;(z,) > x and M (7) < x for some 7 € (z, Ty) then, setting

3
3
M; () < ( ) s et Ty).
T, :=inf{t € (t,, Ty) : M;(t) < i},
one has, as in the second point, that

-3
ag(fin)(t — 1)

Since M (T,) = x by continuity, we deduce that M(z) < x forall ¢+ > T,
In all the cases it holds that

from the first point.
3 3
M, () < max | x, (—) , t>t,,
ag(fin)(t — 1)

from which the result follows by letting z, — 0 and with

3 3
. 3 2 3 (ks(fin)\3
) _max{<as<ﬁn>> = <as<fm>> }

]Ms(t) < ( )2 ’ re (t‘kv T*)'

=]




814 R. ALONSO, V. BAGLAND, L. DESVILLETTES & B. LoDs

with ag (fin) and kg ( fin) defined in (3.31) with constant C ( f;;,) depending only on
Il finll L and H(fi,). In particular, as far as the dependence with respect to s is

concerned, we easily derive (3.28).

25s—=3y s+y
=r, 5

If min 5 ) < 3, then one has to estimate m 23, () and/or m s+y (t)
2

7
using (3.20). The same computations as before allows then to end up again with
(3.30) (with slightly different expression for kg ( fi,) and a;( fi,)) and get the result
as in the previous case. Details are left to the reader. O

3.4. Combined estimates

We now introduce
1
E(1) = m; (1) + EIMS(I)-
Combining Proposition 3.9 with Proposition 3.7, one gets

Lemma 3.13. Assume that —2 < y < 0 and let a nonnegative initial datum fi,
satisfying (1.7)—(1.9) for some €y > 0 be given. For € € (0, &g], let f(t,-) be a
weak-solution to (1.10). Then, for any s > 2, there are positive constants Ky, C1 s
which depend on s and fi, (through H( fin,) and ||f,-n||L%) such that

d Nx Ko

EEs(f) + Szmsﬂ/(t) + T6
— 10

< 25K, + Cp Mgy (0 + C(fi) (14577 )md, 0. (332)

2

Dy (1)

where C_'(ﬁn) is the constant in inequality (3.14), K was estimated in (3.11), and
— 2
Cis=Ci(s™ +5),
for some positive constant Cy depending only on fi, through Ko and || fin | L

IK?‘}, 1) and add the obtained in-
equality with (3.14) to obtain the result. We derive easily the estimate for Cj ¢

i — Ko
since, for s large enough, 56 = 2. O

Proof. We simply apply (3.10) with § = min(

We have all in hands to prove Theorem 1.9 in the introduction.

2S;3V < s, one has max

Proof of Theorem 1.9. Let s > 4 + |y|. Since

(ms(O), m2s-3y (0)) = my(0) < oo, and one deduces from Propositions 3.11
7
and 3.12 that

E(t) < Cst ™2,

1lL
~
m
~
e
+[—
A
—

with

= v Y 1
Co = [m@* + iy + e fin)
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where c;(fin) and C(f;,) are defined in Propositions 3.12 and 3.11. Since s >
4+ |y|, we use (3.19) and not (3.20). In particular, using that

M sy (0) < m ) (O)mg (0)
thanks to Cauchy-Schwarz inequality, we deduce from (3.28) that, fors > 6+ |y,
_ sty s L 6
Cy <27 (my(0) + (CUnly DIT) + Cfin)2VTm 3y Qs (0) (1 +577)

HC(fin) 2C) VT (1 4+ 5757),

Consequently, there are positive constants Cp, C; > 0 depending only on || fix |l 1
and H (f;;) such that

Cs < Co2Wms |(0)mg(0)+c7, s>6+ |yl (3.33)

where we used that 1 < m 3yl (0). Let us then focus on the evolution of E(t) for

I 2 1. We start with (3. 32) and estimate M, () and m? sy () as in the proof

of Proposmon 3.9 (see also [2, Lemma 3.5]). Namely, as seen at the end of the
proof of Prop. 3.9, there is a universal constant C > 0 independent of s such that,
forany § > 0,

Myt (1) < €537 FOIZ, + 8 Doy, (0.

Inserting this in (3.32) and choosing § > 0 such that C; 6§ = one has

32’

d . K
SE () + s Lmyiy (1) + —2D

ar 4 32 s+y (1) < 25K + é3,sm¥([)2 s

where
3
Ko\72 3 - 10

Ciy=C (32> C2A+C(fin) (1 +s2+v). (3.34)

Now, fors >4 — y,
sty y—4
my (1) < <y ()T my gy (1) = ||fm||”y ), 120,
(3.35)

where we used the conservation of mass and energy. From Young’s inequality, for
any &g > 0, one has then

) sty _sty—4
m sy (1) <||fin||L§ s ° +domsiy(@®), t>0.

Choosing now §p > 0 so that 6_‘3’380 = s%, we end up with

d Ky _
—E;(z)+s" My (1) + 22Dy (1) < C. (3.36)

32
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where

s+y—4

2
) (3.37)

v+y _sty—4 r+ 8 C3
C; =2sK; +C3s||f1nll 7 =25K, + Cal fanll 3 (— =

*

Integrating this inequality on ( ) gives

+
1 1 1
Es1) < E (T) ( —m>, 12 15

so that

3
_ -5 — _ 5 —
Es(t)gcs(%ﬂ) T4 C <G+ +Cor, 1> 1.

Proposition 3.11 gives now the second part of (1.14) for small times whereas
Proposition 3.12 and (3.36) lead to the second part of (1.14) for large times with

C; ‘= max (C_‘S, Cs(1 +s)% —i—fs) = Cy(1 +s)% +C,.

Combining (3.34) with Lemma 3.13, one sees first that there is C3 > 0 depending
only on ||fin||L% and H ( fi,) such that,

~ 5 S5 10 10
C3’S<C3<s7 + 52+ +s2+V)<2C3s2+V, s > 2.

Then, using (3.11) and (3.37), one deduces that there exists 8y > 0 depending only
on ||fin||L£ and H (fi,) such that

52 S—y _
Cs < Bo [(ﬁo )7 4 (Bys)#r O 2)“} . osz24—y

o 4+2y (s+y=2)+1

where we roughly estimate || f;,, || as B, once we notice that WTV <

4 +2 ; Y (s4+y —2) + 1fors >4 — y Combining these estimates with (3.33) and

s—2
because v < 4 +2y Y (s +y —2) fors > 4 — y, one deduces easily the estimate

(1.15). O

Remark 3.14. Of course, if fi, is actually belonging to L; ®3 N Lf(]R3), then
E;(0) < oo and one deduces after integration of (3.36) that

E;(t) < E;(0) +Cst, t=0.

The above result shows the linear growth of both the L'-moments and L?-moments.
Actually, itis possible to sharpen the above estimates (for small s) with the following
proposition.

Proposition 3.15. Assume that —2 < y < 0 and let a nonnegative initial datum

fin satisfying (1.7)—(1.9) for some &y > 0 be given. For e € (0, &gl, let f(t,-) be

a weak-solution to (1.10). Then, for any s € [0, 8+3V =],
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(D) if fin € L?(R3), there is a positive constant Cy, depending only on ||f,~,,||L5,
H(fin) such that

(3.38)

sup £ ()l = sup | ()?
>0 >0

(2) There are constants Cy i, and Ci depending only on || finll i’ and H (fi) such
that for any t > 0,

= C in
M, (1) < max (Ci,,, 0. ) (3.39)
t2

Proof. Let us pick s € [0, @]. In light of estimate (3.14), since S“;y < 2, we

have that
1d
2 dt

for some positive constant K (fin) depending only on fi, through || fiyll L and

M0 + D5 1) < Cn) (14577 ) ISl < K, 10,

H (f;). Arguing exactly as in the proof of Proposition 3.12, Equation (3.30) but
with m 23, < ||fin||L%, one deduces that
s

d
S0 + ki, ()3 <2K(fin). >0, (3.40)

4

-1
where we set ki, = Ko <4 C éob | finl Zl ) . The first point follows then by a simple
2

comparison argument choosing Cizn = max ((2%“{‘“))5 , M (0)), whereas the
second point is obtained exactly as in the proof of Proposition 3.12. O
The following corollary is a simple consequence of Proposition 3.15:

Corollary 3.16. Assume that —2 < y < 0 and let a nonnegative initial datum fi,
satisfying (1.7)—(1.9) for some €y > 0 be given. For ¢ € (0, &g], let f(t,-) be a
weak-solution to (1.10). Then, there exists a positive constant C( fi,) depending
only on ||f,-n||L5 and H( fi,) such that

L)1) < C(fin) (v >ma*<°’1+y>(1+z—%), Vo eR3, 1>0.(341)

Proof. Recall that

IbLf (D) =2 ‘/RS(U —v)lv — vl " £ (7, vi)duy

< 2/ v — v £ (2, ve)dus
R3

I+y

1
If 1 +y > 0, one notices that [v — v, |77 <272 2 ()17 (0,) 117 50 that

BLFOIW)] < 277 () myy (1) < Tynfanl Y, (3.42)
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since 1 +y < 2. Let us now investigate the case 1 4+ y < 0. One splits the integral
defining b[ f (¢)](v) according to |[v — v«| < 1 and |v — v,| > 1. One has then,
thanks to Cauchy-Schwarz inequality,

[BLf (D) < 2/ f (@, vi)dvs + 2/ v — v (2, v dy
R3 [lv—vy|<1
1

2
2Ol + 20 f Ol (fl |v—v*|2”+2dv*)

v—vy|<1

Noticing that
1
f v — v, | P2du, = |SZ|/ P24 <00, 24y >0,
[v—vy|<1 0

is independent of v, one gets

BLFOIWI < C(IF Ol +1F O 2) (3.43)

for some universal positive constant C > 0. We deduce then (3.41) from the
conservation of mass and Proposition 3.15. O

Estimate (3.41) implies of course that sup, > IBLf ()] - v] < C(fin) (v)max(1.24y)
Additionally, we need the following estimate:

Lemma 3.17. Assume —2 < y < 0. There exist two constants cg, c; > 0 depend-
ing only on y such that, for any nonnegative g € L%ﬂ/ (R3)

[blg] - o] < cotw)’2lgly, —er(v)ey[glw), (3.44)

where we recall that —c,, [g](v) = 2(y + 3) fR3 v — vi|¥ g(vy)dvy > 0.

Proof. Let$§ > 0 be given. One writes
blgl-v =2 [ v u)lo = vl glwd,
R‘

= —/3 [ = vl gw) (J0 = val? + [0 = [v,]?) v,
R

Since | [v]? — [vs*] < 5lv = val® + 310+ val? < S — val? + o], we get

5
blg] - vl < 5 f v — val" T2 g(vy)dus + 4(v)? / v — vsl” g (ve)dus,
R3 R3

which gives the result using that

v+2
v — v "2 <27 ()P )2, for —2 <y <0,

and recalling the definition of ¢, [g]. O
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4. De Giorgi’s Approach to Pointwise Bounds
We introduce, as in [20], for any fixed ¢ € (O, %),

fet,v) == (ft,v) — 0, £t v) = folt,v)l{f>g).

To prove an L bound for f (¢, v), one looks for an L2 -bound for fe. We start with
the following estimate.

Lemma 4.1. Assume that —2 < y < 0 and let a nonnegative initial datum fi,
satisfying (1.7)—(1.9) for some €y > 0 be given. For € € (0, &g], let f(t,-) be a
weak-solution to (1.10). There exist co, Co > 0 depending only on || fi || L) and

H( fiy,) such that, for any £ € (0, %),

1d y 2
S I +cofR3 v (Wi w)| @ "
< Col(VE £ I, — /H% L1 £ vy,

Proof. Given € € (0, ), one has 3 (f;")* = 2,0, f;7 = 20, f and V f; =
1>V [, so that

1d
Eallff(t)lliz = —/R3 ZVf~Vfg+dv+/R3 f(L—ef)blf1-V [ dv
:-/Szvﬁ.vﬁdw/ f(L—ef)blf1-Vf, dv.
R R3

Now, one easily checks that

FA=eNVEE =Lipsn (A =NV +L0 -V
= (1 =20 f; VT =DV +e -0Vt

= =0V = SV + L1 —EOVf
Therefore,
Lo +f VSTV
2dr 7t L R3 e e
— (-0 /R BV
+£(1 —éﬁ)/ blf1-Vf dv— ff BLf1- V(£ dv
R3 3 R3
— (=50 [ el P a =t =30 [ elfiffa

+ / e, LF1(fH)? dv.
]R3



820 R. ALONSO, V. BAGLAND, L. DESVILLETTES & B. LoDs

Using that % — &l > 0 and —c¢,[f] > 0, we deduce from Proposition 2.3 and
Proposition 1.8 with ¢ = f;r and § > 0 small enough that there exist positive
constants cg, Co depending on || fin || L and H ( f;;) such that

d
zallff(t)lliz +co /R3<v>y IV @) dv

<G OR—¢ [ olf1ff .

Notice that, using again inequality (3.13), we can replace easily the above with
(4.1) with a different (but irrelevant) choice of cq, Cp. |

Inspired by De Giorgi’s iteration method introduced for elliptic Equations [16],
the crucial point in the level set approach of [20] is to compare some suitable energy
functional associated to f;r with the same energy functional at some different level
fk+. The key observation here is that, if 0 < k < ¢, then

0< f,F < £, and 10 < Zi.
Indeed ontheset{f; > 0},onehas f > ¢ > k,sothat f,:“ =f—k= f;—l—(ﬂ—k)
and z == ka + 1 > 1. In particular, for any « > 0, we deduce that
L0 = (Lig>0)" < (Eff k) :
which, since f; < fk+, gives
fr<e—-0"(H" vaz0, 0<k<e 4.2)

On this basis, we need the following interpolation inequality where the dependence
of ff with respect to time is omitted hereafter:

Lemma 4.2. Assume that —2 < y < 0 and let a nonnegative initial datum fi,
satisfying (1.7)—(1.9) for some &y > 0 be given. For ¢ € (0, &), let f(t,-) be a
weak-solution to (1.10). There exists C > 0 (independent of € and f;,) such that,

forany O < k < £, one has
Y 2
M CE]

Moreover, for p € [1, 3), there is Cp, > 0 such that,

17022

105 fHI2, < Ce—k73

4.3)

2

| y 2 2_
167 e < Cpe =™ | (OF )| L IR T o<k < (44

Finally, for any q € (3, 3 ) there is ¢, > 0 such that

2 Cq $—q 2¢-% z 2
15 < e 11 R [V (0 )] osk<e @)
. _ 3y _é
with s = -3 > 2V
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Proof. The proof is based on the interpolation inequality

1 gller < I gl 1) gl (4.6)
with
1 0 1-0

-=2+ . a=60a+(1—0)a, 60¢(0,1).
r ri ry

Moreover, for the special case r; = 6,1 = 2, a1 = % and r € (2, 6), thanks to
Sobolev embedding, the identity will become

10l < o v (%)
3-26

6
With these tools in had, one has for 0 < k < £ and r > 2, writing r = 2 + 2« with
4.2),

1()%2gll!5?,
4.7

a=05+(1—9)a2, 0 e(,]1), re(2,6).

1_
- =

O = /R3<v>y<f;(t, v))* dv
< -ty / O ) o

R
= (=0 £

so that (4.7) gives, witha = £,

r

r(1-6)

v y ré _
10571 <c—o~2 v (0E o)) loe e ™,

with 6 = @ and ap = %%. One picks then r = ? so that ¢ = 0 and
rf = 2, to obtain (4.3). One proceeds in the same way to estimate ||(-)” f£+||€p.

Namely, for r > p,

167 £ < €=~ [0 7|

yp

and, with » > 2p, imposing in (4.7) a, =0 and a = =5, we get 6 = 27" and

Y

1Y £12, < Cce—ky=CP) Hv( Ly )

r—2p

A

which gives (4.4) whenr =2 + 2 (notice that r > 2p since p < 3).
Let us now prove (4.5). Let us con51der first g > 2 and use (4.6). One has

llglle < II(')‘YgII ||g|| {-}2 gIILb,
with 6; > 0 (i = 1, 2, 3) such that

Oi+0+0=1  s0+0-0,+26=0, THate=g
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Imposing g3 = 2, this easily yields

, 10 o o(, 8 3y (810
= —_— . = _— - . S = — .
T A G 0-3 1°\373

Using Sobolev inequality, this gives, for any g € (%, %), the existence of a positive
constant C > 0 such that

2 3y
, s = — .
L2 10 — 3¢

L 2(g-%) z
el <Clerelf Nelhs > [v (05 g)]

Using then (4.2), for any ¢ > 2, one has || f,"]17, < (¢ —k)*7 7| £}, for
0 < k < £, and the above inequality gives the result. O

Let us now introduce, for any measurable f := f(¢t,v) > 0 and £ > 0, the
energy functional

We have then the fundamental result for the implementation of the level set analysis.

1 2 ! 2 2
(T, Ty) = sup (5 7Ol +eo [ |v(0F o)) e
1e[Ty,T2) i L
0T <71

Proposition 4.3. Assume that —2 < y < 0 and let a nonnegative initial datum f;,
satisfying (1.7)—(1.9) for some €y > 0 be given. For € € (0, &g], let f(t,-) be a
weak-solution to (1.10). Then, for any p, € (1,3) and any s > %|y|, there exist
some positive constants C1, Co depending only on s, || fin ”Lé and H ( f;,) such that,
forany timesO < T1 <Th < T3and 0 < k < ¢,

vl

y s Ss+3y
RS |: sup my(t) | G (T1,T3) >

(T, T3) <
T€[T,T3]

1

12 _2 1
+C1 (G (T, T3) 7y 72 (b —k) 7r °

2 _ 2 5]
x(Z—i—[(Z—k)PV e -y

&(Th, Tz) ) (4.8)

Proof. Letus fix 0 < T1 < T> < T. Integrating inequality (4.1) over (t1, 1), we
obtain that

n % 1
—||fg )13 +Co/ [9()2 £ ()] 72de < Enf;(n)niz

n
123 v n
4o [0 @ =t [ Car [ e £ o
f 1 3

Thus,if T1 < 11 < T» < 1 < T3, one first notices that the above inequality implies
that

n Y 1
S @I + co / V()% £ @) e < 517 @I
T
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t Y %]
+@/ MﬁﬁﬁﬂLM—eﬁ<hAfﬂﬂumn7mvmu
1

T
and, taking the supremum over #, € [T», T3], one gets

1 T
&mJ»<ﬂﬁ%M;+@/nwﬂWm@m

T,

T
—E/ 3dz/ ¢, [f1(t,v) £ (x,v)dv, V4 € [T, Tal.
T R3

Integrating now this inequality with respect to #; € [7T1, T>], one obtains

1 I T3 Y
E(Ty, T3) < —— n%w2m+@/|MT+mwm
(T, T3 2= S (@)ll72dn , S 12

T
—z/ 3dr/ ¢y [f1(z,v) £,5 (z,v) dv.
Ty R3

Therefore, applying Proposition 2.4 withA =y < 0,g = fand ¢ = f;r, we see
that

1 T3 5 T3 y 5
(T, T3) < m/ﬂ I3, de —I—C()/T )2 fF (7, de

1

T3

-qumaﬁ|mHWmmw
%

qumaﬁ|mWﬂmWMn (4.9)
1

for p, > 1 such that —y g, < 3, where ot = 1. Notice that, since y €

(=2,0), any p, € (1, 3) is admissible. We resort now to Lemma 4.2 to estimate
the last three terms on the right-hand side of (4.9). Applying (4.3), one first has

TR
12 ” Jx (T>Hiz dz

T3 T3
[t oie <ce-p [Ty (0f o)
T T

2
dr.
L2

< s ]nf;(t)nfz [T T [v(0fr)

T (= k)F e

Since

4 2
sup (I fi O}, < 2&(T1, T3))5  and
te[Ty,T3]

[P [v (@) o <.

by definition of the energy functional, we get

T3 -
@/MM%WM@M<@@—Hﬁ%nnﬁ, (4.10)
T

1
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for some positive constant Co depending only on || fiy || L) and H (fj,). Similarly,
using (4.4) first with p = 1 and then with p = p, > 1, one deduces that

T3 B
Cy.p, (fin) / 1) £ (@l pide < Colk — )3 E(T, T9)3
h (@11)

T3 + - _(l+l) L_i_,
Cy.py (fin) f 1) fr @llprrdr < Co(€ —k) v 73 E(Th, T3)7r 7.
T

Regarding the first term in the right-hand side of (4.9), one uses (4.5) with ¢ =
D+ 2 e (8, 10), wheres > 3|y is given, to get

T3 10 _
I @I2dr < ——L sup 6 fEONL
/Tl ¢ L2 (Z - k)q72 tel[T,T3] k L
& 24-$) ¥ 2
x/ﬂ L@y v (0F @) e

C—q S ot ]3*0—‘1 q,§
= (E _ k)q_z re[sjl"lll?T3] ||< > fk (T)”LI éak(Tl, T3) 3,

for some positive constant ¢, > 0. Thus

10

£ c N 5
I @3 dt € —2— | sup my(r) & (T, T3)773.
fn e =012 ey

4.12)

Gathering (4.9)—(4.11)—(4.10)—(4.12) gives the result recalling that g = % + % |

Remark 4.4. Notice that, for —;—1 < y < 0, then, one can choose s = 2 > %|y| in
(4.8) to get SUPL¢(T,, 73] m(t) = ||fin||L%~ For y < —%, we will rather use (4.8)
with the choice s = 3.

With this, we can implement the level set iteration to deduce Theorem 1.10.

Proof of Theorem 1.10. We first start with short times, that is, we are concerned at
this point with the appearance of the norm. In all the proof, C(fi,) will denote a
generic constant depending only on f;i, through its L;—norm and entropy H (fi,).
Letus fix T > t, > 0 and let K > 0 (to be chosen sufficiently large). We consider
the sequence of levels and times

1 1
€n=K<1—2—n>, tn::t*<l_ﬁ)’ T >t,>0, neN.

We apply Proposition 4.3 with 73 = T and the choices

k=48, <1 =1¢, Th=t, <typ1 =12, E, = (ga(,,(tny T),
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to conclude that
/|
e 5543y L_i_% 6+py
Cy B 3 573p, (14D

|
10?+3y y Y+3y
2n E T35 +
2 2
Py 3

Enp <2 CZW

K73 1, Krr

+ﬂE 23(Yl+1)(1+2 (n+1))
that is,
7\
10S+3y 7543y 3y Cy 142 6+py |
En1 <2 Cz—wy VUEE, Y 4y B2 D
K3 t, Kprr 3

4.13)

+& En% 2%(ﬂ+1)’
K3
for some positive constants Cy, C» depending only on || fis || L and H (fi,) (but not

on n), where
Ys = sup m(7).
t€[0,7T)
Notice that
te 1 T v 2
Ev=&(5.T) <5 sw If0I%+a [ |V(0Fr@)| ar
rel.7) 5 L
1 T
— sup lMo(t)+C()/ D, (z)dr,
2 te[%.7) 2

so that Proposition 3.15 together with Corollary 3.10 ensure that
_3
SCUT -5 +17).
We look now for a choice of the parameters K and Q > 0 ensuring that the sequence

(E;)n defined by
Er:=Ey Q7" neN,

satisfies (4.13) with the reversed inequality. Notice that

10r+3y Ts+3y
* > 2 ng;_—%/ 2" 3s (E;) 3s
K n

Sipy 2C 5
+ =L (B3 230D (4.14)

Cl (E )p +3 2 Doy L (n+1) .
2 _ K3

+
[}
Wi

2543y 2543y Ts+3y ]n

s+3
2 3s C Irl
—Zyvs QEO 3s [Q— 35 2 3s
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6+py . .
By L1 11 6+py Q"
I Sory [0 |
Ko
2%
Lo E] 2073

We first choose Q in a such a way that all the terms [- - - ] are smaller than one,
ie.

7 Otpy 7543y
Q0 = max (22, 23-py , 2253y

where we recall that s > %|y| and p, < 3. With such a choice, (4.14) would hold
as soon as
6+py 1

10A+ v 0
2 C, 2513y 2 3py Cl > l 23 Cy 2
1> —4v+3y y' QE, > +-—— QE’V T+ oE]. @15)
5t K3 K3

This would hold for instance if each term of the sum is smaller than %, and a direct
computation shows that this amounts to choose

K > K., T) =max {K (ts, T), Ko(t«, T), K3(ts, T), Ka(ts, T)}

with

25+ 4?+'§y
Ki(t, T) =1, Kz(f*,T)=<3C2EO T gty ) :
3p
, (4.16)

iy 6—2py zp 2 3
K3t T) = (3C1E,™ 2 @ o Kat. T) = <3CIE527Q>

By a comparison principle (because Eg = E)), one concludes that
E, < E}, neN,

and in particular, since Q > 1,

IimE, =0.
n

Since lim,, t, = ¢, and lim,, £,, = K, this implies that

sup || fg®ll2 =0,

telty,T)
for K > K (t,, T') and, in particular,
IfOllze < K, T), O0<t,<t<T.

Recall that K (t,, T) = max{K;(t,,T),i = 1,2, 3,4} as defined in (4.16). We
estimate it roughly by the sum of these four terms, i.e.

K@t T) <1+ ) Ki(t, T),
i=2
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and notice that the dependence with respect to T, ¢, and ¢ is encapsulated in the
term Eo and K> (., T) (through ¢ Land ¥s). One has easily
2543y 3s 3|yl

Koty T) < 2By 7 1, 77 y 57 Ks(te. T) + Ka(6. T) < EL.

for some positive constants ¢z, ¢3 > 0 depending on Q, s, p, and || fi, ||L;’ H(fin)
(through Cy, C7).
Noticing that E is bounded away from zero (by some constant independent of

-3
t.. T)! and that Eg < C(fin)(T — % +1, ?), since iiigi < . we can derive the
estimate

3s 3 3y
Kmﬂv<c0+u“”) T—%+1 2y,

for some positive constant C depending on Q, s, p, and the constants Cy, C
appearing in (4.16). Thus, taking 0 < 7, < T = 2, we obtain the result in the time
interval (0, 2].
For T > 2, we copycat the previous argument with the increasing sequence of
times
3 1

0<T—-5=t0<t,=T-1~- T neN.
In this case the first term in the right-hand side of (4.13) can be replaced with (since
no dependence upon 7, appears)

vl
) s . 55+3
10334;31/ Ys 2” 7A3+Y3y E - Y
’ 2 4s+3y ’ n

3s

Furthermore, lim, t, = T — 1 and, by Corollary 3.10,
Eo < C(fi)(T —to+1) = C(fi)(T = (T = 3) + 1) = 3C(fin) -

Consequently,

3yl
sup | f (0l <K < C(fin)ys™ 7
te[T—1,T]
The result follows since T > 2 is arbitrary. O

' Indeed, for any t > 0 and any R > 0, a simple use of Cauchy-Schwarz inequality

yields
2 i 2
Mo®) > ficp) /200 40 > gy (fom v dv)

1 2
Z BO.RI (1 — Sz 1 v)dv)

where |B(0, R)| is the volume of the euclidean ball centred in 0 and radius R > 0. Since
moreover flv\>R ft,v)dv < R2 ng f, v)|v|2 dv = 3R 2 one sees that, picking R >

0 large enough, Mg (#) > cg > O forany ¢ > 0. In turn, Eg > lcR > 0.
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A simple consequence of the above is the following:

Corollary 4.5. Assume that —% < y < 0 and let a nonnegative initial datum fi,
satisfying (1.7)~(1.9) for some €y > 0 be given. For € € (0, o], let f(t,-) be a
weak-solution to (1.10). Then, there is a constant C > 0 depending only on || fin|l !
and H ( fin) such that, for any t, > 0,

6 3

sup | f Ol < C (142,57 %), (4.17)
1>ty

In particular, there exists some explicit €' and ko both depending only on || fin || L
and H (fin) such that, for any € € [0, eT],

inf (1—ef(t,v))>k0>0, =>1. (4.18)
veR3
Proof. The proof is a direct consequence of Theorem 1.10 (cf. also Remark 4.4)
since, for —% <y < 0, we can pick s = 2 and sup,¢j 71 ms (1) = ||f‘in”Lé is
independent of T'. O

5. Long-time Behaviour: Algebraic Convergence Result

We investigate now the long-time behaviour of solutions to (1.10). Our approach
is based upon the entropy/entropy dissipation method.

5.1. General strategy and estimates

In this section, for any € R, we will denote by .96(77) (g) the entropy production
associated to the interaction kernel W (z) = |z|712, i.e.

1
I (g) = = f / v — v "2 B [g] (v, vs) dudu, (5.1)
2 R3 xR3

where Z.[g](v, vy) is defined by (2.5). We recall the following result from a pre-
vious contribution [15].

1

Theorem 5.1. Assume that 0 < g < &7 is such that

f g(v) dv =1, / g)vidv=0 (i=1,273), f g) [v|* dv =3,
R3 R3 R3
(5.2)
and let
Ko == ko(g) = in&g(l —eg(v) > 0. (5.3)

For any n > 0,

2

12¢
2" (g) = 2hy(9) [bs = = max(lglz. | Msnio)} He (gl Me),
0
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where Ay (g) > 0 is given by

3

e
:=510-% max(1, B,) max (1, moy,(2)) 7 (g), (5.4)
)W](g) K_g 8 ( 2+n 8 ) n 8
with
F(g) = sup <v)’7/ g(w)|w — v~ (w)dw,
veR3 R3
and

V; Vj
O|l—— — 02—

2 1
) ) g(v) dv, — = miin%/l‘{3 g() vl-2 dv .

€

1
— :=min inf /
B, i#j oeS! JR3
Recall that M and b are introduced in Definition 1.1.
Our approach is based on the interpolation between the entropy production with

parameter y and the entropy production with parameter n > 0. Namely, for a given
g satisfying (5.2), a simple consequence of Holder’s inequality is that

_n_ v
70 < (27®)"7 (77@)"7 . n=0, y <0,

or equivalently,

2> (206) " (20@)" (5.5)

Noticing that 1 — % > 0, we can invoke Theorem 5.1 to bound from below @3(0) (g)

in terms of He(g| M), and we need to deduce an upper bound for 9;") (g). We
begin with the lower bound of @E(O)( f (1)) for solutions to (1.10), which can be
deduced from Theorem 5.1.

Proposition 5.2. Assume that —2 < y < 0 and let a nonnegative initial datum
fin satisfying (1.7)—(1.9) for some &y > 0 be given. For ¢ € (0, &ol, let f(t,-) be

a weak-solution to (1.10). Then, there exist €1 € (0, 9] and a positive constant
C1 > 0 depending only on ||fin||L; and H ( fi,) such that

Z0(f(1) = C1 (1 —98ex (1)) He(f(1)| Me), 120, €0, el
where

X (@) = max (| f D). | Melle=) € (0.67) . 1> 0.
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Proof. From Theorem 5.1, there is some universal constant ¢ > 0 such that

GO D) > 20300 be — 22 max (1F O | Mal) | HelF @1 Mo, 10
0 € Ko(l‘)4 L®> ellpoo e el = VU,

with
ko(t) = inf (1 —ef(t,v)), t>0,
veR3
and
- e(r)’
Ao(1)™ IIfmII 20 ———max(l, B(r)).
Here,
1 . V;
—— = min 1nf/ 11— —
B(1r) i#j oeS! (v)
1
e(t) —mln / [, v)v dv,
since

max (1, ma(f (1)) Ao(f (1)) = max(1, my(1)) ma(t) < ||fin||i%s 120,

by conservation of energy and because || finll,, ! > 1. As shown in [15, Remarks
2.10 & 2.11], there is a positive constant Cy > 0 depending only on ||fin||L% and
H ( fin) such that min ( B & (r)) > Coforanyr > 0. Therefore, there is a positive
constant Cg > 0 depending only on || fi |l L and H ( fin) such that

5 ko()?

> Coko(1)?, 120,
”fm”L%

2eho(t) = C}

and, since kog(f) < 1 and b, > % for & small enough (see [2, Lemma A.1]), we
easily deduce that

70 (f1)) = Cy [ko()* — 966 max (|| f()[|3oo, | MellZoo)] He(f ()] Me),
(5.6)

for any ¢+ > 0 with C, = %C_‘O. Since ko(t) = 1 — &]| f(¢)]| L, one has ko(t) >
1 —ex(¢) for any t+ > 0 and (5.6) becomes

2O @) > €1 [(1=ex0) = 966711 | Ho(FOI Me), 120,

Expanding (1 — ex()* and noticing that —&3x3) = —e2x2(t) = —ex)
because € x () < 1, one gets the result. O

We now derive an upper bound for @én) (g). A first observation is the following
technical estimate:
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Lemma 5.3. For any 0 < g < &' satisfying (5.3) and any n > —2, one has
)t
Ko(8)

2
2@ < =gl [ 0vyal i, 5.7

where we recall that ko(g) = inf g3 (1 —eg(v)) =1 — €]l gl L.

Proof. Using definition (2.5), one has
78 () = %/ v — 072 g g (1 —£g) (1 — £g4) [TI(v — v,) [Vh — VA, ]| dvdu,,
]R6

where h(v) = log(g(v)) — log(1 — eg(v)). Using the obvious estimate
T — v.) [Vh = Vi]? <2|VA]? +2|Vhi|,

one has

2

Ve dvdv
*

g)(1 —eg(v))

77 (g) < 2/RG 0 — 0,72 g gu(l — £9) (1 — eg4)

\v/ 2
2/ Mdv/ |v—v*|"+2g*dv*.
r3 g1 —eg) Jrs

. n+2 .
Using the fact that [v — v, "2 < 2"2 (v)772(v,)7"2, we get the desired result

thanks to (5.3). a

On the basis of estimates (5.7) and (5.5), we need to provide a uniform in time
upper bound of the above weighted Fisher information along solutions to (1.10).
We follow the approach of [27] and begin with a technical Lemma:

Lemma 5.4. Assume that =2 < y < 0 and let a nonnegative initial datum f;,
satisfying (1.7)—(1.9) for some ey > 0 be given. For € € (0, &g], let f(t,-) be a

weak-solution to (1.10). Then, for any s > % there exists Cs(fin) > 0 depending
ons, ||f,<,,||L5 and H (fin) such that, foranyt > 0 and k > 0

- /R ey LF@1£v) (1 [Hog £6, ) du
1
<t (V@ 400+ B3 (147)) . 69
and

/ VY £, v) (1 + log £(t, v)]) dv
R3

< Cofi) (Mot 0+ Mey ) - (5.9)
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Proof. We use the following obvious estimate: for any p,r > 1, thereis Cp , > 0
such that

x(1+[logx]) < Cp,r (x% +x1’) . Vx>0 (5.10)

For notational simplicity, in several places we omit the dependence of f with respect
to ¢. Splitting ¢, [ f] as

ey [f1==200 +3)[(I- "Ly * £) + (1 P s % £)] = P11+ 2111,

one has that

Wl

- / ey [F1f (1+log f1) dv < —Cy 5 / WFPLA (54 17) dv
R3 32 R3
—C» fR WP (VE+ £2) dv.

Clearly,

—eP[f1=2(y +3) v = vl? f@dve <2 + 3 finll 1 |

[v—v4|>1

so that

- [ e (VF + £2) a

<20y + 3 finl ( A [V Fdv+ / "2 dv) :

R3

According to Cauchy-Schwarz inequality, for any s > %

/R (VAo < o (D107 2 = Coy/magers ()

and consequently

- [ kP (VFE + £6 ) o

3
< Calfim) (V2 O + M)

for some positive constant depending only on s and || fi,||;1. Using Holder’s in-
equality,

L1

- fR3<v>kc;“[f1 (FE+ ) ao <X (FF+7%)] s L

and, according to Young’s convolution inequality,

JePrs

s <23l 1A
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where || [ 1"1.<1 ||L% < 00 since %y + 3 > 0 (recall that y € (-2, 0)). Since

W

1713 < (moH+1£132)"

we deduce that
= [ o (7.0 + 1 0) a
G |0t (71 +.9)
<4C Ex (F (1+Mo(0)5 .

N

L3 (mo(®) + Mo(1)

Now using Proposition 3.15, this proves (5.8). Now, by (5.10), one has

/ @ £ (1 +log f1) dv < Ca f W (VF + ) dv,
R3 R

3
and, proceeding as above, one obtains (5.9). O
We can state now the following Proposition which is inspired by [27]:

Proposition 5.5. Assume that —2 < y < 0 and let a nonnegative initial datum f;,
satisfying (1.7)—(1.9) for some ey > 0 be given. For € € (0, &g], let f(t,-) be a
weak-solution to (1.10). Let n > y — 2. Assume moreover that

fin € Lyyyg 2y RY).

Then, for any ty > 0, there exists C > 0 depending on n, to and on fi, through
| finll 1 such that
20+8-2y

1 2
/dr/ (v)”+2‘V\/f(r,v)’ d<CU+0>, 0<t<t (G.11)
to R3

In particular, for n > 0, there is C, ( fin) depending only on ”fi””Lé’ H(fin) andn
and such that

t
/ I (f()dr < cn<f,~n>[ sup Ma2(t)
0]

A+0%, 0<19<(5.12)
n<e<e  ko(T)
where we recall that ko(t) = 1 — e || f(T)||L~, T = 0.

Proof. Letn > y —2be fixed. Since we aim to use Lemma 5.4, it will be convenient
here to introduce k = n+2—7y. We compute, as in [27, Proposition 1] the evolution
of

Sk(t) = / () f(t, v)log £(z, v) dv,
IR3
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for asolution f = f (¢, v) to (1.10). To simplify notations, we write F = F (¢, v) =
f(1 — & f).One can check that

d
—Sk(o— Sme(0) + / () Q(f) log f dv

d
= 5, +fR3(v>kV ~(Z[fIVf)log f dv (5.13)

—/ ()*V - (BIf1F) log f dv.
R3
One computes, using that log f Vf = V[ flog f — f], that

k k Vf
/ (kY - (SL£1V ) log fdv = — / WSV L du
R3 R3 f

+k /R} v. ():[f]u<u>k—2) [flog f — f] dv

Similarly,

/ WKV - (B[ f1F) log f dv = —k/ Y =2 (B[ f1-v) Flog fdv
]R3

R3
+[ (=57 ((v>kb[f]) dv.
R3
As in the proof of Lemma 3.8,
V- (U4 ?) = @F 2B v+ 0 Trace (211 AQ)).
with A(v) = (v)°Id + (k — 2) v ® v, whereas
V. ((v)kb[f]> = k()2 BLL] - v) + ), £,
resulting in
d d
S0 = S mi(r) - /R3<v>"z[fo : va dv - /Rs<v>"cy[f] (r=3r%)
+k/ () *Trace (Z[f1- A(v)) [flog f — f] dv
R . (5.14)
k—2 2
k[ @ [Floes - £+ 577 @
+k / )2 (BLf1-v) [flog f — f] dv
RS

From (5.14), using the coercivity of X[ f] and the fact that —c, [ f] > 0, we get

ey VIR
f

< _43(U> Cy[f]fdv+k43<v)k—4’TraCe(E[f].A(v)) Iflog f — £l dv

d d
—Sk(t) — mk(t) + Ko / (v)
R3
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+k/ W2 1bLf1- vl [Flog £ — £+ £ £2] dv
]R3 2
+k/R3<v>k*2 IBLF1-vl|flog f — f] dv. (5.15)
As in the proof of Proposition 3.9, we see that
Trace (E[£1- A@DI < 9-2k() (117425 1) <923 k|l finly ()7,

and, smce IB[f]-v| < |B[f]-v|+ elb[f?]- v| with e f2 < f, one can check
that 4 5| BLf]- v| also satisfies (3.44). We deduce then from (5.15) that there exists
a constant Ci(fin) > 0 depending only on || fin|| L and k, such that

2
9 5o — dmk(r>+1< / (v)kde

dr R3
< Cuth) [ 0 (1f10g £ = f1+ |Flog f = £+ 57%]) ao
~Culsi [ e, ) (If1og f = Fl+|Flog £ = £ + 52| +1) .
(5.16)

Since

€ 5
|flog f — fl+|Flog f — f + 5f2| <2fllog fl+ 3 . (5.17)
we have that

2
9 G — dmk(r>+K / <v>"+ymd

dr R3

< Eck(ﬁn)/R3<v>"+Vf (1 + [log f1) dv
7
TG /R ey 1 £ 1+ llog 1) do. (5.18)

Using Lemma 5.4 with s = 2, we deduce then that, for any #y > 0,

d Vf|?
—Sk(t)+Ko/ (v>y+kid
dr R3

d
< mi(0) + Culfin) (Vimara® + M) + Ex (0% (14171)),

d
< amk(f) +C(fin) A +10), t>10,

where we used Theorem 1.9 for the last estimate and where C( f;,;) now depends
on fy. Notice that, for s = 2k +4 > 4 + |y|, Theorem 1.9 provides the growth
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of moj4a(t), My (¢) and E%(t) whenever m;(0) < oo. Our assumption on fi,
exactly means that mo44(0) < oo. Integrating this inequality over (#g, 7) yields

2
Ko/ dr/ )HkIVf(r v)| do
f(z, v)

< Sk(to) — Sk(t) + my (1) + Eck(fin)(l +1)%.

Clearly, Sk (¢) has no sign but, according to [27, Eq. (B.3), Lemma B.4], for any
o > 0 there exists C, > 0 such that

_Sut) < — / W log £0, VI v+ 2mig () + Co,
R

yielding, for o = 2,

1
Ko [ dr [ 09V FE R dv < Cethi) (0 + 0745000
to R-

Let us note here that with our assumptions, one can deduce from (5.9) and The-
orem 1.9 that Si(#p) is actually finite. Indeed, (5.9) implies that Si(f9) < oo if
moj40r(t9) < 0o and My (79) < oo for some r > % According to Theorem 1.9,
this holds if m(0) < oo for s = 2k + 2r > 4 — y. As already observed, one has
moj42,(0) < cowithr =2 > % Recalling that k + y = n + 2, this proves (5.11)
with a positive constant C depending in particular on o (with C < 7, 2). We deduce
then (5.12) from (5.7) and (5.11). |

5.2. The case —% <y <0

We apply the result established here above to the case y € ( 7 0) In that case
Proposition 5.2 can be stated as:

Proposition 5.6. Assume that —‘3—1 < y < 0and let a nonnegative initial datum fi,
satisfying (1.7)—(1.9) for some €y > 0 be given. For ¢ € (0, &g], let f(t,-) be a
weak-solution to (1.10). Then, there exists €* € (0, &y] and o >0 depending only
on ||fin||L5 and H ( fin) such that, for € € (0, e*],

IO @) 2 ho He(f(DI Me), 121 (5.19)

Proof. The proofis a direct consequence of Proposition 5.2 and Corollary 4.5 since,
recalling that sup,¢ (g ¢, | MellL < 00 by [2, Lemma A.1], one has

x (@) =max ([ f(Dllze, | Mellze) <C, 121,

with C > 0 independent of e. Thus, there exists ¢* € (0, e") such that inf 1>1
(1 —98ex(t)) > 0 for any € € (0, &*). O

Remark 5.7. The restriction —% < y < 0 is needed here only to ensure that
(1 —=98ex(z)) > 0. Thus, the above estimate (5.19) holds in any situation for
which Ag = Cyinf; > (1 —98ex (1)) > 0.
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This gives the following version of Theorem 1.7 where the assumptions on the
initial datum are slightly relaxed with respect to the statement of Theorem 1.7:

Proposition 5.8. Ler —5 < y < 0. Letn > 2|y| and 0 < fin € L} g, (RY)
satisfying (1.7)—(1.9) for some ey > 0. For ¢ € (0, &gl, let f(¢t,-) be a weak-
solution to (1.10). Then, there exists C, depending on ||f,~n||L%, H(fin) andn > 0,

and there exists e+ € (0, ey] such that for any e € (0, &%),

n—=2ly|

If(t) = Mellpr <Cp (141) 0, Ve > 1. (5.20)
As a consequence, given s > 2|y|, one has

sup E(t) < oo,
=1

provided that fi, € L} with r > max(2s + 8 + 2|y|, —S_Szzm)-

Proof. Using Proposition 5.6 and (5.5), for any > 0,

) ) L 1-%
De ' (f@) 2y " De ()" He(f(D)I Me) 7, 121
For simplicity, we set

)4
n

Y
Ay0) =Ry T A (FENT >0, y(1) = He(f()| M), >0,

Since % He (£ ()] Me) = — D (£(1)), one has

WV

d 1-Y
Ey(t)+An(t)y(t) <0, ot

Integrating this inequality, we deduce that

Y
n

r oy [ r oy [!
Y@ 2)’(1)”—;/1 An(T)dT>.)’(0)”—g/l Ay(r)dr,

ie.

Y ! Y
1

Let us estimate from below the integral of A, (7). One has

Y

t _Y t y 11— t
/ Ay de =7y / 2O (F@)ide =7y (0 — 1) / 2 (f(0))
1 1 1

f ;
>0 e -1 (fl @é'”(f(r))f_—ﬂ) ,

v drt
n
t—1
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Y
where we used Jensen’s inequality and the convexity of the mapping x > 0+ x 7.

Therefore,

t y t %
/A (0dt > (Lot — 1) 77 </ %(")(f(r))dr> .
1 1

and, using (5.12), which holds since f;, € L;n +8-2y (R3), one gets

d 1-Y 3y 1+
[ Az ca-p'FarntzeE s
1

for some positive constant C depending on 7, || finll,, ! and H (f;,) where we used

(1.14) and the fact that inf; > ko(r) > 0. Choosing n > —2y, this gives a decay
rate

He(f ()] Me) < Cp(fin) °F

forall + > 2 with C,,(fi,) depending on n, || fi, ||L1 and H ( fin). We conclude then
with Csiszar-Kullback inequality for Fermi- Dlrac relative entropy (2.2). Let us
prove now the bound on E(¢) for s > 0. It follows from some standard arguments
(see [28]). Namely, let s > —2y be given and let p = % > 5. If fi, € L} with
r > max(2s + 8 — 2y, p), the bound (1.14) in Theorem 1.9 holds as well as the
above (5.20) with n = 5. Then, for some positive Cy depending only on s, || fix || L
H(fin) and m, (0), one has

mg (1) < || Mellpr + 1 (1) — Me @)1

<

< Mellzy +1£0) = Mell 77 1£ (1) = Mellg,
—(1—p) 2

< Mellpy + Cot+07 05 (0 + 1 Ml )
_(1—p) 32

I Mellpy + €+~ 5 (€) 407 +1 el ).

2
g= STV

€(0,1),
forany s > 1 (so that (5.20) holds). Using that || Me ||, 1 and || M. ||L1 are bounded

uniformly with respect to € (see [2, Lemma A.1]), we deduce that there iscg >0
depending only on s, ||fin||L%, m,(0) and H (f;,) but not & such that

s+2
my (1) < (1+(1+t) 1-6)3 y*‘)), t> 1.

Since —(1 — 0)”2)’ + 60 = 0, this proves that sup, >, ms(7) < 2cs. The proof is

2yl
similar for the estimate of sup, > ; M (7) where we notice that max(p, Zp 13 Yy =

which ensures the appearance of the L2-moment IM p(t) thanks to Propositions 3.12
and 3.15. The result follows. O
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. 4
5.3. Proof of Theorem 1.7: the case =2 <y < —3

We are in position to give here the full proof of Theorem 1.7. It suffices to
consider the case —2 < y < —% since the case —% < y < 0 has been covered by

Proposition 5.8 where in that result, n = % (s — 8 4+ 2y). With respect to the proof
of Proposition 5.8, we no longer have a direct control of the norm sup, > [ f () [l oc-

Recall that, according to Proposition 5.2, there is C; >0 depending on || fi, |l L
and H ( fi;,) such that

70(f ) 2 Ci[1 = 9Bex (D] He(f() Me), 120,
with x (r) = max (||f(t)||Loc , SUpg.qll M€||Loo). Letus fix T > 2 and define

x*=x*(T):=98 sup x(1),
te[l,T)

so that
20(f(1) = Ci (1 —ex*) He(FOI Me), tell,T). (521

Pick & := &(T) such that
I —ex*>0.

Note that the existence of such & follows from Theorems 1.9 and 1.10, since
s > max(4 — vy, —%y) with our assumptions. The idea is to couple the a priori
estimates with the entropy method to be able to conclude that in fact these quan-
tities are independent of 7 > 2 as long as € > 0 is less than some threshold
depending only on the initial distribution fi,. The interpretation of this condition is
that the initial distribution is not too saturated for the argument to hold. It is an open
problem to prove that the relaxation to thermal equilibrium happens with a specific
rate when fi, is very close to a saturated state even in the hard potential case, see [2].

As in the proof of Proposition 5.8, we write
y@) = He(f(O)| M), t2=0.

Recall that we assume here that f;, € Li (R3) with s > 14 + 6]y |. For notational
simplicity, we write s = 21+ 8 — 2y with n > 3+ 2|y|. In all the sequel, we have
then

fin € Ly g 5, (R with n>3+2|y|. (5.22)
Using (5.5), for such a choice of n, we deduce from (5.21) that

v r
n n -z

G = (1—ex) T [2P o] yo'E e,

d
Recalling that I y() = —@s(y)( f(t)), we deduce after integration of the above
inequality that

YO = y(1)

Y
n

t v
> Con (1-ex) 77 [ [0 on] an e,
(5.23)
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— _1-r
where we set C(y, n) = %Cl ", Similar to the proof of Proposition 5.8, using

)2

' %
— -1 (/1 95’”(f(r))dz) . te(1,7).

Y
the convexity of the mapping r > 0 — r 7, we have

dr
r—1

t b t
[ 7] ar=a- ( | 7
1 1

Therefore, in light of (5.12) and using (5.22), there exists C;, > 0 depending only
on fi, such that

t 2z y 3
[ ga] arzci-ex) Fae-nTFasnF, rean.
1

where we used (1.14) and the fact that k() > 1 —ex* forany ¢ € [1, T'). Inserting
this into (5.23),

Y Y Y
5 12)7 1-

¥ — y(1) (DA, e T),

for some positive constant Cy, , > 0 depending only on 7, ||fin||L% and H(fiy).In
other words

2 Cyy (1 - EX*)

oY

y(t)g(y(l)%Jrcy,n(l—eX*)1 n(r-1)“%(1+t)3%)7, (5.24)

forany ¢ € (1, T'). In particular

)32 7-1 3
yin) <C,,y (1—€x )V -0y (417, te2,T).
We use this last estimate to sharpen the control of the third moment of f (¢, v).

Lemma 5.9. For n > 3 + 2|y|, one has

N m=3)(n=2y)
sup m3(t) < Cppy(fin) (1 —€x*) 27 4|l Mellz1- (5.25)
te[2,T) h

Proof. We use ideas similar to those introduced at the end of Proposition 5.8. For
n > 34 2|y|, observe that

1F@lly < I Melly + 170 = Melly
3

-3 o
< Mellgg + 1£@ = Ml " (£ Ollzy + 1 Mellzy)”
3 1-3
< Mol + Co(1+ )71 £ (0 — Ml
3 _3
< Mellgy+Cy(1+1)7 He(fFOI M5, 121,

where, in the last inequality, we used one side of the Csiszar-Kullback inequality
(2.2). Let us note that C,, does not depend on € since || M, ||, ! is uniformly bounded
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thanks to [2, Lemma A.7]. Plugging into the aforementioned estimation for y () =
He(f (1) M¢), we obtain

=3)(n—2y)

m3(1) < | Mell1+Cy (1—ex®) 27 x

3 @=3)(n=y) 3(n-3)
x(I+6)yn(t—1) 2 (141¢t) 2 | te (2, T).

Since n > 3 + 2|y|, the function

0=3)(n— 3(n=3)

3 ) =
t>22——> (1+0)n@—1) 2yny(1+t) 2
is bounded by some positive constant Cy, ,,. We obtain then (5.25). O

A simple consequence of the aforementioned Lemma is the following estimate
on x*.

Lemma 5.10. Assume thatn > 342|y|, thenthereisaconstant C1 := C1(y, n, fin)
independent of € and T such that

_ n—=3(n—2y)

(T) (1 —ex*(T))* < Cy,
x*(T) (1 —ex*(I))” < Cy a1 7)

>0. (5.26)

Proof. Using Theorem 1.10 (with s = 3) and the fact that SUP;¢[0.2) m3(t) <
C( fin) thanks to Proposition 3.11 (recall that (5.22) holds) we can use the previous
estimate to conclude that

T Aty
x* =98 sup max (Ilf(t)IILoc, sup || Me||L°°> < Go (1 + sup mz(f)) ,
te[l1,T) e>0 t€el2,T)

which, with (5.25), gives

0=3)(n=2y)

__r_
x* < Co <1+(1 —ex’) ) <o (1-ext) ™,

where we used that 1 — ex* < 1. This gives (5.26). |
We introduce the mapping

p(x)=x(1—ex)*, xe0,e".

One has
$(x) = $(F) o ; !
su X)=¢(X) = ———, X = —-.
ety e(l +a)lte e(l +a)
‘We define
aa

& (5.27)

oM+t

where M > 0 is a (large) constant to be determined. We consider values € € (0, &,]
which ensure in particular that M < ¢(x). Now, in such a case, the equation
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¢(x) = M has two roots x; < X < xp in the interval (0, e . In particular,
¢(x1) = M implies

M M < 1)0’ 1
X1 =(14+4—-) M<

T U—ex)  (I—en) P 2¢,

Therefore, the inequality ¢ (x) < M holds in the following two cases:

1
, (ii) orx >2xp)>x=———.(528)

(i) eitherx < x; <
e(l+a)

2&,

Let us now show that, choosing M large enough, the second case (i7) is an impos-
sibility.

Lemma 5.11. Besides (5.27), assume that M > C| and

X*G) (o \*

M > . 5.29
2 (1 + oz) (529)

Then, for e € (0, &), it holds that

* * 1
X< @<a<5— Te3]
Ex

Proof. Notice that (5.29) means that e, < m Applying Theorem 1.10 with

s = 3 on the interval [1, 3), one has
_r
I+y
sup [ f(Dllpoe <C <1 + sup m3(t))
tel[l,3) te[l,3)

for some positive C depending on || fi, |l ; ! and H (f;,,) and this last quantity is finite
and independent of e thanks to Proposition 3.11 since m3(0) < oco. Therefore,

x*(3) =98 sup max (IIf(I)IILoc , sup || Me||L°°> <00,
tell,3) >0

depends only on || fiy || L and H (fin). Under the additional constraint (5.29), we

observe that for any ¢ € (0, &,] it holds x > x*(3), which excludes the case (ii).
By the aforementioned binary option, one gets the desired conclusion. O

This argument shows the existence of a trapping region which can be extended
toany 7 > 3.

Lemma 5.12. Assume (5.27) and (5.29) are in force. Then, defining
T = sup {7 > 2 (1) <n},

one can choose M large enough (explicit) such that T* = oo for any € € (0, &,).
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Proof. We already saw in Lemma 5.11 that T* > 3. We argue by contradiction
considering that T* < oo. In all the sequel, we will denote by u(#) a function
of t > 0 which is such that lim,_, ¢+ u(#) = 0 (i.e. u(t) = o(1)) and that may
change from line to line. Recalling and integrating the moment inequality (3.10)
(with § = 1 and s = 3) in the time interval (T*, T* + 1), it follows that

3 T*+t T*+t
m3(T* +1t) <m3(T*) +6K5t + 3 / D34, (t)dr + SC/ Msyy (r)dr
T T*

=m3(T*) +u@), te(0,1],

since the latter three terms in the right-hand side can be made as small as desired
when t — 0. In other words,

sup ma3(t) = sup m3(t) 4+ u(t), te(0,1]. (5.30)
T€[2,T*+1) Te[2,T*)

Using Theorem 1.10 applied on the interval [1, T*+1), the fact that sup, ¢ o) m3(7) <
C(fin) , and the continuous growth of the third moment (5.30), one is led to

T Aty
X (T*+1)<C 14+ sup m3(7)
TE[2,T*+1)

=C |14+ sup ms3(7) +u(),
Te[2,T%)

for some positive C depending on || f;, || L and H (fi,). Consequently, one can use
(5.25) with T = T™* to get

14+ sup m3(7)
T€[2,T*)
—2y

. =3)(n—2y)
< (1+Cn,y(ﬁn) (I—ex*(T) 27+ MEIIL;>

4

AR x ey L2 v
S22, (L-ex () T

-1 ~ 7y
+275 7 (14 Mellyg) ™7
We deduce from this that there is some C > 0 independent of & and M such that
(T +1)<C (1 +(1- ax*(T*))’“) + u(t)
<2C(1 —ex*(T) “ +u@), (5.31)
where we used again that 1 — & x*(7*) < 1. Notice that, by definition of 7™,

(1—ex* (1)) <(1 —exi)™,
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where | — ex*(T*) >1—ex; > 1 —e,.x; > 5. Thus, (1 — ex*(T*)™* € [1, 2]
and, for ¢ small enough, (5.31) implies that

X(T*+1) <3C(1—ex*(T%) * <3C (1 —ex)™@. (5.32)

*3 o _
M::max(X()< ad ) ,3C,C1>.
2 14+«

One deduces from (5.32) that

Now set

XTI+ <MA —ex)) ™ =x1,

which is a contradiction since, by definition of 7*, x*(T* +t) > x1. Thus, for the
above choice of M, we must have that T* = oo. m]

We have all in hands to conclude.

Proof of Theorem 1.7. The previous Lemma exactly means that, for some explicit
&, > 0 (associated to the above choice of M), one has

x*(T) <xp <

, VT >2, Ve € (0, &,).
2e,

This proves in particular that

1
196¢,’

sup || f ()l <
t>1

which is independent of e. This gives the no saturation property

ko=1—esup|lf(®)lleo >0, Ve e (0,e,]
t>1

At this stage, we can resume the proof of Proposition 5.8 to get the desired result.
]

6. Upgrading the Convergence

We explain in this section how the rate of convergence can be upgraded to a
stretched exponential rate whenever the initial datum satisfies a more stringent de-
cay in terms of large velocities decay. As before, our strategy is based upon suitable
interpolations. Notations are those of Section 5.1 and we follow at first the inter-
polation procedure developed in [29, Section 5]. Namely, we begin by improving

the interpolation inequality between @e(y) and 99(0) provided by inequality (5.5).
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Lemma 6.1. For a given a > 0 and q > 0 define, forany 0 < g < e,

re9(g) = / v — vy explalv — v Zelg1(v, vs)dvdvs .
R3xR3

where E is defined by formula (2.5). Then for any y < 0 one has that

11, (e i
%(y)(g)>§[zlog<@€(T(§)>} 79(9), 6.1)

where Qe(y)(g) is defined by formula (5.1).

Q=

Proof. Foragiven R > 0, we set Z, p= {(v, ve) € R3 X R3: v — vy| < (%)
and denote by ZZ’ r its complementary in R®. We see that

1 — =
70() = 5/ v = vl [0 = val 77 o = v, > Belg](v, v) dudu,

Za,k
1
+§ / exp (—alv — v|?) exp (alv — vs|?) v — v |*Eelg) (v, v,) dvdu,
Z4 R
hd]

R\ ¢ 1
< <5> 29 (g) + Eexp(—R)ré“*”(g).

We also notice that for any a,q > 0, we have that 1 < exp (a|v — v4|?), and
therefore 2@;0) (g) < T'e?(g). Thus, the choice

re?
R :=log (e(T(g)> >1og2 >0
De " (8)

is possible, and yields
Il

(a.q) q
e (8) L) 1
(0) € 4 —90
e (&) < [IOg( O ) )} at Zs(8) + 57 (8).

which completes the proof. O

Remark 6.2. Applying this inequality to a weak solution f(z, v) to (1.10) and as-
suming that the initial datum f;, and ¢ > 0 are such that (5.19) holds, together
with the estimate

sup T (f () < T, 6.2)
t>1

we expect that the relative entropy
() = He(f ()] Me)
satisfies a differential inequality of the type

d (1) < Xo[ll ( r )]Z 0, t>1
- S ——= |~ 1o = 3 = 1,
dar” 2 la 2oy )] 7
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leading to an estimate like

y(1) < Aexp(—Briv), 13>1,

for some positive constant A, B > (0. We will see that, even if we cannot prove

directly (6.2), the (at most) slowly increasing growth of Fé“*‘”( f(t)) will be such
that the above decay still holds.

Following the paths of Section 5, we first look for suitable upper bound for
I‘,Ef"q)(g). We proceed as in Lemma 5.3 to get the following result.

Lemma 6.3. For any 0 < g < e~ ! satisfying (5.3) and any a > 0, ¢ € (0, 1) one

has
M0 (g) < (gl f W2 VW) g, ©3)
‘ = ko(g) CHLy Jps @ ’ .
where
Ma,q (V) = exp (a (v)q) ., veR. (6.4)

Proof. Recalling definition (2.5), we see that
(a,q) _ 2 q 2
Fe W (g) = /6 [v — vl explalv — vi|?) F Fi [T1(v — v) [Vh — Vh,]|” dvduy,
R

where h(v) = log(g(v)) —log(l —eg(v)) and F = g(1 — eg). Using the obvious
estimate

ITL(v — vy) [Vh — VR ]* < 2|VA* + 2|V,
and [v — v, |? exp(alv — vi|?) < 2(0)?a.q (V) (V4)*fha 4 (V1) since g € (0, 1), one

deduces that

ri?g) <8 /l;{ (0 hag ) F @) [VAQ) dv fR F(0) g (0:) () dv,

Vel | i
8/1%3 m(v) Ma,q (V) dv /ﬂ§3(v*) Gxlha,q (vVs)dvy.

This yields the result. O

As for Proposition 5.5, on the basis of (6.3) and (6.1), it is useful to get a uniform
in time upper bound of the above Fisher information with exponential weights along
solutions to (1.10). Before doing so, let us introduce the following objects:

Definition 6.4. Given a, g > 0, we recall definition (6.4). Then, for any nonnega-
tive measure function g : R3 — R, we set

Yaq(g) = / W tag)dv,  Dq,(g) = / g(V)ia,v (v) .
R3 R3
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Given s > 0, we also introduce

Toga® = [ SO R Taga@ = [ 0 10g0)dv.
If f(z, v) is a weak-solution to (1.10), we will moreover simply write
Yaq(0) :=Yaq(f(0),  Fag@) :=0aq(f(®), 20,
with similar notations for Ta’q,s (1), 5a,q,s (1). We also set
My () := 3Caq (1) + Da g ().

Estimates on the evolution of the above family of moments are easily deduced
from Theorem 1.9 since we keep track, for the evolution of E(¢), of the dependency
with respect to s. Namely, one has the following proposition, with a proof quite
similar to that of [22, Corollary 4.1].

Proposition 6.5. Assume that —2 < y < 0 and let a nonnegative initial datum f;,
satisfying (1.7)—(1.9) for some €y > 0 be given. For € € (0, &g], let f(t,-) be a

weak-solution to (1.10). Leta > 0 and 0 < g < %. Assume that

q(+lyD

qU+m) g ~
exp (2 vI’a(v) )ﬁn(v) dv = z?a’q(fm) < 00, a=2 W a.
R3
Then there exists Cy 4 > 0 depending only on a, q and fi, such that
I, (1) < Cuy (z*% +t> , t>0.

Proof. As in [22, Corollary 4.1], we notice that

X n

Ha,q(t) = Z %Enq(t) 5

n=0

so that thanks to Theorem 1.9
X n
_3 a
I, (1) < (f 2+ t) Eomcnq .
n=

Consequently, in order to prove the result, we just need to show that the sum is
finite. Using now (1.15), there is 1 > 0 such that

8=y _ nq 5
Coy < Bi [(mqn>4+2v(”"+y DL 20 (1 +ng)? mnq(O)} (ng > 6+ ).

Clearly, for n large enough (1 + nq)% < 02" for some universal c¢o > 0, so that

1
Cog <281 (Brg )™ + B1co2" "0 m,,, 0)
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withb = =2 q and £ = % (y —2)+1. Using Stirling formula and d’ Alembert’s
ratio test, one sees easily that, if » < 1, then the sum

o
Z ‘:l—’,l (B1gn)""™ s finite for any a > 0,
n=0

whereas

O ng+y)) 1
3 2 g (0) = /N exp (2717 a(w)?) fiu () do < 00,
n=0 ’

This proves the result. O

442y

Remark 6.6. From the above proof, one sees that, if g = Tt then the above result

still holds if 2% apge < 1.
We need in the sequel an analogue of Lemma 5.4.

Lemma 6.7. Assume that —2 < y < 0 and let a nonnegative initial datum f;,
satisfying (1.7)—(1.9) for some €y > 0 be given. For € € (0, eo], let f(¢,-) be
a weak-solution to (1.10). Then, given a,q > 0 and any s > % there exists
Cs(fin) > 0 depending on s, fin, (but not on a, q) such that, for any k > 0 and
anyt >0,

_A3<U)kcy[f(t)]f(tv V)(1+ [log £ (t, V)[) ia,q (v) dv

< Cs (fm) <\/ 52a,q,2(k+s) (t) + Ta,q,k (t)

_ _ 2 1

3
+ (0%&4’%,((;) n T%a’q%k(t)) (1 n ?)) , 6.5)
and

[ £t (1 + o £ 0,0 g 01 o

< CS (fln) <\/ 52a,q,2(k+s+y) ([) + ?a,q,k-ﬁ-y (t)> . (66)

Proof. The proof is very similar to that of Lemma 5.4 and is based upon (5.10). We
use the same notations as in Lemma 5.4 and use the splitting ¢, [ f] = cJ(/l)[ f1+
c,(,z) [f]. One has

— [ e LFLF 1+ g £ g (0)
<=Cyy [ (£ + 1) g1

~Caa [ WHePLA(VT + 1) tag @) v,
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Asin Lemma 5.4, a simple use of Cauchy-Schwarz inequality yields, for any s > %,
- /R POV + 1) fag )
< Cs(fin) <\/52a,q,2(k+s)(l) + Ta,q,k(t)> ,

for some positive constant depending only on s, || finl| Ll In the same way, as in
Lemma 5.4, we deduce from Holder’s inequality, and Proposition 3.15 that

— [ o1 (£ 0 + 007 g1

2
3

Cy [ (75 4+ 73) b 3 (mote) + Mo0)

2
— — 5 1
< CUM (T 350+ T30 260) (14 ;) .
This proves (6.5). Now, the proof of (6.6) follows the same lines as that of (5.9). O

Proposition 6.8. Assume that —2 < y < 0 and let a nonnegative initial datum fi,
satisfying (1.7)—(1.9) for some €y > 0 be given. For € € (0, &g], let f(t,-) be a
weak-solution to (1.10). Let b, g > 0 be given, with q < ?T}Z/. Assume moreover
that

q(1+|y\)

fine L' (R, gy ) dv), b2

Jor some § > 0. Then, for any to > 0, there exists C > 0 depending on b, §, q, to
and fipn, such that

fdr/ ;L;,q(v) vV (rv‘ dv < 1+t)2, t>ty>0.
Proof. Letus fix b, g > 0. We investigate the evolution of

Spq (1) = /R3 Mb.q () f (2, v)log f(z, v)dv

forasolution f = f (¢, v) to (1.10). To simplify notations, we write F' = F(t, v) =
f(1 — e f).One checks, similar to (5.13), that

d d
5000 = 39000 + [ 10,0V - BLAV P log f by

- fR MgV - BLFIF) log £ dv.

with

\Y%
f 1.V - (ELFIVf) log f dv = — / 1y ELAVF - Ly
R3 R3 f

4 [V (B Vs [Fog S — ]
R3
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and
A MgV - (BLf1F) log f dv = —bg A 3<v>q*2 Flog f (bLf]-v)up.q(v) dv
+bgq /]R (f - §f2)<v>"’2(b[f] +0) pp g (v) dv

+ fR @) (£ = 317 ey Lf1dv.
For the latter, we notice that
Vitpg@) =bqu)? *up (), and
V- (EU1VMbq) = b og @) (0)72BLS1 - v+ (00 Trace(ELf1 - A, (0)),

with A, (v) = (VA +[(g —2) + bg (V)] v v.
As in the proof of Proposition 5.5, using that both |b[ f] - v| and %|B[f] - v| satisfy
(3.44), and using now that

Trace (ELf1- Au () < Cog I f .
one deduces the following analogue of (5.18),

VZ
|f|d

d
N 4§t g0 + Ko / )W)

< Chy(fin) A; @£ (14 1log £1) s g @) d

—Chy(fin) /R W)7e,f1£ 1+ llog flupg@dv,  (67)

for some positive constant Cp 4( fin) depending on b, g and fi, only through
Il finll Lu . We use now the results of Lemma 6.7 to get for s = 2 that

2
A7

d
qu(f) 19hq(l)+K0/]R3 Mp.q () (V)7

2
< Cp,g(fin) (\/§2b,q,2r+4(1) + Y qgr() + (5%,,,%%‘,(1) +?%b’q,%q(l)) ’ (1 + %))(6-8)

where r = max(2g + y, q). Fgr any 6 > 0 and 79 > 0, since EZb,q,er(t) <
Cs ¥2pys,4(¢) and similarly for Y 4 »(¢) and the remainder terms, one has that, for
t 2 1,

d d ik
*qu(t) ﬁbq([)‘FK()/SPLb,q(v)(v)yl Jj;' dv

2
< Cp,q.6(fin, 10) (w/ Vopr8,q (1) + Vpis,q(1) + (ﬁ3b+5 O+ T3p4s, q(1)> 3) (6.9)

Using now Proposition 6.5, assuming that ¢ < 4— and 9, 45, q(O) < oo (after
renaming 6 > 0) we deduce that for ¢ > 9 and & > 0

VP
—f dv < CS,b,q,to (fm)(l + t) s

d
g 4§ 940 + Ko / g )W)
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for some positive constant Cs p 4.1, ( fin) depending only on 8, b, g, tp and fi,. In-
tegrating this inequality over (%o, ) yields

2
Ko/ / IVf(T v)| g (0) dv
R3 C f(r)

1 2
< Sp.g (o) — Sp.g (1) + 0y 4 (1) + Eca,b,q,to(fin)(l +1)”.

Arguing as in the proof of [27, Eq. (B.3), Lemma B.4], introducing A = {v €
R3: f(t,v) < 1}, one checks easily that

S0 == [ 10,0170, g £t 0] do

1
+2 /A Hb.q ()] (1, v) log <m) v

Introducing then B := {v € R3: f(t,v) > exp (—3 b(v)?)}, one splits the integral
over A into the integral over A N B and A N B€. On the one hand, forv € AN B,
logﬁ < 3b(v)? and, for any § > 0, there exists Cs = C(§, g, b) > 0 such
that”

1
Z/AmB Mb.q () f(t, ) 10g(f(t7 U)> dv < Cs /R} Mb+s,q (V) (1, v) dv
= C50p15,4(0).

On the other hand, for v € A N B¢, using that x log X, one has

t,v)1 ! <2 t <2 —3b q
ft,v) 0g<f(t’v)>\; f(,v)\;eXp( 3 <v)),

1
/Ach Mg () f(t, v)log <f(l’ v)) dv

2 1
< —/ exp —zb(v)? ) dv=:Cpy < 0.
e JRr3 2

This shows that, for any § > 0,

so that

=810() < = [ s 010, 001108 £ (8010 + Cooisg 1)+ 2Chg

Moreover, we deduce from Eq. (6.6) in Lemma 6.7 together with Proposition 6.5
that S, 4 (7o) is finite under our assumption on f;, and

t
KQ/ dr/ (V) b, )|V f (T, v) > dv < C(1+t)2,
o R3

for some finite C > 0 depending on b, ¢, §, tp > 0 and fi,. m]
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We deduce from this the following estimate for T“? (£ (1)).
Corollary 6.9. Assume that —2 < y < 0 and let a nonnegative initial datum f,
satisfying (1.7)—(1.9) for some &y > 0 be given. For € € (0, &g], let f(t,-) be a

weak-solution to (1.10). Leta > 0 and 0 < g < %, and assume that for some
6 >0,

q(+lyD
/ Sfin(v) exp ((2a +8)2 Wl (v)q) dv < oo.
R3
Then, there exists Cs g 4(fin) > 0 depending only on 8, a, q and f;, such that

' (a.q) 19a+6,q(7) 2
L (f()dr < Csaq(fin) sup ————— (1 +1)7, O<ty<t,
to

to<t<t ko (T)
where we recall that ko(t) =1 — e || f(T)] L, T = 0.

Proof. The proof follows from Lemma 6.3, Proposition 6.8 with b = a, and the
fact that (v)?ptg 4 (V) < Cs.4 (V)Y fa+s.4 (V) for any § > 0. O

Theorem 6.10. Assume that —2 < y < 0 and let a nonnegative initial datum fi,

satisfying (1.7)—(1.9) for some &y > 0 be given. For ¢ € (0, &g], let f(t,-) be a

weak-solution to (1.10). Let ag > 0 and 0 < g < %, and assume that

/ fin(v) exp (ao(v)q) dv < oo.
R3

Then, there exists some explicit .. > 0 depending only on ay, q and fi, such that,
for any e € (0, &,) (where &, is prescribed by Theorem 1.7),

He(f ()] M) < max (1, Ha(fuul Me)exp (<2177 ), 122,

Asa consequence,

1f (1) = Mellpr < y/max (2,2 He(finl Me)) exp <—%t‘1qV) . 122,

Proof. We first observe that, thanks to Theorem 1.7 and under the assumptions on
the initial datum f;,, there is e, € (0, 9] depending only on f;, such that for any
€ € (0, &,

ko=1—esup| f(H)ec > 0.
21

Let us write

y(@) = He(f(D| Me), 1 20.
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One uses then (6.1) and (5.19) which, by Proposition 5.2 and Theorem 1.7, actually
holds for —2 < y < 0. We first deduce that, for e € (0,&,),t > 1,and a > 0,
q €(0,1),

1[1 ra ¢
20 (F @) > + | ~tog (L L) | g0 ry)
2| De (f(1))

a1 re?ran\ 17
> > |:;10g (W (@),

(a.q)
where we recall that we already know that L (/1) > 1, so that Féa’q) (f(@) >

B} 28 (@)
Ao y(t). We deduce then that

d w1 reran\ 17
ay(t) < _7 |:5 log <W y(1), t>1.

Using Gronwall’s Lemma, we get

_ . _ r
y(@®) < y(l)expq — )LOV / |:—10g (&L)} dr g, t>1.
2a4 J1 I (f (1))

(6.10)
‘We introduce
Y
! 2oy () !
L) = | |—tog|—222 V| d4r, 1>2,
@) '/1{ 0g<r‘£"””(f(r))>] T t
so that
! Aoy(T) i
L) > | | =tog =222 )| 4
' /[ Og<r£“"”(f(r>>)} !
t Y
zf [1ogF§“"”(f(r))—1ogio—1ogy(r)]‘fdr, t>2

Assume now that there is #p > 2 and some m >0 such that

o "
Y(10) = exp (— <5) ) . (6.11)

Then, since T — y(7) is non increasing, one has

y(¥) = y(to) = exp(—t") Zexp(—1y') ., t€ (t—o, to> ,



854 R. ALONSO, V. BAGLAND, L. DESVILLETTES & B. LoDs

and

QIR

fo -
1w > [ [1oeri (o) = togTo + 17" e

2

Using now that, for any & € R, the function r > exp(—a) +— (o + log r)g
is convex, and applying it with « = —loglo + 7', we deduce from Jensen’s
inequality that

to [ Z2dr
1w = 3 [ [logr O (py +a] 25
Z 0

Y
1 _ 2 fo q
> 30 [:5" —log &g + log (—/ ré“*‘”(f(r))drﬂ .
to %

Using Corollary 6.9 together with Proposition 6.5, choosing parameters a, § > 0
(+lyD
such that ag = <2a + 8)2q vl , there are positive constants Co, C; > 0 (inde-

pendent of 7o) such that
@) 3
/0 L™ (f(2))dr < Co (1 +10)°
7

so that

QR

t _
I,(to) > Eol:t(')" —log ko + log(2Co) + 3log(1 + fo) — log to]

Consequently, there exists C> > 0 such that
my.

I,(10) = Cat ¢,

Inserting this in (6.10), we now deduce that

xo Ca 1+mg> 6.12)

y(to) < y(1)exp ( —

2a1

Since we proved that assumption (6.11) implies estimate (6.12), we see that for any
t > 2 and any m >0, we have the following alternative:

(i) either y(r) <exp (_ (%)m)’
(i) or y(r) < y(1)exp (—’_\O—Cyzt“rmg),

2a1
At this state, choosing m > O so thatm = 1 + m% (thatis m = #), we see that

y() < max(l y(l))exp(—ca ), t>2,

for some explicit ¢, := min (2_’", %) . This concludes the proof. O
2a9
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Appendix A. Regularity estimates

We collect here several a priori regularity estimates for the solutions to (1.10). Clearly, it is
possible to interpolate between L' and L thanks to Theorem 1.10 to obtain a control on
the LP-norms with 1 < p < co. We adopt another approach here which consists in directly
investigating the evolution of the L”-norms:

Proposition A.1. Assume that =2 < y < 0. Let p > 1 and fi, € LP(R3) N L2R3) N
L;p (R3) satisfying (1.7)~(1.9) for some g > 0, with

LIGp=Dlyl ify<-1,
= — A.l
o p{3p—1+y if y € (=1,0). (A-D

Lete € (0, eg] and let f (¢, v) be a weak solution to (1.10). Then, there exists some constant
Cp(fin) depending on p and fiy, such that, for every T > 0,

T
sup £, )17, +/0 A‘@(v)% (v_f%(t, v)(z dvdt < Cp(fin) (1 + TP

t€l0,T)
(A.2)
Proof. We start with the formulation (1.10)
W f=V-(ZIfIVS =blf1f(—€f)), (A3)
[ =0)= fin. ‘

For p > 1, multiplying this identity with f 7 ~1(t,v) and integrating over R3, one deduces
1d

**/ fp(l,v)dv+(17*1)/ P20 ZLF 0NV f @ 0] -V f (2, ) dv
pdt Jr3 R3
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=(p- 1)/R? [P F@ 0B OI@) - V@),  F=f(-ef).

. .. . . .. .. p_ P
Using the coercivity estimate in Proposition 2.3, |F| < f, and noticing that f2V f2 =
g fP -ly f, we obtain, after integration between 0 and 7',

1

T
/f”(T,v) dv+<p—1>1<o/ dr/ ) fP72(t,0) IV £, 0)* dv
D JR3 0 R3

— T P P
<1f ) dv+M/ dzf FE@ ) 1BLAG W] IV )] do.
P JR3 V4 0 R3

Note that from this point on, the estimates do not use ¢ and are thus similar to that of the

usual Landau equation. Since f7 2|y f 2= %W f 5 2, using Young’s inequality, we get

_ T
/ FP(T, v)dv—l—M/ dt/ WYV FE (2, v dv
R3 V4 0 R3

. pip—1 (T . .
</R}fi§<v>dv+—2,(0 fo dzfﬂ@(v) Y £P () 1AL ) do

p p(p — DC(fin)* /T / » max(—y.247)
< A@ fin(v) dv + 2K, A dr ]R3f (t, v){v) dv,

where we used (3.42), (3.43) and (3.38) in the last term, C( fi,) depending only on || fin |l 2
and ||fin||L£« Since

2 1 2 2
W [vrien[ =3 |V (@2 aw)| = [varn| e,
we get that
p—1 ’ /2 .8 2

/ff’(r,v)du+—1<of dt/ ‘V((v)y f2(t,v))’ dv

R3 )4 0 R3

T
< / fEwydv+ Cop(p - 1) / dr f ()Y I £ P v)dv, (A4)
R3 0 R3

for some positive constant Co depending only on || finll /1, [l fin |l 2 and H (fip)-
2
Choosing ¢ > 1,a > 0 and 6 € (0, 1) such that ¢’ & = 1 and

1
gp—0)=3p, —+ =1,
q
and applying Holder’s inequality, we see that, with o = max(—y,2 + y),
/ (v>max(—y,2+y) FP(t,v)dv
R3

- fR 7 A0 @) F 0P do

1 1
<[ / <v><w+“)q’f(z,v>q’9dv]q [ f <v>—“qf<z,v)"<f’—9>dv}q
R3 R3

[ - T[ L 2\6 e
< f<v>  fv)dv / (<v> ¢ f(t,v>z) dv} .
R3 R3
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Using the Sobolev inequality (2.14), we conclude that

/3(v)max(—y,2+V) fP(t,v)dv
R

6 p w 2 q3(1-6)
< CsopM za (1) [/RJV(WF?P(LU)) dv] .

At this point, observe that 6 = 312%1 and select a in such a way that ag = 3|y|. Thus,

R\

2p
3p—1
S Cpmazp O [/M
6p—4

with z, = w;“. Note that, for y € (=2,0), z, < 5 < 6. Then, using Young’s
inequality it holds for any § > 0,

=

y 2 3
V((v)7 f2(, v))‘ dv] , (A.5)

2p 3p-3 p—1

x 31 y3p*l g 8§~ 2 )Cp +5

Wl

v, Vx,y>0.

1
Choosing Cy Cp 83 = 2—1172 Ko, we get after combining (A.4) and (A.5) that

_ T )
P p—1 v op
A‘@ JET, v)dv + 2 Kofo dté}‘v((u)z fz(;,v))‘ dv
T
nga fif,](v)vaGC/O mz, (1)Pdr.

One sees from the second part of (1.14) in Theorem 1.9 that

T
/ mz,(OPdt < Cp(fin) 1+ TP
0

for some Cp(f;,) depending only on ||f,<n||L%, and H(fj;) and p. We deduce from this
estimate (A.2). m]

For simplicity of notations, we introduce here Lg,o(R3 )= 530 L; (R3) as the space of
integrable functions with finite moments of any order and, more generally,

1, 1,
Wo! (®%) = () Wy P (RY)
s=0
forany p > 1.
Corollary A.2. Assume —2 < y < 0 and let qy > 1. We assume that f;, € L9° (R3) n
L2(R3) N LL (R3) satisfies (1.7)~(1.9) for some ey > 0. Let € € (0, 9] and f(t,v) be a

weak solution to (1.10). Then, for any m > 0, q € [1, qo) and for any T > 0, there exists
some constant C depending on qq, m, q, fi, such that

sup / W™ f(t,v)? dv < C(1+T)! 90 (A.6)
t€[0,T]/R3

Proof. This is a direct consequence of an interpolation between the spaces L40 and L‘%,
using Proposition A.1 and the universal growth of the L'-moments in Theorem 1.9. m]
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This corollary will be used in a crucial way to prove the following proposition. We introduce
here the notation L~ O(R3) := ﬂq>l L9(R3).

Proposition A.3. Assume —2 < y < 0 and let fi; € LL (R L®OR3) satisfying
(1.7)—(1.9) for some ey > 0. Let ¢ € (0, eg] and f(t,v) be a weak solution to (1.10). For

any choice of m > 0 and p > 2, if fi, € W,i,’p(]l@), then there is some Ct (fin) depending
onm, p, T and fj, such that

3. ,T
sop [ v oravs Y [ [ a2 v R a
R = Jr

t€[0,7T]
< Cr(fin)- (A7)

Proof. Taking the derivative of (1.10) with respect to a component i € {1, 2, 3}, we end up
with the equation

{ d @ )=V - (ZLFIV@ )+ G ELfNVS —bLf18; F — [9;bf1] F), (A.8)

0; f(0,) = 9; fin -

Compute
S Zf " oy £1P do
=(p- 1)Z/R}<v>'" |a,-f|”—2{wa,»f> -bLf10; F
+V(@ f) - 8;bLf1 F — ELFIV @3 IV f) — V(aif)a,»z[f]w} dv
—Z /R 0 £1P720 £ ELFIV @3 )V ()"
—Z/ )™ 185 £1P720; £ [9; 2LV f d
+Z/M V)" - BLF113; 1720 f 8 F dv
+Zf " - DL 10 1P 26, f F du,
Using the coercivity estimate in Proposition 2.3 and Young’s inequality we see that
2 Z/M "3 117 dv -2 p(p— 1) Z /R3<v>'"+y 13 £17-2 170, £ 12 dv
<Cp /R3(v)’”“’"IVfI”’z[IVfIQIVE[f]IZ+F2|Vb[f]|2
+IVF2BLA + <v>—2|Vf|2|2[fJ|2] dv
+Cp fR3<v>m*1 IVf17 [VELf]] dv

+Cp fR3 v e (Ib[f]l IVE| +|VbLS]] F) du, (A.9)
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where Cp > 0 only depends on p and m. Then, we observe that

I[£10)| < Cfin) ()27,

IVF@)| < C(+ f) IV, (A.10)
[VELF10)| + [BLA1W)| < C(fin) (v)mX O 1H7
IVBLA1t, ) < C (- 17T x ), (A.11)

and (A.9) leads to

d Ko -
T fIPdv+ — - m+y 9. £|P—2 12
dr Ei /R3<U> [0; f17 dv 5 p(p I)Xi:/RSh)) [0; f1 [V3; fI7 dv

< Cpmn)(/ Soyrtmax 2= g )2 v f1P do
R
+/3<v>’"+“"f2 VAP 177 )% do
R

+/ A\ L (R AR dv). (A.12)
R3

_a_
For p > 2, using Young’s inequality x y < x? + ya-T witha = ﬁ for the second term
of the right-hand side of the aforementioned estimate, and with a = % for the third term,
we conclude that for some rq,rp > 0

d m Ko m _
dlefRs(”) |3if|pdv+2P(P—1)lZ/R}<U) 10y £1P72 93 112 do

< Cp<ﬁn>(/ﬂ;{s<v>"’+ma*<'y'*2—'y'>(1 + DIV dv

+/R3(v)”f2(l~|_‘y‘*f)f’ dv+f 2 F (- )P dv). (A.13)

R3

Such an inequality is also easily deduced from (A.12) when p = 2. We see then, thanks to
Young’s inequality, that for all 3 > 0, there exists r4 > 0 such that

f WP F A+ DAk )P du
R3

< f W) 2+ ) dv

R3
+2P*1/ W T g x HPP dv
]R3
+2P—1/ W™ sk )P dy
R3
< /R3(v)’4f2 I+ )% dv+Cp I £I5, + CILITE (A.14)

where we used that
_ _ — 2
/ W1 T s D) dv < g £
R3

— 2 2
< s,



860 R. ALONSO, V. BAGLAND, L. DESVILLETTES & B. LoDs

and [p3(v)~*dv < oo. Then,
/R}<v)m+max(|y|‘2f|y|)(1 NI
= _/RS 3i[<v)m+max(lyl,2—|y|)(1 +f)2 |aif|p—2 3 f1 f dv
- _/R3 3: Ly L2=D] (1 4 2 £l £1P=2 8 f o
2 fR}<v>"’+“‘a"“V"2"V') PO+ £)18; 17 dv

= 1) [ oI 2 g 12 f o
R

The second integral is nonnegative whereas we can estimate the third integral using Young’s
inequality to get, for any § > 0,

R}(v)’"*mx(‘y"?*‘y')(l + )19 f1P dv
<c [ 20 g2 p i

8 [ 0102 P
R

(p— > mtmaxGlylL4=Iy Dy 4yt 121, FP2
BT S (T

To estimate the first integral, we now use Young’s inequality in the form

WA+ P2 18 1PV < <18 FIP + Cpo) TP+ )PP fP

1
4
1

< (L4 P3G fIP + Cpo) P(L+ PP fP,

4

while, for the third integral, since max(3|y|,4 — |y)<max(|y|,2 — |y]) + 2max(]y], 1),
one can use Young’s inequality in the form

(p—1)?
48
1

< 10 f1P + Co p0)? max(yl.D 4 fyP pP

(v)zmax(l)/\,l)(l + f)2fZ|3if|p_2

for some positive constant Cs, , > 0. Therefore, one can find Cs, , > 0 such that

f3(v)m+max(\)/\,2—\)’\)(1 + f)2 10; £17 dv
R

< [ w2 4 R 10 ao

4 R3

4 [ s 2 frdves [ o102 0 P
R- R

1
g [ o2 20,517 du

+Cs.p /R L+ X FP du,
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with rs := m +max(|y[,2 — |y]) — p, re := m +max(|y|,2 — |y|) + p max(|y[, ). As
a consequence,
1

3 [ g2 17 a

<a/ )" "Na; £1772 13 1% dv
R3
+Cs.p / L)TROSTO (1 2P fPdy, Vs> 0. (ALLS)
R

Using estimates (A.14), (A.15), (A.13), and remembering (A.6), we conclude the proof. O

Notice that in particular, thanks to Proposition A.3, a Sobolev estimate in the v variable
shows that f satisfies an L° (local w.r.t. time) estimate. More specifically, we have the
following result

Corollary A4. Assume —2 < y < 0, and let fi; € L OR3)NLL (R3) sazisfying (1.7)-
(1.9) for some €9 > 0. Let & € (0, eg] and let f (¢, v) be a weak solution to (1.10). Then for
any p > 2andany T > 0, if fi;, € Wzl’p(]R3), there is some Ct(p, fin) depending on p,
T and fjy,, such that

IZAIVF=blfILf (1 —¢&f)] ”L°°([O,T];LP(R3)) < Cr(p, fin)- (A.16)

Proof. Observe that thanks to (A.10) and (A.11),
0272 <€ [ @0 P dus Clfnly,

so that (-)7277’2[]‘] is bounded in L°([0, T] x R3). In the same way (-ymin{—1-y.0}
b[ f]is bounded in L*° ([0, T] x R3). We conclude using Proposition A.3 and Corollary A.2.
O

Corollary A.5. Assume —2 < y < 0 and let fi; € L°7OR3) N L (R3) satisfying (1.7)-
(1.9) for some €9 > 0. Let & € (0, eg] and let f (¢, v) be a weak solution to (1.10). Then for
any p >2, T >0, if fiy € Wzl’p(R?’) then there is some Ct(p, fin) depending on T, p
and fiy, such that

< Cr(p, fin)s A.17
||f||W%,p([0’T]XR3) 7(P fin) ( )

and for any o € (0, %), T > 0, there is some Cr(a, fin) depending on T, o and fiy, such
that

”f”CO'O‘([O,T]x]R»*) < Cr(a, fin). (A.18)
Proof. Using the equation and Corollary A.4, we see that, forall 1 < p < oo, if fij, €
Wzl’p(]R3) then f is bounded in Wl'oo((O, T); Wfl'p(R3)). Proposition A.3 also ensures
that f is bounded in L*°((0, T); wlp (]R3)). We get inequality (A.17) thanks to an inter-
polation, and deduce (A.18) from (A.17) thanks to a Sobolev inequality. m]

We now establish a weighted L°° estimate which comes out of Prop. A.3.
Corollary A.6. Assume —2 < y < 0 and let fj, € LéO(R3)ﬂL°°_O(R3) satisfying (1.7)—
(1.9) for some ey > 0. Let € € (0, eg] and f(t,v) be a weak solution to (1.10). For any

choiceofm > 0and p > 3, if fi, € W,L’p(R3), then there is some Ct(m, p, fin) depending
onm, p, T and fj, such that

sup ()7 f(t. )| o3y < CT0m. p. fin)- (A.19)
t€l0,T]



862 R. ALONSO, V. BAGLAND, L. DESVILLETTES & B. LoDs

Proof. Notice that, if fj, € Wl’p(R3) with p > 3, then f;,, € L thanks to Sobolev
inequality. In particular, the assumptions of Propositions A.3 and Corollary A.2 are met.
Using Sobolev inequality again, since p > 3, there are Cy = Co(m, p), C; = C(m, p)
such that

su N tH < Co su H% tH
temqu() I ey < o sup 007 s
1 1
< Cp sup </ W)™ |V £ (2, )| du)' +Ci sup (/ W)™ | £z, )P dv)’
te[0,7] \JR3 t€[0,7] \JR3
‘We conclude by using Proposition A.3 and Corollary A.2. O

We can now state a stability estimate for the solutions of the LFD equation satisfying the
regularity obtained in Proposition A.3.

Proposition A.7. Assume —2 < y < 0 and let fi,, gin € Léo(R3)ﬂL°°70 (R3) satisfying
(1.7)—(1.9) for some € > 0. Let € € (0, eg] and f(t, v), g(t, v) be weak solutions to (1.10).

If fin, in € W;(’,4(R3), then for all m > 8, there is some CT(m, fin, gin) depending on m,
T and fiy, gin such that

sp )% (£ - g0,

te[0,T]

< Crm, fins i) ()% (fin = &)

L2(R3)

(A.20)

LXR3)

Proof. In the rest of the proof, C will denote a positive constant depending on m, T, fin, &in
as well as the coercivity constant K and that may change from one line to another. For two
solutions f (¢, v), g(¢, v) to (1.10), we introduce

u@.v) = ft,v) —gt,v),  stv) = fr,v)+gv)

from which one sees easily that
1
au = EV : <(E[f] + Z[gh Vu—>blul (f(1 —ef)+g(l—eg)
+o[u(l —es)]Vs — b[s]u (1 — es)) .

Using the short-hand notations h = f(1 — e f) + g(1 —eg), X9 = Z[f1+ X[g] = o[h],
we compute, for m > 0,

d m, 2 _ m
I R3(v) u“(t, v)dv = /Ra ():()Vu) -V ((v)"u(t, v)) dv
+/ u(l — es)b[s] - V ((v)"u) dv

/ hb[u] - V ((v)"u) dv

—/ o[u(l —es)]Vs -V ((v)"u) dv
]R3
=h+hLh+1I3+14.

Here, arguing exactly as in [12, Proof of Theorem 5.2, estimate of (5.2) + (5.4)], we can
check that

L+ 1 < —Kof Y™t |vu)? dv — s/ u(v)”sb[s] - Vudv
R3 R3
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—em/ uZ(v)"2sh[s] - vdv
R3
1
+T/ u2 ()" 2p[s+h] - vdv + f/ U2z : V()" dv
2 JRrs3 2 Jr3

1 / 2, \m
—= u“(v)“els]dv.
2 Jr3

Observing that there is C > 0 such that ‘EO : Vz(v)m‘ < C)™tY | while

()" 2b[s+h] - v < C ()" — (v)™¢[s+h])

thanks to (3.44), we can estimate the integrals involving fR3 u?(v)™¢[s] dv and ng u? (v)" ¢[s+h] dv
using Proposition 1.8 and deduce that

K,
L+h< ——0/ ()"t |vu? dv-l—C/ )"t u? do
2 Jr3 R3
—em/ uz(v)m_zsb[s]-vdv—s/ u(v)"sb[s] - Vudv.
R3 R3

By Young’s inequality, the last term can be bounded by

e/ u(v)”sb[s] - Vudv
R3

K
<52 [ v o g
4 R3
+Cp / Wy~ s2 |b[s]|*> u? dv
R3
for some positive constant C(y depending on K. Using the bound in (A.19) together with

the bound on |b[s]| provided by (A.11), one checks without difficulty that there exists C > 0
such that

s|bls]| < C{v)", (A21)

and therefore

K,
L+ < ——0/ ()™ tY |vu)? dv+C/ (Wy™tY u2 du
4 JRr3 R3

—l—m/ uZ(v)"=2 |sb[s] - v| dv
R3

L+DL<—="2 ] "7 |vu?dv+ c/ ()™ u? dv (A.22)
2 Jr3 R3
where we used again (A.21). We now estimate /3 and /4. Since
L+Iy=m f \ u(v)m_2hb[u] -vdv —m / %(v)m_2u (o[u(1 —es)]Vs) - vdv
R3 R3
+/ (v)™hb[u] - Vudv — / (V)™ (a[u(l — es)]Vs) - Vudv
R3 R3

and, thanks to Young’s inequality,

/ (v)™hb[u] - Vudv — / (v)"™ (a[u(l — es)]Vs) - Vudv
R3 R3
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K, 2
<20 oyt wul? dv + cf WYY v Y2 % ul| dv
4 R3 R3

2
+C [ R[],
R3

while
m/ u(v)"2hb[u] - vdv — m/ W2y (e[u( — es)]Vs) - vdv
R3 R3
2
gc/ <v)"’—1u2dv+C/ (v)m_1|h|2‘|-|y+l*|u| dv
R3 R3
2
+cf WS | 172wl o

R3

Therefore,

K,
I+ 14 < —0/ )" |vul? du+c/ " w2 dv
4 ]R3 ]R3

2
+c/ WYY |vs[? ‘ B |V+2*|u|‘ dv
R3
2
+C/3(v)’”_7’ |h|2‘|~|}’+1 *|u|) dv.
R

One has |h|? < s? and, using again (A.19), there is C > 0 such that (v)’”_)’*'ﬁh2 < C,
from which

2 2
L= ine [t a < e [ @]l w.
R3 R3

Splitting the convolution integral according to [v — vs| > 1 and |[v — v«| < 1, we see that

2
2
1 -1
|17 <2<f‘ vl |u<v*>|dv*)
V—Ux|Xx

2
+2 (/ v — vl |u<v*)|dv*>
[v—v4|>1

and, using Cauchy-Schwarz inequality, we see that
2
/R3<v)—6 1 el do < U120, (/Re<v>‘6(v*)‘6lv — v, dvdv,
+f ()0 (vs) "o - v*rzdvdv*)
[v—vy] <1

from which

2

. (A.23)

2
[ ne [ aw < e fue?]
R3
Using now the estimate of Vs as deduced from Prop. A.3 in the form

<C,

H <U>%+3VSHL4(]R3)
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we can apply twice Cauchy-Schwarz inequality to deduce that

2
[ 912 < ull” aw
R3

1 1
2 4 2
< (/ (o) 227 +12 |Vs|4dv) (/ vy~ 12 ’ |72 |u|‘ dv)
R3 R3
12 442 8 2 Nz 4)?
< - _ Y (puy— )
\C<./]R3<v> (/W o= vl 2 (0,) dv*> dv) ICN .

from which

2

2
" 19 [ ] d < ¢ Juc’]
/RJ“) VS |12 s qul|” dv < € Juert],

Combining this with (A.23) we see that

Ky _ 2
< 8o m+y 2 m—1,2 H ,4” .
L+l <~ A@(v) |Vul dv+C/R}<v> Uwdv + C UG 5 s,

Combining this with the estimate (A.22) of I 4+ I» we deduce that

d

T IRS(v)’”u2 dv < c/ ()™ + (0)8)u? dv.

R3

Taking m > 8 and using Gronwall’s lemma, we get the stability estimate (A.20). ul

We conclude this Appendix with the proof that (for suitable initial data) the solutions of the
LFD equation with moderately soft potentials are in fact classical.

Corollary A.8. Let y € (=2, 0). Consider an initial datum fi, € L*~O(R> N LL (R3) N

Wzl’p(]R3)f0r some p > 2 satisfying (1.7)—(1.9) for some ey > 0. For any € € (0, &g,
any weak solution f to (1.10) given by Theorem 1.5 is actually a classical solution, that is
[ is continuously differentiable with respect to t and twice continuously differentiable with
respect to v on (0, 00) X R3.

Proof. We observe that f is a weak solution to the linear equation (with unknown u)
u =V - (E[fIVu) — (1 —=2e f)bIf]-Vu —cy[f1(1 —€f)u.

Let R > 0Oand Q = {v € R3; lv] < R}. The coefficients X[f], (1 — 2e f)b[f],
¢yl f1(1 — e f) and also VX[ f] are Holder-continuous on (0, 7) x € for any 7 > 0
thanks to Corollary A.5 and belong to L% ((0, T) x €2). We then deduce from Proposi-

tion 2.3 and [30, Chapter 111, Theorem 12.1] that 9; f and 8,%_ v f are also Holder-continuous
on (0, o0) x . ]

We now have all the ingredients for the

Proof of Theorem 1.6. The first statement in the Theorem is a direct consequence of Corol-
lary A.2, while the second one is obtained thanks to Proposition A.3 and Corollary A.5
whenever p > 2. For p € [1, 2], one deduces that f € L*°([0, T]; le’p(R3)) by a simple
interpolation. The uniqueness part of the result is deduced from the stability estimate (A.20)
in Proposition A.7. ]
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Appendix B. About the Cauchy Theory

We give the detailed proof of Theorem 1.5 about the existence of solutions to (1.10). We
follow the approach of [12]. Let (W,),¢(0,1) be a family of smooth bounded functions on

R that coincide with W (r) = rY*t2for0 <v <r <v~!and satisfy that

(i) The functions W/, W}/, lIl,(,3) and \1154) are bounded.
(i) The following hold

W2 b=+

W, (r) > VO<r<v, W) > —5 >0,¥r>v L. (B.1)

(iii) Foranyr € R4,
W,(r) <277 and (W (r)| < CrFY, (B.2)

for some constant C independent of v.

We then set
v _ (v . v _ L ZiZj
a"() = (a} j(z>)u with a2 = Wu(lz) (8 — 54),
by (2) = Yy dkay'y (2) = — T Wy (lz),
() = L 05} @) = = 2 [ Wullz + 121 (12D .

and we consider the following regularized problem

{ of =V (B - BI11f A —ef)) +vAf B.3)
£0.)= fin,

where, as above, ZV[f] =a" * (f(1 —ef)),b"[f]1=Db" x f.

We note here that the initial condition of the regularized problem is not assumed to satisfy
(1.9). For such an initial condition, Lemma 2.1 still holds. We first investigate the well-
posedness of (B.3) and prove the following result.

Proposition B.1. Consider f;, € €°[®R3) N H'®R3) N W3 R3) such that

—B2v)?
0< Olle_ﬂ”v|2 < fin(v) < %2 for every v € R, (B.4)

1+ eapePrlv?

for some positive constants a1, oy, B1 and Ba. Let v > 0 and T > 0. Then, there exists a
solution fV to the regularized problem (B.3) such that, for every s > 0,

fY e L0, T); LI®R) N L2((0, T); HI(RY)).

The proof of this Proposition can be easily adapted from the proof of [12, Theorem 4.2]. One
begins by freezing the non-local coefficients in (B.3). The smoothness and boundedness of
W, are used here in order to obtain some parabolic operator with smooth coefficients and
deduce the existence of a unique classical solution from [30, Chapter V, Theorem 8.1].
Finally, some fixed-point argument enables to conclude.

In order to pass to the limit v — 0 in (B.3) and obtain a solution to (1.10), we need to
prove uniform estimates on f" (with respect to v). First, as in [12, Lemma 4.8], one has the
lemma:



About the Landau-Fermi-Dirac Equation 867

Lemma B.2. Foranyo,t € [0, T], o < t, forany v € (0, 1), the function fV satisfies

/ [l vydv=o, (B.5)
R3
faf"(t, W|v)? dv=0+6vi0 <0 +6T0, (B.6)
R.
Se(fin) < Se(f¥(0)) < Se(f¥ (). (B.7)

where o =/ fin(w)dv and 6 =/ fm(v)lvlzdv.
R3 R3

Next, we consider the ellipticity of the diffusion matrix. As in [12, Proposition 4.9 and
Corollary 4.10], one has the following proposition:

Proposition B.3. Ler 0 < fj, € L%(R3) be fixed and satisfying (1.7) for some &y > 0. Let
e € (0,eq] and R(fin) and n(fin) be given by the first point of Lemma 2.1. Let 1 be the
constant given by the second point of Lemma 2.1 for 6 = n( fin). Let

_ 1
0<v gmin{(zk(fm))—l, (3—”)3 , 1}.
4

Then,
(1) there exists a positive constant Ko > 0 depending on y, | finlly 1, and H(fin), such
2

that, for any v, &€ € R3,

3 (Zi LW + v 5) &
iJ
> Kotw)? min {0~ 1u) 7,277 20"} je

holds for any € € (0, egl and f € Ye(fin);
(2) there exists a positive constant k > 0 depending on y, || finll L and H (fi,), such that

HE

Vo, £ eR D (B [f10) + v ;) & k5 >« Fprat

i,j
holds for any e € (0, egl and f € Ye(fin)-

The proof of the first point of this Proposition can be easily adapted from that of [24,
Proposition 2.3]. Indeed, ¥,,may be bounded from below thanks to (B.1):

v p=(2+y)
W, (r) > min 5 s 5

forany r € Ry.

The second point follows easily from the proof of the first point by using that v > 3R(fin).
This gives some uniform (with respect to v) ellipticity estimate.

LemmaBd. Let fi, € € @R n HI®R3) N W3 WR3) satisfying (B.4). Let f* be a
solution to (B.3) given by Proposition B.1. Then, forany T > 0 and s > 2, there exists some
constant Cy depending only on s, T and || fin|l . ! such that

sup 1"l < I finll 1 exp (CsT). (B.8)
tel0,T] y y
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Proof. With notations similar to those in (3.1), one has
G L e = e G )
ARG D +su/R3 PP G+ 6+ DvP) do,
where

v Wy (Jv — vsl) s— o
f?,l(h’ g) =2s /R3><]R3 h(v)g(vs) ﬁ ((U) 2_ (vs) 2)
<|U>|<|2 —(v- v*)> dvdvy ,
Wy (Jv — vy
S, g) = s(s = 2) / W () e) L0 = 2D
' R3xR3 v — vy
<|U|2 los]? — (v - v*)z) dvdvy .

As in Lemma 3.1 and Remark 3.2 one has

W, (|v — vy
SIS =2 [ vy Yoo = v

. a7 (w07 - w7) dudus <0
XK~ - Ux

One now splits /s"z(f", FY) according to [v — vy| > land [v — vg| < 1,

/s‘jz(fvvFU) =N+,

where
I =s(s—2) U —ef)
[v—vs| 21
v,(Jv—wv
”qiffl) W (P oel? — @ v:0?) dvdos,
[v — vyl
L =s(s—2) f”f:(l—é‘f;))
lv—vs|<1

o O TP - @ v0?) duduy.
- Uk

Since [v[2[v«]? — (v - v5)? < (V)% (vs)2, W, satisfies (B.2) and F¥ < £, one has
I < 25(s = 2) v = val? ¥ £ ()7 (04)? dv oy
[v—v| 21
< 2s(s —2) IV ) 2w dvdog < 25(s — 2)mY_, (0)m (1),
[v—vs| 21
where mj (1) = [p3 £V (¢, v)(v)* dv. For I, we use (B.2), F¥ < f", and [v]2vs]? = (v -
vs)? < |v] |vs] v — v4]?, to get that

I < 2s(s —2) v — 07TV Y2 ) ] [ve] doduy

[v—vg|<1

< 2565 —2) FU L2 40l e dvdvy < 25(s = 2mY_y(0m’ (1),

[v—vg|<1
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One also splits 7", (f”, (f")?) according to [v — vs| > 1 and |v — v4| < 1,

e 1Y (D) = T1+ Do,

where

J = 2ssf £ (0)?
[v—vi| 21
Wy, (Jv — vyl)

|U_U>i<|2

Jy = 2ss/ ()2
lv—vy| <1
Wy, (Ju — vgl)
v — vyl?

Since W, satisfies (B.2) and € fV < 1, one has

()72 = (W) ) (vg - (5 — v)) dvdy,

()72 = () ) vy - (05 — v)) dvdoy.

Ji < 4s fl o v — vl £V LY (0)72 4 () 72 (04 + (v4) (v)) dv duy

< 4s (my_,(Omy (1) + 2m;_ (H)m} (1) + my(1)m (1)) .

For J,, we use that W, (r) < 2forr < 1 by (B.2)ande f¥ < 1. Wealso have vy - (vs —v)| <
[vg| [v — v4], and

W72 = @ 2 <G =20 — vl sup (o (1= Dug*
te(0,1)

Hence,

52 5—2 (s =2) [v— vl ifs <3,
‘(U> — (v4) ‘ < { C(s —2) v — vyl ((U)S73 + (v*>373) ifs >3,

for some C depending only on s. Consequently, if s < 3, we obtain
Jo < 4s(s = 2my(H)ym] (1),
whereas, if s > 3,
Jy) <4Cs(s —2) (m‘;_3(t)m‘1’ (1) +my) (t)m:_z(t)).

Finally,
us/g FU G+ (1 +9)v?) dv < vs(s +3)mY_, (1)
R.

Combining the above estimates and (B.5)-(B.6), we deduce the existence of some constant
Cs depending on s, y, T and || finll ;1 such that %m;’ (t) < Csmy (1), and (B.8) follows. O
2

Lemma B.5. Let fi, € €°[R3) N HL(R3) n W3R R3) satisfying (B.4). Let f¥ be a
solution to (B.3) given by Proposition B.1. Then, for any T > 0 and s > 2, there exists some
constant C > 0 depending only on s, e, T and ||fm||L% such that, for any t € (0, T),

%]M: () + kDY (1) <CM(1), (B.9)

with

MO = [P b Di0 = [ 19 e )P,
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Proof. Lets > 0. We deduce from (B.3) that
1d

VN2 /. 0\ S _ Vr gV v VoS
vt Ju W = fRS (E'L/1+vB) VY-V () do
V[ £V £V v s—2

—s/R3(): WA VA2 A0 BRI R

+ [P e b

w5 [P0 e R

—s v/ FUVFY v () 2 dv. (B.10)

R3

It follows from the second point of Proposition B.3 that

L @) e oz x| 9 rR e a.
R3 R3

Proceeding as in the proof of (3.12), we obtain

rd_ Kv s—2 w2 2853\
S MYO + 5D, < s/ﬂ@(v)‘ <(f RV )b [f]-vdv
K 1 w2 & u3) vy
—/R}w) (2(f) =0 ))c [fV]dv

+%/R3(u)“4(_f”)2Trace():”[f”] CAW)) dv

-= f BV v) P do
2 JRr3
2
+i % /Rg<f”>2<v>s‘4 dv
+Ef PG+ s+ DPdv,  (B.11)
2 JRr3

where A(v) = (v)ZId + G —2)vQ®uv,v € R3. For the last two integrals in (B.11), we
clearly have

(s —22

(s —2)° o
2 /R P e < MY, (1),

and

vs(s +3)

5 MY _5(2).

%/ 204G+ (s + D) dv <
Rfi

2

For the integral involving A in (B.11), we have by (B.2), for every i, j, |A; j| < s{v) and

2+
P FV11 < 207 5 FY < 4] Y 5 £V Hence,

%/R} )~V Trace (B[] A(v)) dv

2 -2 2 2 2
< 18s /Réms (70210 = 021V £ dvdvs < 1857 mb, () MY, (1),
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For the first integral in (B.11), since 0 < $(f")? < (f*)? = Z(f")3 < ()2, we have,
by (B.2), ‘

s / (v)s~2 ((f”)2 - 2—€<f“>3> B[] vdv
R3 3

< s/ @202 L o] do
]R3
< ZS/ oo =0 w51 (192 dua,
RS v — vyl

<ds /11{6 v — v Y £ )T (V)2 dudoy

Now, as for (3.42)-(3.43), there exists some universal constant C > 0 such that for every
v e R3 and everyt € [0, T],

VRS v — v Y £ (2, vi)dy

< Clllfinll gy + 1 @l 2) ()M 47
1 1
< Cllfinllgy + € 2l finll L) o)™ 170 (BL12)

where we used that f¥ < e~ L. Consequently, we get that

s / (v} ((f”)2 - 2—€<f“)3) BT vdv
R3 3
<Ce / L) (502 Gy < CoMY ).
R
Similarly, since e(f*)? < f", one has

’—% / FURBIG) - v(v) 2 do
]R3

<3 f ML) do < CeMY ().
R3

For the second integral in (B.11), since 0 < £(f")? < $(f"M)? = £(f")° < L(f")2 we
have by (B.2)

— s 1 VN2 . E 3 Vo
= [ (U= S0 ) etma
< l/ W (2 e L1 dv
2 R3
< -A%ﬁ (‘Pv(lU—U*D + |\IJV(|U—U*|)|) f: (U)s (fv)z dvdu,

v — vyl? [v — vsl

<O [ ool £ 0 (P dudu,
R
Now, for a given v € ]R3, one has, thanks to the Holder inequality,

/RSIU—v*P’f*”dv*Sfl ‘>l|v—v*|”f*”dv*+/| ‘ llv—v*l)’fﬁdv*
V—Uy| > V=<
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<Ol + 1 Oliee (/I lv— v*l‘”du*>q

—vg|<1
_ = 1
<C(||fin||L1 +e& p ||f1n||L|)

for p > 1 such that —y¢g < 3 where % + % = 1. Hence,

s 1 v2 € v\ v
‘—/}R@(v) <2(f) 3(f ) )c [f"]1dv

- _p-l 1
<C (”fin”Ll +e 7 ||fin||£1) M (7).

Forv € (0,1) and y € (—2,0), Lemma B.2 implies that all the above L'-moments are
bounded by some constant depending only on 7" and || finll; 1. Thus, gathering the above
2

estimates, (B.9) follows. O

Remark B.6. Performing the same manipulations as above but using the first point of Propo-
sition B.3, one obtains

d
MO 2K [ 9P 0

min {(v_1|v|)_y, 277, 2(V|U|)_(2+y)} dv < CIM{ (1)
where again C depends on s, &, T and ||fin||1_%-

Proof of Theorem 1.5. Letusfix T > 0. Consider fi, € leo (R3) for some so > 2 satisfying
(1.7)~(1.9) for some ey > 0. Then, there exists a sequence of functions (finx)k>1 in
C°MR3) N HIR3) N W3 (R3) such that (fin,)k>1 converges towards f in leo (R3)
and

B < p < ﬂ
’ 1 + eage—Belvl

for some positive constants ay, &y, B and By

For every k € Ny, we set vy = % and f; = fYk, where fYk denotes a solution to (B.3) with
initial datum fi,  given by Proposition B.1. Since (fin k)k>1 is bounded in leo (R3), we
deduce from Lemma B.4 that (fi)x>1 is bounded in L2((0, T); le0 (R3)). We now apply
Lemma B.5 with s = 50 > 2. Since (fin,k)k>1 is bounded in L;O (R3) N LOO(R3), it is

bounded in L20 (R3 ) and we deduce that there exists some constant C7 ¢ depending on T,

€ and sup; > | ||f1n,k||L}0 such that, for any k € N,

sup IOl +/ / Y02 fi (r, v) 2 dvdr < Cre.

telo,

Consequently, (fi)g>1 is bounded in L2((0, T),H 1 (R3)). We then deduce from the weak
formulation associated to (B.3) that (9;fx)r>1 is bounded in Ll((O T);
(W22 (R3))/) and thus, for m > 4, in L1((0, T); (Hm(R3))) Now, for m > 4, we have

H' ®) L] R c L'®Y) c (" ®Y)),
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the embedding of H 1(R3) N LSI,O (R3) in LI(R3) being compact. We may thus conclude
from [31, Corollary 4] that (fi)i> is relatively compact in the space Lz((O, T); L (R3)).
Therefore, there exists a function f € L2((0, T); L (R3)) and a subsequence of (f)r>1
(not relabelled) such that ( fk)k; 1 converges towards [ € L2((0, T); Ll (R3)) and a.e. on
0,7T) x R3. For (S (502(]1@), it is easy to check that the sequence (ng Jrw dv)p>q is
equicontinuous and bounded in €' ([0, T']). The Arzela-Ascoli Theorem thus ensures that it
is relatively compact in €' ([0, T']).

Finally, we obtain that ( fR3 Jry dv)>1 converges towards ng fo dvin%é'([0, T]) and then
that  (fi)k>1  conmverges  towards  f in €y ([0, T L2(R3),  where
Gw (0, T]; LZ(R3 )) denotes the space of weakly continuous functions in L2(R3). We eas-

ily check that f preserves mass and energy and, passing to the limit kK — oo in the weak
formulation, we obtain that f satisfies (1.11). Moreover, we can deduce from (B.8) that

f € L®((0,T); L] (R3)), and from Remark B.6 that V f € L2((0, T); L§0+y(R3)).

Let us now prove the monotonicity of the entropy. We know that f € L%((0, T);
H21 +y (R3)). Then, we deduce as in (B.12) that there exists some constant C¢ depending on

€ and ||fin||L£ such that, for every v € R3and s € [0, T]

|Bf1(1,v)| < Ce (pymax(0.1+)

One also has, for every v € R3 and every t € [0, T], that |X[f](t,v)| < C”fin”L;

(v)2+V, for some universal constant C > 0. It thus follows from the weak formulation
associated to (1.10) that 3 f € L2((0, T); (H,, ., (R))). We then deduce from [32, Ch.III

+v

Lemma 1.2] that f € € ([0, T]; L>(R3)). As in [12, Lemma 4.18], one may then prove the

monotonicity of Sg(f). O
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