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Abstract

We present some essential properties of solutions to the homogeneous Landau-
Fermi-Dirac equation for moderately soft potentials. Uniform in time estimates for
statistical moments, L p-norm generation and Sobolev regularity are shown using
a combination of techniques that include recent developments concerning level set
analysis in the spirit of DeGiorgi and refined entropy-entropy dissipation functional
inequalities for the Landau collision operator which are extended to the case in
question here. As a consequence of the analysis, we prove algebraic relaxation of
non degenerate distributions towards the Fermi-Dirac statistics under a weak non
saturation condition for the initial datum. All quantitative estimates are uniform
with respect to the quantum parameter. They therefore also hold for the classical
limit, that is, the Landau equation.

1. Introduction

1.1. Setting of the problem

In the ensuing pages we study the essential properties of a dilute gas satisfying
Pauli’s exclusion principle in the Landau’s grazing limit regime. More specifically,
we study the Landau-Fermi-Dirac (LFD) equation in the homogeneous setting for
moderately soft potential interactions described as

∂t f (t, v) = Q( f )(t, v), (t, v) ∈ (0,∞)× R
3 , f (0) = fin , (1.1)

where the collision operator Q is given by a modification of the Landau operator
which includes Pauli’s exclusion principle. This is defined as

Q( f )(v) = ∇v ·
∫

R3
�(v − v∗)�(v − v∗)
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{
f∗(1 − �ε f∗)∇ f − f (1 − �ε f )∇ f ∗

}
dv∗ , (1.2)

with the usual shorthand f := f (v), f∗ := f (v∗), and

�(v − v∗) = |v − v∗|γ+2, �(z) = Id − z ⊗ z

|z|2 .

The Pauli exclusion principle implies that a solution to (1.10) must a priori satisfy
the bound

0 � f (t, v) � ε−1,

where the quantum parameter

ε := (2π�)3

m3β
> 0

depends on the reduced Planck constant � ≈ 1.054 × 10−34m2kgs−1, the mass
m and the statistical weight β of the particles species; see [1, Chapter 17]. In the
case of electrons ε ≈ 1.93 × 10−10 	 1. The parameter ε quantifies the quantum
effects of the model. The case ε = 0 corresponds to the classical Landau equation.

In this paper, we are interested in moderately soft potentials, corresponding to
the case when γ ∈ (−2, 0). The main original features of this paper are:

• It is the first systematic study of the LFDequation formoderately soft potentials,
which are a class of potentials essentially closer to the most relevant case of
Coulomb interactions than the recently studied hard potentials case, see [2].

• Pointwise bounds are obtained thanks to a variant of the De Giorgi method,
which leads to an elegant proof in which no high-order derivatives are manip-
ulated. Such L∞-estimates are actually independent of the quantum parameter
ε and yield the following pointwise lower bound

inf
v∈R3

(1 − ε f (t, v)) � κ0 > 0 , ∀t � 1, (1.3)

which plays a fundamental role in the long-time behaviour analysis.
• Stretched exponential decay towards equilibrium is recovered thanks to a careful
analysis of the constants pertaining to the moments bounds and to a complex
interpolation procedure involving a nonstandardGronwall-like lemma;wepoint
out that, for soft potentials, exponential decay is not expected.

• All estimates are uniform with respect to the quantum parameter (lying in a
range fully determined by properties of the initial datum such as statistical
moments and entropy), so that the statements and proofs also hold for the
Landau equation with moderately soft potentials. This provides a new approach
for classical and novel results concerning this equation, in particular related to
the long time behaviour.
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Concerning the smallness of the parameter in the above point, let us make clear to
the reader that our approach does not resort to any kind of perturbation argument.
The smallness of ε has to be interpreted rather as a saturation condition since we
need to ensure that ε lies in some physical range for which the above (1.3) holds.
In particular, this restriction on the range of parameters will be needed here only
for the results regarding convergence towards equilibrium.

Before going further in the description of our results and the related literature
on the field, let us comment a little bit on the terminology we adopt and the physi-
cal relevance of our results. As far as the classical Landau equation is concerned,
the physically relevant potential interaction is the one associated to Coulomb in-
teractions, corresponding to the choice γ = −3. This is well-documented in the
plasma physics literature, and has been observed for instance in [3] in the context
of the derivation of the Landau equation from a N particles system. Under such a
premise, it may appear artificial to choose the range of parameters γ ∈ (−2, 0) for
our analysis and to refer to it as “moderately soft potentials”. The choice of this
terminology is motivated by the fact that the Landau-Fermi-Dirac equation (1.10)
can be derived at the formal level from the Boltzmann-Fermi-Dirac equation in the
grazing collision limit (see [1,4,5] for details in the classical case) and, as such,
inherits the terminology in use for the Boltzmann Equation [6]. Besides the termi-
nology, the choice of the range of parameters −2 < γ < 0 corresponds to a case in
which a well understood theory exists for global, non-perturbative strong solutions
of the classical (that is, when ε = 0) Landau equation (such a theory exists in fact
when −2 � γ � 1, cf. [7,8]). For γ < −2, only weak (or H-) solutions are known
to exist [9]. Since the main bounds presented in this work are uniform with respect
to ε, we expect that they cannot easily be extended to the case when γ < −2,
at least using the same methods. Possible extensions of the De Giorgi approach
to derive pointwise bounds will nevertheless be the object of future work by the
authors, for models related to the Landau equation. We finally mention the recent
work [10] which deals with (1.10) for γ = −3 in a framework different from ours
since the work [10] is dealing with some fixed ε and is not concerned with uniform
bounds with respect to ε.

1.2. Thermal equilibrium

The relevant steady state of the LFD equation is the so-called Fermi-Dirac
statistics.

Definition 1.1. (Fermi-Dirac statistics) Given 	 > 0, u ∈ R
3, θ > 0 satisfying

5θ >

(
3ε	

4π

) 2
3

, (1.4)

we denote by Mε the unique Fermi-Dirac statistics (see [11, Proposition 3] for
the proof of existence and uniqueness of such a function)

Mε(v) = aε exp(−bε|v − u|2)
1 + ε aε exp(−bε|v − u|2) =: Mε

1 + ε Mε
, (1.5)
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with aε, bε defined in such a way that

∫
R3

Mε(v)

⎛
⎝ 1

v

|v − u|2

⎞
⎠ dv =

⎛
⎝ 	

	 u
3	 θ

⎞
⎠ .

Note that Mε is here a suitable Maxwellian distribution that allows us to recover in
the classical limit ε → 0 the Maxwellian equilibrium.

Besides the Fermi-Dirac statistics (1.5), the distribution

Fε(v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε−1 if |v − u| �
(
3	 ε

|S2|
) 1

3

,

0 if |v − u| >
(
3	 ε

|S2|
) 1

3
(1.6)

can be a stationary state with prescribed mass 	 = ∫
R3 Fε(v)dv (where |S2| =

4π is the volume of the unit sphere). Such a degenerate state, referred to as a
saturated Fermi-Dirac stationary state, can occur for very cold gases (with an
explicit condition on the gas temperature). For such saturated states, the condition

∫
R3

Fε(v)

⎛
⎝ 1

v

|v − u|2

⎞
⎠ dv =

⎛
⎝ 	

	 u
3	 θ

⎞
⎠

makes the inequality (1.4) an identity which enforces

ε = εsat := 4π (5 θ)
3
2

3	
.

The fact that an initial distribution close to such degenerate state makes 1 − ε f
arbitrarily small in non negligible sets affects the diffusion mechanism and the reg-
ularisation process induced by the parabolic nature of (1.10). As such, the existence
of such saturated states impacts the gas relaxation towards the corresponding Fermi-
Dirac statistics in a close-to-saturation situation. It was shown in reference [2] that,
for hard potentials, explicit exponential relaxation rates exist when ε ∈ (0, c εsat)

for someuniversal c ∈ (0, 1). One of the central results of thiswork is the proof of an
analogous statement for moderately soft potentials (with algebraic rates). Proving
explicit relaxation rates for c = 1 remains an open problem for any potential.

1.3. Notations

For s ∈ R and p � 1, we define the Lebesgue space L p
s (R

3) through the norm

‖ f ‖L p
s

:=
(∫

R3

∣∣ f (v)∣∣p 〈v〉s dv
) 1

p

,

L p
s (R

3) :=
{
f : R

3 → R ; ‖ f ‖L p
s
< ∞

}
,
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where 〈v〉 := √
1 + |v|2, v ∈ R

3. More generally, for any weight function � :
R
3 → R

+, we define, for any p � 1,

L p(�) :=
{
f : R

3 → R ; ‖ f ‖p
L p(�) :=

∫
R3

∣∣ f ∣∣p� dv < ∞
}
.

With this notation, one can write for example L p
s (R

3) = L p
(〈·〉s), for p � 1, s �

0. We define the weighted Sobolev spaces by

Wk,p
s (R3) :=

{
f ∈ L p

s (R
3) ; ∂βv f ∈ L p

s (R
3) ∀ |β| � k

}
, with k ∈ N ,

with the standard norm

‖ f ‖
Wk,p

s
:=
( ∑

0�|β|�k

∫
R3

∣∣∂βv f (v)
∣∣p 〈v〉s dv

) 1
p

,

where β = (i1, i2, i3) ∈ N
3, |β| = i1 + i2 + i3 and ∂

β
v f = ∂

i1
1 ∂

i2
2 ∂

i3
3 f . For p = 2,

we will simply write Hk
s (R

3) = Wk,2
s (R3), k ∈ N, s � 0. An additional important

shorthand that will be used when specifically referring to moments and weighted
L2-norm of solutions is defined in the following:

Definition 1.2. Given a nonnegative measurable mapping g : R
3 → R

+, we
introduce for any s ∈ R,

ms(g) :=
∫

R3
g(v)〈v〉s dv, Ms(g) :=

∫
R3

g2(v)〈v〉s dv,

and

Es(g) := ms(g)+ 1

2
Ms(g), Ds(g) :=

∫
R3

∣∣∣∇
(
〈v〉 s

2 g(v)
)∣∣∣2 dv.

Moreover, if f = f (t, v) is a (weak) solution to (1.10), we simply write

ms(t) := ms( f (t)), Ms(t) := Ms( f (t)), Es(t) := ms(t)+ 1

2
Ms(t),

and Ds(t) := Ds( f (t)).

1.4. Weak solutions for the moderately soft potential case γ ∈ (−2, 0)

In the sequelwe perform the calculations in the following functional framework:

Definition 1.3. Fix ε0 > 0 and a nonnegative fin ∈ L1
2(R

3) satisfying

0 < ‖ fin‖L∞ =: ε−1
0 <∞ and Sε0( fin) > 0, |H( fin)| < ∞ ,(1.7)

where Sε0( fin) denotes the Landau-Fermi-Dirac entropy while H( fin) is the clas-
sical Boltzmann entropy (see Section 2.1 for precise definition).
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For any ε ∈ [0, ε0], we say that f ∈ Yε( fin) if f ∈ L1
2(R

3) satisfies 0 � f � ε−1

and

∫
R3

f (v)

⎛
⎝ 1
v

|v|2

⎞
⎠ dv =

∫
R3

fin(v)

⎛
⎝ 1
v

|v|2

⎞
⎠ dv =

⎛
⎝ 	

	u
3	θ + 	|u|2

⎞
⎠ , (1.8)

and Sε( f ) � Sε( fin).

By a simple scaling argument, there is no loss in generality in assuming that

	 = θ = 1, u = 0. (1.9)

This assumption will be made throughout the manuscript and Mε will always
denote the Fermi-Dirac statistics corresponding to this normalisation.

It is important to clarify the role of the class Yε( fin) in the sequel of the paper
as well as that of ε0. In all the subsequent results, the parameter ε0 > 0 is fixed and
fin satisfying (1.7) is chosen. Then, in several results, we will consider a smaller
threshold parameter, say ε� ∈ (0, ε0], and solutions f = f (t, v) to (1.10) for all
ε ∈ (0, ε�]. Such solutions will belong to the class Yε( fin) and properties of such
solutions as well as various bounds for them will be derived uniformly with respect
to ε ∈ (0, ε�].We also wish to point out that, even though our analysis is performed
in the physical space R

3, there is no obstruction to reformulate all our results by
considering v ∈ R

d with d � 2. The main tools used in our analysis (Sobolev
embedding, Nash inequality, etc.) would still apply to this case, yielding only in a
change of some of the threshold values ε0, ε� appearing in the paper. For the clarity
of exposition, we restrict ourselves to the case d = 3.
We adopt the notations of [2], namely,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a(z) = (
ai, j (z)

)
i, j with ai, j (z) = |z|γ+2

(
δi, j − zi z j

|z|2
)
,

bi (z) =
∑
k

∂kai,k(z) = −2 zi |z|γ ,

c(z) =
∑
k,l

∂2klak,l(z) = −2 (γ + 3) |z|γ .

For any f ∈ L1
2+γ (R3), we define then thematrix-valuedmappings σ [ f ] and�[ f ]

given by

σ [ f ] = (
σi j [ f ]

)
i j := (

ai j ∗ f
)
i j , �[ f ] = σ [ f (1 − ε f )].

In the same way, we set b[ f ] : v ∈ R
3 �→ b[ f ](v) ∈ R

3 given by

bi [ f ](v) = (
bi ∗ f

)
(v), ∀ v ∈ R

3, i = 1, 2, 3.

We also introduce

B[ f ] = b[ f (1 − ε f )], and cγ [ f ] = c ∗ f.
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We emphasise the dependency with respect to the parameter γ in cγ [ f ] since, in
several places, we apply the same definition with γ + 1 replacing γ .
With these notations, the LFD equation can then be written alternatively under the
form {

∂t f = ∇ · (�[ f ] ∇ f − b[ f ] f (1 − ε f )
)
,

f (t = 0) = fin .
(1.10)

Definition 1.4. Consider a non trivial initial datum fin ∈ L1
2(R

3) satisfying (1.7)–
(1.9) with ε0 > 0 and let ε ∈ (0, ε0]. A weak solution to the LFD Equation (1.10)
is a function f : R

+ × R
3 → R

+ satisfying the following conditions:

(i) f ∈ L∞(R+; L1
2(R

3))
⋂

C (R+,D ′(R3)),
(ii) f (t) ∈ Yε( fin) for any t � 0 and f (0) = fin,
(iii) The mapping t �→ Sε( f (t)) is non-decreasing,
(iv) For any ϕ = ϕ(t, v) ∈ C 2

c ([0, T )× R
3),

−
∫ T

0
dt
∫

R3
f (t, v)∂tϕ(t, v) dv −

∫
R3

fin(v)ϕ(0, v)dv

=
∫ T

0
dt
∫

R3

∑
i, j

��i, j [ f (t)] f (t, v)∂2vi ,v jϕ(t, v)dv

+
3∑

i=1

∫ T

0
dt
∫

R6
f (t, v) f (t, w)(1 − �ε f (t, w))�bi (v − w)

[
∂viϕ(t, v)− ∂wiϕ(t, w)

]
dv dw. (1.11)

Notice that, since f (t) ∈ Yε( fin), one has in particular 0 � f (t) � ε−1 for any
t � 0. Since ϕ has compact support together with its derivatives, all the terms in
(1.11) are well defined.

1.5. Main results

As mentioned, we study the existence, uniqueness, smoothness, large velocity
and large time behavior of solutions to the spatially homogeneous Landau-Fermi-
Dirac Equation (1.10) with moderately soft potentials. We now present our main
results and insist that all estimates provided are uniform in the vanishing limit of
the quantum parameter ε.

We start with a result regarding the existence of weak solutions.

Theorem 1.5. Let γ ∈ (−2, 0]. Consider an initial datum fin ∈ L1
s0(R

3) for some
s0 > 2 satisfying (1.7)–(1.9) with ε0 > 0. Then, for any ε ∈ (0, ε0] there exists a
weak solution f to (1.10) and one has f ∈ L∞

loc(R+, L1
s0(R

3)).

The proof of this existence result can be found in Appendix B. It follows the
same lines as the proof of the analogous theorem in the hard potential case in [12].
We recall that for the classical Landau equation (that is for ε = 0) the theory of
existence for the case when γ < −2 (very soft potentials) is substantially different
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from the case γ > −2 (moderately soft potentials) [8,9]; we do not investigate the
LFD equation with very soft potentials in this paper.

We now turn to a result of smoothness which holds uniformly with respect to
ε, for any given time interval [0, T ], with T > 0. Uniformity with respect to T is
not obtained at this level, and is considered only in next result.

Theorem 1.6. Let γ ∈ (−2, 0). Consider an initial datum fin ∈ L1
s (R

3)∩Lq0(R3)

for all s � 0 and some q0 � 2, satisfying (1.7)–(1.9) with ε0 > 0. Then, for any
ε ∈ (0, ε0], any weak solution to Equation (1.10) constructed in Theorem 1.5 lies
in L∞([0, T ]; Lq

s (R
3)) for all s � 0, q ∈ [1, q0) and T > 0.

Moreover if the initial datum fin also lies in W 1,p
s (R3) for all s � 0 and all

p ∈ [1,∞), any weak solution constructed in Theorem 1.5 is unique and lies in
L∞([0, T ];W 1,p

s (R3))∩L2([0, T ]; H2
s (R

3)) for all s � 0, p ∈ [1,∞) and T > 0,
as well as in C 0,α([0, T ] × R

3) for some α ∈ (0, 1) and all T > 0. Finally, all
the norms of f in the spaces described in this Theorem are uniform with respect to
ε ∈ [0, ε0] and depend on the W 1,p

s (R3) norms of fin as well as H( fin).

The fact that the solution f = f (t, v) belongs toC 0,α([0, T ]×R
3) can be used

to show that f is in fact a classical solution. The proof of this result of propagation
of regularity can be found in Appendix A, see in particular Corollary A.8. It follows
the methods used in [8] and [9]. Notice that stability (for finite intervals of time)
and consequently uniqueness can be investigated thanks to the study of smoothness
(for sufficiently smooth initial data).

It can be improved in many directions: The assumptions on initial data can be
changed (cf. the various propositions in Appendix A); Appearance of regularity
can be shown (this can also be seen in the various propositions in Appendix A);
The dependence w.r.t. time of the estimates can be obtained explicitly (and involves
only powers and no exponentials, since Gronwall’s lemma is not used), we refer to
next theorem for the use of the large time behavior for obtaining uniformity w.r.t.
time when (polynomial) moments of sufficient order are initially finite. Note that
stretched exponential moments can be considered instead of algebraic moments,
as is done in Section 6.

Concerning the long-time behaviour of the solution to (1.10), the main result
of this work can be summarised in the following theorem:

Theorem 1.7. Assume that γ ∈ (−2, 0) and consider a nonnegative initial datum
fin satisfying (1.7)–(1.9) with ε0 > 0, with moreover fin ∈ L1

s (R
3) with s >

14 + 6|γ |. Then, there exists ε� ∈ (0, ε0] depending only on fin through its L1
s -

norm such that for any ε ∈ (0, ε�], any nonnegative weak solution f := f (t, v) to
(1.10) constructed in Theorem 1.5 satisfies

(1) No Saturation :
κ0 := 1 − ε sup

t�1
‖ f (t)‖∞ > 0.

(2) Algebraic Relaxation : there existsC > 0dependingonly on‖ fin‖L1
2
, H( fin)

and s such that

Hε( f (t)| Mε) � C (1 + t)−
s−8−6|γ |

2|γ | , t � 1 ,
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which implies, in particular, that

‖ f (t)− Mε‖L1 �
√
2C (1 + t)−

s−8−6|γ |
4|γ | , t � 1.

Finally, if

fin ∈ L1
r (R

3) with r > max

(
2s + 8 + 2|γ |, s2

s − 2|γ |
)
,

then there exists a constant C(γ, s, fin) depending on H( fin), s, ‖ fin‖L1
2
and

‖ fin‖L1
r
such that, for any ε ∈ (0, ε�)

sup
t�1

Es(t)+ sup
t�1

‖ f (t)‖L∞ � C(γ, s, fin) . (1.12)

We emphasise that the constants used above do not depend on ε.

Notice that it is possible to interpolate the decay towards equilibrium in L1

and estimate (1.12) in order to get a decay towards equilibrium in L p, for any
p ∈ (1,∞), for suitable initial data.

The result of no saturation described above is crucial for the LFD equation. It
was obtained in [2] in the case of hard potentials using an indirect approach based
on the analysis of higher regularity of solutions to ensure an L∞-bound independent
of ε by Sobolev embedding. In this work the approach is direct; it uses on one hand
a careful study of the L1 and L2 moments of the solution of the equation, and on
the other hand an original use of De Giorgi’s level set method, see Theorem 1.10
hereafter for more details. In both cases, a repeated use of the following technical
result will be made.

Proposition 1.8. Assume that −2 < γ < 0 and fin satisfies (1.7)–(1.9) with
ε0 > 0. For any ε ∈ (0, ε0], any g ∈ Yε( fin) and any smooth and compactly
supported function φ, there is C0 > 0 (depending only on ‖ fin‖L1

2
) such that

−
∫

R3
φ2cγ [g]dv � δ

∫
R3

∣∣∣∇
(
〈v〉 γ2 φ(v)

)∣∣∣2 dv
+C0(1 + δ γ

2+γ )
∫

R3
φ2〈v〉γ dv, ∀ δ > 0. (1.13)

The above inequality (1.13) has been established in [13, Theorem 2.7] with
harmonic analysis tools and study of Ap-weights. This inequality is referred to as
a δ-Poincaré inequality in [13]. The proof of [13] can be applied without major
difficulty to the Landau-Fermi-Dirac context. We nevertheless provide here an
elementary proof, based in particular onPitt’s inequality [14],with a slightly sharper
estimate (1.13). On the counterpart, our method seems to apply only for the range
of parameters considered here, i.e. −2 < γ < 0. Related convolution inequalities
will be then established in Section 2.3 and exploited for the implementation of the
De Giorgi method in Section 4.

The aforementioned proposition plays a fundamental role in the establishment
of the following L1-L2 moments estimates for the solutions to (1.10):
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Theorem 1.9. Assume that −2 < γ < 0 and let a nonnegative initial datum fin
satisfying (1.7)–(1.9) for some ε0 > 0 be given. For ε ∈ (0, ε0], let f (t, ·) be a
weak-solution to (1.10). Assume that

ms(0) < ∞, s > 4 + |γ |.
Then, there exists a positive constant Cs > 0 depending on s and fin through
ms(0), ‖ fin‖L1

2
, H( fin) such that

Es(t) � Cs

(
t−

3
2 + t

)
, ms(t) � Cs (1 + t) t > 0 . (1.14)

Moreover, there exists β1 > 0 depending only on ‖ fin‖L1
2
, H( fin) and m 3|γ |

2
(0)

such that, for s > 6 + |γ |,

Cs � β1
[
(β1s)

8−γ
4+2γ (s+γ−2)+1 + 2

s
|γ | (1 + s)

5
2ms(0)

]
. (1.15)

It is worth noticing that Theorem 1.9 shows the instantaneous appearance
of weighted L2-norms independent of ε. Similar to hard potentials [2], we are
required to investigate simultaneously the evolution of the L1 and L2 moments
through the evolution of Es(t) = ms(t)+ 1

2Ms(t) since the quantum parameter ε

induces a strong coupling between the two kinds of moments. Our estimate shows
a linear time growth of the combined L1 and L2 moments which depends on the
moment of order s only through the pre-factor Cs . Such a bound is fundamental for
the proof of the main Theorem 1.7 which combines its slowly increasing character
with an interpolation technique based upon an entropy/entropy production estimate
established in [15]. The use of such an interpolation process is typical of soft
potential cases for kinetic equations (and briefly described in [15]). Notice that
combining the relaxation result together with the aforementioned slowly increasing
bound proves, a posteriori, the uniform-in-time estimate (1.12).
In fact, to prove the no-saturation result of Theorem 1.7, the key point is the fol-
lowing pointwise estimate:

Theorem 1.10. Assume that fin satisfies (1.7)–(1.9) with ε0 > 0. For ε ∈ (0, ε0],
let f (t, v) be a weak solution to (1.10). Let s > 3

2 |γ | be given and assume that
fin ∈ L1

s (R
3). Then, there is a positive constant C depending only on s, ‖ fin‖L1

2
,

H( fin) such that, for any T > t∗ > 0,

sup
t∈[t∗,T )

‖ f (t)‖L∞ � C
(
1 + t

− 3s
4s−3|γ | − 3

4∗
) [

sup
t∈[0,T )

ms(t)
] 3|γ |
4s−3|γ |

. (1.16)

We mentioned previously that we prove Theorem 1.10 thanks to an original
use of the level set method of De Giorgi [16] which is a well-known tool for
parabolic equations, see the recent surveys [17,18], and became quite recently
efficient for the study of spatially inhomogeneous kinetic Equations [13,19]. In the
spatially homogeneous situation considered here, the method has the flavour of the
approach introduced in [20] for the Boltzmann equation, and recently extended to
the inhomogeneous framework in [21]. The implementation of the level set method
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uses a new critical parameter γ = − 4
3 , which is possibly of technical nature,

but could be significant even if the physical meaning of such a threshold value
remains unclear. We also point out that, this special value γ = − 4

3 is specific to the
physical dimension d = 3 and, very likely, another threshold value would appear
in dimension d �= 3. If γ > − 4

3 indeed, one can pick here above s = 2 so that
supt�0 ms(t) < ∞, and, of course, (1.16) yields a pointwise estimate for f (t)
independent of both T and ε, proving in a direct way the saturation property in
Theorem 1.7.

It is worth noticing that a related pointwise estimate has been obtained in the
classical case ε = 0 in [13] for the range −2 � γ < 0. Namely, for solutions f (t)
to the classical Landau equation in R

3, [13, Theorem 2.1] asserts that there exists
C > 0 such that

f (t, v) � C

(
1 + 1

t

) 3
2 〈v〉 3

2 |γ | t > 0, v ∈ R
3.

Clearly, our method of proof applies directly to this case and, in some sense, im-
proves the result of [13] since combining (1.16) with the uniform bound on the
moments (1.12) yields the bound

sup
t�t∗

‖ f (t)‖L∞ � C
(
1 + t

− 3s
4s−3|γ | − 3

4∗
)
, t∗ > 0 .

This eliminates the need of the polynomial weight 〈v〉− 3
2 |γ |, at the price of a slightly

worse estimate for the short-time behaviour (notice that since s > 3
2 |γ |, we have

3s
4s−3|γ | + 3

4 >
3
2 ).

We indicate that if stretched exponential moments initially exist, then the con-
vergence towards equilibrium can be proved to have a stretched exponential rate as
well, similar to related works on the Landau equation, see for example [22]. A pre-
cise result is given in Theorem 6.10. We mention here that such a result uses again
interpolation technique between slowly increasing bounds for L1 and L2 weighted
estimates for the solution to (1.10) and the entropy/entropy production. The slowly
increasing bounds for moments associated to stretched exponential weights is de-
duced directly from Theorem 1.9 by exploiting the fact that we kept track of the
dependence of Cs in terms of s in (1.15).

1.6. Organization of the paper

After this Introduction, the paper is organized as follows. Section 2 collects
several known results about the Fermi-Dirac entropy and the entropy production
associated to (1.10) and solutions to (1.10). We also present in this Section the
proof of the technical result stated in Proposition 1.8 as well as some other related
convolution estimates. Section 3 is devoted to the study of both the L1 and L2

moments of solutions to (1.10), culminating with the proof of Theorem 1.9. In
Section 4 we implement De Giorgi’s level set methods resulting in Theorem 1.10
whereas in Section 5we collect the results of the previous sectionswhich, combined
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with the study of the entropy production performed in [15], allow to derive the
algebraic convergence towards equilibrium in Theorem 1.7. We upgrade this rate
of convergence in Section 6 showing a stretched exponential rate of convergence for
solutions associated with initial datum with finite stretched exponential moments.
The paper ends with two Appendices. Appendix A is devoted to some additional
regularity estimates for solutions to (1.10) resulting in Theorem 1.6. The full proof
of Theorem 1.5 is then postponed to the Appendix B.

2. Preliminary Results

2.1. Boltzmann and Fermi-Dirac Entropy and entropy production

Recall the classical Boltzmann entropy

H( f ) =
∫

R3
f log f dv .

The Fermi-Dirac entropy is introduced as

Sε( f ) = −ε−1
∫

R3

[
ε f log(ε f )+ (1 − ε f ) log(1 − ε f )

]
dv

= −ε−1(H(ε f )+ H(1 − ε f )
)
.

(2.1)

The Fermi-Dirac relative entropy is defined as follows: given nonnegative f, g ∈
L1
2(R

3) with 0 � f � ε−1 and 0 � g � ε−1, set

Hε( f |g) = − Sε( f )+ Sε(g).

For the Fermi-Dirac relative entropy, a two-sided Csiszár-Kullback inequality holds
true (see [23, Theorem 3]). There exists C > 0 (depending only on ε and ‖g‖L1

2
)

such that

‖g − Mε‖2L1 �
(
2
∫

R3
g(v) dv

)
Hε(g| Mε) � C ‖g − Mε‖L1

2
. (2.2)

The long time behaviour of the solutions of the equation will be studied using
the classical method consisting in comparing the relative entropy with the entropy
production. In our case, the entropy production is defined as

Dε(g) := −
∫

R3
Q( f )[ log f (v)− log(1 − ε f (v))

]
dv . (2.3)

One can show that

Dε(g) = 1

2

∫ ∫
R3×R3

�(v − v∗)�ε[g](v, v∗) dv dv∗ , �(z) = |z|γ+2 ,(2.4)
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for any smooth function 0 < g < ε−1, with

���ε[g](v, v∗) := �(v − v∗)
(
g∗(1 − �εg∗)∇g − g(1 − �εg)∇g∗

)
( ∇g

g(1 − �εg) − ∇g∗
g∗(1 − �εg∗)

)

= gg∗(1 − �εg)(1 − εg∗)
∣∣∣∣�(v − v∗)

( ∇g

g(1 − �εg) − ∇g∗
g∗(1 − �εg∗)

)∣∣∣∣
2

� 0 .

(2.5)

A thorough analysis of the link between the Landau-Fermi-Dirac entropy and its
entropyproductionDε has been established by the authors in a previous contribution
[15], and we refer to the op. cit. for more details on the topic.

2.2. General estimates

One has the following result, refer to [2, Lemma 2.3 & 2.4].

Lemma 2.1. Let 0 � fin ∈ L1
2(R

3) be fixed and satisfying (1.7)–(1.9) for some
ε0 > 0. Then, for any ε ∈ (0, ε0], the following hold:

(1) For any f ∈ Yε( fin), it holds that

inf
0<ε�ε0

∫
|v|�R( fin)

f (1 − ε f ) dv � η( fin) > 0 , (2.6)

for some R( fin) > 0 and η( fin) depending only on ‖ fin‖L1
2
and H( fin) but not

on ε.
(2) For any δ > 0 there exists η(δ) > 0 depending only on ‖ fin‖L1

2
and H( fin)

such that for any f ∈ Yε( fin), and any measurable set A ⊂ R
3,

|A| � η(δ) �⇒
∫
A
f (1 − ε f ) dv � δ. (2.7)

A consequence of Lemma 2.1 is the following technical result which will be used
for the study of moments.

Lemma 2.2. Let 0 � fin ∈ L1
2(R

3) be fixed and bounded satisfying (1.7)–(1.9) for
some ε0 > 0. Let γ < 0. Then, there exists η� > 0 depending only on H( fin) and
‖ fin‖L1

2
such that, for any ε ∈ (0, ε0] and any f ∈ Yε( fin), one has

∫
R3

(
1 + |v − v∗|2

) γ
2

f (v∗) (1 − ε f (v∗)) dv∗ � η�〈v〉γ , ∀ v ∈ R
3. (2.8)

Proof. For simplicity, given f ∈ Yε( fin),we set F = f (1−ε f ). FromLemma2.1,

	F :=
∫

R3
F(v∗) dv∗ � η( fin) > 0.
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Let v ∈ R
3 be fixed and define the probability measure dμ over R

3 by

μ(dv∗) = F(v − v∗)dv∗
	F
.

We introduce the convex function �(r) = (1 + r)
γ
2 , r > 0. One has, thanks to

Jensen’s inequality,

∫
R3

(
1 + |v − v∗|2

) γ
2
F(v∗)dv∗ = 	F

∫
R3
�(|v∗|2)μ(dv∗)

� 	F �

(∫
R3

|v∗|2μ(dv∗)
)
.

Now,
∫

R3
|v∗|2μ(dv∗) = 1

	F

∫
R3

|v − v∗|2F(v∗) dv∗ � 2|v|2 + 6

	F
,

and, since � is nonincreasing,

	F

∫
R3
�(|v∗|2)μ(dv∗) � 	F�

(
2|v|2 + 6

	F

)
� 	F�

(
6 + 6|v|2
	F

)

� 12
γ
2 	

1− γ
2

F 〈v〉γ ,

where we used that 	F � 1 thanks to (1.9) and �(r) � (2r)
γ
2 for r > 1. Since

	
1− γ

2
F � η( fin)

2−γ
2 the result follows with η� = 12

γ
2 η( fin)

2−γ
2 > 0. ��

The following coercivity estimate for the matrix �[ f ] holds. Its proof is a
copycat of [24, Proposition 2.3] applied to F = f (1− ε f ) after using Lemma 2.1
appropriately.

Proposition 2.3. Let 0 � fin ∈ L1
2(R

3) be fixed and satisfying (1.7)–(1.9) for some
ε0 > 0. Then, there exists a constant K0 > 0, depending on H( fin) and ‖ fin‖L1

2
but not ε, such that

∀ v, ξ ∈ R
3,

∑
i, j

�i, j [ f ](v) ξi ξ j � K0〈v〉γ |ξ |2,

holds for any ε ∈ [0, ε0] and f ∈ Yε( fin).

2.3. Convolution inequalities

We establish here some of the main technical tools used in the paper. We begin
with the proof of Proposition 1.8 stated in the introduction, which provides suitable
estimates on the zero-th order term cγ [g] = −2(γ + 3)| · |γ ∗ g.
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Proof of Proposition 1.8. Let g ∈ Yε( fin) be fixed. For a given nonnegative φ, set

I [φ] := −
∫

R3
φ2cγ [g] dv = 2 (γ + 3)

∫
R3×R3

|v − v∗|γ φ2(v)g(v∗) dv dv∗.

For any v, v∗ ∈ R
6, if |v− v∗| < 1

2 〈v〉, then 〈v〉 � 2〈v∗〉, and we deduce from this,
see [25, Eq. (2.5)],

|v − v∗|γ � 2−γ 〈v〉γ
(
1{|v−v∗|� 〈v〉

2

} + 〈v∗〉−γ |v − v∗|γ 1{|v−v∗|< 〈v〉
2

}
)
. (2.9)

Thanks to this inequality, we get I [φ] � 6 · 2−γ (I1 + I2), with

I1 =
∫

R3
〈v〉γ φ2(v) dv

∫
|v−v∗|� 〈v〉

2

g(v∗) dv∗ � ‖ fin‖L1‖〈·〉γ φ2‖L1 ,

while

I2 =
∫

R3
〈v∗〉−γ g(v∗) dv∗

∫
|v−v∗|< 1

2 〈v〉
|v − v∗|γ 〈v〉γ φ2(v) dv.

Set ψ(v) = 〈v〉 γ2 φ(v), from which we get that

I2 �
∫

R3
〈v∗〉−γ g(v∗) dv∗

∫
R3

|v − v∗|γ ψ2(v) dv.

According to Pitt’s inequality which reads, in R
n ,
∫

Rn |x |−α| f (x)|2dx �
∫

Rn |ξ |α∣∣ f̂ (ξ)∣∣2 dξ for any 0 < α < n, [14], there is a universal constant c > 0 such that,
for any v∗ ∈ R

3,
∫

R3
|v − v∗|γ ψ2(v) dv =

∫
R3

|v|γ |ψ(v − v∗)|2 dv � c
∫

R3
|ξ |−γ

∣∣∣τ̂v∗ψ(ξ)
∣∣∣2 dξ,

where τv∗ψ(·) = ψ(· − v∗). Since |τ̂v∗ψ(ξ)| = |ψ̂(ξ)|, we get
∫

R3
|v − v∗|γ ψ2(v) dv � c

∫
R3

|ξ |−γ |ψ̂(ξ)|2dξ.

This results in

I2 � c

(∫
R3

〈v∗〉−γ g(v∗)dv∗
) ∫

R3
|ξ |−γ |ψ̂(ξ)|2dξ

� c ‖ fin‖L1
2

∫
R3

|ξ |−γ |ψ̂(ξ)|2dξ =: c ‖ fin‖L1
2
J,

where we used that −γ < 2. Now, for any R > 0, we split the above integral J in
Fourier variable as

J =
∫

|ξ |<R
|ξ |−γ |ψ̂(ξ)|2dξ +

∫
|ξ |�R

|ξ |−γ |ψ̂(ξ)|2dξ = J1 + J2.
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On the one hand, using Parseval identity, J1 � R−γ ‖ψ‖2
L2 = R−γ ‖〈·〉γ φ2‖L1 .On

the other hand,

J2 =
∫

|ξ |�R
|ξ |−(2+γ )|ξ |2|ψ̂(ξ)|2dξ � R−(2+γ )

∫
R3

|ξ |2 |ψ̂(ξ)|2dξ,

that is, J2 � R−(2+γ ) ‖∇ψ‖2
L2 . Thus,

J � R−γ ‖〈·〉γ φ2‖L1 + R−(2+γ )‖∇ψ‖2L2 ,

and

I [φ] � 6·2−γ ‖ fin‖L1
2

(
(1 + cR−γ )‖〈·〉γ φ2‖L1 + c R−(2+γ )‖∇ψ‖2L2

)

for any R > 0. This proves (1.13) with δ = 6 · 2−γ ‖ fin‖L1
2
cR−(2+γ ) = 6 ·

22−γ cR−(2+γ ). ��
Analternative versionof the above estimate involving L p-norms insteadofPitt’s

inequality is given by the next Proposition, which now holds for the whole range
of parameters between (−3, 0). In the sequel, we call the parameter λ ∈ (−3, 0)
instead of γ since we will apply the inequality later to λ = γ , λ = γ + 1, etc..

Proposition 2.4. Let λ > −3 and p > 1 be such that −λ q < 3 where 1
p + 1

q = 1.
Then there exists Cp(λ) > 0 such that

∣∣∣∣
∫

R3

(| · |λ ∗ g
)
(v)ϕ(v) dv

∣∣∣∣

�

⎧⎪⎪⎨
⎪⎪⎩
Cp(λ)‖〈·〉−λg‖L1

(
‖〈·〉λϕ‖L1 + ‖〈·〉λϕ‖L p

)
if λ < 0 ,

‖〈·〉λg‖L1‖〈·〉λϕ‖L1 if λ � 0.

(2.10)

Proof. For λ � 0, the result is trivial since |v − v∗| � 〈v〉 〈v∗〉 for any v, v∗ ∈ R
3.

Let us consider the case −3 < λ < 0. We can assume without loss of generality
that ϕ and g are nonnegative. Write

I :=
∫

R6
g(v∗)ϕ(v)|v − v∗|λdvdv∗.

Using the inequality 〈v〉 �
√
2〈v − v∗〉〈v∗〉, which holds for any v, v∗ ∈ R

3, we
get

2
λ
2I �

∫
R3

〈v∗〉−λg(v∗)dv∗
∫

R3
|v − v∗|λ〈v − v∗〉−λ〈v〉λϕ(v) dv

=
∫

R3
〈v∗〉−λg(v∗)dv∗

∫
|v−v∗|<1

|v − v∗|λ〈v − v∗〉−λ〈v〉λϕ(v) dv

+
∫

R3
〈v∗〉−λg(v∗)dv∗

∫
|v−v∗|�1

|v − v∗|λ〈v − v∗〉−λ〈v〉λϕ(v) d
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v =: I1 + I2.

For a given v∗ ∈ R
3, on the set {|v − v∗| � 1}, we have |v − v∗| � 〈v − v∗〉 �√

2 |v − v∗| so that

I2 � 2− λ
2

∫
R3

〈v∗〉−λg(v∗)dv∗
∫

|v−v∗|�1
〈v〉λϕ(v) dv � 2− λ

2 ‖〈·〉λϕ‖L1‖〈·〉−λg‖L1 .

For a given v∗ ∈ R
3, on the set {|v − v∗| < 1}, we have 〈v − v∗〉 �

√
2. Then,

thanks to Hölder’s inequality,
∫

|v−v∗|<1
|v − v∗|λ〈v − v∗〉−λ〈v〉λϕ(v) dv

� 2− λ
2

∫
|v−v∗|<1

|v − v∗|λ〈v〉λϕ(v) dv

� 2− λ
2 ‖〈·〉λϕ‖L p

(∫
|v−v∗|�1

|v − v∗|λ q dv
) 1

q = 2− λ
2

( |S2|
3 + λ q

) 1
q

‖〈·〉λϕ‖L p ,

from which we deduce that

I1 � 2− λ
2

( |S2|
3 + λ q

) 1
q

‖〈·〉λϕ‖L p ‖〈·〉−λg‖L1 .

This gives the result with Cp(λ) := 2−λmax

(
1,
( |S2|
3+λ q

) 1
q
)
. ��

2.4. Consequences

An important first consequence of Proposition 1.8 is the following weighted
Fisher estimate. Notice that a similar result can be deduced (for a larger range of
parameters γ < 0) from an alternative representation of the entropy in the spirit of
[26, Theorem 2], refer to [15] for further details.

Proposition 2.5. Let 0 � fin ∈ L1
2(R

3) be fixed and bounded satisfying (1.7)–(1.9)
for some ε0 > 0. Assume that−2 < γ < 0 and ε ∈ (0, ε0]. Then, there is a positive
constant C0(γ ) depending only on fin through ‖ fin‖L1

2
and H( fin), such that for

all f ∈ Yε( fin),∫
R3

∣∣∣∇√ f (v)
∣∣∣2 〈v〉γ dv � C0(γ ) (1 + Dε( f )) , ∀ ε ∈ (0, ε0].

Proof. Let us fix ε ∈ (0, ε0] and f ∈ Yε( fin). Recall from (2.3) that

Dε( f ) = −
∫

R3
Q( f ) [log f (v)− log(1 − ε f (v))

]
dv,
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wherewe recall that Q( f ) = ∇·(�[ f ]∇ f − b[ f ] F), F = f (1−ε f ). Therefore,

Dε( f ) =
∫

R3
(�[ f ]∇ f − b[ f ] F) · ∇ [log f (v)− log(1 − ε f (v))

]
dv

=
∫

R3
(�[ f ]∇ f − b[ f ] F) · ∇ f

F
dv

=
∫

R3

1

F
�[ f ]∇ f · ∇ f dv +

∫
R3

f ∇ · b[ f ] dv. (2.11)

Using Proposition 2.3, because f ∈ Yε( fin), one has

�[ f ]∇ f · ∇ f

F
� K0

f
〈·〉γ |∇ f |2 � 4K0〈·〉γ

∣∣∣∇√ f
∣∣∣2 ,

and, recalling ∇ · b[ f ] = cγ [ f ], we deduce from (2.11) that

4K0

∫
R3

〈v〉γ
∣∣∣∇√ f (v)

∣∣∣2 dv � Dε( f )−
∫

R3
cγ [ f ] f dv.

Then, applying Proposition 1.8, with g = f and φ = √
f , there is C0 > 0 such

that, for any δ > 0,

4K0

∫
R3

〈v〉γ
∣∣∣∇√ f (v)

∣∣∣2 dv � Dε( f )+ δ
∫

R3

∣∣∣∇
(
〈v〉 γ2√ f (v)

)∣∣∣2 dv

+C0(1 + δ γ
2+γ )

∫
R3

f (v)〈v〉γ dv.

Using that

∫
R3

∣∣∣∇
(
〈v〉 γ2√ f (v)

)∣∣∣2 dv � 2
∫

R3
〈v〉γ

∣∣∣∇√ f (v)
∣∣∣2 dv + γ 2

2

∫
R3

〈v〉γ f (v) dv,

we can choose δ > 0 small enough so that

2K0

∫
R3

〈v〉γ
∣∣∣∇√ f (v)

∣∣∣2 dv � Dε( f )+ C1(γ )

∫
R3

〈v〉γ f (v) dv (2.12)

for some positive constant C1(γ ) depending only on fin. This gives the result. ��
A significant consequence of the above result is the following corollary which

regards solutions to the Landau-Fermi-Dirac Equation (1.10).

Corollary 2.6. Assume −2 < γ < 0 and let fin be a nonnegative initial datum
satisfying (1.7)–(1.9) for some ε0 > 0. Let ε ∈ (0, ε0] and f (t, ·) be a weak
solution to Landau-Fermi-Dirac equation, then for 0 < t1 < t2,

∫ t2

t1
dt
∫

R3

∣∣∣∇v√ f (t, v)
∣∣∣2 〈v〉γ dv � C0(γ )

∫ t2

t1
(1 + Dε( f (t))) dt,
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where C0(γ ) is defined in Proposition 2.5. As a consequence, there exist positive
constants C̃0 and C̃1 depending only on ‖ fin‖L1

2
, H( fin) so that for 0 < t1 < t2,

∫ t2

t1
dt
∫

R3

∣∣∣∇v
(
〈v〉 γ2√ f (t, v)

)∣∣∣2 dv � C̃0(1 + t2 − t1) ,

and ∫ t2

t1

∥∥〈·〉γ f (t, ·)∥∥L3 dt � C̃1
(
1 + t2 − t1

)
0 < t1 < t2 . (2.13)

Proof. The first inequality follows by simply integrating the inequality in Propo-
sition 2.5. In order to get the second inequality, we use part (i i i) of Definition 1.4,
which ensures that ∫ t2

t1
Dε( f (t))dt � Sε(Mε)− Sε( fin).

Now, on the one hand,

Sε(Mε) = − log ε − log aε + 3bε + 1

ε

∫
R3

log(1 + εMε(v)) dv,

and

1

ε

∫
R3

log(1 + εMε(v)) dv �
∫

R3
Mε(v) dv = aε

(
π

bε

) 3
2

.

On the other hand,

Sε( fin) = − log(ε)− H( fin)− 1

ε

∫
R3
(1 − ε fin(v)) log(1 − ε fin(v)) dv

� − log ε − H( fin).

Hence,

Sε(Mε)− Sε( fin) � − log aε + 3bε + aε

(
π

bε

) 3
2 + H( fin).

It follows from [2, Appendix A] that aε and bε are uniformly bounded with respect
to ε. This means that Sε(Mε) − Sε( fin) � c0 < ∞, and the second inequality
follows with C̃0 = C0(γ )max(1, c0) independent of ε. To prove (2.13), we recall
that the following Sobolev inequality

‖u‖L6 � CSob ‖∇u‖L2 , u ∈ H1(R3), (2.14)

holds for some positive universal constant CSob > 0. Applying this with u =
〈·〉 γ2 √

f (t, ·) which is such that ‖u‖2
L6 = ‖〈·〉γ f (t, ·)‖L3 , one gets the result with

C̃1 = CSobC̃0. ��
One can get rid of the degenerate weight in (2.13) to get a mere L p bound. We

refer to [13, Proposition 5.2] for a complete proof.



798 R. Alonso, V. Bagland, L. Desvillettes & B. Lods

Lemma 2.7. Assume −2 < γ < 0 and let fin be a nonnegative initial datum
satisfying (1.7)–(1.9) for some ε0 > 0. Let ε ∈ (0, ε0] and f (t, ·) be a weak
solution to Landau-Fermi-Dirac equation. Then, there exists C > 0 depending
only on ‖ fin‖L1

2
, H( fin) such that for 0 < t1 < t2,

∫ t2

t1
‖ f (t, ·)‖p

L pdt � C
(
1 + t2 − t1

)
,

holds with p = min
(
5
3 ,

3(2+|γ |)
2+3|γ |

)
.

3. Moments Estimates

We study here the evolution of both L1
s and L2

s moments of weak solutions to
(1.10). Our goal is to prove Theorem 1.9.

3.1. L1-Moments

We start with the following basic observation for the study of moments.

Lemma 3.1. Assume −2 < γ < 0 and let fin be a nonnegative initial datum
satisfying (1.7)–(1.9) for some ε0 > 0. Let ε ∈ (0, ε0] and f (t, ·) be a weak
solution to Landau-Fermi-Dirac equation. For any s > 2, one has

d

dt

∫
R3

f (t, v)〈v〉sdv = Js( f, F) = Js,1( f, F)+ Js,2( f, F), (3.1)

where F = f (1 − ε f ) and, for any nonnegative measurable mappings h, g � 0
and s > 2, we use the notations

Js,1(h, g) = 2s
∫ ∫

R3×R3
h(v)g(v∗) |v − v∗|γ

(
〈v〉s−2 − 〈v∗〉s−2

)
(
|v∗|2 − (v · v∗)

)
dv dv∗,

Js,2(h, g) = s(s − 2)
∫ ∫

R3×R3
〈v〉s−4h(v)g(v∗)|v − v∗|γ

(
|v|2 |v∗|2 − (v · v∗)2

)
dv dv∗.

Moreover, for any nonnegative g,

Js,1(g, g) = 2s
∫ ∫

R3×R3
g(v) g(v∗) |v − v∗|γ 〈v〉s−2

(
〈v∗〉2 − 〈v〉2

)
dv dv∗.

Proof. For a convex function � : R
+ → R

+, we get from (1.10)

d

dt

∫
R3

f (t, v)�(|v|2)dv = 4
∫

R3
dv
∫

R3
f F∗|v − v∗|γ ��(v, v∗)dv∗,
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where F = f (1 − ε f ), and

��(v, v∗) =
[
|v∗|2 − (v · v∗)

] [
�′(|v|2)−�′(|v∗|2)

]

+
[
|v|2|v∗|2 − (v · v∗)2

]
�′′(|v|2).

Picking �(r) := (1 + r)
s
2 , one sees that

4
∫

R3
dv
∫

R3
f F∗|v − v∗|γ ��(v, v∗)dv∗ = Js( f, F).

Now, a symmetry argument shows that

∫ ∫
R3×R3

g g∗(v · v∗)
[
�′(|v|2)−�′(|v∗|2)

]
|v − v∗|γ dv dv∗ = 0,

that is,

Js,1(g, g) = 2s
∫ ∫

R3×R3
g g∗ |v − v∗|γ

(
〈v〉s−2 − 〈v∗〉s−2

)
|v∗|2 dv dv∗,

and, using symmetry again, we get

Js,1(g, g) = 2s
∫ ∫

R3×R3
g g∗ |v − v∗|γ 〈v〉s−2

[
|v∗|2 − |v|2

]
︸ ︷︷ ︸

=〈v∗〉2−〈v〉2

dv

, dv∗,

which gives the new expression forJs,1(g, g). ��

Remark 3.2. According to Young’s inequality, for s > 2 one has 〈v〉s−2〈v∗〉2 �
s−2
s 〈v〉s + 2

s 〈v∗〉s . Thus,
∫

R6
g g∗|v − v∗|γ 〈v〉s−2〈v∗〉2 dv dv∗ � s − 2

s

∫
R6

g g∗|v − v∗|γ 〈v〉s dv dv∗

+2

s

∫
R6

g g∗|v − v∗|γ 〈v∗〉s dv dv∗

=
∫

R6
g g∗|v − v∗|γ 〈v〉s dv dv∗,

where we used a simple symmetry argument for the last identity. In particular, one
sees that

Js,1(g, g) � 0.

Let us now estimateJs( f, F). The basic observation is the following:
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Lemma 3.3. For any s � 0, f � 0, F = f (1 − ε f ),

Js,1( f, F) = 1

2

(
Js,1(F, F)+ Js,1( f, f )

)

+ε

2

(
Js,1( f

2, f )− Js,1( f, f
2)
)

− 1

2
ε2Js,1( f

2, f 2),(3.2)

with

Js,1( f
2, f )− Js,1( f, f

2) = 2s
∫ ∫

R3×R3
f 2(v) f (v∗)|v − v∗|γ+2

(
〈v〉s−2 − 〈v∗〉s−2

)
dv dv∗.

Proof. This is proven by direct inspection, using that F = f (1 − ε f ), so that

Js,1( f, F) = Js,1( f, f )− εJs,1( f, f
2),

and also

Js,1( f, F) = Js,1(F, F)+ εJs,1( f
2, F)

= Js,1(F, F)+ εJs,1( f
2, f )− ε2Js,1( f

2, f 2).

Taking the mean of these two identities gives (3.2). Now, write for simplicity

I := Js,1( f
2, f )− Js,1( f, f

2).

One has

I = 2s
∫ ∫

R3×R3
f (v) f (v∗) ( f (v)− f (v∗)) |v − v∗|γ

(
〈v〉s−2 − 〈v∗〉s−2

)
(
|v∗|2 − (v · v∗)

)
dv dv∗,

from which we deduce, by a symmetry argument, that

I = s
∫ ∫

R3×R3
f (v) f (v∗) ( f (v)− f (v∗)) |v − v∗|γ+2 (〈v〉s−2 − 〈v∗〉s−2) dv dv∗,

which gives the desired expression using symmetry again. ��
Weestimate separately the terms involved in (3.2) startingwith the termsJs,1(F, F)
and Js,1( f, f ).

Lemma 3.4. If fin satisfies (1.7)–(1.9) for some ε0 > 0, for any ε ∈ (0, ε0] and
any f ∈ Yε( fin), it holds

Js,1(F, F) � 2s

(
‖ fin‖L1

2

∫
R3

F〈v〉s−2 dv − η�
∫

R3
F(v)〈v〉s+γ dv

)
, ∀ s > 2,

(3.3)

where F = f (1 − ε f ) and η� > 0 is the constant in Lemma 2.2 which depends
only on ‖ fin‖L1

2
and H( fin). In the same way,

Js,1( f, f ) � 2s

(
‖ fin‖L1

2

∫
R3

f 〈v〉s−2 dv − η�
∫

R3
f (v)〈v〉s+γ dv

)
, ∀ s > 2.

(3.4)
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Proof. For f ∈ Yε( fin) fixed, we recall that

Js,1(F, F) := 2s
∫

R6
F F∗|v − v∗|γ 〈v〉s−2

(
〈v∗〉2 − 〈v〉2

)
dvdv∗,

and replace, as in [24], |v− v∗|γ with its regularized version 〈v− v∗〉γ . This gives

Js,1(F, F) = 2s
∫

R6
F F∗〈v − v∗〉γ 〈v〉s−2 (〈v∗〉2 − 〈v〉2) dv dv∗

+2s
∫

R6
F F∗

(|v − v∗|γ − 〈v − v∗〉γ
) 〈v〉s−2 (〈v∗〉2 − 〈v〉2) dvdv∗.

(3.5)

Recall that |v− v∗|γ −〈v− v∗〉γ � 0. Using Hölder’s inequality with the measure
dμ(v, v∗) = F F∗ (|v − v∗|γ − 〈v − v∗〉γ ) dvdv∗ and p = s

s−2 , q = s
2 so that

1/p + 1/q = 1, one gets

∫
R6

F F∗
(|v − v∗|γ − 〈v − v∗〉γ

) 〈v〉s−2〈v∗〉2 dvdv∗

�
(∫

R6
〈v〉sdμ(v, v∗)

) s−2
s
(∫

R6
〈v∗〉sdμ(v, v∗)

) 2
s

,

which, by symmetry, reads

∫
R6

F F∗
(|v − v∗|γ − 〈v − v∗〉γ

) 〈v〉s−2〈v∗〉2 dvdv∗ �
∫

R6
〈v〉sdμ(v, v∗) .

Consequently, the second term in the right-hand side of (3.5) is nonpositive. Thus,

Js,1(F, F) � 2s
∫

R6
F F∗〈v − v∗〉γ 〈v〉s−2

(
〈v∗〉2 − 〈v〉2

)
dvdv∗

= 2s
∫

R6
F F∗〈v − v∗〉γ 〈v〉s−2〈v∗〉2 dvdv∗

− 2s
∫

R6
F F∗〈v − v∗〉γ 〈v〉s dvdv∗.

For v ∈ R
3 fixed, one has

∫
R3

F∗〈v − v∗〉γ 〈v∗〉2dv∗ �
∫

R3
F∗〈v∗〉2dv∗ � ‖ fin‖L1

2
= 4 ,

whereas, thanks to Lemma 2.2,
∫

R3 F∗〈v − v∗〉γ dv∗ � η�〈v〉γ . This easily gives
(3.3). One proves the result in the same way forJs,1( f, f ), noticing that the above
lower bound still holds if f∗ replaces F∗, since f∗ � F∗. ��

One can evaluate the other terms in (3.2) as presented in the following lemma.
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Lemma 3.5. Assume that −2 < γ < 0 and let fin satisfy (1.7)–(1.9) for some
ε0 > 0. Let ε ∈ (0, ε0] and f ∈ Yε( fin) be given. There is a positive constant
C0 > 0 depending only on ‖ fin‖L1

2
such that, for any δ ∈ (0, 1) and any s > 2,

− ε2

s
Js,1( f

2, f 2) � δDs+γ ( f )+ C0δ
γ

2+γ Ms+γ ( f ), (3.6)

whereas,

ε

2

(
Js,1( f

2, f )− Js,1( f, f
2)
)

� 2sε‖ fin‖L1
2
Ms+γ ( f )

� 2s‖ fin‖L1
2
ms+γ ( f ). (3.7)

Proof. Recall that

−ε2Js,1( f
2, f 2) = 2sε2

∫
R6

f 2 f 2∗ |v − v∗|γ 〈v〉s−2
(
〈v〉2 − 〈v∗〉2

)
dvdv∗.

Neglecting the negative term and using that ε f 2∗ � f∗, we obtain

− ε2Js,1( f
2, f 2) � 2sε

∫
R6

f 2(v) f∗|v − v∗|γ 〈v〉s dvdv∗. (3.8)

Inequality (3.6) is obtained using Proposition 1.8 with g = f∗ and φ(v) =
〈v〉 s

2 f (v) and noticing that (1+ δ γ
2+γ ) � 2δ

γ
2+γ for any δ ∈ (0, 1) since γ

2+γ < 0.
The proof of (3.7) is obvious since (thanks to Lemma 3.3)

ε

2

(
Js,1( f

2, f )− Js,1( f, f
2)
)

= εs
∫

R3×R3
f 2(v) f (v∗)|v − v∗|γ+2

(
〈v〉s−2 − 〈v∗〉s−2

)
dvdv∗

� εs
∫

R3×R3
f 2(v) f (v∗)|v − v∗|γ+2〈v〉s−2 dv dv∗

� 2εs
∫

R3
f 2(v)〈v〉γ+s dv

∫
R3

f (v∗)〈v∗〉γ+2 dv∗,

where we use that, since γ + 2 ∈ (0, 2), we have |v − v∗|γ+2 � 2〈v〉γ+2〈v∗〉γ+2.
This proves inequality (3.7) where the last inequality obviously comes from ε f 2 �
f. ��
Let us now investigate the second termJs,2( f, F) in the right-hand side of (3.1).

Lemma 3.6. Assume that−2 < γ < 0. Let fin satisfy (1.7)–(1.9) for some ε0 > 0,
ε ∈ (0, ε0] and f ∈ Yε( fin), F = f (1 − ε f ) be given. Then for any s > 2,

Js,2( f, F) � 6s(s − 2)
∫

R3
f 〈v〉s−2 dv . (3.9)
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Proof. Let f ∈ Yε( fin) be fixed. Recall that

Js,2( f, F) := s(s − 2)
∫

R6
f F∗|v − v∗|γ 〈v〉s−4

(
|v|2 |v∗|2 − (v · v∗)2

)
dv dv∗,

and split the integral according to |v − v∗| < 1 and |v − v∗| � 1. Since

0 � |v|2 |v∗|2 − (v · v∗)2 � |v|2|v∗|2 ,
one sees that∫

|v−v∗|�1
f F∗|v − v∗|γ 〈v〉s−4

(
|v|2 |v∗|2 − (v · v∗)2

)
dvdv∗

�
∫

R6
f F∗〈v〉s−4|v|2|v∗|2 dvdv∗

� ‖ fin‖L1
2

∫
R3

f 〈v〉s−2 dv= 4
∫

R3
f 〈v〉s−2 dv.

For the integral on the set |v − v∗| < 1, one uses that |v|2 |v∗|2 − (v · v∗)2 �
|v| |v∗| |v − v∗|2 to get∫ ∫

|v−v∗|<1
f F∗|v − v∗|γ 〈v〉s−4

(
|v|2 |v∗|2 − (v · v∗)2

)
dv dv∗

�
∫ ∫

|v−v∗|<1
f F∗|v − v∗|γ+2〈v〉s−4|v| |v∗| dvdv∗

�
∫

R3
f 〈v〉s−3 dv

∫
R3

F∗|v∗|dv∗ ,

where we used that γ + 2 � 0 to deduce |v − v∗|γ+2 � 1. Since, from Young’s
inequality, ∫

R3
F∗|v∗|dv∗ � 1

2

∫
R3

F∗〈v∗〉2dv∗ � 1

2
‖ fin‖L1

2
= 2 ,

one deduces the result. ��
We apply the previous results to solutions f (t, v) to (1.10) to obtain the following
proposition.

Proposition 3.7. Assume that −2 < γ < 0 and let a nonnegative initial datum fin
satisfying (1.7)–(1.9) for some ε0 > 0 be given. For ε ∈ (0, ε0], let f (t, ·) be a
weak-solution to (1.10). Then, there is a positive constant C > 0 depending only
on ‖ fin‖L1

2
, such that, for any s > 2 and δ ∈ (0, 1), there are positive constant Ks

which depend on s and H( fin) and ‖ fin‖L1
2
satisfying

d

dt
ms(t)+ s

η�

4
ms+γ (t) � 2sKs + sδ

2
Ds+γ (t)+ C sδ

γ
2+γ Ms+γ (t). (3.10)

Moreover, there exists β > 0 depending only on H( fin) and ‖ fin‖L1
2
such that, for

s � 3,

Ks � β (β(s − 2))
s−2
γ+2

(
s − 2

s + γ
) s+γ
γ+2

� β (β s)
s−2
γ+2 . (3.11)



804 R. Alonso, V. Bagland, L. Desvillettes & B. Lods

Proof. According to (3.1) and (3.2), one has

d

dt
ms(t) = 1

2

(
Js,1(F, F)+ Js,1( f, f )

)

+ε

2

(
Js,1( f

2, f )− Js,1( f, f
2)
)

− ε2

2
Js,1( f

2, f 2)+ Js,2( f, F),

with f = f (t, v) and F = f (1 − ε f ). One sees from (3.3)–(3.4) that

1
2

(
Js,1(F, F)+ Js,1( f, f )

)
� s

(
‖ fin‖L1

2

∫
R3
( f + F)〈v〉s−2 dv

−η�
∫

R3
(F + f )〈v〉s+γ dv

)
,

whereas, from (3.6) and (3.7),
ε

2

(
Js,1( f

2, f )− Js,1( f, f
2)
)

� 2sε‖ fin‖L1
2
Ms+γ (t) � 8sMs+γ (t),

−ε2

2
Js,1( f

2, f 2) � s

2

(
δDs+γ (t)+ C0δ

γ
2+γ Ms+γ (t)

)
,

for any δ ∈ (0, 1). Using then (3.9) to estimateJs,2( f, F), we deduce that

d

dt
ms(t) � s

(
4
∫

R3
( f + F)〈v〉s−2 dv − η�

∫
R3
(F + f )〈v〉s+γ dv

)

+ s

2

(
δDs+γ (t)+

(
C0δ

γ
2+γ + 16

)
Ms+γ (t)

)
+ 6s(s − 2)ms−2(t).

Since γ + 2 > 0, the mapping v ∈ R
3 �→ 4〈v〉s−2 − 1

2η�〈v〉s+γ is bounded by
some positive constant Ks > 0 which depends on fin through η�. Thus, we deduce
that

d

dt
ms(t)+ s η�

2

∫
R3
( f + F)〈v〉s+γ dv

� sKs + sδ

2
Ds+γ (t)+ sC̄

(
δ

γ
2+γ + 1

)
Ms+γ (t)+ 6s(s − 2)ms−2(t),

with C̄ = max
(
C0
2 , 8

)
.Again, since γ > −2, up to a modification of Ks , we have

6(s − 2)ms−2(t) � Ks + η�
4 ms+γ (t), from which we easily deduce (3.10). Let us

now explicit Ks . One observes from the aforementioned computations that one can
take Ks = max(supx>0 us(x), supx>0 ws(x)), where

us(x) := 4xs−2 − η�

2
xs+γ , ws(x) := 6(s − 2)xs−2 − η�

4
xs+γ , x > 0.

It is clear that supx>0 us(x) = us(x̄) and supx>0 ws(x) = ws(x̃), where

x̄ =
(

8(s − 2)

η�(s + γ )
) 1

2+γ
, x̃ =

(
24(s − 2)2

η�(s + γ )
) 1

2+γ
,

and consequently, supx>0 us(x) = 4x̄ s−2 γ+2
s+γ , supx>0 ws(x) = 6(s − 2)x̃ s−2 γ+2

s+γ .
Therefore, for any s � 3, we see that Ks = supx>0 ws(x), and one checks that
(3.11) holds for some explicit β > 0. ��



About the Landau-Fermi-Dirac Equation 805

3.2. L2-Estimates

We now aim to study the evolution of weighted L2-norms of f (t, v). Keeping
previous notations, we have the lemma.

Lemma 3.8. Assume that −2 < γ < 0 and let a nonnegative initial datum fin
satisfying (1.7)–(1.9) for some ε0 > 0 be given. For ε ∈ (0, ε0], let f (t, ·) be a
weak-solution to (1.10). For any s � 0, it holds that

1

2

d

dt
Ms(t)+ K0

2
Ds+γ (t) � 2(γ + 3)

∫
R3

〈v〉s
(
1

2
f 2 − ε

3
f 3
) (| · |γ ∗ f

)
dv

+s
∫

R3
〈v〉s−2

(
f 2 − 2ε

3
f 3
)
(b[ f ] · v) dv

+K0(s + γ )2
∫

R3
〈v〉s+γ−2 f 2(v) dv

− sε

2

∫
R3

〈v〉s−2 f 2b[ f 2] · v dv

+ s

2

∫
R3

〈v〉s−4 f 2 Trace (�[ f ] · A(v)) dv , (3.12)

where A(v) = 〈v〉2Id+ (s−2) v⊗v, v ∈ R
3 and K0 is defined in Proposition 2.3.

Proof. As in [2], for any s � 0,

1

2

d

dt

∫
R3

f 2(t, v)〈v〉sdv = −
∫

R3
〈v〉s(�[ f ]∇ f ) · ∇ f dv

− s
∫

R3
f 〈v〉s−2(�[ f ]∇ f ) · v dv

+
∫

R3
〈v〉s f (1 − ε f )b[ f ] · ∇ f dv

+ s
∫

R3
(b[ f ] · v) f 2(1 − ε f )〈v〉s−2 dv.

Using the uniform ellipticity of the diffusion matrix �[ f ] (recall Proposition 2.3),
we deduce that

∫
R3

〈v〉s(�[ f ]∇ f ) · ∇ f dv � K0

∫
R3

〈v〉s+γ |∇ f |2 dv .

Moreover, writing

∇
(
〈v〉 s+γ

2 f
)

= 〈v〉 s+γ
2 ∇ f + s + γ

2
v 〈v〉 s+γ

2 −2 f ,

from which

〈v〉s+γ |∇ f |2 � 1

2

∣∣∣∇
(
〈v〉 s+γ

2 f
)∣∣∣2 − (s + γ )2〈v〉s+γ−2 f 2(v), (3.13)



806 R. Alonso, V. Bagland, L. Desvillettes & B. Lods

we also have∫
R3

〈v〉s f (1 − ε f )b[ f ] · ∇ f dv = −
∫

R3

(
1

2
f 2 − ε

3
f 3
)

∇ ·
(
b[ f ]〈v〉s

)
dv

= −s
∫

R3
〈v〉s−2

(
1

2
f 2 − ε

3
f 3
)
b[ f ] · v dv

−
∫

R3
〈v〉s

(
1

2
f 2 − ε

3
f 3
)

∇ · b[ f ] dv.

Therefore, recalling that ∇ · b[ f ] = cγ [ f ] = −2(γ + 3)| · |γ ∗ f , we get

1

2

d

dt
Ms(t)+ K0

2
Ds+γ (t) � 2(γ + 3)

∫
R3

〈v〉s
(
1

2
f 2 − ε

3
f 3
) (| · |γ ∗ f

)
dv

+s
∫

R3
〈v〉s−2

(
1

2
f 2 − 2ε

3
f 3
)
(b[ f ] · v) dv

+K0(s + γ )2
∫

R3
〈v〉s+γ−2 f 2(v) dv

−s
∫

R3
〈v〉s−2 f (�[ f ]∇ f · v) dv.

Let us investigate more carefully the last term. Integration by parts shows that

−s
∫

R3
〈v〉s−2 f (�[ f ]∇ f · v) dv = − s

2

∫
R3

∇ f 2 ·
(
�[ f ] 〈v〉s−2v

)
dv

= s

2

∫
R3

f 2 ∇ ·
(
�[ f ] 〈v〉s−2v

)
dv .

Using the product rule

∇ ·
(
�[ f ] 〈v〉s−2v

)
= 〈v〉s−2 B[ f ] · v + Trace

(
�[ f ] · Dv

(
〈v〉s−2v

))
,

where Dv
(〈v〉s−2v

)
is the matrix with entries ∂vi

(〈v〉s−2v j
)
, i, j = 1, 2, 3, or more

compactly,

Dv
(〈v〉s−2v

) = 〈v〉s−4A(v) ,

one gets the desired inequality, recalling that B[ f ] = b[ f ] − ε b[ f 2]. ��
We deduce from the previous arguments

Proposition 3.9. Assume that −2 < γ < 0 and let a nonnegative initial datum fin
satisfying (1.7)–(1.9) for some ε0 > 0 be given. For ε ∈ (0, ε0], let f (t, ·) be a
weak-solution to (1.10). There exists some positive constant C̄( fin) depending on
‖ fin‖L1

2
and H( fin), such that

1

2

d

dt
Ms(t)+ K0

8
Ds+γ (t) � C̄( fin)

(
1 + s

10
2+γ
)
‖〈·〉 γ+s

2 f ‖2L1 (3.14)

holds for any s � 0.
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Proof. We denote by I1, I2, I3, I4, I5 the various terms on the right-hand-side of
(3.12), i.e.

1

2

d

dt
Ms(t)+ K0

2
Ds+γ (t) � I1 + I2 + I3 + I4 + I5,

and we control each term starting from I1. Since 0 � 1
6 f

2 � 1
2 f 2 − ε

3 f 3 � 1
2 f 2,

one has

|I1| � (γ + 3)
∫ ∫

R3×R3
|v − v∗|γ f 2(t, v)〈v〉s f (t, v∗)dv∗ dv,

so that, using Proposition 1.8 with g = f (t) and φ2 = 〈·〉s f 2(t), we deduce that,
for any δ ∈ (0, 1),

|I1| � δDs+γ (t)+ C1δ
γ

2+γ Ms+γ (t) ,

whereC1 depends on ‖ fin‖L1
2
. For the term I2, since 0 � 1

3 f
2 � f 2− 2ε

3 f 3 � f 2,
it holds that

|I2| � s
∫

R3
〈v〉s−1 f 2(t, v) |b[ f (t)](v)| dv

� 2s
∫

R6
〈v〉s−1 f 2(t, v)|v − v∗|γ+1 f (t, v∗)dv∗ dv .

Therefore, if γ + 1 < 0, applying Proposition 1.8 with cγ+1[g] instead of cγ [g],
and g = f (t, v), φ2 = 〈·〉s−1 f 2(t), we get

|I2| � s

(
δDs+γ (t)+ C1

(
1 + δ γ+1

3+γ
)
Ms+γ (t)

)
,

whereas, if γ +1 > 0, one has obviously |I2| � s‖〈·〉γ+1 f (t)‖L1Ms+γ (t). In both
cases, for any δ > 0,

|I2| � s

(
δDs+γ (t)+ C1

(
1 + δ γ+1

3+γ
)

Ms+γ (t)
)
.

In the same way,

|I4| � εs

2

∫
R3

〈v〉s−1 f 2(t, v) |b[ f 2(t, ·)](v)| dv

� s

2

∫
R3

〈v〉s−1 f 2(t, v) |b[ f (t)](v)| dv,

since ε f 2 � f. Then, as before, for any δ > 0, there is C1 > 0 such that

|I4| � s

(
δDs+γ (t)+ C1

(
1 + δ γ+1

3+γ
)
Ms+γ (t)

)
.

For the term I5, one checks easily that, for any i, j ∈ {1, 2, 3},
∣∣�i, j [ f ]

∣∣ � 2| · |γ+2 ∗ f,
∣∣Ai, j (v)

∣∣ � s〈v〉2,
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and

|I5| � 9s2
∫

R6
〈v〉s−2 f 2(t, v)|v − v∗|γ+2 f (t, v∗) dvdv∗.

One has, since γ + 2 > 0,

|I5| � s2 C‖〈·〉γ+2 f (t)‖L1 ‖〈·〉γ+s f 2(t)‖L1 = s2 C‖〈·〉γ+2 f (t)‖L1 Ms+γ (t).

Finally, it is easy to see that |I3| � K0(s + γ )2Ms+γ (t). Overall, recalling mass
and energy conservation to estimate all the weighted L1-terms, one sees that, for
any δ ∈ (0, 1), there is some positive constant C( fin) depending on ‖ fin‖L1

2
and

H( fin) (through K0) such that

1

2

d

dt
Ms(t)+ K0

2
Ds+γ (t) � C( fin)

(
s2 + δ γ

γ+2 + s + sδ
γ+1
γ+3

)
Ms+γ (t)

+(2s + 1)δDs+γ (t) . (3.15)

For s ∈ [0, 1], (3.15) can be rephrased simply as

1

2

d

dt
Ms(t)+ K0

2
Ds+γ (t) � C( fin)

(
δ

γ
γ+2 + δ γ+1

γ+3

)
Ms+γ (t)+ 3δDs+γ (t)

and, picking δ ∈ (0, 1) such that 3δ � K0
4 , one deduces that

1

2

d

dt
Ms(t)+ K0

4
Ds+γ (t) � C̃γ ( fin)Ms+γ (t), s ∈ [0, 1] , (3.16)

for some positive constant C̃γ ( fin) depending only on ‖ fin‖L1
2
, H( fin) and γ . For

s > 1, since 2s + 1 � 3s, choosing δ := min
(

K0
16s , 1

)
we deduce from (3.15) that

there is Cγ ( fin) depending only on ‖ fin‖L1
2
, H( fin) and γ > 0 such that

1

2

d

dt
Ms(t)+ K0

4
Ds+γ (t) � Cγ ( fin)

(
s2 + s− γ

2+γ +s + s
2
γ+3

)
Ms+γ (t), t � 0.

(3.17)

From Nash inequality, there is some universal constant C > 0 such that

Ms+γ (t) = ‖〈·〉 s+γ
2 f (t)‖2L2 � C

∥∥∥〈·〉 s+γ
2 f (t)

∥∥∥
4
5

L1

∥∥∥∇
(
〈·〉 s+γ

2 f (t)
)∥∥∥

6
5

L2
,

which, thanks to Young’s inequality, implies that there is C > 0 such that, for any
α > 0,

Ms+γ (t) � Cα− 3
2 ‖〈·〉 γ+s

2 f (t)‖2L1 + αDs+γ (t). (3.18)

Choosing now α > 0 such that C̃γ ( fin)α = K0
8 if s ∈ [0, 1] or Cγ ( fin)(

s2 + s− γ
2+γ +s + s

2
γ+3

)
α = K0

8 whenever s > 1, we end up with

1

2

d

dt
Ms(t)+ K0

8
Ds+γ (t) � Cs( fin)‖〈·〉

γ+s
2 f ‖2L1
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where, according to estimate (3.17) and (3.18),

Cs( fin) = Cα− 3
2Cγ ( fin)

(
s2 + s− γ

2+γ +s + s
2
γ+3

)
, s > 1

and the last choice of α = K0
8Cγ ( fin)

(
s2 + s− γ

2+γ +s + s
2
γ+3

)−1
gives that

Cs( fin) = C( fin)
(
s2 + s− γ

2+γ +s + s
2
γ+3

) 5
2 � C̄( fin)

(
1 + s

10
2+γ
)
,

since max(1, 2, −γ
2+γ ,

2
3+γ ) � 4

2+γ for any −2 < γ < 0 and with C( fin) and

C̄( fin) depending only on ‖ fin‖L1
2
and H( fin) but not on s. This shows (3.14). ��

Corollary 3.10. Assume that −2 < γ < 0 and let a nonnegative initial datum fin
satisfying (1.7)–(1.9) for some ε0 > 0 be given. For ε ∈ (0, ε0], let f (t, ·) be a
weak-solution to (1.10). Given s ∈ [0, 4 + |γ |] there exists some positive constant
C( fin) depending on fin only through ‖ fin‖L1

2
, H( fin), and such that

Ms(t2)+ K0

4

∫ t2

t1
Ds+γ (τ )dτ � Ms(t1)+ C( fin) (t2 − t1) ,

holds for any 0 � t1 < t2.

Proof. When γ+s
2 � 2, it holds that ‖〈·〉 γ+s

2 f ‖L1 � ‖ fin‖L1
2
, which gives the

statement after integration of (3.14). ��

3.3. Short-time estimates and appearance of L2-moments

Before trying to get global-in-time estimates for both ms(t) andMs(t) (with a
growing rate independent of s), let us start with the following non-optimal growth
that has to be interpreted here as a short-time estimate.

Proposition 3.11. Assume that −2 < γ < 0 and let a nonnegative initial datum
fin satisfying (1.7)–(1.9) for some ε0 > 0 be given. For ε ∈ (0, ε0], let f (t, ·) be
a weak-solution to (1.10). Then, for any s � 3,

ms(t) �
[
ms(0)

|γ |
s + C( fin) |γ | s t

] s
|γ |
, t � 0 , (3.19)

where the constant C( fin) depends on fin only through ‖ fin‖L1
2
but does not depend

on s. If s ∈ (2, 3) (3.19) still holds for γ ∈ [−1, 0) whereas, for γ ∈ (−2,−1),

ms(t) � ms(0)+ C( fin) t , t � 0 , (3.20)

for a constant C( fin) depending only on ‖ fin‖L1
2
.
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Proof. Recall that, according to (3.1),
d

dt
ms(t) = Js,1( f, F)+Js,2( f, F)where,

for any s � 2,

Js,1( f, F) = 1

2

(
Js,1(F, F)+ Js,1( f, f )

)

+ε

2

(
Js,1( f

2, f )− Js,1( f, f
2)
)

− ε2

2
Js,1( f

2, f 2) .

Recall (see Remark 3.2) that

Js,1(F, F) � 0, Js,1( f, f ) � 0 . (3.21)

We neglect such absorption terms since we are interested here in the short time
propagation of moments. We also recall that, according to (3.7),

Js,1( f
2, f )− Js,1( f, f

2) � 4s

ε
‖ fin‖L1

2
ms+γ (t) . (3.22)

Now, to deal with the termJs,1( f 2, f 2), we observe that there is c > 0 (indepen-
dent of s) such that

∣∣∣〈v〉s−2 − 〈v∗〉s−2
∣∣∣ � c(s − 2)

(
〈v〉s−3 + 〈v∗〉s−3

)∣∣v − v∗
∣∣ , (3.23)

which implies,
(
〈v〉s−2 − 〈v∗〉s−2

) (
〈v〉2 − 〈v∗〉2

)

� c(s − 2)|v − v∗|2
(
〈v〉s−3 + 〈v∗〉s−3

)
(〈v〉 + 〈v∗〉)

� 3c(s − 2)|v − v∗|2(〈v〉s−2 + 〈v∗〉s−2) for s � 3.

where we used that as−3b � s−3
s−2a

s−2 + 1
s−2b

s−2 � as−2 + bs−2 for any a, b > 0,
s � 3 in the last estimate. Using then a symmetry argument, this yields

−Js,1( f
2, f 2) = 2s

∫
R6

f 2 f 2∗ |v − v∗|γ 〈v〉s−2 (〈v〉2 − 〈v∗〉2
)
dvdv∗

= s
∫

R6
f 2 f 2∗ |v − v∗|γ

(
〈v〉s−2 − 〈v∗〉s−2

) (〈v〉2 − 〈v∗〉2
)
dvdv∗

� 3c
s(s − 2)

ε2

∫
R6

f∗ f
(〈v〉s−2 + 〈v∗〉s−2) |v − v∗|γ+2dvdv∗

� 6c
s(s − 2)

ε2
‖ fin‖L1

2
ms+γ (t) .

(3.24)

Therefore, adding estimate (3.21), (3.22), and (3.24), there is some C1 > 0 such
that

Js,1( f, F) � C1 s(s − 1)ms+γ (t) , ∀ s � 3 . (3.25)

Furthermore, recall from Lemma 3.6 that

Js,2( f, F) � C2 s(s − 2)ms−2(t).
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Consequently, there exists C( fin) > 0 depending only on ‖ fin‖L1
2
such that

d

dt
ms(t) � C( fin) s(s − 1)ms+γ (t) � C( fin) s(s − 1)

(
ms(t)

) s+γ
s ,

for any t � 0 and any s � 3. This leads to (3.19) after integration. Let us now
investigate the case s ∈ (2, 3). If γ ∈ [−1, 0), one simply uses that

(
〈v〉s−2 − 〈v∗〉s−2

) (
〈v〉2 − 〈v∗〉2

)
� |v − v∗|

(
〈v〉s−2 + 〈v∗〉s−2

)
(〈v〉 + 〈v∗〉)

to obtain

−Js,1( f
2, f 2) � 3s

ε2

∫
R6

f∗ f
(
〈v〉s−1 + 〈v∗〉s−1

)
|v − v∗|γ+1dvdv∗

� 6s

ε2
‖ fin‖L1

2
ms+γ (t) .

This estimate is similar to (3.24) and yields again (3.19). For s ∈ (2, 3) and γ ∈
(−2,−1), (3.23) implies

(
〈v〉s−2 − 〈v∗〉s−2

) (
〈v〉2 − 〈v∗〉2

)
� 2c(s − 2)|v − v∗|2(〈v〉 + 〈v∗〉),

which yields

−Js,1( f
2, f 2) � 2c

s(s − 2)

ε2

∫
R6

f∗ f (〈v〉 + 〈v∗〉) |v − v∗|γ+2 dvdv∗

� 4c
s(s − 2)

ε2
‖ fin‖L1

2
m3+γ (t) � 12c

ε2
‖ fin‖L1

2
m3+γ (t) .

(3.26)

We have ms+γ (t) � m2(t) and m3+γ (t) � m2(t) since s ∈ (2, 3) and γ ∈
(−2,−1). Consequently, adding estimate (3.21), (3.22) and (3.26) leads to

Js,1( f, F) � C1 m2(t) ,

for some C1 > 0 depending on ‖ fin‖L1
2
(recall s ∈ (2, 3)). Then,

d

dt
ms(t) � C1 m2(t)+ Js,2( f, F) � C1 m2(t)+ C2 s(s − 2)ms−2(t)

� C1m2(0)+ 3C2m1(t) � (C1 + 3C2)m2(0) =: C( fin) .

This yields the desired estimate after integration for s ∈ (2, 3) and γ ∈ (−2,−1).
��

Notice that, besides the aboveCorollary 3.10, one can also provide the following
appearance and short-time bounds forMs(·):
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Proposition 3.12. Assume that −2 < γ < 0 and let a nonnegative initial datum
fin satisfying (1.7)–(1.9) for some ε0 > 0 be given. For ε ∈ (0, ε0], let f (t, ·) be
a weak-solution to (1.10). Assume additionally that

m 2s−3γ
4
(0) < ∞, s > 4 + |γ |.

Then, there exists a constant cs( fin) such that

Ms(t) � cs( fin) t
− 3

2 , t ∈ (0, 1
1+s

]
, (3.27)

with moreover,

cs( fin) � C( fin)2
s

|γ |
[
m2

2s−3γ
4
(0)+ C

s
|γ |
0

]
(1 + s

6
2+γ ) ∀s > 6 + |γ |,(3.28)

for some positive constants C( fin),C0 depending only on ‖ fin‖L1
2
and H( fin) (but

not on s).

Proof. Let us pick s � 0 and set Ts := 1
1+s . Recall estimate (3.14)

1

2

d

dt
Ms(t)+ K0

8
Ds+γ (t) � C( fin)

(
1 + s

10
2+γ
)
m2

s+γ
2
(t) , t > 0 ,

for some positive constant C( fin) depending only on ‖ fin‖L1
2
and H( fin). Using a

classical interpolation inequality (see (4.6) in the next section), one has

‖〈·〉 s
2 f (t)‖L2 � ‖〈·〉 2s−3γ

4 f (t)‖
2
5
L1‖〈·〉

s+γ
2 f (t)‖

3
5
L6 � C

3
5
Sob m

2
5
2s−3γ

4

(t)Ds+γ (t)
3
10 ,

where we used Sobolev’s inequality (2.14). Thus,

Ds+γ (t) � C−2
Sob m

− 4
3

2s−3γ
4

(t)M
5
3
s (t).

For s > 4−γ > 4+ 3γ
2 , we estimatem 2s−3γ

4
(t) andm s+γ

2
(t) using Proposition 3.11.

We assume for simplicity that both 2s−3γ
4 and s+γ

2 are larger than 3 to use (3.19)
only. This amounts to pick s > 6 + |γ |. One has

m 2s−3γ
4
(t) � 2

s
2|γ |
(
m 2s−3γ

4
(0)+ (C( fin)|γ | 2s−3γ

4 t
) s
2|γ | + 3

4
)

� 2
s

2|γ |
(
m 2s−3γ

4
(0)+ (C( fin)|γ |) s

2|γ | + 3
4
)
, t ∈ (0, Ts] ,

(3.29)

and, in the same way, for s > 4 − γ ,
m2

s+γ
2
(t) � 2

s
|γ | −2

(
m2

s+γ
2
(0)+ (C( fin)|γ |) s

|γ | −1
)
, t ∈ (0, Ts]

(note that m s+γ
2
(0) < ∞ because s+γ

2 <
2s−3γ

4 ). Therefore,

d

dt
Ms(t)+ as( fin)Ms(t)

5
3 � ks( fin) , t ∈ (0, Ts] , (3.30)
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where

1

as( fin)
= 2

2s
3|γ | + 7

3 C2
Sob K

−1
0

(
m

4
3
2s−3γ

4

(0)+ (C( fin)|γ |) 2s
3|γ | +1

)
,

ks( fin) = C( fin)
(
1 + s

10
2+γ
)
2

s
|γ | −1

(
m2

s+γ
2
(0)+ (C( fin)|γ |) s

|γ | −1
)
.

(3.31)

The conclusion then follows by a comparison argument. Namely, introducing

ζ (x) = ks( fin)− as( fin)x
5
3 , x > 0 ,

and x̄ =
(
2ks ( fin)
as ( fin)

) 3
5
, one has ζ (x) � − as ( fin)

2 x
5
3 for x � x̄ . Fixing t� ∈ (0, Ts],

one has according to (3.30) that

d

dt
Ms(t) � ζ (Ms(t)) , t ∈ (t�, Ts) .

Three cases may occur:

i) ifMs(t�) < x̄ , then since ζ (x̄) < 0, one has Ms(t) � x̄ for any t � t�,
ii) ifMs(t�) > x̄ and Ms(t) > x̄ for any t ∈ (t�, Ts), then one has

d

dt
Ms(t) � ζ (Ms(t)) � − as( fin)

2
Ms(t)

5
3 , t ∈ (t�, Ts)

which, after integration, yields

Ms(t) �
(

3

as( fin)(t − t�)

) 3
2

, t ∈ (t�, Ts).

iii) ifMs(t�) > x̄ and Ms(t) � x̄ for some t ∈ (t�, Ts) then, setting
T� := inf{t ∈ (t�, Ts) : Ms(t) � x̄} ,

one has, as in the second point, that

Ms(t) �
(

3

as( fin)(t − t�)

) 3
2

, t ∈ (t�, T�).

Since Ms(T�) = x̄ by continuity, we deduce that Ms(t) � x̄ for all t � T�
from the first point.

In all the cases it holds that

Ms(t) � max

(
x̄,

(
3

as( fin)(t − t�)

) 3
2
)
, t > t� ,

from which the result follows by letting t� → 0 and with

cs( fin) = max

{(
3

as( fin)

) 3
2

, 2
3
5

(
ks( fin)
as( fin)

) 3
5
}
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with as( fin) and ks( fin) defined in (3.31) with constant C( fin) depending only on
‖ fin‖L1

2
and H( fin). In particular, as far as the dependence with respect to s is

concerned, we easily derive (3.28).

If min
(
2s−3γ

4 ,
s+γ
2

)
< 3, then one has to estimate m 2s−3γ

4
(t) and/or m s+γ

2
(t)

using (3.20). The same computations as before allows then to end up again with
(3.30) (with slightly different expression for ks( fin) and as( fin)) and get the result
as in the previous case. Details are left to the reader. ��

3.4. Combined estimates

We now introduce

Es(t) = ms(t)+ 1

2
Ms(t).

Combining Proposition 3.9 with Proposition 3.7, one gets

Lemma 3.13. Assume that −2 < γ < 0 and let a nonnegative initial datum fin
satisfying (1.7)–(1.9) for some ε0 > 0 be given. For ε ∈ (0, ε0], let f (t, ·) be a
weak-solution to (1.10). Then, for any s > 2, there are positive constants Ks,C1,s
which depend on s and fin (through H( fin) and ‖ fin‖L1

2
) such that

d

dt
Es(t)+ s

η�

4
ms+γ (t)+ K0

16
Ds+γ (t)

� 2sKs + C1,sMs+γ (t)+ C̄( fin)
(
1 + s

10
2+γ
)
m2

s+γ
2
(t), (3.32)

where C̄( fin) is the constant in inequality (3.14), Ks was estimated in (3.11), and

C1,s = C̄1
(
s

2
2+γ + s

)
,

for some positive constant C̄1 depending only on fin through K0 and ‖ fin‖L1
2
.

Proof. We simply apply (3.10) with δ = min
(

K0
16s , 1

)
and add the obtained in-

equality with (3.14) to obtain the result. We derive easily the estimate for C1,s

since, for s large enough, sδ = K0
16 . ��

We have all in hands to prove Theorem 1.9 in the introduction.

Proof of Theorem 1.9. Let s > 4 + |γ |. Since 2s−3γ
4 � s, one has max(

ms(0),m 2s−3γ
4
(0)
)

= ms(0) < ∞, and one deduces from Propositions 3.11

and 3.12 that

Es(t) � C̄s t
− 3

2 , t ∈
(
0, 1

1+s

]
,

with

C̄s =
[
ms(0)

|γ |
s + C( fin)|γ |

] s
|γ | + 1

2
cs( fin),
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where cs( fin) and C( fin) are defined in Propositions 3.12 and 3.11. Since s >
4 + |γ |, we use (3.19) and not (3.20). In particular, using that

m2
2s−3γ

4
(0) � m 3|γ |

2
(0)ms(0)

thanks to Cauchy-Schwarz inequality, we deduce from (3.28) that, for s > 6+|γ |,

C̄s � 2
s+γ
|γ |
(
ms(0)+ (C( fin)|γ |) s

|γ |
)

+ C( fin)2
s

|γ | m 3|γ |
2
(0)ms(0) (1 + s

6
2+γ )

+C( fin) (2C0)
s

|γ | (1 + s
6

2+γ ).

Consequently, there are positive constants C0,C1 > 0 depending only on ‖ fin‖L1
2

and H( fin) such that

C̄s � C02
s

|γ | m 3|γ |
2
(0)ms(0)+ C

s
|γ |
1 , s > 6 + |γ |, (3.33)

where we used that 1 � m 3|γ |
2
(0). Let us then focus on the evolution of Es(t) for

t � 1
1+s .We start with (3.32) and estimate Ms+γ (t) and m2

s+γ
2
(t) as in the proof

of Proposition 3.9 (see also [2, Lemma 3.5]). Namely, as seen at the end of the
proof of Prop. 3.9, there is a universal constant C > 0 independent of s such that,
for any δ > 0,

Ms+γ (t) � Cδ−
3
2 ‖〈·〉 γ+s

2 f (t)‖2L1 + δDs+γ (t).

Inserting this in (3.32) and choosing δ > 0 such that C1,sδ = K0
32 , one has

d

dt
Es(t)+ s

η�

4
ms+γ (t)+ K0

32
Ds+γ (t) � 2sKs + C̄3,sm s+γ

2
(t)2 ,

where

C̄3,s = C

(
K0

32

)− 3
2

C
5
2
1,s+C̄( fin)

(
1 + s

10
2+γ
)
. (3.34)

Now, for s � 4 − γ ,

m s+γ
2
(t)2 � m2(t)

s+γ
s+γ−2 ms+γ (t)

s+γ−4
s+γ−2 � ‖ fin‖

s+γ
s+γ−2

L1
2

ms+γ (t)
s+γ−4
s+γ−2 , t � 0 ,

(3.35)

where we used the conservation of mass and energy. From Young’s inequality, for
any δ0 > 0, one has then

m s+γ
2
(t)2 � ‖ fin‖

s+γ
2

L1
2
δ
− s+γ−4

2
0 + δ0 ms+γ (t) , t > 0 .

Choosing now δ0 > 0 so that C̄3,sδ0 = s η�8 , we end up with

d

dt
Es(t)+ s

η�

8
ms+γ (t)+ K0

32
Ds+γ (t) � Cs, (3.36)
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where

Cs = 2sKs + C̄3,s‖ fin‖
s+γ
2

L1
2
δ
− s+γ−4

2
0 = 2sKs + C̄3,s‖ fin‖

s+γ
2

L1
2

(
8

η�

C̄3,s

s

) s+γ−4
2

.(3.37)

Integrating this inequality on
(

1
1+s , t

)
gives

Es(t) � Es

(
1

1+s

)
+ Cs

(
t − 1

1+s

)
, t � 1

1+s ,

so that

Es(t) � C̄s

(
1

1+s

)− 3
2 + Cs t � C̄s(1 + s)

5
2 t + Cs t, t � 1

1+s .

Proposition 3.11 gives now the second part of (1.14) for small times whereas
Proposition 3.12 and (3.36) lead to the second part of (1.14) for large times with

Cs := max
(
C̄s, C̄s(1 + s)

5
2 + Cs

)
= C̄s(1 + s)

5
2 + Cs .

Combining (3.34) with Lemma 3.13, one sees first that there is C3 > 0 depending
only on ‖ fin‖L1

2
and H( fin) such that,

C̄3,s � C3

(
s
5
2 + s

5
2+γ + s

10
2+γ
)

� 2C3s
10
2+γ , s > 2.

Then, using (3.11) and (3.37), one deduces that there exists β0 > 0 depending only
on ‖ fin‖L1

2
and H( fin) such that

Cs � β0

[
(β0 s)

s−2
γ+2+1 + (β0 s)

8−γ
4+2γ (s+γ−2)+1

]
, s � 4 − γ

where we roughly estimate ‖ fin‖
s+γ
2

L1
2

as β
8−γ
4+2γ (s+γ−2)+1

0 once we notice that s+γ2 �
8−γ
4+2γ (s + γ − 2)+ 1 for s � 4 − γ . Combining these estimates with (3.33) and

because s−2
γ+2 <

8−γ
4+2γ (s + γ − 2) for s > 4 − γ , one deduces easily the estimate

(1.15). ��
Remark 3.14. Of course, if fin is actually belonging to L1

s (R
3) ∩ L2

s (R
3), then

Es(0) < ∞ and one deduces after integration of (3.36) that

Es(t) � Es(0)+ Cs t, t � 0.

The above result shows the linear growth of both the L1-moments and L2-moments.
Actually, it is possible to sharpen the above estimates (for small s)with the following
proposition.

Proposition 3.15. Assume that −2 < γ < 0 and let a nonnegative initial datum
fin satisfying (1.7)–(1.9) for some ε0 > 0 be given. For ε ∈ (0, ε0], let f (t, ·) be
a weak-solution to (1.10). Then, for any s ∈ [0, 8+3γ

2 ],
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(1) if fin ∈ L2
s (R

3), there is a positive constant Cin depending only on ‖ fin‖L1
2
,

H( fin) such that

sup
t�0

‖ f (t)‖L2
s

= sup
t�0

∥∥∥〈·〉 s
2 f (t, ·)

∥∥∥
L2

� Cin. (3.38)

(2) There are constants C0,in and C̃in depending only on ‖ fin‖L1
2
, and H( fin) such

that for any t > 0,

Ms(t) � max

(
C̃in ,

C0,in

t
3
2

)
. (3.39)

Proof. Let us pick s ∈ [0, 8+3γ
2 ]. In light of estimate (3.14), since s+γ

2 � 2, we
have that

1

2

d

dt
Ms(t)+ K0

8
Ds+γ (t) � C̄( fin)

(
1 + s

10
2+γ
)
‖ fin‖2L1

2
� K ( fin) , t > 0 ,

for some positive constant K ( fin) depending only on fin through ‖ fin‖L1
2
and

H( fin). Arguing exactly as in the proof of Proposition 3.12, Equation (3.30) but
with m 2s−3γ

4
� ‖ fin‖L1

2
, one deduces that

d

dt
Ms(t)+ κinMs(t)

5
3 � 2K ( fin) , t > 0, (3.40)

wherewe set κin = K0

(
4C2

Sob‖ fin‖
4
3

L1
2

)−1

. The first point follows then by a simple

comparison argument choosing C2
in = max

((
2K ( fin)
κin

) 3
5
,Ms(0)

)
, whereas the

second point is obtained exactly as in the proof of Proposition 3.12. ��
The following corollary is a simple consequence of Proposition 3.15:

Corollary 3.16. Assume that −2 < γ < 0 and let a nonnegative initial datum fin
satisfying (1.7)–(1.9) for some ε0 > 0 be given. For ε ∈ (0, ε0], let f (t, ·) be a
weak-solution to (1.10). Then, there exists a positive constant C( fin) depending
only on ‖ fin‖L1

2
and H( fin) such that

|b[ f (t)](v)| � C( fin) 〈v〉max(0,1+γ )(1 + t−
3
2

)
, ∀ v ∈ R

3, t > 0.(3.41)

Proof. Recall that

|b[ f (t)](v)| = 2

∣∣∣∣
∫

R3
(v − v∗)|v − v∗|γ f (t, v∗)dv∗

∣∣∣∣
� 2

∫
R3

|v − v∗|1+γ f (t, v∗)dv∗ .

If 1 + γ � 0, one notices that |v − v∗|1+γ � 2
1+γ
2 〈v〉1+γ 〈v∗〉1+γ , so that

|b[ f (t)](v)| � 2
3+γ
2 〈v〉1+γm1+γ (t) � 2

3+γ
2 ‖ fin‖L1

2
〈v〉1+γ , (3.42)
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since 1+ γ < 2. Let us now investigate the case 1+ γ < 0. One splits the integral
defining b[ f (t)](v) according to |v − v∗| � 1 and |v − v∗| > 1. One has then,
thanks to Cauchy-Schwarz inequality,

|b[ f (t)](v)| � 2
∫

R3
f (t, v∗)dv∗ + 2

∫
|v−v∗|<1

|v − v∗|γ+1 f (t, v∗)dv∗

� 2‖ f (t)‖L1 + 2‖ f (t)‖L2

(∫
|v−v∗|<1

|v − v∗|2γ+2dv∗
) 1

2

.

Noticing that

∫
|v−v∗|<1

|v − v∗|2γ+2dv∗ = |S2|
∫ 1

0
r2(γ+2)dr < ∞, 2 + γ > 0,

is independent of v, one gets

|b[ f (t)](v)| � C
(‖ f (t)‖L1 + ‖ f (t)‖L2

)
(3.43)

for some universal positive constant C > 0. We deduce then (3.41) from the
conservation of mass and Proposition 3.15. ��
Estimate (3.41) implies of course that supt�1 |b[ f (t)] · v| � C( fin) 〈v〉max(1,2+γ ).
Additionally, we need the following estimate:

Lemma 3.17. Assume −2 < γ < 0. There exist two constants c0, c1 > 0 depend-
ing only on γ such that, for any nonnegative g ∈ L1

2+γ (R3)

∣∣b[g] · v∣∣ � c0〈v〉γ+2‖g‖L1
2+γ

− c1 〈v〉2cγ [g](v) , (3.44)

where we recall that −cγ [g](v) = 2(γ + 3)
∫

R3 |v − v∗|γ g(v∗)dv∗ � 0.

Proof. Let δ > 0 be given. One writes

b[g] · v = −2
∫

R3
v · (v − v∗) |v − v∗|γ g(v∗)dv∗

= −
∫

R3
|v − v∗|γ g(v∗)

(
|v − v∗|2 + |v|2 − |v∗|2

)
dv∗.

Since
∣∣ |v|2 − |v∗|2

∣∣ � 1
2 |v − v∗|2 + 1

2 |v + v∗|2 � 3
2 |v − v∗|2 + 4|v|2, we get

|b[g] · v| � 5

2

∫
R3

|v − v∗|γ+2g(v∗)dv∗ + 4〈v〉2
∫

R3
|v − v∗|γ g(v∗)dv∗,

which gives the result using that

|v − v∗|γ+2 � 2
γ+2
2 〈v〉γ+2〈v∗〉γ+2 , for − 2 < γ < 0 ,

and recalling the definition of cγ [g]. ��
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4. De Giorgi’s Approach to Pointwise Bounds

We introduce, as in [20], for any fixed � ∈ (0, 1
2ε ),

f�(t, v) := ( f (t, v)− �), f +
� (t, v) := f�(t, v)1{ f��}.

To prove an L∞ bound for f (t, v), one looks for an L2-bound for f�. We start with
the following estimate.

Lemma 4.1. Assume that −2 < γ < 0 and let a nonnegative initial datum fin
satisfying (1.7)–(1.9) for some ε0 > 0 be given. For ε ∈ (0, ε0], let f (t, ·) be a
weak-solution to (1.10). There exist c0,C0 > 0 depending only on ‖ fin‖L1

2
and

H( fin) such that, for any � ∈ (0, 1
2ε ),

1

2

d

dt
‖ f +
� (t)‖2L2 + c0

∫
R3

∣∣∣∇
(
〈v〉 γ2 f +

� (t, v)
)∣∣∣2 dv

� C0‖〈·〉
γ
2 f +
� (t)‖2L2 − �

∫
R3

cγ [ f ](t, v) f +
� (t, v)dv.

(4.1)

Proof. Given � ∈ (0, 1
2ε ), one has ∂t

(
f +
�

)2 = 2 f +
� ∂t f

+
� = 2 f +

� ∂t f and ∇ f +
� =

1{ f ��}∇ f , so that

1

2

d

dt
‖ f +
� (t)‖2L2 = −

∫
R3

�∇ f · ∇ f +
� dv +

∫
R3

f (1 − ε f )b[ f ] · ∇ f +
� dv

= −
∫

R3
�∇ f +

� · ∇ f +
� dv +

∫
R3

f (1 − ε f )b[ f ] · ∇ f +
� dv.

Now, one easily checks that

f (1 − ε f )∇ f +
� = 1{ f ��}

(
f�(1 − �ε f )∇ f +

� + �(1 − �ε f )∇ f +
�

)
= (1 − 2ε�) f +

� ∇ f +
� − �ε( f +

� )
2∇ f +

� + �(1 − �ε�)∇ f +
�

= ( 12 − �ε�)∇( f +
� )

2 − ε

3
∇( f +

� )
3 + �(1 − �ε�)∇ f +

� .

Therefore,

1

2

d

dt
‖ f +
� (t)‖2L2 +

∫
R3

�∇ f +
� · ∇ f +

� dv

= ( 12 − �ε�)
∫

R3
b[ f ] · ∇( f +

� )
2 dv

+�(1 − �ε�)
∫

R3
b[ f ] · ∇ f +

� dv − ε

3

∫
R3

b[ f ] · ∇( f +
� )

3 dv

= −( 12 − �ε�)
∫

R3
cγ [ f ]( f +

� )
2 dv − �(1 − �ε�)

∫
R3

cγ [ f ] f +
� dv

+ε

3

∫
R3

cγ [ f ] ( f +
� )

3 dv.
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Using that 1
2 − ε� > 0 and −cγ [ f ] � 0, we deduce from Proposition 2.3 and

Proposition 1.8 with φ = f +
� and δ > 0 small enough that there exist positive

constants c0,C0 depending on ‖ fin‖L1
2
and H( fin) such that

1

2

d

dt
‖ f +
� (t)‖2L2 + c0

∫
R3

〈v〉γ ∣∣∇ f +
� (t, v)

∣∣2 dv

� C0‖〈·〉
γ
2 f +
� (t)‖2L2 − �

∫
R3

cγ [ f ] f +
� dv.

Notice that, using again inequality (3.13), we can replace easily the above with
(4.1) with a different (but irrelevant) choice of c0,C0. ��

Inspired by De Giorgi’s iteration method introduced for elliptic Equations [16],
the crucial point in the level set approach of [20] is to compare some suitable energy
functional associated to f +

� with the same energy functional at some different level
f +
k . The key observation here is that, if 0 � k < �, then

0 � f +
� � f +

k , and 1{ f��0} �
f +
k

�− k
.

Indeed, on the set { f� � 0}, one has f � � > k, so that f +
k = f −k = f +

� +(�−k)

and
f +
k
�−k = f +

�

�−k + 1 � 1. In particular, for any α � 0, we deduce that

1{ f��0} = (
1{ f��0}

)α �
(

f +
k

�− k

)α
,

which, since f +
� � f +

k , gives

f +
� � (�− k)−α

(
f +
k

)1+α ∀α � 0, 0 � k < �. (4.2)

On this basis, we need the following interpolation inequality where the dependence
of f +

� with respect to time is omitted hereafter:

Lemma 4.2. Assume that −2 < γ < 0 and let a nonnegative initial datum fin
satisfying (1.7)–(1.9) for some ε0 > 0 be given. For ε ∈ (0, ε0], let f (t, ·) be a
weak-solution to (1.10). There exists C > 0 (independent of ε and fin) such that,
for any 0 � k < �, one has

‖〈·〉 γ2 f +
� ‖2L2 � C (�− k)−

4
3

∥∥∥∇
(
〈·〉 γ2 f +

k

)∥∥∥2
L2

∥∥ f +
k

∥∥ 4
3
L2 .

(4.3)

Moreover, for p ∈ [1, 3), there is Cp > 0 such that,

‖〈·〉γ f +
� ‖L p � Cp(�− k)−(

2
p + 1

3 )
∥∥∥∇
(
〈·〉 γ2 f +

k

)∥∥∥2
L2

‖ f +
k ‖

2
p − 2

3

L2 , 0 � k < �. (4.4)

Finally, for any q ∈ ( 83 , 103
)
, there is cq > 0 such that

‖ f +
� ‖2L2 � cq

(�− k)q−2

∥∥〈·〉s f +
k

∥∥ 10
3 −q

L1 ‖ f +
k ‖2(q− 8

3 )

L2

∥∥∥∇
(
〈·〉 γ2 f +

k

)∥∥∥2
L2
, 0 � k < � , (4.5)

with s = − 3γ
10−3q > − 3

2γ .
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Proof. The proof is based on the interpolation inequality

‖〈·〉ag‖Lr � ‖〈·〉a1g‖θLr1 ‖〈·〉a2g‖1−θLr2 , (4.6)

with

1

r
= θ

r1
+ 1 − θ

r2
, a = θ a1 + (1 − θ)a2, θ ∈ (0, 1).

Moreover, for the special case r1 = 6, r2 = 2, a1 = γ
2 and r ∈ (2, 6), thanks to

Sobolev embedding, the identity will become

‖〈·〉ag‖Lr � Cθ
∥∥∥∇
(
〈·〉 γ2 g

)∥∥∥θ
L2

‖〈·〉a2g‖1−θ
L2 ,

1

r
= 3 − 2θ

6
, a = θ

γ

2
+ (1 − θ)a2, θ ∈ (0, 1), r ∈ (2, 6).

(4.7)

With these tools in had, one has for 0 � k < � and r > 2, writing r = 2+ 2α with
(4.2),

‖〈·〉 γ2 f +
� ‖2L2 =

∫
R3

〈v〉γ ( f +
� (t, v))

2 dv

� (�− k)−2α
∫

R3
〈v〉γ ( f +

k (t, v))
2+2α dv

= (�− k)−(r−2)
∥∥∥〈·〉 γr f +

k (t)
∥∥∥r
Lr
,

so that (4.7) gives, with a = γ
r ,

‖〈·〉 γ2 f +
� ‖2L2 � C(�− k)−(r−2)

∥∥∥∇
(
〈·〉 γ2 f +

k (t)
)∥∥∥rθ

L2

∥∥〈·〉a2 f +
k

∥∥r(1−θ)
L2 ,

with θ = 3r−6
2r and a2 = γ

2
10−3r
6−r . One picks then r = 10

3 so that a2 = 0 and
rθ = 2, to obtain (4.3). One proceeds in the same way to estimate ‖〈·〉γ f +

� ‖p
L p .

Namely, for r > p,

‖〈·〉γ f +
� ‖p

L p � (�− k)−(r−p)
∥∥∥〈·〉 γ p

r f +
k

∥∥∥r
Lr

and, with r > 2p, imposing in (4.7) a2 = 0 and a = γ p
r , we get θ = 2p

r and

‖〈·〉γ f +
� ‖p

L p � C(�− k)−(r−p)
∥∥∥∇
(
〈·〉 γ2 f +

k

)∥∥∥2p
L2

∥∥ f +
k

∥∥r−2p
L2 ,

which gives (4.4) when r = 2 + 4p
3 (notice that r > 2p since p < 3).

Let us now prove (4.5). Let us consider first q > 2 and use (4.6). One has

‖g‖Lq � ‖〈·〉s g‖θ1
L1 ‖g‖θ2

L2 ‖〈·〉 γ2 g‖θ3
L6 ,

with θi � 0 (i = 1, 2, 3) such that

θ1 + θ2 + θ3 = 1, s θ1 + 0 · θ2 + γ

2
θ3 = 0,

θ1

1
+ θ2

2
+ θ3

6
= 1

q
.
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Imposing qθ3 = 2, this easily yields

qθ1 = 10

3
− q, qθ2 = 2

(
q − 8

3

)
, s = − 3γ

10 − 3q
, q ∈

(
8

3
,
10

3

)
.

Using Sobolev inequality, this gives, for any q ∈ ( 83 , 103
)
, the existence of a positive

constant C > 0 such that

‖g‖qLq � C ‖〈·〉sg‖
10
3 −q

L1 ‖g‖2(q− 8
3 )

L2

∥∥∥∇
(
〈·〉 γ2 g

)∥∥∥2
L2
, s = − 3γ

10 − 3q
.

Using then (4.2), for any q > 2, one has ‖ f +
� ‖2

L2 � (� − k)2−q ‖ f +
k ‖qLq for

0 � k < �, and the above inequality gives the result. ��
Let us now introduce, for any measurable f := f (t, v) � 0 and � � 0, the

energy functional

E�(T1, T2) = sup
t∈[T1,T2)

(
1

2

∥∥ f +
� (t)

∥∥2
L2 + c0

∫ t

T1

∥∥∥∇
(
〈·〉 γ2 f +

� (τ )
)∥∥∥2

L2
dτ

)
,

0 � T1 � T2.

Wehave then the fundamental result for the implementation of the level set analysis.

Proposition 4.3. Assume that −2 < γ < 0 and let a nonnegative initial datum fin
satisfying (1.7)–(1.9) for some ε0 > 0 be given. For ε ∈ (0, ε0], let f (t, ·) be a
weak-solution to (1.10). Then, for any pγ ∈ (1, 3) and any s > 3

2 |γ |, there exist
some positive constants C1,C2 depending only on s, ‖ fin‖L1

2
and H( fin) such that,

for any times 0 � T1 < T2 � T3 and 0 � k < �,

E�(T2, T3) � C2

T2 − T1
(�− k)−

4s+3γ
3s

[
sup

τ∈[T1,T3]
ms(τ )

] |γ |
s

Ek(T1, T3)
5s+3γ
3s

+C1 (Ek(T1, T3))
1
pγ

+ 2
3 (�− k)

− 2
pγ

− 1
3

×
(
�+

[
(�− k)

2
pγ

−1 + �(�− k)
2
pγ

−2
]
Ek(T1, T3)

1− 1
pγ

)
.(4.8)

Proof. Let us fix 0 � T1 < T2 � T3. Integrating inequality (4.1) over (t1, t2), we
obtain that

1

2
‖ f +
� (t2)‖2L2 + c0

∫ t2

t1

∥∥∇(〈·〉 γ2 f +
� (τ )

)∥∥2
L2dτ � 1

2
‖ f +
� (t1)‖2L2

+C0

∫ t2

t1
‖〈·〉 γ2 f +

� (τ )‖2L2dτ − �
∫ t2

t1
dτ
∫

R3
cγ [ f ](τ, v) f +

� (τ, v) dv.

Thus, if T1 � t1 � T2 � t2 � T3, one first notices that the above inequality implies
that

1

2
‖ f +
� (t2)‖2L2 + c0

∫ t2

T2

∥∥∇(〈·〉 γ2 f +
� (τ )

)∥∥2
L2dτ � 1

2
‖ f +
� (t1)‖2L2
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+C0

∫ t2

T1
‖〈·〉 γ2 f +

� (τ )‖2L2dτ − �
∫ t2

T1
dτ
∫

R3
cγ [ f ](τ, v) f +

� (τ, v) dv,

and, taking the supremum over t2 ∈ [T2, T3], one gets

E�(T2, T3) � 1

2
‖ f +
� (t1)‖2L2 + C0

∫ T3

T1
‖〈·〉 γ2 f +

� (τ )‖2L2dτ

−�
∫ T3

T1
dτ
∫

R3
cγ [ f ](τ, v) f +

� (τ, v)dv, ∀t1 ∈ [T1, T2].

Integrating now this inequality with respect to t1 ∈ [T1, T2], one obtains

E�(T2, T3) � 1

2(T2 − T1)

∫ T2

T1
‖ f +
� (t1)‖2L2dt1 + C0

∫ T3

T1
‖〈·〉 γ2 f +

� (τ )‖2L2dτ

−�
∫ T3

T1
dτ
∫

R3
cγ [ f ](τ, v) f +

� (τ, v) dv.

Therefore, applying Proposition 2.4 with λ = γ < 0, g = f and ϕ = f +
� , we see

that

E�(T2, T3) � 1

2(T2 − T1)

∫ T3

T1
‖ f +
� (τ )‖2L2 dτ + C0

∫ T3

T1
‖〈·〉 γ2 f +

� (τ )‖2L2 dτ

+�Cγ,pγ ( fin)
∫ T3

T1
‖〈·〉γ f +

� (τ )‖L1 dτ

+�Cγ,pγ ( fin)
∫ T3

T1
‖〈·〉γ f +

� (τ )‖L pγ dτ, (4.9)

for pγ > 1 such that −γ qγ < 3, where 1
pγ

+ 1
qγ

= 1. Notice that, since γ ∈
(−2, 0), any pγ ∈ (1, 3) is admissible. We resort now to Lemma 4.2 to estimate
the last three terms on the right-hand side of (4.9). Applying (4.3), one first has
∫ T3

T1
‖〈·〉 γ2 f +

� (τ )‖2L2 dτ � C (�− k)−
4
3

∫ T3

T1

∥∥∥∇
(
〈·〉 γ2 f +

k (τ )
)∥∥∥2

L2

∥∥ f +
k (τ )

∥∥ 4
3
L2 dτ

� C

(�− k)
4
3

sup
t∈[T1,T3]

‖ f +
k (t)‖

4
3
L2

∫ T3

T1

∥∥∥∇
(
〈·〉 γ2 f +

k (τ )
)∥∥∥2

L2
dτ.

Since

sup
t∈[T1,T3]

‖ f +
k (t)‖

4
3
L2 � (2Ek(T1, T3))

2
3 and

∫ T3

T1

∥∥∥∇
(
〈·〉 γ2 f +

k (τ )
)∥∥∥2

L2
dτ � c−1

0 Ek(T1, T3),

by definition of the energy functional, we get

C0

∫ T3

T1
‖〈·〉 γ2 f +

� (τ )‖2L2dτ � C̄0 (�− k)−
4
3 Ek(T1, T3)

5
3 , (4.10)
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for some positive constant C̄0 depending only on ‖ fin‖L1
2
and H( fin). Similarly,

using (4.4) first with p = 1 and then with p = pγ > 1, one deduces that

Cγ,pγ ( fin)
∫ T3

T1
‖〈·〉γ f +

� (τ )‖L1dτ � C̄0(�− k)−
7
3 Ek(T1, T3)

5
3 ,

Cγ,pγ ( fin)
∫ T3

T1
‖〈·〉γ f +

� (τ )‖L pγ dτ � C̄0(�− k)
−( 2

pγ
+ 1

3 ) Ek(T1, T3)
1
pγ

+ 2
3 .

(4.11)

Regarding the first term in the right-hand side of (4.9), one uses (4.5) with q =
10
3 + γ

s ∈ ( 83 , 103
)
, where s > 3

2 |γ | is given, to get
∫ T3

T1
‖ f +
� (τ )‖2L2dτ � cq

(�− k)q−2 sup
τ∈[T1,T3]

‖〈·〉s f +
k (τ )‖

10
3 −q

L1 ×

×
∫ T3

T1
‖ f +

k (τ )‖
2(q− 8

3 )

L2

∥∥∥∇
(
〈·〉 γ2 f +

k (τ )
)∥∥∥2

L2
dτ

� cq
(�− k)q−2 sup

τ∈[T1,T3]
‖〈·〉s f +

k (τ )‖
10
3 −q

L1 Ek(T1, T3)
q− 5

3 ,

for some positive constant cq > 0. Thus

∫ T3

T1
‖ f +
� (τ )‖2L2dτ � cq

(�− k)q−2

(
sup

τ∈[T1,T3]
ms(τ )

) 10
3 −q

Ek(T1, T3)
q− 5

3 .

(4.12)

Gathering (4.9)–(4.11)–(4.10)–(4.12) gives the result recalling that q = 10
3 + γ

s . ��

Remark 4.4. Notice that, for − 4
3 < γ < 0, then, one can choose s = 2 > 3

2 |γ | in
(4.8) to get supτ∈[T1,T3] ms(τ ) = ‖ fin‖L1

2
. For γ � − 4

3 , we will rather use (4.8)
with the choice s = 3.

With this, we can implement the level set iteration to deduce Theorem 1.10.

Proof of Theorem 1.10. We first start with short times, that is, we are concerned at
this point with the appearance of the norm. In all the proof, C( fin) will denote a
generic constant depending only on fin through its L1

2-norm and entropy H( fin).
Let us fix T > t∗ > 0 and let K > 0 (to be chosen sufficiently large). We consider
the sequence of levels and times

�n = K

(
1 − 1

2n

)
, tn := t∗

(
1 − 1

2n+1

)
, T > t∗ > 0, n ∈ N.

We apply Proposition 4.3 with T3 = T and the choices

k = �n < �n+1 = � , T1 = tn < tn+1 = T2 , En := E�n (tn, T ),



About the Landau-Fermi-Dirac Equation 825

to conclude that

En+1 � 2
10s+3γ

3s C2
y

|γ |
s

s

K
4s+3γ
3s t∗

2n
7s+3γ
3s E

5s+3γ
3s

n + C1

K
2
pγ

− 2
3

E
1
pγ

+ 2
3

n 2
6+pγ
3pγ

(n+1)

+ C1

K
4
3

E
5
3
n 2

7
3 (n+1)(1 + 2−(n+1)) ,

that is,

En+1 � 2
10s+3γ

3s C2
y

|γ |
s

s

K
4s+3γ
3s t∗

2n
7s+3γ
3s E

5s+3γ
3s

n + C1

K
2
pγ

− 2
3

E
1
pγ

+ 2
3

n 2
6+pγ
3pγ

(n+1)

+2C1

K
4
3

E
5
3
n 2

7
3 (n+1), (4.13)

for some positive constants C1,C2 depending only on ‖ fin‖L1
2
and H( fin) (but not

on n), where

ys = sup
t∈[0,T )

ms(t).

Notice that

E0 = E0

(
t∗
2
, T

)
� 1

2
sup

t∈[ t∗2 ,T )
‖ f (t)‖2L2 + c0

∫ T

t∗
2

∥∥∥∇
(
〈·〉 γ2 f (τ )

)∥∥∥2
L2

dτ

� 1

2
sup

t∈[ t∗2 ,T )
M0(t)+ c0

∫ T

t∗
2

Dγ (τ )dτ ,

so that Proposition 3.15 together with Corollary 3.10 ensure that

E0 � C( fin)
(
T − t∗

2 + t
− 3

2∗
)
.

We look now for a choice of the parameters K and Q > 0 ensuring that the sequence
(E�n)n defined by

E�n := E0 Q
−n, n ∈ N ,

satisfies (4.13) with the reversed inequality. Notice that

E�n+1 � 2
10s+3γ

3s C2
y

|γ |
s

s

K
4s+3γ
3s t∗

2n
7s+3γ
3s

(
E�n
) 5s+3γ

3s

+ C1

K
2
pγ

− 2
3

(
E�n
) 1
pγ

+ 2
3 2

6+pγ
3pγ

(n+1) + 2C1

K
4
3

(
E�n
) 5
3 2

7
3 (n+1) (4.14)

is equivalent to

1 � 2
10s+3γ

3s C2

K
4s+3γ
3s t∗

y
|γ |
s

s QE
2s+3γ
3s

0

[
Q− 2s+3γ

3s 2
7s+3γ
3s

]n
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+2
6+pγ
3pγ C1

K
2
pγ

− 2
3

Q E
1
pγ

− 1
3

0

[
Q

1
3− 1

pγ 2
6+pγ
3pγ

]n

+2
10
3 C1

K
4
3

Q E
2
3
0

[
2

7
3 Q− 2

3

]n
.

We first choose Q in a such a way that all the terms [· · · ]n are smaller than one,
i.e.

Q = max

(
2

7
2 , 2

6+pγ
3−pγ , 2

7s+3γ
2s+3γ

)
,

where we recall that s > 3
2 |γ | and pγ < 3.With such a choice, (4.14) would hold

as soon as

1 � 2
10s+3γ

3s C2

K
4s+3γ
3s t∗

y
|γ |
s

s QE
2s+3γ
3s

0 + 2
6+pγ
3pγ C1

K
2
pγ

− 2
3

Q E
1
pγ

− 1
3

0 + 2
10
3 C1

K
4
3

Q E
2
3
0 . (4.15)

This would hold for instance if each term of the sum is smaller than 1
3 , and a direct

computation shows that this amounts to choose

K � K (t∗, T ) = max {K1(t∗, T ), K2(t∗, T ), K3(t∗, T ), K4(t∗, T )}
with

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

K1(t∗, T ) = 1, K2(t∗, T ) =
(
3C2E

2s+3γ
3s

0 2
10s+3γ

3s Q t−1∗ y
− γ

s
s

) 3s
4s+3γ

,

K3(t∗, T ) =
(
3C1E

3−pγ
3pγ

0 2
6+pγ
3pγ Q

) 3pγ
6−2pγ

, K4(t∗, T ) =
(
3C1E

2
3
0 2

10
3 Q

) 3
4

.

(4.16)

By a comparison principle (because E0 = E�0), one concludes that

En � E�n , n ∈ N ,

and in particular, since Q > 1,

lim
n

En = 0.

Since limn tn = t∗ and limn �n = K , this implies that

sup
t∈[t∗,T )

‖ f +
K (t)‖L2 = 0 ,

for K � K (t∗, T ) and, in particular,

‖ f (t)‖L∞ � K (t∗, T ) , 0 < t∗ � t < T .

Recall that K (t∗, T ) = max{Ki (t∗, T ), i = 1, 2, 3, 4} as defined in (4.16). We
estimate it roughly by the sum of these four terms, i.e.

K (t∗, T ) � 1 +
4∑

i=2

Ki (t∗, T ) ,
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and notice that the dependence with respect to T, t∗ and t is encapsulated in the
term E0 and K2(t∗, T ) (through t−1∗ and ys). One has easily

K2(t∗, T ) � c2E
2s+3γ
4s+3γ
0 t

− 3s
4s+3γ∗ y

3|γ |
4s+3γ
s , K3(t∗, T )+ K4(t∗, T ) � c3E

1
2
0 ,

for some positive constants c2, c3 > 0 depending on Q, s, pγ and ‖ fin‖L1
2
, H( fin)

(through C1,C2).
Noticing that E0 is bounded away from zero (by some constant independent of

t∗, T )1 and that E0 � C( fin)
(
T − t∗

2 + t
− 3

2∗
)
, since 2s+3γ

4s+3γ <
1
2 , we can derive the

estimate

K (t∗, T ) � C

(
1 + t

− 3s
4s+3γ∗

)√
T − t∗

2 + t
− 3

2∗ y
3|γ |

4s+3γ
s ,

for some positive constant C depending on Q, s, pγ and the constants C1,C2
appearing in (4.16). Thus, taking 0 < t∗ < T = 2, we obtain the result in the time
interval (0, 2].
For T � 2, we copycat the previous argument with the increasing sequence of
times

0 < T − 3
2 = t0 � tn = T − 1 − 1

2n+1 , n ∈ N .

In this case the first term in the right-hand side of (4.13) can be replaced with (since
no dependence upon t∗ appears)

2
10s+3γ

3s C2
y

|γ |
s

s

K
4s+3γ
3s

2n
7s+3γ
3s E

5s+3γ
3s

n .

Furthermore, limn tn = T − 1 and, by Corollary 3.10,

E0 � C( fin)
(
T − t0 + 1) = C( fin)

(
T − (T − 3

2

)+ 1
) = 5

2C( fin) .

Consequently,

sup
τ∈[T−1,T ]

‖ f (τ )‖L∞ � K � C( fin) y
3|γ |

4s+3γ
s .

The result follows since T � 2 is arbitrary. ��

1 Indeed, for any t � 0 and any R > 0, a simple use of Cauchy-Schwarz inequality
yields

M0(t) �
∫
{|v|�R} f 2(t, v) dv � 1

|B(0,R)|
(∫

B(0,R) f (t, v) dv
)2

� 1
|B(0,R)|

(
1 − ∫|v|�R f (t, v)dv

)2

where |B(0, R)| is the volume of the euclidean ball centred in 0 and radius R > 0. Since
moreover

∫
|v|�R f (t, v) dv � R−2 ∫

R3 f (t, v)|v|2 dv = 3R−2 one sees that, picking R >

0 large enough, M0(t) � cR > 0 for any t � 0. In turn, E0 >
1
2 cR > 0.
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A simple consequence of the above is the following:

Corollary 4.5. Assume that − 4
3 < γ < 0 and let a nonnegative initial datum fin

satisfying (1.7)–(1.9) for some ε0 > 0 be given. For ε ∈ (0, ε0], let f (t, ·) be a
weak-solution to (1.10). Then, there is a constant C > 0 depending only on ‖ fin‖L1

2
and H( fin) such that, for any t∗ > 0,

sup
t�t∗

‖ f (t)‖L∞ � C
(
1 + t

− 6
8+3γ − 3

4∗
)
. (4.17)

In particular, there exists some explicit ε† and κ0 both depending only on ‖ fin‖L1
2

and H( fin) such that, for any ε ∈ [0, ε†],
inf
v∈R3

(1 − ε f (t, v)) � κ0 > 0, t � 1. (4.18)

Proof. The proof is a direct consequence of Theorem 1.10 (cf. also Remark 4.4)
since, for − 4

3 < γ < 0, we can pick s = 2 and supt∈[0,T ] ms(t) = ‖ fin‖L1
2
is

independent of T . ��

5. Long-time Behaviour: Algebraic Convergence Result

We investigate now the long-time behaviour of solutions to (1.10).Our approach
is based upon the entropy/entropy dissipation method.

5.1. General strategy and estimates

In this section, for any η ∈ R, we will denote byD (η)
ε (g) the entropy production

associated to the interaction kernel �(z) = |z|η+2, i.e.

D
(η)
ε (g) := 1

2

∫ ∫
R3×R3

|v − v∗|η+2�ε[g](v, v∗) dvdv∗ , (5.1)

where �ε[g](v, v∗) is defined by (2.5). We recall the following result from a pre-
vious contribution [15].

Theorem 5.1. Assume that 0 � g � ε−1 is such that∫
R3

g(v) dv = 1,
∫

R3
g(v) vi dv = 0 (i = 1, 2, 3) ,

∫
R3

g(v) |v|2 dv = 3 ,

(5.2)

and let

κ0 := κ0(g) = inf
v∈R3

(1 − ε g(v)) > 0. (5.3)

For any η � 0,

D
(η)
ε (g) � 2λη(g)

[
bε − 12ε2

κ40
max(‖g‖2∞, ‖ Mε‖2∞)

]
Hε(g| Mε),
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where λη(g) > 0 is given by

1

λη(g)
:= 510

e3g
κ20

max(1, Bg) max
(
1,m2+η(g)

)
Iη(g) , (5.4)

with

Iη(g) = sup
v∈R3

〈v〉η
∫

R3
g(w)|w − v|−η〈w〉2dw,

and

1

Bg
:= min

i �= j
inf
σ∈S1

∫
R3

∣∣∣∣σ1 vi〈v〉 − σ2 v j〈v〉
∣∣∣∣
2

g(v) dv,
1

eg
= min

i

1
3

∫
R3

g(v) v2i dv .

Recall that Mε and bε are introduced in Definition 1.1.

Our approach is based on the interpolation between the entropy production with
parameter γ and the entropy production with parameter η � 0.Namely, for a given
g satisfying (5.2), a simple consequence of Hölder’s inequality is that

D (0)
ε (g) �

(
D
(γ )
ε (g)

) η
η−γ (

D
(η)
ε (g)

) −γ
η−γ
, η > 0 , γ < 0 ,

or equivalently,

D
(γ )
ε (g) �

(
D (0)

ε (g)
)1− γ

η
(
D
(η)
ε (g)

) γ
η
. (5.5)

Noticing that 1− γ
η
> 0, we can invoke Theorem 5.1 to bound from belowD (0)

ε (g)

in terms of Hε(g| Mε), and we need to deduce an upper bound for D (η)
ε (g). We

begin with the lower bound of D (0)
ε ( f (t)) for solutions to (1.10), which can be

deduced from Theorem 5.1.

Proposition 5.2. Assume that −2 < γ < 0 and let a nonnegative initial datum
fin satisfying (1.7)–(1.9) for some ε0 > 0 be given. For ε ∈ (0, ε0], let f (t, ·) be
a weak-solution to (1.10). Then, there exist ε1 ∈ (0, ε0] and a positive constant
C̄1 > 0 depending only on ‖ fin‖L1

2
and H( fin) such that

D (0)
ε ( f (t)) � C̄1 (1 − 98εχ(t)) Hε( f (t)| Mε) , t � 0 , ε ∈ (0, ε1],

where

χ(t) := max (‖ f (t)‖L∞ , ‖ Mε‖L∞) ∈
(
0, ε−1

)
, t � 0.
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Proof. From Theorem 5.1, there is some universal constant c > 0 such that

D (0)ε ( f (t)) � 2cλ0(t)

[
bε − 12ε2

κ0(t)4
max

(
‖ f (t)‖2L∞ , ‖ Mε‖2L∞

)]
Hε( f (t)| Mε) , t � 0 ,

with

κ0(t) = inf
v∈R3

(1 − ε f (t, v)), t � 0 ,

and

λ0(t)
−1 = ‖ fin‖2L1

2

e(t)3

κ20 (t)
max(1, B(t)) .

Here,

1

B(t)
:= min

i �= j
inf
σ∈S1

∫
R3

∣∣∣∣σ1 vi〈v〉 − σ2 v j〈v〉
∣∣∣∣
2

f (t, v) dv,

1

e(t)
= min

i

1
3

∫
R3

f (t, v) v2i dv,

since

max(1,m2( f (t)))I0( f (t)) = max(1,m2(t))m2(t) � ‖ fin‖2L1
2
, t � 0 ,

by conservation of energy and because ‖ fin‖L1
2

� 1. As shown in [15, Remarks
2.10 & 2.11], there is a positive constant C0 > 0 depending only on ‖ fin‖L1

2
and

H( fin) such thatmin
(

1
B(t) ,

1
e3(t)

)
� C0 for any t � 0.Therefore, there is a positive

constant C̄0 > 0 depending only on ‖ fin‖L1
2
and H( fin) such that

2cλ0(t) � C2
0
κ0(t)2

‖ fin‖2L1
2

� C̄0κ0(t)
2, t � 0 ,

and, since κ0(t) � 1 and bε � 1
8 for ε small enough (see [2, Lemma A.1]), we

easily deduce that

D (0)
ε ( f (t)) � C̄1

[
κ0(t)

4 − 96ε2 max
(‖ f (t)‖2L∞ , ‖ Mε‖2L∞

)] Hε( f (t)| Mε),

(5.6)

for any t � 0 with C̄1 = 1
8 C̄0. Since κ0(t) = 1 − ε‖ f (t)‖L∞ , one has κ0(t) �

1 − εχ(t) for any t � 0 and (5.6) becomes

D (0)
ε ( f (t)) � C̄1

[
(1 − εχ(t))4 − 96ε2χ(t)2

]
Hε( f (t)| Mε), t � 0.

Expanding (1 − εχ(t))4 and noticing that −ε3χ3(t) � −ε2χ2(t) � −εχ(t)
because εχ(t) � 1, one gets the result. ��

We now derive an upper bound forD (η)
ε (g). A first observation is the following

technical estimate:



About the Landau-Fermi-Dirac Equation 831

Lemma 5.3. For any 0 � g � ε−1 satisfying (5.3) and any η � −2, one has

D
(η)
ε (g) � 2

η+8
2

κ0(g)
‖g‖L1

η+2

∫
R3

〈v〉η+2
∣∣∇√

g
∣∣2 dv , (5.7)

where we recall that κ0(g) = infv∈R3 (1 − εg(v)) = 1 − ε‖g‖L∞ .

Proof. Using definition (2.5), one has

D (η)
ε (g) = 1

2

∫
R6

|v − v∗|η+2 g g∗(1 − εg) (1 − εg∗) |�(v − v∗) [∇h − ∇h∗]|2 dvdv∗,

where h(v) = log(g(v))− log(1 − εg(v)). Using the obvious estimate

|�(v − v∗) [∇h − ∇h∗]|2 � 2|∇h|2 + 2|∇h∗|2 ,

one has

D
(η)
ε (g) � 2

∫
R6

|v − v∗|η+2 g g∗(1 − εg) (1 − εg∗)
∣∣∣∣ ∇g(v)

g(v)(1 − εg(v))

∣∣∣∣
2

dvdv∗

� 2
∫

R3

|∇g(v)|2
g(1 − εg)

dv
∫

R3
|v − v∗|η+2 g∗dv∗.

Using the fact that |v − v∗|η+2 � 2
η+2
2 〈v〉η+2〈v∗〉η+2, we get the desired result

thanks to (5.3). ��
On the basis of estimates (5.7) and (5.5), we need to provide a uniform in time

upper bound of the above weighted Fisher information along solutions to (1.10).
We follow the approach of [27] and begin with a technical Lemma:

Lemma 5.4. Assume that −2 < γ < 0 and let a nonnegative initial datum fin
satisfying (1.7)–(1.9) for some ε0 > 0 be given. For ε ∈ (0, ε0], let f (t, ·) be a
weak-solution to (1.10). Then, for any s > 3

2 , there exists Cs( fin) > 0 depending
on s, ‖ fin‖L1

2
and H( fin) such that, for any t � 0 and k � 0

−
∫

R3
〈v〉k cγ [ f (t)] f (t, v) (1 + | log f (t, v)|) dv

� Cs( fin)

(√
m2k+2s(t)+ Mk(t)+ E 3k

2
(t)

2
3

(
1 + 1

t

))
, (5.8)

and
∫

R3
〈v〉k+γ f (t, v) (1 + |log f (t, v)|) dv

� Cs( fin)
(√

m2(k+s+γ )(t)+ Mk+γ (t)
)
. (5.9)
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Proof. We use the following obvious estimate: for any p, r > 1, there is Cp,r > 0
such that

x (1 + | log x |) � Cp,r

(
x

1
r + x p

)
, ∀ x > 0. (5.10)

For notational simplicity, in several placeswe omit the dependence of f with respect
to t . Splitting cγ [ f ] as
cγ [ f ] = −2(γ + 3)

[(| · |γ 1|·|�1 ∗ f
)+ (| · |γ 1|·|>1 ∗ f

)] = c(1)γ [ f ] + c(2)γ [ f ] ,
one has that

−
∫

R3
〈v〉k cγ [ f ] f (1 + | log f |) dv � −C 4

3 ,
3
2

∫
R3

〈v〉k c(1)γ [ f ]
(
f

2
3 + f

4
3

)
dv

−C2,2

∫
R3

〈v〉k c(2)γ [ f ]
(√

f + f 2
)
dv .

Clearly,

−c(2)γ [ f ] = 2(γ + 3)
∫

|v−v∗|>1
|v − v∗|γ f (v∗)dv∗ � 2(γ + 3)‖ fin‖L1 ,

so that

−
∫

R3
〈v〉k c(2)γ [ f ]

(√
f + f 2

)
dv

� 2(γ + 3)‖ fin‖L1

(∫
R3

〈v〉k√ f dv +
∫

R3
〈v〉k f 2(v) dv

)
.

According to Cauchy-Schwarz inequality, for any s > 3
2∫

R3
〈v〉k√ f dv �

√
m2(k+s)( f )‖〈·〉−s‖L2 = Cs

√
m2(k+s)( f ) ,

and consequently

−
∫

R3
〈v〉k c(2)γ [ f (t)]

(√
f (t, v)+ f 2(t, v)

)
dv

� Cs( fin)
(√

m2(k+s)(t)+ Mk(t)
)
,

for some positive constant depending only on s and ‖ fin‖L1 . Using Hölder’s in-
equality,

−
∫

R3
〈v〉k c(1)γ [ f ]

(
f

2
3 + f

4
3

)
dv �

∥∥∥〈·〉k
(
f

2
3 + f

4
3

)∥∥∥
L

3
2

∥∥∥c(1)γ [ f ]
∥∥∥
L3
,

and, according to Young’s convolution inequality,
∥∥∥c(1)γ [ f ]

∥∥∥
L3

� 2(γ + 3)
∥∥ | · |γ 1|·|�1

∥∥
L

3
2

‖ f ‖
L

3
2
,
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where
∥∥ | · |γ 1|·|�1

∥∥
L

3
2
< ∞ since 3

2γ + 3 > 0 (recall that γ ∈ (−2, 0)). Since

‖ f ‖
L

3
2

�
(
m0( f )+ ‖ f ‖2L2

) 2
3
,

we deduce that

−
∫

R3
〈v〉k c(1)γ [ f (t)]

(
f (t, v)

2
3 + f (t, v)

4
3

)
dv

� Cγ
∥∥∥〈·〉k

(
f

2
3 + f

4
3

)∥∥∥
L

3
2
(m0(t)+ M0(t))

2
3

� 4Cγ E 3k
2
(t)

2
3 (1 + M0(t))

2
3 .

Now using Proposition 3.15, this proves (5.8). Now, by (5.10), one has
∫

R3
〈v〉k+γ f (1 + | log f |) dv � C2,2

∫
R3

〈v〉k+γ
(√

f + f 2
)
dv,

and, proceeding as above, one obtains (5.9). ��
We can state now the following Proposition which is inspired by [27]:

Proposition 5.5. Assume that −2 < γ < 0 and let a nonnegative initial datum fin
satisfying (1.7)–(1.9) for some ε0 > 0 be given. For ε ∈ (0, ε0], let f (t, ·) be a
weak-solution to (1.10). Let η � γ − 2. Assume moreover that

fin ∈ L1
2η+8−2γ (R

3).

Then, for any t0 > 0, there exists C > 0 depending on η, t0 and on fin through
‖ fin‖L1

2η+8−2γ
such that

∫ t

t0
dτ
∫

R3
〈v〉η+2

∣∣∣∇√ f (τ, v)
∣∣∣2 dv � C(1 + t)2 , 0 � t0 < t. (5.11)

In particular, for η � 0, there is Cη( fin) depending only on ‖ fin‖L1
2
, H( fin) and η

and such that

∫ t

t0
D
(η)
ε ( f (τ ))dτ � Cη( fin)

[
sup

t0�τ�t

mη+2(τ )

κ0(τ )

]
(1 + t)2 , 0 � t0 < t ,(5.12)

where we recall that κ0(τ ) = 1 − ε ‖ f (τ )‖L∞ , τ � 0.

Proof. Let η � γ−2 be fixed. Sincewe aim to use Lemma 5.4, it will be convenient
here to introduce k = η+2−γ .We compute, as in [27, Proposition 1] the evolution
of

Sk(t) :=
∫

R3
〈v〉k f (t, v) log f (t, v) dv,
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for a solution f = f (t, v) to (1.10). To simplify notations, wewrite F = F(t, v) =
f (1 − ε f ). One can check that

d

dt
Sk(t) = d

dt
mk(t)+

∫
R3

〈v〉k Q( f ) log f dv

= d

dt
mk(t)+

∫
R3

〈v〉k∇ · (�[ f ]∇ f ) log f dv

−
∫

R3
〈v〉k∇ · (b[ f ]F) log f dv.

(5.13)

One computes, using that log f ∇ f = ∇ [ f log f − f
]
, that

∫
R3

〈v〉k∇ · (�[ f ]∇ f ) log f dv = −
∫

R3
〈v〉k�[ f ]∇ f · ∇ f

f
dv

+k
∫

R3
∇ ·

(
�[ f ]v〈v〉k−2

) [
f log f − f

]
dv.

Similarly,
∫

R3
〈v〉k∇ · (b[ f ]F) log f dv = −k

∫
R3

〈v〉k−2 (b[ f ] · v) F log f dv

+
∫

R3

(
f − ε

2
f 2
)

∇ ·
(
〈v〉kb[ f ]

)
dv.

As in the proof of Lemma 3.8,

∇ ·
(
�[ f ]v〈v〉k−2

)
= 〈v〉k−2B[ f ] · v + 〈v〉k−4Trace (�[ f ] · A(v)) ,

with A(v) = 〈v〉2Id + (k − 2) v ⊗ v, whereas

∇ ·
(
〈v〉kb[ f ]

)
= k〈v〉k−2 (b[ f ] · v)+ 〈v〉k cγ [ f ],

resulting in

d

dt
Sk(t) = d

dt
mk(t)−

∫
R3

〈v〉k�[ f ]∇ f · ∇ f

f
dv −

∫
R3

〈v〉k cγ [ f ]
(
f − ε

2
f 2
)
dv

+ k
∫

R3
〈v〉k−4Trace (�[ f ] · A(v)) [ f log f − f

]
dv

+ k
∫

R3
〈v〉k−2 (b[ f ] · v)

[
F log f − f + ε

2
f 2
]
dv

+ k
∫

R3
〈v〉k−2 (B[ f ] · v) [ f log f − f

]
dv.

(5.14)

From (5.14), using the coercivity of �[ f ] and the fact that −cγ [ f ] � 0, we get

d

dt
Sk(t)− d

dt
mk(t)+ K0

∫
R3

〈v〉k+γ |∇ f |2
f

dv

� −
∫

R3
〈v〉k cγ [ f ] f dv + k

∫
R3

〈v〉k−4
∣∣∣Trace (�[ f ] · A(v))

∣∣∣ | f log f − f | dv
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+k
∫

R3
〈v〉k−2 |b[ f ] · v|

∣∣∣F log f − f + ε

2
f 2
∣∣∣ dv

+k
∫

R3
〈v〉k−2 |B[ f ] · v| | f log f − f | dv. (5.15)

As in the proof of Proposition 3.9, we see that

|Trace (�[ f ] · A(v))| � 9 · 2k〈v〉2
(
| · |γ+2 ∗ f

)
� 9 · 2 γ+4

2 k ‖ fin‖L1
2
〈v〉γ+4,

and, since |B[ f ] · v| � |b[ f ] · v| + ε|b[ f 2] · v| with ε f 2 � f , one can check
that 1

2 |B[ f ] · v| also satisfies (3.44). We deduce then from (5.15) that there exists
a constant Ck( fin) > 0 depending only on ‖ fin‖L1

2
and k, such that

d

dt
Sk(t)− d

dt
mk(t)+ K0

∫
R3

〈v〉k+γ |∇ f |2
f

dv

� Ck( fin)
∫

R3
〈v〉k+γ

(
| f log f − f | +

∣∣∣F log f − f + ε

2
f 2
∣∣∣
)
dv

−Ck( fin)
∫

R3
〈v〉k cγ [ f ]

(
| f log f − f | +

∣∣∣F log f − f + ε

2
f 2
∣∣∣+ f

)
dv.

(5.16)

Since

| f log f − f | + |F log f − f + ε

2
f 2| � 2 f | log f | + 5

2
f, (5.17)

we have that

d

dt
Sk(t)− d

dt
mk(t)+ K0

∫
R3

〈v〉k+γ |∇ f |2
f

dv

� 5

2
Ck( fin)

∫
R3

〈v〉k+γ f (1 + |log f |) dv

−7

2
Ck( fin)

∫
R3

〈v〉k cγ [ f ] f (1 + |log f |) dv. (5.18)

Using Lemma 5.4 with s = 2, we deduce then that, for any t0 > 0,

d

dt
Sk(t)+ K0

∫
R3

〈v〉γ+k |∇ f |2
f

dv

� d

dt
mk(t)+ Ck( fin)

(√
m2k+4(t)+ Mk(t)+ E 3k

2
(t)

2
3

(
1 + t−1

))
,

� d

dt
mk(t)+ Ck( fin) (1 + t) , t > t0 ,

where we used Theorem 1.9 for the last estimate and where Ck( fin) now depends
on t0. Notice that, for s = 2k + 4 > 4 + |γ |, Theorem 1.9 provides the growth
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of m2k+4(t), Mk(t) and E 3k
2
(t) whenever ms(0) < ∞. Our assumption on fin

exactly means that m2k+4(0) < ∞. Integrating this inequality over (t0, t) yields

K0

∫ t

t0
dτ
∫

R3
〈v〉γ+k |∇ f (τ, v)|2

f (τ, v)
dv

� Sk(t0)− Sk(t)+ mk(t)+ 1

2
Ck( fin)(1 + t)2.

Clearly, Sk(t) has no sign but, according to [27, Eq. (B.3), Lemma B.4], for any
σ > 0 there exists Cσ > 0 such that

−Sk(t) � −
∫

R3
〈v〉k f (t, v)| log f (t, v)| dv + 2mk+σ (t)+ Cσ ,

yielding, for σ = 2,

K0

∫ t

t0
dτ
∫

R3
〈v〉γ+k |∇√ f (τ, v)|2 dv � Ck( fin) (1 + t)2+Sk(t0).

Let us note here that with our assumptions, one can deduce from (5.9) and The-
orem 1.9 that Sk(t0) is actually finite. Indeed, (5.9) implies that Sk(t0) < ∞ if
m2k+2r (t0) < ∞ and Mk(t0) < ∞ for some r > 3

2 . According to Theorem 1.9,
this holds if ms(0) < ∞ for s = 2k + 2r > 4 − γ . As already observed, one has
m2k+2r (0) < ∞ with r = 2 > 3

2 . Recalling that k + γ = η+ 2, this proves (5.11)
with a positive constantC depending in particular on t0 (withC � t−2

0 ). We deduce
then (5.12) from (5.7) and (5.11). ��

5.2. The case − 4
3 < γ < 0

We apply the result established here above to the case γ ∈ (− 4
3 , 0

)
. In that case

Proposition 5.2 can be stated as:

Proposition 5.6. Assume that − 4
3 < γ < 0 and let a nonnegative initial datum fin

satisfying (1.7)–(1.9) for some ε0 > 0 be given. For ε ∈ (0, ε0], let f (t, ·) be a
weak-solution to (1.10). Then, there exists ε� ∈ (0, ε0] and λ̄0 > 0 depending only
on ‖ fin‖L1

2
and H( fin) such that, for ε ∈ (0, ε�],

D (0)
ε ( f (t)) � λ̄0 Hε( f (t)| Mε) , t � 1. (5.19)

Proof. The proof is a direct consequence of Proposition 5.2 andCorollary 4.5 since,
recalling that supε∈(0,ε0] ‖ Mε‖L∞ < ∞ by [2, Lemma A.1], one has

χ(t) = max (‖ f (t)‖L∞ , ‖ Mε‖L∞) � C , t � 1,

with C > 0 independent of ε. Thus, there exists ε� ∈ (0, ε†) such that inf t�1
(1 − 98εχ(t)) > 0 for any ε ∈ (0, ε�). ��
Remark 5.7. The restriction − 4

3 < γ < 0 is needed here only to ensure that
(1 − 98εχ(t)) > 0. Thus, the above estimate (5.19) holds in any situation for
which λ̄0 = C̄1 inf t�1 (1 − 98εχ(t)) > 0.
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This gives the following version of Theorem 1.7 where the assumptions on the
initial datum are slightly relaxed with respect to the statement of Theorem 1.7:

Proposition 5.8. Let − 4
3 < γ < 0. Let η > 2|γ | and 0 � fin ∈ L1

2η+8+2|γ |(R3)

satisfying (1.7)–(1.9) for some ε0 > 0. For ε ∈ (0, ε0], let f (t, ·) be a weak-
solution to (1.10). Then, there exists Cη depending on ‖ fin‖L1

2
, H( fin) and η > 0,

and there exists ε‡ ∈ (0, ε0] such that for any ε ∈ (0, ε‡),

‖ f (t)− Mε‖L1 � Cη (1 + t)−
η−2|γ |
2|γ | , ∀t � 1 . (5.20)

As a consequence, given s > 2|γ |, one has
sup
t�1

Es(t) <∞,

provided that fin ∈ L1
r with r > max(2s + 8 + 2|γ |, s2

s−2|γ | ).

Proof. Using Proposition 5.6 and (5.5), for any η > 0,

D
(γ )
ε ( f (t)) � λ̄

1− γ
η

0 D
(η)
ε ( f (t))

γ
η Hε( f (t)| Mε)

1− γ
η , t � 1.

For simplicity, we set

Aη(t) := λ̄
1− γ

η

0 D
(η)
ε ( f (t))

γ
η � 0, y(t) := Hε( f (t)| Mε) , t � 0.

Since
d

dt
Hε( f (t)| Mε) = −D

(γ )
ε ( f (t)), one has

d

dt
y(t)+ Aη(t) y(t)

1− γ
η � 0, t � 1.

Integrating this inequality, we deduce that

y(t)
γ
η � y(1)

γ
η − γ

η

∫ t

1
Aη(τ )dτ � y(0)

γ
η − γ

η

∫ t

1
Aη(τ )dτ,

i.e.

Hε( f (t)| Mε) �
(
Hε( fin| Mε)

γ
η − γ

η

∫ t

1
Aη(τ )dτ

) η
γ

, t � 1.

Let us estimate from below the integral of Aη(τ ). One has

∫ t

1
Aη(τ ) dτ = λ̄

1− γ
η

0

∫ t

1
D
(η)
ε ( f (τ ))

γ
η dτ = λ̄

1− γ
η

0 (t − 1)
∫ t

1
D
(η)
ε ( f (τ ))

γ
η

dτ

t − 1

� λ̄01−
γ
η (t − 1)

(∫ t

1
D
(η)
ε ( f (τ ))

dτ

t − 1

) γ
η

,
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where we used Jensen’s inequality and the convexity of the mapping x > 0 �→ x
γ
η .

Therefore,

∫ t

1
Aη(τ )dτ �

(
λ̄0(t − 1)

)1− γ
η

(∫ t

1
D
(η)
ε ( f (τ ))dτ

) γ
η

,

and, using (5.12), which holds since fin ∈ L1
2η+8−2γ (R

3), one gets

∫ t

1
Aη(τ ) dτ� C (t − 1)1−

γ
η (1 + t)

3γ
η �Ct1+

2γ
η , t � 2,

for some positive constant C depending on η, ‖ fin‖L1
2
and H( fin) where we used

(1.14) and the fact that infτ�1 κ0(τ ) > 0. Choosing η > −2γ , this gives a decay
rate

Hε( f (t)| Mε) � Cη( fin) t
2+ η

γ ,

for all t � 2 with Cη( fin) depending on η, ‖ fin‖L1
2
and H( fin). We conclude then

with Csiszár-Kullback inequality for Fermi-Dirac relative entropy (2.2). Let us
prove now the bound on Es(t) for s � 0. It follows from some standard arguments
(see [28]). Namely, let s > −2γ be given and let p = s2

s+2γ > s. If fin ∈ L1
r with

r > max(2s + 8 − 2γ, p), the bound (1.14) in Theorem 1.9 holds as well as the
above (5.20) with η = s. Then, for some positive Cs depending only on s, ‖ fin‖L1

2
,

H( fin) and mr (0), one has

ms(t) � ‖ Mε‖L1
s
+ ‖ f (t)− Mε(t)‖L1

s

� ‖ Mε‖L1
s
+ ‖ f (t)− Mε‖1−θL1 ‖ f (t)− Mε‖θL1

p

� ‖ Mε‖L1
s
+ Cs(1 + t)−(1−θ)

s+2γ
2|γ |

(
mp(t)

θ + ‖ Mε‖θL1
p

)

� ‖ Mε‖L1
s
+ Cs(1 + t)−(1−θ)

s+2γ
2|γ |

(
Cθp (1 + t)θ + ‖ Mε‖θL1

p

)
,

θ = s + 2γ

s
∈ (0, 1) ,

for any t � 1 (so that (5.20) holds). Using that ‖ Mε‖L1
s
and ‖ Mε‖L1

p
are bounded

uniformly with respect to ε (see [2, Lemma A.1]), we deduce that there is cs > 0
depending only on s, ‖ fin‖L1

2
, mr (0) and H( fin) but not ε such that

ms(t) � cs

(
1 + (1 + t)−(1−θ)

s+2γ
2|γ | +θ

)
, t � 1.

Since −(1 − θ) s+2γ
2|γ | + θ = 0, this proves that supt�0 ms(t) � 2cs . The proof is

similar for the estimate of supt�1Ms(t) where we notice that max(p, 2p−3γ
4 ) = p

which ensures the appearance of the L2-momentMp(t) thanks to Propositions 3.12
and 3.15. The result follows. ��
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5.3. Proof of Theorem 1.7: the case −2 < γ � − 4
3

We are in position to give here the full proof of Theorem 1.7. It suffices to
consider the case −2 < γ � − 4

3 since the case − 4
3 < γ < 0 has been covered by

Proposition 5.8 where in that result, η = 1
2 (s − 8 + 2γ ). With respect to the proof

of Proposition 5.8, we no longer have a direct control of the norm supt�1 ‖ f (t)‖∞.
Recall that, according to Proposition 5.2, there is C̄1 > 0 depending on ‖ fin‖L1

2
and H( fin) such that

D (0)
ε ( f (t)) � C̄1 [1 − 98 εχ(t)] Hε( f (t)| Mε), t � 0 ,

with χ(t) = max
(
‖ f (t)‖L∞ , supε>0 ‖ Mε‖L∞

)
. Let us fix T > 2 and define

χ� = χ�(T ) := 98 sup
t∈[1,T )

χ(t) ,

so that

D (0)
ε ( f (t)) � C̄1

(
1 − εχ�

) Hε( f (t)| Mε) , t ∈ [1, T ). (5.21)

Pick ε := ε(T ) such that

1 − εχ� > 0.

Note that the existence of such ε follows from Theorems 1.9 and 1.10, since
s > max(4 − γ,− 3

2γ ) with our assumptions. The idea is to couple the a priori
estimates with the entropy method to be able to conclude that in fact these quan-
tities are independent of T > 2 as long as ε > 0 is less than some threshold
depending only on the initial distribution fin. The interpretation of this condition is
that the initial distribution is not too saturated for the argument to hold. It is an open
problem to prove that the relaxation to thermal equilibrium happens with a specific
ratewhen fin is very close to a saturated state even in the hard potential case, see [2].

As in the proof of Proposition 5.8, we write

y(t) = Hε( f (t)| Mε), t � 0.

Recall that we assume here that fin ∈ L1
s (R

3) with s > 14 + 6|γ |. For notational
simplicity, we write s = 2η+ 8− 2γ with η > 3+ 2|γ |. In all the sequel, we have
then

fin ∈ L1
2η+8−2γ (R

3) with η > 3 + 2|γ |. (5.22)

Using (5.5), for such a choice of η, we deduce from (5.21) that

D
(γ )
ε ( f (t)) � C̄

1− γ
η

1

(
1 − εχ�

)1− γ
η

[
D
(η)
ε ( f (t))

] γ
η
y(t)1−

γ
η , t ∈ [1, T ).

Recalling that
d

dt
y(t) = −D

(γ )
ε ( f (t)), we deduce after integration of the above

inequality that

y(t)
γ
η − y(1)

γ
η � C̄(γ, η)

(
1 − εχ�

)1− γ
η

∫ t

1

[
D
(η)
ε ( f (τ ))

] γ
η
dτ, t ∈ [1, T ) ,

(5.23)
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where we set C̄(γ, η) = |γ |
η
C̄
1− γ

η

1 . Similar to the proof of Proposition 5.8, using

the convexity of the mapping r > 0 �→ r
γ
η , we have

∫ t

1

[
D
(η)
ε ( f (τ ))

] γ
η
dτ � (t − 1)

(∫ t

1
D
(η)
ε ( f (τ ))

dτ

t − 1

) γ
η

= (t − 1)1−
γ
η

(∫ t

1
D
(η)
ε ( f (τ ))dτ

) γ
η

, t ∈ (1, T ).

Therefore, in light of (5.12) and using (5.22), there exists Cη > 0 depending only
on fin such that
∫ t

1

[
D
(η)
ε ( f (τ ))

] γ
η
dτ � Cη

(
1 − εχ�

)− γ
η (t − 1)1−

γ
η (1 + t)

3γ
η , t ∈ (1, T ) ,

where we used (1.14) and the fact that κ0(t) � 1−εχ� for any t ∈ [1, T ). Inserting
this into (5.23),

y(t)
γ
η − y(1)

γ
η � Cγ,η

(
1 − εχ�

)1−2 γ
η (t − 1)1−

γ
η (1 + t)3

γ
η , t ∈ (1, T ) ,

for some positive constant Cγ,η > 0 depending only on η, ‖ fin‖L1
2
and H( fin). In

other words

y(t) �
(
y(1)

γ
η + Cγ,η

(
1 − εχ�

)1−2 γ
η (t − 1)1−

γ
η (1 + t)3

γ
η

) η
γ
, (5.24)

for any t ∈ (1, T ). In particular

y(t) � Cγ,η
(
1 − εχ�

) η
γ

−2
(t − 1)

η
γ

−1
(1 + t)3 , t ∈ (2, T ).

We use this last estimate to sharpen the control of the third moment of f (t, v).

Lemma 5.9. For η > 3 + 2|γ |, one has

sup
t∈[2,T )

m3(t) � Cη,γ ( fin)
(
1 − εχ�

) (η−3)(η−2γ )
2γ η +‖ Mε‖L1

3
. (5.25)

Proof. We use ideas similar to those introduced at the end of Proposition 5.8. For
η > 3 + 2|γ |, observe that

‖ f (t)‖L1
3

� ‖ Mε‖L1
3
+ ‖ f (t)− Mε‖L1

3

� ‖ Mε‖L1
3
+ ‖ f (t)− Mε‖1−

3
η

L1

(
‖ f (t)‖L1

η
+ ‖ Mε‖L1

η

) 3
η

� ‖ Mε‖L1
3
+ Cη

(
1 + t

) 3
η ‖ f (t)− Mε‖1−

3
η

L1

� ‖ Mε‖L1
3
+ Cη

(
1 + t

) 3
η Hε( f (t)| Mε)

1
2− 3

2η , t � 1 ,

where, in the last inequality, we used one side of the Csiszár-Kullback inequality
(2.2). Let us note thatCη does not depend on ε since ‖ Mε‖L1

η
is uniformly bounded



About the Landau-Fermi-Dirac Equation 841

thanks to [2, Lemma A.7]. Plugging into the aforementioned estimation for y(t) =
Hε( f (t)| Mε), we obtain

m3(t) � ‖ Mε‖L1
3
+ Cη

(
1 − εχ�

) (η−3)(η−2γ )
2γ η ×

×(1 + t)
3
η (t − 1)

(η−3)(η−γ )
2γ η (1 + t)

3(η−3)
2η , t ∈ (2, T ) .

Since η > 3 + 2|γ |, the function

t � 2 �−→ (1 + t)
3
η (t − 1)

(η−3)(η−γ )
2γ η (1 + t)

3(η−3)
2η

is bounded by some positive constant Cη,γ . We obtain then (5.25). ��
A simple consequence of the aforementioned Lemma is the following estimate

on χ�.

Lemma 5.10. Assume thatη > 3+2|γ |, then there is a constantC1 := C1(γ, η, fin)
independent of ε and T such that

χ�(T )
(
1 − εχ�(T )

)α � C1, α = (η − 3)(η − 2γ )

2η(4 + γ ) > 0. (5.26)

Proof. Using Theorem 1.10 (with s = 3) and the fact that supτ∈[0,2) m3(τ ) �
C( fin) thanks to Proposition 3.11 (recall that (5.22) holds) we can use the previous
estimate to conclude that

χ� = 98 sup
t∈[1,T )

max

(
‖ f (t)‖L∞ , sup

ε>0
‖ Mε‖L∞

)
� C̃0

(
1 + sup

τ∈[2,T )
m3(τ )

)− γ
4+γ
,

which, with (5.25), gives

χ� � C0

(
1 + (1 − εχ�

) (η−3)(η−2γ )
2γ η

)− γ
4+γ

� C1
(
1 − εχ�

)−α
,

where we used that 1 − εχ� � 1. This gives (5.26). ��
We introduce the mapping

φ(x) = x (1 − ε x)α , x ∈ (0, ε−1).

One has

sup
x∈(0,ε−1)

φ(x) = φ(x̄) = αα

ε(1 + α)1+α , x̄ = 1

ε(1 + α) .

We define

ε� = αα

2M(1 + α)α+1 , (5.27)

where M > 0 is a (large) constant to be determined.We consider values ε ∈ (0, ε�]
which ensure in particular that M < φ(x̄). Now, in such a case, the equation
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φ(x) = M has two roots x1 < x̄ < x2 in the interval (0, ε−1). In particular,
φ(x1) = M implies

x1 = M

(1 − εx1)α
<

M

(1 − εx̄)α
=
(
1 + 1

α

)α
M <

1

2ε�
.

Therefore, the inequality φ(x) < M holds in the following two cases:

(i) either x � x1 <
1

2ε�
, (i i) or x � x2 > x̄ = 1

ε(1 + α) . (5.28)

Let us now show that, choosing M large enough, the second case (i i) is an impos-
sibility.

Lemma 5.11. Besides (5.27), assume that M � C1 and

M � χ�(3)

2

(
α

1 + α
)α
. (5.29)

Then, for ε ∈ (0, ε�), it holds that

χ�(T ) � χ�(3) � x1 <
1

2ε�
, T ∈ (2, 3].

Proof. Notice that (5.29) means that ε� � 1
χ�(3)(1+α) .Applying Theorem 1.10with

s = 3 on the interval [1, 3), one has

sup
t∈[1,3)

‖ f (t)‖L∞ � C

(
1 + sup

t∈[1,3)
m3(t)

)− γ
4+γ

for some positiveC depending on ‖ fin‖L1
2
and H( fin) and this last quantity is finite

and independent of ε thanks to Proposition 3.11 since m3(0) < ∞. Therefore,

χ�(3) = 98 sup
t∈[1,3)

max

(
‖ f (t)‖L∞ , sup

ε>0
‖ Mε‖L∞

)
< ∞ ,

depends only on ‖ fin‖L1
2
and H( fin). Under the additional constraint (5.29), we

observe that for any ε ∈ (0, ε�] it holds x̄ � χ�(3), which excludes the case (i i).
By the aforementioned binary option, one gets the desired conclusion. ��

This argument shows the existence of a trapping region which can be extended
to any T > 3.

Lemma 5.12. Assume (5.27) and (5.29) are in force. Then, defining

T � := sup
{
T > 2

∣∣χ�(T ) � x1
}
,

one can choose M large enough (explicit) such that T � = ∞ for any ε ∈ (0, ε�).
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Proof. We already saw in Lemma 5.11 that T � � 3. We argue by contradiction
considering that T � < ∞. In all the sequel, we will denote by u(t) a function
of t � 0 which is such that limt→0+ u(t) = 0 (i.e. u(t) = o(1)) and that may
change from line to line. Recalling and integrating the moment inequality (3.10)
(with δ = 1 and s = 3) in the time interval (T �, T � + t), it follows that

m3(T
� + t) � m3(T

�)+ 6K3 t + 3

2

∫ T �+t

T �
D3+γ (τ )dτ + 3C

∫ T �+t

T �
M3+γ (τ )dτ

= m3(T
�)+ u(t) , t ∈ (0, 1] ,

since the latter three terms in the right-hand side can be made as small as desired
when t → 0. In other words,

sup
τ∈[2,T �+t)

m3(τ ) = sup
τ∈[2,T �)

m3(τ )+ u(t) , t ∈ (0, 1] . (5.30)

UsingTheorem1.10 appliedon the interval [1, T �+t), the fact that supτ∈[0,2) m3(τ ) �
C( fin) , and the continuous growth of the third moment (5.30), one is led to

χ�(T � + t) � C

(
1 + sup

τ∈[2,T �+t)
m3(τ )

)− γ
4+γ

= C

(
1 + sup

τ∈[2,T �)
m3(τ )

)− γ
4+γ

+ u(t) ,

for some positive C depending on ‖ fin‖L1
2
and H( fin). Consequently, one can use

(5.25) with T = T � to get

(
1 + sup

τ∈[2,T �)
m3(τ )

)− γ
4+γ

�
(
1 + Cη,γ ( fin)

(
1 − εχ�(T �)

) (η−3)(η−2γ )
2γ η + ‖ Mε‖L1

3

)− γ
4+γ

� 2− γ
4+γ −1C

− γ
4+γ

η,γ

(
1 − εχ�(T �)

) (η−3)(η−2γ )
2γ η

−γ
4+γ

+2− γ
4+γ −1

(
1 + ‖ Mε‖L1

3

)− γ
4+γ
.

We deduce from this that there is some C > 0 independent of ε and M such that

χ�(T � + t) � C
(
1 + (1 − εχ�(T �)

)−α)+ u(t)

� 2C
(
1 − εχ�(T �)

)−α + u(t) , (5.31)

where we used again that 1 − εχ�(T �) � 1. Notice that, by definition of T �,

(
1 − εχ�(T �)

)−α�(1 − εx1
)−α

,
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where 1 − εχ�(T �) �1− εx1 � 1− ε�x1 >
1
2 . Thus, (1 − εχ�(T �))−α ∈ [1, 2α]

and, for t small enough, (5.31) implies that

χ�(T � + t) � 3C
(
1 − εχ�(T �)

)−α � 3C (1 − εx1)
−α . (5.32)

Now set

M := max

(
χ�(3)

2

(
α

1 + α
)α
, 3C,C1

)
.

One deduces from (5.32) that

χ�(T � + t) � M(1 − εx1)
−α = x1 ,

which is a contradiction since, by definition of T �, χ�(T � + t) > x1. Thus, for the
above choice of M , we must have that T � = ∞. ��

We have all in hands to conclude.

Proof of Theorem 1.7. The previous Lemma exactly means that, for some explicit
ε� > 0 (associated to the above choice of M), one has

χ�(T ) � x1 <
1

2ε�
, ∀ T > 2 , ∀ε ∈ (0, ε�).

This proves in particular that

sup
t�1

‖ f (t)‖L∞ � 1

196ε�
,

which is independent of ε. This gives the no saturation property

κ0 = 1 − ε sup
t�1

‖ f (t)‖∞ > 0, ∀ ε ∈ (0, ε�].

At this stage, we can resume the proof of Proposition 5.8 to get the desired result.
��

6. Upgrading the Convergence

We explain in this section how the rate of convergence can be upgraded to a
stretched exponential rate whenever the initial datum satisfies a more stringent de-
cay in terms of large velocities decay. As before, our strategy is based upon suitable
interpolations. Notations are those of Section 5.1 and we follow at first the inter-
polation procedure developed in [29, Section 5]. Namely, we begin by improving
the interpolation inequality between D

(γ )
ε and D (0)

ε provided by inequality (5.5).
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Lemma 6.1. For a given a > 0 and q > 0 define, for any 0 � g � ε−1,

�
a,q
ε (g) =

∫
R3×R3

|v − v∗|2 exp(a|v − v∗|q)�ε[g](v, v∗)dvdv∗ ,

where �ε is defined by formula (2.5). Then for any γ < 0 one has that

D
(γ )
ε (g) � 1

2

[
1

a
log

(
�
(a,q)
ε (g)

D (0)
ε (g)

)] γ
q

D (0)
ε (g), (6.1)

where D (γ )
ε (g) is defined by formula (5.1).

Proof. For a given R > 0, we set Za,R=
{
(v, v∗) ∈ R

3 × R
3; |v − v∗| �

( R
a

) 1
q

}

and denote by Zc
a,R its complementary in R

6.We see that

D (0)ε (g) = 1

2

∫
Za,R

|v − v∗|γ |v − v∗|−γ |v − v∗|2�ε[g](v, v∗) dvdv∗

+1

2

∫
Zc
a,R

exp
(−a|v − v∗|q

)
exp

(
a|v − v∗|q

) |v − v∗|2�ε[g](v, v∗) dvdv∗

�
(
R

a

) |γ |
q

D
(γ )
ε (g)+ 1

2
exp(−R)�(a,q)ε (g) .

We also notice that for any a, q > 0, we have that 1 � exp (a|v − v∗|q), and
therefore 2D (0)

ε (g) � �a,q
ε (g). Thus, the choice

R := log

(
�
a,q
ε (g)

D (0)
ε (g)

)
� log 2 > 0

is possible, and yields

D (0)
ε (g) �

[
log

(
�
(a,q)
ε (g)

D (0)
ε (g)

)] |γ |
q

a
γ
q D

(γ )
ε (g)+ 1

2
D (0)

ε (g) ,

which completes the proof. ��
Remark 6.2. Applying this inequality to a weak solution f (t, v) to (1.10) and as-
suming that the initial datum fin and ε > 0 are such that (5.19) holds, together
with the estimate

sup
t�1
�
(a,q)
ε ( f (t)) � �̄ , (6.2)

we expect that the relative entropy

y(t) = Hε( f (t)| Mε)

satisfies a differential inequality of the type

d

dt
y(t) � − λ̄0

2

[
1

a
log

(
�̄

λ̄0 y(t)

)] γ
q

y(t), t � 1,
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leading to an estimate like

y(t) � A exp(−Bt
q

q−γ ) , t � 1,

for some positive constant A, B > 0. We will see that, even if we cannot prove
directly (6.2), the (at most) slowly increasing growth of �(a,q)ε ( f (t)) will be such
that the above decay still holds.

Following the paths of Section 5, we first look for suitable upper bound for
�
(a,q)
ε (g).We proceed as in Lemma 5.3 to get the following result.

Lemma 6.3. For any 0 � g � ε−1 satisfying (5.3) and any a > 0, q ∈ (0, 1) one
has

�
(a,q)
ε (g) � 32

κ0(g)

∥∥gμa,q
∥∥
L1
2

∫
R3

〈v〉2
∣∣∣∇√g(v)

∣∣∣2 μa,q(v) dv, (6.3)

where

μa,q(v) = exp
(
a 〈v〉q) , v ∈ R

3. (6.4)

Proof. Recalling definition (2.5), we see that

�
(a,q)
ε (g) =

∫
R6

|v − v∗|2 exp(a|v − v∗|q) F F∗ |�(v − v∗) [∇h − ∇h∗]|2 dvdv∗,

where h(v) = log(g(v))− log(1− εg(v)) and F = g(1− εg). Using the obvious
estimate

|�(v − v∗) [∇h − ∇h∗]|2 � 2|∇h|2 + 2|∇h∗|2,
and |v − v∗|2 exp(a|v − v∗|q) � 2〈v〉2μa,q(v)〈v∗〉2μa,q(v∗) since q ∈ (0, 1), one
deduces that

�
(a,q)
ε (g) � 8

∫
R3

〈v〉2μa,q(v)F(v) |∇h(v)|2 dv
∫

R3
F(v∗) μa,q(v∗)〈v∗〉2dv∗

� 8
∫

R3

|∇g(v)|2
g(1 − εg)

〈v〉2μa,q(v) dv
∫

R3
〈v∗〉2g∗μa,q(v∗)dv∗.

This yields the result. ��
As for Proposition 5.5, on the basis of (6.3) and (6.1), it is useful to get a uniform

in time upper bound of the above Fisher informationwith exponential weights along
solutions to (1.10). Before doing so, let us introduce the following objects:

Definition 6.4. Given a, q > 0, we recall definition (6.4). Then, for any nonnega-
tive measure function g : R

3 → R, we set

ϒa,q(g) :=
∫

R3
g2(v)μa,q(v) dv, ϑa,q(g) :=

∫
R3

g(v)μa,v(v) dv.
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Given s � 0, we also introduce

ϒa,q,s(g) :=
∫

R3
g2(v)〈v〉sμa,q(v) dv, ϑa,q,s(g) :=

∫
R3

g(v)〈v〉sμa,q(v) dv.

If f (t, v) is a weak-solution to (1.10), we will moreover simply write

ϒa,q(t) := ϒa,q( f (t)), ϑa,q(t) := ϑa,q( f (t)), t � 0 ,

with similar notations for ϒa,q,s(t), ϑa,q,s(t). We also set

�a,q(t) := 1
2ϒa,q(t)+ ϑa,q(t).

Estimates on the evolution of the above family of moments are easily deduced
fromTheorem1.9 sincewe keep track, for the evolution of Es(t), of the dependency
with respect to s. Namely, one has the following proposition, with a proof quite
similar to that of [22, Corollary 4.1].

Proposition 6.5. Assume that −2 < γ < 0 and let a nonnegative initial datum fin
satisfying (1.7)–(1.9) for some ε0 > 0 be given. For ε ∈ (0, ε0], let f (t, ·) be a
weak-solution to (1.10). Let a > 0 and 0 < q < 4+2γ

8−γ . Assume that

∫
R3

exp
(
2q(1+

1
|γ | )a〈v〉q

)
fin(v) dv = ϑã,q( fin) < ∞ , ã = 2

q(1+|γ |)
|γ | a.

Then there exists Ca,q > 0 depending only on a, q and fin such that

�a,q(t) � Ca,q

(
t−

3
2 + t

)
, t > 0 .

Proof. As in [22, Corollary 4.1], we notice that

�a,q(t) =
∞∑
n=0

an

n! Enq(t) ,

so that thanks to Theorem 1.9

�a,q(t) �
(
t−

3
2 + t

) ∞∑
n=0

an

n! Cnq .

Consequently, in order to prove the result, we just need to show that the sum is
finite. Using now (1.15), there is β1 > 0 such that

Cnq � β1

[
(β1 q n)

8−γ
4+2γ (nq+γ−2)+1 + 2

nq
|γ | (1 + nq)

5
2 mnq(0)

]
(nq > 6 + |γ |).

Clearly, for n large enough (1+ nq)
5
2 � c02nq for some universal c0 > 0, so that

Cnq � 2β1 (β1 q n)
nb+� + β1c02nq(1+

1
|γ | ) mnq(0) ,
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with b = 8−γ
4+2γ q and � = 8−γ

4+2γ (γ−2)+1.UsingStirling formula and d’Alembert’s
ratio test, one sees easily that, if b < 1, then the sum

∞∑
n=0

an
n! (β1 q n)

nb+� is finite for any a > 0 ,

whereas
∞∑
n=0

an
n! 2

nq(1+|γ |)
|γ | mnq(0) =

∫
R3

exp
(
2q(1+

1
|γ | )a〈v〉q

)
fin(v) dv < ∞ .

This proves the result. ��
Remark 6.6. From the above proof, one sees that, if q = 4+2γ

8−γ , then the above result

still holds if 2
q
4 aβ1qe < 1.

We need in the sequel an analogue of Lemma 5.4.

Lemma 6.7. Assume that −2 < γ < 0 and let a nonnegative initial datum fin
satisfying (1.7)–(1.9) for some ε0 > 0 be given. For ε ∈ (0, ε0], let f (t, ·) be
a weak-solution to (1.10). Then, given a, q > 0 and any s > 3

2 , there exists
Cs( fin) > 0 depending on s, fin, (but not on a, q) such that, for any k � 0 and
any t � 0,

−
∫

R3
〈v〉k cγ [ f (t)] f (t, v)

(
1 + | log f (t, v)|)μa,q(v) dv

� Cs( fin)

(√
ϑ2a,q,2(k+s)(t)+ϒa,q,k(t)

+
(
ϑ 3

2 a,q,
3
2 k
(t)+ ϒ 3

2 a,q,
3
2 k
(t)
) 2

3
(
1 + 1

t

))
, (6.5)

and ∫
R3

〈v〉k+γ f (t, v) (1 + |log f (t, v)|) μa,q(v) dv

� Cs( fin)

(√
ϑ2a,q,2(k+s+γ )(t)+ϒa,q,k+γ (t)

)
. (6.6)

Proof. The proof is very similar to that of Lemma 5.4 and is based upon (5.10). We
use the same notations as in Lemma 5.4 and use the splitting cγ [ f ] = c(1)γ [ f ] +
c(2)γ [ f ]. One has

−
∫

R3
〈v〉k cγ [ f ] f (1 + | log f |) μa,q(v) dv

� −C 4
3 ,

3
2

∫
R3

〈v〉k c(1)γ [ f ]
(
f

2
3 + f

4
3

)
μa,q(v) dv

−C2,2

∫
R3

〈v〉k c(2)γ [ f ]
(√

f + f 2
)
μa,q(v) dv .
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As in Lemma 5.4, a simple use of Cauchy-Schwarz inequality yields, for any s > 3
2 ,

−
∫

R3
〈v〉k c(2)γ [ f (t)]

(√
f + f 2

)
μa,q(v)dv

� Cs( fin)

(√
ϑ2a,q,2(k+s)(t)+ϒa,q,k(t)

)
,

for some positive constant depending only on s, ‖ fin‖L1
2
. In the same way, as in

Lemma 5.4, we deduce from Hölder’s inequality, and Proposition 3.15 that

−
∫

R3
〈v〉k c(1)γ [ f (t)]

(
f (t, v)

2
3 + f (t, v)

4
3

)
μa,q(v) dv

� Cγ
∥∥∥〈·〉k

(
f

2
3 + f

4
3

)
μa,q

∥∥∥
L

3
2

(
m0(t)+ M0(t)

) 2
3

� C( fin)
(
ϑ 3

2 a,q,
3
2 k
(t)+ϒ 3

2 a,q,
3
2 k
(t)
) 2

3
(
1 + 1

t

)
.

This proves (6.5). Now, the proof of (6.6) follows the same lines as that of (5.9). ��
Proposition 6.8. Assume that −2 < γ < 0 and let a nonnegative initial datum fin
satisfying (1.7)–(1.9) for some ε0 > 0 be given. For ε ∈ (0, ε0], let f (t, ·) be a
weak-solution to (1.10). Let b, q > 0 be given, with q < 4+2γ

8−γ . Assume moreover
that

fin ∈ L1
(
R
3, μ2b̃+δ,q(v) dv

)
, b̃ := 2

q(1+|γ |)
|γ | b ,

for some δ > 0. Then, for any t0 > 0, there exists C > 0 depending on b, δ, q, t0
and fin, such that

∫ t

t0
dτ
∫

R3
〈v〉γ μb,q(v)

∣∣∣∇√ f (τ, v)
∣∣∣2 dv � C

(
1 + t

)2
, t > t0 > 0.

Proof. Let us fix b, q > 0. We investigate the evolution of

Sb,q(t) :=
∫

R3
μb,q(v) f (t, v) log f (t, v) dv

for a solution f = f (t, v) to (1.10). To simplify notations, wewrite F = F(t, v) =
f (1 − ε f ). One checks, similar to (5.13), that

d

dt
Sb,q(t) = d

dt
ϑb,q(t)+

∫
R3
μb,q(v)∇ · (�[ f ]∇ f ) log f dv

−
∫

R3
μb,q(v)∇ · (b[ f ]F) log f dv,

with∫
R3
μb,q(v)∇ · (�[ f ]∇ f ) log f dv = −

∫
R3
μb,q(v)�[ f ]∇ f · ∇ f

f
dv

+
∫

R3
∇ · (�[ f ]∇μb,q

) [
f log f − f

]
dv ,
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and∫
R3
μb,q (v)∇ · (b[ f ]F) log f dv = −bq

∫
R3

〈v〉q−2 F log f
(
b[ f ] · v)μb,q (v) dv

+b q
∫

R3

(
f − ε

2
f 2
)〈v〉q−2(b[ f ] · v)μb,q (v) dv

+
∫

R3
μb,q (v)

(
f − ε

2
f 2
)
cγ [ f ] dv.

For the latter, we notice that

∇μb,q (v) = b q v〈v〉q−2μb,q (v) , and

∇ · (�[ f ]∇μb,q
) = b q μb,q (v)

(
〈v〉q−2B[ f ] · v + 〈v〉q−4Trace

(
�[ f ] · Aμ(v)

))
,

with Aμ(v) = 〈v〉2Id + [(q − 2)+ b q 〈v〉q] v ⊗ v.
As in the proof of Proposition 5.5, using that both |b[ f ] · v| and 1

2 |B[ f ] · v| satisfy
(3.44), and using now that

Trace
(
�[ f ] · Aμ(v)

)
� Cb,q〈v〉q+4+γ ‖ f ‖L1

γ+2
,

one deduces the following analogue of (5.18),

d

dt
Sb,q(t)− d

dt
ϑb,q(t)+ K0

∫
R3
μb,q(v)〈v〉γ |∇ f |2

f
dv

� Cb,q( fin)
∫

R3
〈v〉2q+γ f (1 + |log f |) μb,q(v) dv

−Cb,q( fin)
∫

R3
〈v〉q cγ [ f ] f (1 + |log f |) μb,q(v) dv, (6.7)

for some positive constant Cb,q( fin) depending on b, q and fin only through
‖ fin‖L1

2
. We use now the results of Lemma 6.7 to get for s = 2 that

d

dt
Sb,q (t)− d

dt
ϑb,q (t)+ K0

∫
R3
μb,q (v)〈v〉γ |∇ f |2

f
dv

� Cb,q ( fin)

(√
ϑ2b,q,2r+4(t)+ϒb,q,r (t)+

(
ϑ 3

2 b,q,
3
2 q
(t)+ϒ 3

2 b,q,
3
2 q
(t)
) 2

3
(
1 + 1

t

))
,(6.8)

where r = max(2q + γ, q). For any δ > 0 and t0 > 0, since ϑ2b,q,2r+4(t) �
Cδ ϑ2b+δ,q(t) and similarly forϒb,q,r (t) and the remainder terms, one has that, for
t � t0,

d

dt
Sb,q (t)− d

dt
ϑb,q (t)+ K0

∫
R3
μb,q (v)〈v〉γ |∇ f |2

f
dv

� Cb,q,δ( fin, t0)

(√
ϑ2b+δ,q (t)+ϒb+δ,q (t)+

(
ϑ 3

2 b+δ,q (t)+ϒ 3
2 b+δ,q (t)

) 2
3
)
.(6.9)

Using now Proposition 6.5, assuming that q < 4+2γ
8−γ and ϑ2b̃+δ,q(0) < ∞ (after

renaming δ > 0) we deduce that for t � t0 and δ > 0,

d

dt
Sb,q(t)− d

dt
ϑb,q(t)+ K0

∫
R3
μb,q(v)〈v〉γ |∇ f |2

f
dv � Cδ,b,q,t0( fin)

(
1 + t

)
,
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for some positive constant Cδ,b,q,t0( fin) depending only on δ, b, q, t0 and fin. In-
tegrating this inequality over (t0, t) yields

K0

∫ t

t0
dτ
∫

R3
〈v〉γ |∇ f (τ, v)|2

f (τ, v)
μb,q(v) dv

� Sb,q(t0)− Sb,q(t)+ ϑb,q(t)+ 1

2
Cδ,b,q,t0( fin)

(
1 + t

)2
.

Arguing as in the proof of [27, Eq. (B.3), Lemma B.4], introducing A = {v ∈
R
3 ; f (t, v) < 1}, one checks easily that

−Sb,q(t) = −
∫

R3
μb,q(v) f (t, v) |log f (t, v)| dv

+2
∫
A
μb,q(v) f (t, v) log

(
1

f (t, v)

)
dv.

Introducing then B := {v ∈ R
3 ; f (t, v) � exp (−3 b〈v〉q)}, one splits the integral

over A into the integral over A ∩ B and A ∩ Bc. On the one hand, for v ∈ A ∩ B,
log 1

f (t,v) � 3 b〈v〉q and, for any δ > 0, there exists Cδ = C(δ, q, b) > 0 such
that

2
∫
A∩B

μb,q(v) f (t, v) log

(
1

f (t, v)

)
dv � Cδ

∫
R3
μb+δ,q(v) f (t, v) dv

= Cδϑb+δ,q(t).

On the other hand, for v ∈ A ∩ Bc, using that x log 1
x � 2

e

√
x , one has

f (t, v) log

(
1

f (t, v)

)
� 2

e

√
f (t, v) � 2

e
exp

(
−3

2
b〈v〉q

)
,

so that
∫
A∩Bc

μb,q(v) f (t, v) log

(
1

f (t, v)

)
dv

� 2

e

∫
R3

exp

(
−1

2
b〈v〉q

)
dv =: Cb,q < ∞.

This shows that, for any δ > 0,

−Sb,q(t) � −
∫

R3
μb,q(v) f (t, v)| log f (t, v)| dv + Cδϑb+δ,q(t)+ 2Cb,q .

Moreover, we deduce from Eq. (6.6) in Lemma 6.7 together with Proposition 6.5
that Sb,q(t0) is finite under our assumption on fin and

K0

∫ t

t0
dτ
∫

R3
〈v〉γ μb,q(v)|∇

√
f (τ, v)|2 dv � C

(
1 + t

)2
,

for some finite C > 0 depending on b, q, δ, t0 > 0 and fin. ��
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We deduce from this the following estimate for �(a,q)ε ( f (t)).

Corollary 6.9. Assume that −2 < γ < 0 and let a nonnegative initial datum fin
satisfying (1.7)–(1.9) for some ε0 > 0 be given. For ε ∈ (0, ε0], let f (t, ·) be a
weak-solution to (1.10). Let a > 0 and 0 < q < 4+2γ

8−γ , and assume that for some
δ > 0,

∫
R3

fin(v) exp

(
(2a + δ) 2 q(1+|γ |)

|γ | 〈v〉q
)

dv < ∞.

Then, there exists Cδ,a,q( fin) > 0 depending only on δ, a, q and fin such that

∫ t

t0
�
(a,q)
ε ( f (τ ))dτ � Cδ,a,q( fin) sup

t0�τ�t

ϑa+δ,q(τ )
κ0(τ )

(1 + t)2 , 0 < t0 < t ,

where we recall that κ0(τ ) = 1 − ε ‖ f (τ )‖L∞ , τ � 0.

Proof. The proof follows from Lemma 6.3, Proposition 6.8 with b = a, and the
fact that 〈v〉2μa,q(v) � Cδ,q〈v〉γ μa+δ,q(v) for any δ > 0. ��
Theorem 6.10. Assume that −2 < γ < 0 and let a nonnegative initial datum fin
satisfying (1.7)–(1.9) for some ε0 > 0 be given. For ε ∈ (0, ε0], let f (t, ·) be a
weak-solution to (1.10). Let a0 > 0 and 0 < q < 4+2γ

8−γ , and assume that

∫
R3

fin(v) exp
(
a0〈v〉q

)
dv < ∞.

Then, there exists some explicit λ > 0 depending only on a0, q and fin such that,
for any ε ∈ (0, ε�) (where ε� is prescribed by Theorem 1.7),

Hε( f (t))| M�ε) � max (1, H�ε( fin| M�ε)) exp
(
−λ t q

q−γ
)
, t � 2.

As a consequence,

‖ f (t)− Mε‖L1 �
√
max (2, 2 Hε( fin| Mε)) exp

(
−λ
2
t

q
q−γ
)
, t � 2 .

Proof. We first observe that, thanks to Theorem 1.7 and under the assumptions on
the initial datum fin, there is ε� ∈ (0, ε0] depending only on fin such that for any
ε ∈ (0, ε�],

κ0 = 1 − ε sup
t�1

‖ f (t)‖∞ > 0.

Let us write

y(t) = Hε( f (t)| Mε), t � 0.
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One uses then (6.1) and (5.19) which, by Proposition 5.2 and Theorem 1.7, actually
holds for −2 < γ < 0. We first deduce that, for ε ∈ (0, ε�), t � 1, and a > 0,
q ∈ (0, 1),

D
(γ )
ε ( f (t)) � 1

2

[
1

a
log

(
�
(a,q)
ε ( f (t))

D (0)
ε ( f (t))

)] γ
q

D (0)
ε ( f (t))

� λ̄0

2

[
1

a
log

(
�
(a,q)
ε ( f (t))

λ̄0 y(t)

)] γ
q

y(t),

where we recall that we already know that �
(a,q)
ε ( f (t))

D (0)
ε ( f (t))

> 1, so that �(a,q)ε ( f (t)) �
λ̄0 y(t). We deduce then that

d

dt
y(t) � − λ̄0

2

[
1

a
log

(
�
(a,q)
ε ( f (t))

λ̄0 y(t)

)] γ
q

y(t), t � 1.

Using Grönwall’s Lemma, we get

y(t) � y(1) exp

⎧⎨
⎩− λ̄0

2a
γ
q

∫ t

1

[
− log

(
λ̄0 y(τ )

�
(a,q)
ε ( f (τ ))

)] γ
q

dτ

⎫⎬
⎭ , t � 1.

(6.10)

We introduce

Iq(t) :=
∫ t

1

[
− log

(
λ̄0 y(τ )

�
(a,q)
ε ( f (τ ))

)] γ
q

dτ, t � 2 ,

so that

Iq(t) �
∫ t

t
2

[
− log

(
λ̄0 y(τ )

�
(a,q)
ε ( f (τ ))

)] γ
q

dτ

=
∫ t

t
2

[
log�(a,q)ε ( f (τ ))− log λ̄0 − log y(τ )

] γ
q
dτ, t � 2.

Assume now that there is t0 > 2 and some m>0 such that

y(t0) � exp

(
−
(
t0
2

)m)
. (6.11)

Then, since τ �→ y(τ ) is non increasing, one has

y(τ ) � y(t0) � exp
(−τm) � exp

(−tm0
)
, τ ∈

(
t0
2
, t0

)
,
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and

Iq(t0) �
∫ t0

t0
2

[
log�(a,q)ε ( f (τ ))− log λ̄0 + tm0

] γ
q
dτ.

Using now that, for any α ∈ R, the function r > exp(−α) �→ (α + log r)
γ
q

is convex, and applying it with α = − log λ̄0 + tm0 , we deduce from Jensen’s
inequality that

Iq(t0) � t0
2

∫ t0

t0
2

[
log�(a,q)ε ( f (τ ))+ α

] γ
q 2 dτ

t0

� t0
2

[
tm0 − log λ̄0 + log

(
2

t0

∫ t0

t0
2

�
(a,q)
ε ( f (τ )) dτ

)] γ
q

.

Using Corollary 6.9 together with Proposition 6.5, choosing parameters a, δ > 0

such that a0 =
(
2a + δ

)
2

q(1+|γ |)
|γ | , there are positive constants C0,C1 > 0 (inde-

pendent of t0) such that
∫ t0

t0
2

�
(a,q)
ε ( f (τ ))dτ � C0 (1 + t0)

3 ,

so that

Iq(t0) � t0
2

[
tm0 − log λ̄0 + log(2C0)+ 3 log(1 + t0)− log t0

] γ
q
.

Consequently, there exists C2 > 0 such that

Iq(t0) � C2 t
1+mγ

q
0 .

Inserting this in (6.10), we now deduce that

y(t0) � y(1) exp
(

− λ̄0 C2

2a
γ
q

t
1+m γ

q
0

)
. (6.12)

Since we proved that assumption (6.11) implies estimate (6.12), we see that for any
t > 2 and any m>0, we have the following alternative:

(i) either y(t) � exp
(− ( t2

)m),
(ii) or y(t) � y(1) exp

(
− λ̄0C2

2a
γ
q
t1+m γ

q

)
.

At this state, choosing m > 0 so that m = 1+m γ
q (that is m = q

q−γ ), we see that

y(t) � max
(
1, y(1)

)
exp

(− cat
m), t � 2 ,

for some explicit ca := min

(
2−m, λ̄0C2

2a
γ
q

)
. This concludes the proof. ��



About the Landau-Fermi-Dirac Equation 855

Acknowledgements. R. Alonso gratefully acknowledges the support from Conselho Na-
cional de Desenvolvimento Científico e Tecnológico (CNPq), grant Bolsa de Produtividade
em Pesquisa (303325/2019-4). B. Lods gratefully acknowledges the financial support from
the Italian Ministry of Education, University and Research (MIUR), “Dipartimenti di Eccel-
lenza” grant 2018-2022 aswell as the support from thedeCastro Statistics Initiative, Collegio
Carlo Alberto (Torino). R. Alonso, V. Bagland and B. Lods would like to acknowledge the
support of the Hausdorff Institute for Mathematics where this work started during their stay
at the 2019 Junior Trimester Program on Kinetic Theory.Data sharing not applicable to this
article as no datasets were generated or analysed during the current study.

Open Access This article is licensed under a Creative Commons Attribution 4.0 Interna-
tional License, which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to thematerial. If material is not
included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Appendix A. Regularity estimates

We collect here several a priori regularity estimates for the solutions to (1.10). Clearly, it is
possible to interpolate between L1 and L∞ thanks to Theorem 1.10 to obtain a control on
the L p-norms with 1 < p < ∞. We adopt another approach here which consists in directly
investigating the evolution of the L p-norms:

Proposition A.1. Assume that −2 < γ < 0. Let p � 1 and fin ∈ L p(R3) ∩ L2(R3) ∩
L1zp (R

3) satisfying (1.7)–(1.9) for some ε0 > 0, with

zp := 1

p

{
(3p − 2)|γ | if γ � −1 ,
3p − 1 + γ if γ ∈ (−1, 0) .

(A.1)

Let ε ∈ (0, ε0] and let f (t, v) be a weak solution to (1.10). Then, there exists some constant
Cp( fin) depending on p and fin such that, for every T > 0,

sup
t∈[0,T )

‖ f (t, ·)‖pL p +
∫ T

0

∫
R3

〈v〉 γ2
∣∣∣∇ f

p
2 (t, v)

∣∣∣2 dvdt � Cp( fin) (1 + T )p+1 .

(A.2)

Proof. We start with the formulation (1.10)
{
∂t f = ∇ · (�[ f ] ∇ f − b[ f ] f (1 − ε f )

)
,

f (t = 0) = fin .
(A.3)

For p � 1, multiplying this identity with f p−1(t, v) and integrating over R
3, one deduces

1

p

d

dt

∫
R3

f p(t, v) dv + (p − 1)
∫

R3
f p−2(t, v) [�[ f (t)](v)∇ f (t, v)] · ∇ f (t, v) dv

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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= (p − 1)
∫

R3
f p−2(t, v)F(t, v) b[ f (t)](v) · ∇ f (t, v), F = f (1 − ε f ).

Using the coercivity estimate in Proposition 2.3, |F | � f , and noticing that f
p
2 ∇ f

p
2 =

p
2 f p−1∇ f , we obtain, after integration between 0 and T ,

1

p

∫
R3

f p(T, v) dv + (p − 1) K0

∫ T

0
dt
∫

R3
〈v〉γ f p−2(t, v) |∇ f (t, v)|2 dv

� 1

p

∫
R3

f pin (v) dv + 2(p − 1)

p

∫ T

0
dt
∫

R3
f

p
2 (t, v) |b[ f ](t, v)| |∇ f

p
2 (t, v)| dv .

Note that from this point on, the estimates do not use ε and are thus similar to that of the

usual Landau equation. Since f p−2|∇ f |2 = 4
p2

|∇ f
p
2 |2, using Young’s inequality, we get

∫
R3

f p(T, v) dv + 2K0 (p − 1)

p

∫ T

0
dt
∫

R3
〈v〉γ |∇ f

p
2 (t, v)|2 dv

�
∫

R3
f pin (v) dv + p(p − 1)

2K0

∫ T

0
dt
∫

R3
〈v〉−γ f p(t, v) |b[ f ](t, v)|2 dv

�
∫

R3
f pin (v) dv + p(p − 1)C( fin)2

2K0

∫ T

0
dt
∫

R3
f p(t, v)〈v〉max(−γ,2+γ ) dv,

where we used (3.42), (3.43) and (3.38) in the last term, C( fin) depending only on ‖ fin‖L2

and ‖ fin‖L1
2
. Since

〈v〉γ
∣∣∣∇ f

p
2 (t, v)

∣∣∣2 � 1

2

∣∣∣∇
(
〈v〉γ /2 f

p
2 (t, v)

)∣∣∣2 −
∣∣∣∇(〈v〉 γ2 )

∣∣∣2 f p(t, v) ,

we get that

∫
R3

f p(T, v) dv + p − 1

p
K0

∫ T

0
dt
∫

R3

∣∣∣∇
(
〈v〉γ /2 f

p
2 (t, v)

)∣∣∣2 dv

�
∫

R3
f pin (v) dv + C0 p(p − 1)

∫ T

0
dt
∫

R3
〈v〉max(−γ,2+γ ) f p(t, v) dv, (A.4)

for some positive constant C0 depending only on ‖ fin‖L1
2
, ‖ fin‖L2 and H( fin).

Choosing q > 1, a > 0 and θ ∈ (0, 1) such that q ′ θ = 1 and

q(p − θ) = 3p,
1

q
+ 1

q ′ = 1,

and applying Hölder’s inequality, we see that, with � = max(−γ, 2 + γ ),
∫

R3
〈v〉max(−γ,2+γ ) f p(t, v) dv

=
∫

R3
〈v〉�+a f (t, v)θ 〈v〉−a f (t, v)p−θ dv

�
[ ∫

R3
〈v〉(�+a)q ′

f (t, v)q
′θ dv

] 1
q′ [ ∫

R3
〈v〉−aq f (t, v)q(p−θ) dv

] 1
q

�
[ ∫

R3
〈v〉�+a

θ f (t, v) dv

]θ [ ∫
R3

(
〈v〉− aq

6 f (t, v)
p
2

)6
dv

] 1
q
.
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Using the Sobolev inequality (2.14), we conclude that
∫

R3
〈v〉max(−γ,2+γ ) f p(t, v) dv

� C
6
q
Sobm�+a

θ
(t)θ

[ ∫
R3

∣∣∣∣∇
(

〈v〉− aq
6 f

p
2 (t, v)

)∣∣∣∣
2
dv

]3 (1−θ)
.

At this point, observe that θ = 2p
3p−1 and select a in such a way that aq = 3|γ |. Thus,

∫
R3

〈v〉max(−γ,2+γ ) f p(t, v) dv

� Cpmzp (t)
2p

3p−1

[ ∫
R3

∣∣∣∣∇
(

〈v〉 γ2 f
p
2 (t, v)

)∣∣∣∣
2
dv

] 3p−3
3p−1

, (A.5)

with zp = �+a
θ . Note that, for γ ∈ (−2, 0), zp � 6p−4

p < 6. Then, using Young’s
inequality it holds for any δ > 0,

x
2p

3p−1 y
3p−3
3p−1 � δ−

p−1
2 x p + δ 13 y , ∀ x, y > 0.

Choosing C0 Cp δ
1
3 = 1

2p2
K0, we get after combining (A.4) and (A.5) that

∫
R3

f p(T, v) dv + p − 1

2p
K0

∫ T

0
dt
∫

R3

∣∣∣∇
(
〈v〉 γ2 f

p
2 (t, v)

)∣∣∣2 dv

�
∫

R3
f pin (v) dv + C̃ p

∫ T

0
mzp (t)

pdt.

One sees from the second part of (1.14) in Theorem 1.9 that

∫ T

0
mzp (t)

pdt � Cp( fin) (1 + T )p+1 ,

for some Cp( fin) depending only on ‖ fin‖L1
2
, and H( fin) and p. We deduce from this

estimate (A.2). ��
For simplicity of notations, we introduce here L1∞(R3) := ⋂

s�0 L
1
s (R

3) as the space of
integrable functions with finite moments of any order and, more generally,

W 1,p∞ (R3) =
⋂
s�0

W 1,p
s (R3)

for any p � 1.

Corollary A.2. Assume −2 < γ < 0 and let q0 > 1. We assume that fin ∈ Lq0 (R3) ∩
L2(R3) ∩ L1∞(R3) satisfies (1.7)–(1.9) for some ε0 > 0. Let ε ∈ (0, ε0] and f (t, v) be a
weak solution to (1.10). Then, for any m > 0, q ∈ [1, q0) and for any T > 0, there exists
some constant C depending on q0, m, q, fin such that

sup
t∈[0,T ]

∫
R3

〈v〉m f (t, v)q dv < C (1 + T )1+q0 . (A.6)

Proof. This is a direct consequence of an interpolation between the spaces Lq0 and L1s ,
using Proposition A.1 and the universal growth of the L1-moments in Theorem 1.9. ��
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This corollary will be used in a crucial way to prove the following proposition. We introduce
here the notation L∞−0(R3) := ⋂

q�1 L
q (R3).

Proposition A.3. Assume −2 < γ < 0 and let fin ∈ L1∞(R3)
⋂

L∞−0(R3) satisfying
(1.7)–(1.9) for some ε0 > 0. Let ε ∈ (0, ε0] and f (t, v) be a weak solution to (1.10). For

any choice of m � 0 and p � 2, if fin ∈ W 1,p
m (R3), then there is some CT ( fin) depending

on m, p, T and fin such that

sup
t∈[0,T ]

∫
R3

〈v〉m |∇ f (t, v)|p dv +
3∑

i=1

∫ T

0
dt
∫

R3
〈v〉m+γ |∂i f |p−2 |∇∂i f |2 dv

� CT ( fin). (A.7)

Proof. Taking the derivative of (1.10) with respect to a component i ∈ {1, 2, 3}, we end up
with the equation

{
∂t (∂i f ) = ∇ · (�[ f ] ∇(∂i f )+ [∂i�[ f ]]∇ f − b[ f ] ∂i F − [∂i b[ f ]] F

)
,

∂i f (0, ·) = ∂i fin .
(A.8)

Compute

1

p

d

dt

∑
i

∫
R3

〈v〉m |∂i f |p dv

= (p − 1)
∑
i

∫
R3

〈v〉m |∂i f |p−2
{
∇(∂i f ) · b[ f ]∂i F

+∇(∂i f ) · ∂i b[ f ] F − �[ f ]∇(∂i f )∇(∂i f )− ∇(∂i f )∂i�[ f ]∇ f

}
dv

−
∑
i

∫
R3

|∂i f |p−2∂i f �[ f ]∇(∂i f )∇〈v〉m dv

−
∑
i

∫
R3

∇〈v〉m |∂i f |p−2∂i f [∂i�[ f ]]∇ f dv

+
∑
i

∫
R3

∇〈v〉m · b[ f ] |∂i f |p−2∂i f ∂i F dv

+
∑
i

∫
R3

∇〈v〉m · [∂i b[ f ]] |∂i f |p−2∂i f F dv.

Using the coercivity estimate in Proposition 2.3 and Young’s inequality we see that

d

dt

∑
i

∫
R3

〈v〉m |∂i f |p dv + K0

2
p(p − 1)

∑
i

∫
R3

〈v〉m+γ |∂i f |p−2 |∇∂i f |2 dv

� Cp

∫
R3

〈v〉m+|γ ||∇ f |p−2
[
|∇ f |2|∇�[ f ]|2 + F2 |∇b[ f ]|2

+|∇F |2 |b[ f ]|2 + 〈v〉−2|∇ f |2|�[ f ]|2
]
dv

+Cp

∫
R3

〈v〉m−1 |∇ f |p |∇�[ f ]| dv

+Cp

∫
R3

〈v〉m−1 |∇ f |p−1
(

|b[ f ]| |∇F | + |∇b[ f ]| F
)
dv, (A.9)
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where Cp > 0 only depends on p and m. Then, we observe that

∣∣�[ f ](v)∣∣ � C( fin)〈v〉2+γ ,
|∇F(v)| � C (1 + f (v)) |∇ f (v)|, (A.10)∣∣∇�[ f ](v)∣∣+ ∣∣b[ f ](v)∣∣ � C( fin) 〈v〉max{0,1+γ } ,
|∇b[ f ](t, v)| � C (| · |−|γ | ∗ f )(v), (A.11)

and (A.9) leads to

d

dt

∑
i

∫
R3

〈v〉m |∂i f |p dv + K0

2
p(p − 1)

∑
i

∫
R3

〈v〉m+γ |∂i f |p−2 |∇∂i f |2 dv

� Cp( fin)

(∫
R3

〈v〉m+max(|γ |,2−|γ |)(1 + f )2 |∇ f |p dv

+
∫

R3
〈v〉m+|γ | f 2 |∇ f |p−2 (| · |−|γ | ∗ f )2 dv

+
∫

R3
〈v〉m−1 f |∇ f |p−1 (| · |−|γ | ∗ f ) dv

)
. (A.12)

For p > 2, using Young’s inequality x y � xa + y
a

a−1 with a = p
p−2 for the second term

of the right-hand side of the aforementioned estimate, and with a = p
p−1 for the third term,

we conclude that for some r1, r2 � 0

d

dt

∑
i

∫
R3

〈v〉m |∂i f |p dv + K0

2
p(p − 1)

∑
i

∫
R3

〈v〉m+γ |∂i f |p−2 |∇∂i f |2 dv

� Cp( fin)

(∫
R3

〈v〉m+max(|γ |,2−|γ |)(1 + f )2 |∇ f |p dv

+
∫

R3
〈v〉r1 f 2 (| · |−|γ | ∗ f )p dv +

∫
R3

〈v〉r2 f (| · |−|γ | ∗ f )p dv

)
. (A.13)

Such an inequality is also easily deduced from (A.12) when p = 2. We see then, thanks to
Young’s inequality, that for all r3 � 0, there exists r4 � 0 such that

∫
R3

〈v〉r3 f (1 + f ) (| · |−|γ | ∗ f )p dv

�
∫

R3
〈v〉r4 f 2 (1 + f )2 dv

+2p−1
∫

R3
〈v〉−4 (| · |−|γ | 1|·|�1 ∗ f )2p dv

+2p−1
∫

R3
〈v〉−4 (| · |−|γ | 1|·|�1 ∗ f )2p dv

�
∫

R3
〈v〉r4 f 2 (1 + f )2 dv + Cp ‖ f ‖2p

L2p + C ‖ f ‖2p
L1 , (A.14)

where we used that∫
R3

〈v〉−4 (| · |−|γ | 1|·|�1 ∗ f )2p(v) dv � ‖ | · |−|γ | 1|·|�1 ∗ f ‖2p
L2p

� ‖ | · |−|γ | 1|·|�1‖2pL1 ‖ f ‖2p
L2p ,
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and
∫
R3 〈v〉−4 dv < ∞. Then,

∫
R3

〈v〉m+max(|γ |,2−|γ |)(1 + f )2 |∂i f |p dv

= −
∫

R3
∂i [〈v〉m+max(|γ |,2−|γ |)(1 + f )2 |∂i f |p−2 ∂i f ] f dv

= −
∫

R3
∂i [〈v〉m+max(|γ |,2−|γ |)] (1 + f )2 f |∂i f |p−2 ∂i f dv

−2
∫

R3
〈v〉m+max(|γ |,2−|γ |) f (1 + f ) |∂i f |p dv

−(p − 1)
∫

R3
〈v〉m+max(|γ |,2−|γ |)(1 + f )2 f |∂i f |p−2 ∂i i f dv.

The second integral is nonnegative whereas we can estimate the third integral using Young’s
inequality to get, for any δ > 0,

∫
R3

〈v〉m+max(|γ |,2−|γ |)(1 + f )2 |∂i f |p dv

� C
∫

R3
〈v〉m−1+max(|γ |,2−|γ |)(1 + f )2 f |∂i f |p−1 dv

+δ
∫

R3
〈v〉m−|γ | |∂i f |p−2 |∂i i f |2 dv

+ (p − 1)2

4δ

∫
R3

〈v〉m+max(3|γ |,4−|γ |)(1 + f )4 f 2 |∂i f |p−2 dv.

To estimate the first integral, we now use Young’s inequality in the form

〈v〉−1(1 + f )2 f |∂i f |p−1 � 1

4
|∂i f |p + Cp〈v〉−p(1 + f )2p f p

� 1

4
(1 + f )2|∂i f |p + Cp〈v〉−p(1 + f )2p f p ,

while, for the third integral, since max(3|γ |, 4 − |γ |)�max(|γ |, 2 − |γ |)+ 2max(|γ |, 1),
one can use Young’s inequality in the form

(p − 1)2

4δ
〈v〉2max(|γ |,1)(1 + f )2 f 2|∂i f |p−2

� 1

4
|∂i f |p + Cδ,p〈v〉p max(|γ |,1)(1 + f )p f p ,

for some positive constant Cδ,p > 0. Therefore, one can find Cδ,p > 0 such that
∫

R3
〈v〉m+max(|γ |,2−|γ |)(1 + f )2 |∂i f |p dv

� 1

4

∫
R3

〈v〉m+max(|γ |,2−|γ |) (1 + f )2|∂i f |p dv

+C
∫

R3
〈v〉r5(1 + f )2p f p dv + δ

∫
R3

〈v〉m−|γ | |∂i f |p−2 |∂i i f |2 dv

+1

4

∫
R3

〈v〉m+max(|γ |,2−|γ |)(1 + f )2 |∂i f |p dv

+Cδ,p

∫
R3

〈v〉r6(1 + f )2+p f p dv,
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with r5 := m + max(|γ |, 2 − |γ |)− p, r6 := m + max(|γ |, 2 − |γ |)+ p max(|γ |, 1). As
a consequence,

1

2

∫
R3

〈v〉m+max(|γ |,2−|γ |)(1 + f )2 |∂i f |p dv

� δ

∫
R3

〈v〉m−|γ | |∂i f |p−2 |∂i i f |2 dv

+Cδ,p

∫
R3

〈v〉max(r5,r6)(1 + f )2+2p f p dv, ∀δ > 0. (A.15)

Using estimates (A.14), (A.15), (A.13), and remembering (A.6), we conclude the proof. ��
Notice that in particular, thanks to Proposition A.3, a Sobolev estimate in the v variable
shows that f satisfies an L∞ (local w.r.t. time) estimate. More specifically, we have the
following result

Corollary A.4. Assume−2 < γ < 0, and let fin ∈ L∞−0(R3)∩ L1∞(R3) satisfying (1.7)–
(1.9) for some ε0 > 0. Let ε ∈ (0, ε0] and let f (t, v) be a weak solution to (1.10). Then for
any p > 2 and any T > 0, if fin ∈ W 1,p

2 (R3), there is some CT (p, fin) depending on p,
T and fin, such that

‖ �[ f ] ∇ f − b[ f ] [ f (1 − ε f )] ‖L∞([0,T ];L p(R3)) � CT (p, fin). (A.16)

Proof. Observe that thanks to (A.10) and (A.11),
∣∣∣〈v〉−2−γ�[ f ]

∣∣∣ � C
∫

R3
〈v∗〉2+γ f (v∗) dv∗� C‖ fin‖L1

2
,

so that 〈·〉−2−γ�[ f ] is bounded in L∞([0, T ] × R
3). In the same way 〈·〉min{−1−γ,0}

b[ f ] is bounded in L∞([0, T ]×R
3). We conclude using Proposition A.3 and Corollary A.2.

��
Corollary A.5. Assume −2 < γ < 0 and let fin ∈ L∞−0(R3)∩ L1∞(R3) satisfying (1.7)–
(1.9) for some ε0 > 0. Let ε ∈ (0, ε0] and let f (t, v) be a weak solution to (1.10). Then for
any p > 2, T > 0, if fin ∈ W 1,p

2 (R3) then there is some CT (p, fin) depending on T , p
and fin, such that

‖ f ‖
W

1
3 ,p([0,T ]×R3)

� CT (p, fin), (A.17)

and for any α ∈ (0, 13 ), T > 0, there is some CT (α, fin) depending on T , α and fin, such
that

‖ f ‖C0,α([0,T ]×R3) � CT (α, fin). (A.18)

Proof. Using the equation and Corollary A.4, we see that, for all 1 � p < ∞, if fin ∈
W 1,p
2 (R3) then f is bounded in W 1,∞((0, T );W−1,p(R3)). Proposition A.3 also ensures

that f is bounded in L∞((0, T );W 1,p(R3)). We get inequality (A.17) thanks to an inter-
polation, and deduce (A.18) from (A.17) thanks to a Sobolev inequality. ��
We now establish a weighted L∞ estimate which comes out of Prop. A.3.

Corollary A.6. Assume −2 < γ < 0 and let fin ∈ L1∞(R3)∩L∞−0(R3) satisfying (1.7)–
(1.9) for some ε0 > 0. Let ε ∈ (0, ε0] and f (t, v) be a weak solution to (1.10). For any

choice of m � 0 and p > 3, if fin ∈ W 1,p
m (R3), then there is some CT (m, p, fin) depending

on m, p, T and fin such that

sup
t∈[0,T ]

||〈·〉m
p f (t, ·)||L∞(R3) � CT (m, p, fin). (A.19)
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Proof. Notice that, if fin ∈ W 1,p(R3) with p > 3, then fin ∈ L∞ thanks to Sobolev
inequality. In particular, the assumptions of Propositions A.3 and Corollary A.2 are met.
Using Sobolev inequality again, since p > 3, there are C0 = C0(m, p), C1 = C1(m, p)
such that

sup
t∈[0,T ]

∥∥∥〈·〉 m
p f (t, ·)

∥∥∥
L∞(R3)

� C0 sup
t∈[0,T ]

∥∥∥〈·〉 m
p f (t, ·)

∥∥∥
W 1,p(R3)

� C1 sup
t∈[0,T ]

(∫
R3

〈v〉m |∇ f (t, v)|p dv
) 1

p + C1 sup
t∈[0,T ]

(∫
R3

〈v〉m | f (t, v)|p dv
) 1

p

.

We conclude by using Proposition A.3 and Corollary A.2. ��
We can now state a stability estimate for the solutions of the LFD equation satisfying the
regularity obtained in Proposition A.3.

Proposition A.7. Assume −2 < γ < 0 and let fin, gin ∈ L1∞(R3)∩L∞−0(R3) satisfying
(1.7)–(1.9) for some ε0 > 0. Let ε ∈ (0, ε0] and f (t, v), g(t, v) be weak solutions to (1.10).
If fin, gin ∈ W 1,4∞ (R3), then for all m � 8, there is some CT (m, fin, gin) depending on m,
T and fin, gin such that

sup
t∈[0,T ]

∥∥∥〈·〉m
2 ( f (t, ·)− g(t, ·))

∥∥∥
L2(R3)

� CT (m, fin, gin)
∥∥∥〈·〉m

2 ( fin − gin)
∥∥∥
L2(R3)

. (A.20)

Proof. In the rest of the proof, C will denote a positive constant depending onm, T, fin, gin
as well as the coercivity constant K0 and that may change from one line to another. For two
solutions f (t, v), g(t, v) to (1.10), we introduce

u(t, v) = f (t, v)− g(t, v), s(t, v) = f (t, v)+ g(t, v)

from which one sees easily that

∂tu = 1

2
∇ ·

(
(�[ f ] + �[g])∇u − b[u] ( f (1 − ε f )+ g(1 − εg))

+σ [u(1 − εs)]∇s − b[s]u (1 − εs)
)
.

Using the short-hand notations h = f (1 − ε f )+ g(1 − εg), �0 = �[ f ] + �[g] = σ [h],
we compute, for m � 0,

d

dt

∫
R3

〈v〉mu2(t, v) dv = −
∫

R3

(
�0∇u

)
· ∇ (〈v〉mu(t, v)) dv

+
∫

R3
u(1 − εs)b[s] · ∇ (〈v〉mu) dv

+
∫

R3
hb[u] · ∇ (〈v〉mu) dv

−
∫

R3
σ [u(1 − εs)]∇s · ∇ (〈v〉mu) dv

= I1 + I2 + I3 + I4 .

Here, arguing exactly as in [12, Proof of Theorem 5.2, estimate of (5.2) + (5.4)], we can
check that

I1 + I2 � −K0

∫
R3

〈v〉m+γ |∇u|2 dv − ε

∫
R3

u〈v〉msb[s] · ∇u dv
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−εm
∫

R3
u2〈v〉m−2sb[s] · v dv

+m

2

∫
R3

u2〈v〉m−2b[s+h] · v dv + 1

2

∫
R3

u2�0 : ∇2〈v〉m dv

−1

2

∫
R3

u2〈v〉m c[s] dv .

Observing that there is C > 0 such that
∣∣∣�0 : ∇2〈v〉m

∣∣∣ � C〈v〉m+γ , while

〈v〉m−2b[s+h] · v � C
(〈v〉m+γ − 〈v〉m c[s+h])

thanks to (3.44),we can estimate the integrals involving
∫
R3 u2〈v〉m c[s] dv and ∫

R3 u2〈v〉m c[s+h] dv
using Proposition 1.8 and deduce that

I1 + I2 � −K0

2

∫
R3

〈v〉m+γ |∇u|2 dv + C
∫

R3
〈v〉m+γ u2 dv

−εm
∫

R3
u2〈v〉m−2sb[s] · v dv − ε

∫
R3

u〈v〉msb[s] · ∇u dv .

By Young’s inequality, the last term can be bounded by
∣∣∣∣ε
∫

R3
u〈v〉msb[s] · ∇u dv

∣∣∣∣ � K0

4

∫
R3

|∇u|2 〈v〉m+γ dv

+C0

∫
R3

〈v〉m−γ s2 |b[s]|2 u2 dv

for some positive constant C0 depending on K0. Using the bound in (A.19) together with
the bound on |b[s]| provided by (A.11), one checks without difficulty that there existsC > 0
such that

s|b[s]| � C〈v〉γ , (A.21)

and therefore

I1 + I2 � −K0

4

∫
R3

〈v〉m+γ |∇u|2 dv + C
∫

R3
〈v〉m+γ u2 dv

+m
∫

R3
u2〈v〉m−2 |sb[s] · v| dv

i.e.

I1 + I2 � −K0

2

∫
R3

〈v〉m+γ |∇u|2 dv + C
∫

R3
〈v〉mu2 dv (A.22)

where we used again (A.21). We now estimate I3 and I4. Since

I3 + I4 = m
∫

R3
u〈v〉m−2hb[u] · vdv − m

∫
R3

〈v〉m−2u (σ [u(1 − εs)]∇s) · v dv

+
∫

R3
〈v〉mhb[u] · ∇udv −

∫
R3

〈v〉m (σ [u(1 − εs)]∇s) · ∇u dv

and, thanks to Young’s inequality,
∫

R3
〈v〉mhb[u] · ∇udv −

∫
R3

〈v〉m (σ [u(1 − εs)]∇s) · ∇u dv
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� K0

4

∫
R3

〈v〉m+γ |∇u|2 dv + C
∫

R3
〈v〉m−γ |∇s|2

∣∣∣ | · |γ+2 ∗ |u|
∣∣∣2 dv

+C
∫

R3
〈v〉m−γ |h|2

∣∣∣ | · |γ+1 ∗ |u|
∣∣∣2 dv ,

while

m
∫

R3
u〈v〉m−2hb[u] · v dv − m

∫
R3

〈v〉m−2u (σ [u(1 − εs)]∇s) · v dv

� C
∫

R3
〈v〉m−1u2 dv + C

∫
R3

〈v〉m−1 |h|2
∣∣∣ | · |γ+1 ∗ |u|

∣∣∣2 dv

+C
∫

R3
〈v〉m−1|∇s|2

∣∣∣ | · |γ+2 ∗ |u|
∣∣∣2 dv .

Therefore,

I3 + I4 � K0

4

∫
R3

〈v〉m+γ |∇u|2 dv + C
∫

R3
〈v〉m−1u2 dv

+C
∫

R3
〈v〉m−γ |∇s|2

∣∣∣ | · |γ+2 ∗ |u|
∣∣∣2 dv

+C
∫

R3
〈v〉m−γ |h|2

∣∣∣ | · |γ+1 ∗ |u|
∣∣∣2 dv .

One has |h|2 � s2 and, using again (A.19), there is C > 0 such that 〈v〉m−γ+6h2 � C ,
from which

∫
R3

〈v〉m−γ |h|2
∣∣∣ | · |γ+1 ∗ |u|

∣∣∣2 dv � C
∫

R3
〈v〉−6

∣∣∣ | · |γ+1 ∗ |u|
∣∣∣2 dv.

Splitting the convolution integral according to |v − v∗| � 1 and |v − v∗| < 1, we see that

∣∣∣ | · |γ+1 ∗ |u|
∣∣∣2 � 2

(∫
|v−v∗|�1

|v − v∗|−1|u(v∗)| dv∗
)2

+2

(∫
|v−v∗|>1

|v − v∗| |u(v∗)|dv∗
)2

and, using Cauchy-Schwarz inequality, we see that

∫
R3

〈v〉−6
∣∣∣ | · |γ+1 ∗ |u|

∣∣∣2 dv � C‖u〈·〉3‖2L2(R3)

(∫
R6

〈v〉−6〈v∗〉−6|v − v∗|2 dvdv∗

+
∫
|v−v∗|�1

〈v〉−6〈v∗〉−6|v − v∗|−2 dv dv∗
)

from which
∫

R3
〈v〉m−γ |h|2

∣∣∣ | · |γ+1 ∗ |u|
∣∣∣2 dv � C

∥∥∥u 〈·〉3
∥∥∥2
L2(R3)

. (A.23)

Using now the estimate of ∇s as deduced from Prop. A.3 in the form

∥∥∥〈v〉m−γ
2 +3∇s

∥∥∥
L4(R3)

� C,
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we can apply twice Cauchy-Schwarz inequality to deduce that

∫
R3

〈v〉m−γ |∇s|2
∣∣∣ | · |γ+2 ∗ |u|

∣∣∣2 dv

�
(∫

R3
〈v〉2m−2γ+12 |∇s|4 dv

) 1
2
(∫

R3
〈v〉−12

∣∣∣ | · |γ+2 ∗ |u|
∣∣∣4 dv

) 1
2

� C

(∫
R3

〈v〉−12
(∫

R3
|v − v∗|4+2γ 〈v∗〉−8 dv∗

)2
dv

) 1
2 ∥∥∥u 〈·〉4

∥∥∥2
L2(R3)

from which
∫

R3
〈v〉m−γ |∇s|2

∣∣∣ | · |γ+2 ∗ |u|
∣∣∣2 dv � C

∥∥∥u〈·〉4
∥∥∥2
L2(R3)

.

Combining this with (A.23) we see that

I3 + I4 � K0

4

∫
R3

〈v〉m+γ |∇u|2 dv + C
∫

R3
〈v〉m−1u2 dv + C

∥∥∥u〈·〉4
∥∥∥2
L2(R3)

.

Combining this with the estimate (A.22) of I1 + I2 we deduce that

d

dt

∫
R3

〈v〉mu2 dv � C
∫

R3

(〈v〉m + 〈v〉8)u2 dv.
Taking m � 8 and using Gronwall’s lemma, we get the stability estimate (A.20). ��
We conclude this Appendix with the proof that (for suitable initial data) the solutions of the
LFD equation with moderately soft potentials are in fact classical.

Corollary A.8. Let γ ∈ (−2, 0). Consider an initial datum fin ∈ L∞−0(R3)∩ L1∞(R3)∩
W 1,p
2 (R3) for some p > 2 satisfying (1.7)–(1.9) for some ε0 > 0. For any ε ∈ (0, ε0],

any weak solution f to (1.10) given by Theorem 1.5 is actually a classical solution, that is
f is continuously differentiable with respect to t and twice continuously differentiable with
respect to v on (0,∞)× R

3.

Proof. We observe that f is a weak solution to the linear equation (with unknown u)

∂t u = ∇ · (�[ f ]∇u) − (1 − 2ε f )b[ f ] · ∇u − cγ [ f ] (1 − ε f )u .

Let R > 0 and  = {v ∈ R
3; |v| � R}. The coefficients �[ f ], (1 − 2ε f )b[ f ],

cγ [ f ] (1 − ε f ) and also ∇�[ f ] are Hölder-continuous on (0, T ) ×  for any T > 0
thanks to Corollary A.5 and belong to L∞((0, T ) ×  ). We then deduce from Proposi-
tion 2.3 and [30, Chapter III, Theorem 12.1] that ∂t f and ∂2viv j f are also Hölder-continuous
on (0,∞)× . ��
We now have all the ingredients for the

Proof of Theorem 1.6. The first statement in the Theorem is a direct consequence of Corol-
lary A.2, while the second one is obtained thanks to Proposition A.3 and Corollary A.5

whenever p > 2. For p ∈ [1, 2], one deduces that f ∈ L∞([0, T ];W 1,p
s (R3)) by a simple

interpolation. The uniqueness part of the result is deduced from the stability estimate (A.20)
in Proposition A.7. ��
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Appendix B. About the Cauchy Theory

We give the detailed proof of Theorem 1.5 about the existence of solutions to (1.10). We
follow the approach of [12]. Let (�ν)ν∈(0,1) be a family of smooth bounded functions on
R+ that coincide with �(r) = rγ+2 for 0 < ν < r < ν−1 and satisfy that

(i) The functions � ′
ν , �

′′
ν , �

(3)
ν and �(4)ν are bounded.

(ii) The following hold

�ν(r) � νγ r2

2
∀ 0 < r < ν , �ν(r) � ν−(2+γ )

2
> 0, ∀ r > ν−1 . (B.1)

(iii) For any r ∈ R+,

�ν(r) � 2 r2+γ and |� ′
ν(r)| � Cr1+γ , (B.2)

for some constant C independent of ν.

We then set
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

aν(z) =
(
aνi, j (z)

)
i, j

with aνi, j (z) = �ν(|z|)
(
δi, j − zi z j

|z|2
)
,

bνi (z) = ∑
k ∂ka

ν
i,k(z) = − 2 zi

|z|2 �ν(|z|),
cν(z) = ∑

k,l ∂
2
kla
ν
k,l (z) = − 2

|z|2
[
�ν(|z|)+ |z|� ′

ν(|z|)
]
,

and we consider the following regularized problem

{
∂t f = ∇ ·

(
�ν [ f ]∇ f − bν [ f ] f (1 − ε f )

)
+ ν" f

f (0, .) = fin ,
(B.3)

where, as above, �ν [ f ] = aν ∗ ( f (1 − ε f )), bν [ f ] = bν ∗ f .
We note here that the initial condition of the regularized problem is not assumed to satisfy
(1.9). For such an initial condition, Lemma 2.1 still holds. We first investigate the well-
posedness of (B.3) and prove the following result.

Proposition B.1. Consider fin ∈ C∞(R3) ∩ H1(R3) ∩ W 3,∞(R3) such that

0 < α1e
−β1|v|2 � fin(v) � α2 e

−β2 |v|2

1 + εα2 e−β2 |v|2 for every v ∈ R
3, (B.4)

for some positive constants α1, α2, β1 and β2. Let ν > 0 and T > 0. Then, there exists a
solution f ν to the regularized problem (B.3) such that, for every s > 0,

f ν ∈ L∞((0, T ); L1s (R3)) ∩ L2((0, T ); H1
s (R

3)) .

The proof of this Proposition can be easily adapted from the proof of [12, Theorem 4.2]. One
begins by freezing the non-local coefficients in (B.3). The smoothness and boundedness of
�ν are used here in order to obtain some parabolic operator with smooth coefficients and
deduce the existence of a unique classical solution from [30, Chapter V, Theorem 8.1].
Finally, some fixed-point argument enables to conclude.
In order to pass to the limit ν → 0 in (B.3) and obtain a solution to (1.10), we need to
prove uniform estimates on f ν (with respect to ν). First, as in [12, Lemma 4.8], one has the
lemma:
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Lemma B.2. For any σ, t ∈ [0, T ], σ � t , for any ν ∈ (0, 1), the function f ν satisfies
∫

R3
f ν(t, v) dv = 	 , (B.5)

∫
R3

f ν(t, v)|v|2 dv = θ + 6νt	 � θ + 6T	 , (B.6)

Sε( fin) � Sε( f
ν(σ )) � Sε( f

ν(t)) . (B.7)

where 	 =
∫

R3
fin(v) dv and θ =

∫
R3

fin(v) |v|2 dv.

Next, we consider the ellipticity of the diffusion matrix. As in [12, Proposition 4.9 and
Corollary 4.10], one has the following proposition:

Proposition B.3. Let 0 � fin ∈ L12(R
3) be fixed and satisfying (1.7) for some ε0 > 0. Let

ε ∈ (0, ε0] and R( fin) and η( fin) be given by the first point of Lemma 2.1. Let η be the
constant given by the second point of Lemma 2.1 for δ = η( fin). Let

0 < ν � min

{
(3R( fin))

−1,

(
3η

4π

) 1
3
, 1

}
.

Then,

(1) there exists a positive constant K0 > 0 depending on γ , ‖ fin‖L1
2
, and H( fin), such

that, for any v, ξ ∈ R
3,

∑
i, j

(
�i, j [ f ](v)+ ν δi, j

)
ξi ξ j

� K0〈v〉γ min
{
(ν−1|v|)−γ , 2−γ , 2(ν|v|)−(2+γ )

}
|ξ |2

holds for any ε ∈ (0, ε0] and f ∈ Yε( fin);
(2) there exists a positive constant κ > 0 depending on γ , ‖ fin‖L1

2
, and H( fin), such that

∀ v, ξ ∈ R
3,

∑
i, j

(
�i, j [ f ](v)+ ν δi, j

)
ξi ξ j � κ |ξ |2

1 + |v|2 ,

holds for any ε ∈ (0, ε0] and f ∈ Yε( fin).

The proof of the first point of this Proposition can be easily adapted from that of [24,
Proposition 2.3]. Indeed, �νmay be bounded from below thanks to (B.1):

�ν(r) � min

{
νγ r2

2
, r2+γ , ν

−(2+γ )
2

}
for any r ∈ R+.

The second point follows easily from the proof of the first point by using that ν−1 � 3R( fin).
This gives some uniform (with respect to ν) ellipticity estimate.

Lemma B.4. Let fin ∈ C∞(R3) ∩ H1(R3) ∩ W 3,∞(R3) satisfying (B.4). Let f ν be a
solution to (B.3) given by Proposition B.1. Then, for any T > 0 and s > 2, there exists some
constant Cs depending only on s, T and ‖ fin‖L1

2
such that

sup
t∈[0,T ]

‖ f ν(t)‖L1
s

� ‖ fin‖L1
s
exp (CsT ) . (B.8)
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Proof. With notations similar to those in (3.1), one has

d

dt

∫
R3

f ν(t, v) 〈v〉s dv = J ν
s,1( f

ν, f ν)− εJ ν
s,1( f

ν, ( f ν)2)

+J ν
s,2( f

ν, Fν)+ sν
∫

R3
f ν〈v〉s−4(3 + (s + 1)|v|2) dv,

where

J ν
s,1(h, g) = 2s

∫
R3×R3

h(v)g(v∗)
�ν(|v − v∗|)

|v − v∗|2
(
〈v〉s−2 − 〈v∗〉s−2

)
(
|v∗|2 − (v · v∗)

)
dvdv∗ ,

J ν
s,2(h, g) = s(s − 2)

∫
R3×R3

〈v〉s−4h(v)g(v∗)
�ν(|v − v∗|)

|v − v∗|2(
|v|2 |v∗|2 − (v · v∗)2

)
dvdv∗ .

As in Lemma 3.1 and Remark 3.2 one has

J ν
s,1( f

ν, f ν) = 2s
∫

R3×R3
f ν f ν∗

�ν(|v − v∗|)
|v − v∗|2 〈v〉s−2

(
〈v∗〉2 − 〈v〉2

)
dvdv∗ � 0.

One now splitsJ ν
s,2( f

ν, Fν) according to |v − v∗| � 1 and |v − v∗| < 1 ,

J ν
s,2( f

ν, Fν) = I1 + I2,

where

I1 = s(s − 2)
∫
|v−v∗|�1

f ν f ν∗ (1 − ε f ν∗ )

×�ν(|v − v∗|)
|v − v∗|2 〈v〉s−4(|v|2|v∗|2 − (v · v∗)2) dv dv∗,

I2 = s(s − 2)
∫
|v−v∗|<1

f ν f ν∗ (1 − ε f ν∗ )

�ν(|v − v∗|)
|v − v∗|2 〈v〉s−4(|v|2|v∗|2 − (v · v∗)2) dv dv∗ .

Since |v|2|v∗|2 − (v · v∗)2 � 〈v〉2〈v∗〉2, �ν satisfies (B.2) and Fν � f ν , one has

I1 � 2s(s − 2)
∫
|v−v∗|�1

|v − v∗|γ f ν f ν∗ 〈v〉s−2〈v∗〉2 dv dv∗

� 2s(s − 2)
∫
|v−v∗|�1

f ν f ν∗ 〈v〉s−2〈v∗〉2 dv dv∗ � 2s(s − 2)mνs−2(t)m
ν
2(t),

where mνs (t) = ∫
R3 f ν(t, v)〈v〉s dv. For I2, we use (B.2), Fν � f ν , and |v|2|v∗|2 − (v ·

v∗)2 � |v| |v∗| |v − v∗|2 , to get that

I2 � 2s(s − 2)
∫
|v−v∗|<1

|v − v∗|2+γ f ν f ν∗ 〈v〉s−4|v| |v∗| dv dv∗

� 2s(s − 2)
∫
|v−v∗|<1

f ν f ν∗ 〈v〉s−4|v| |v∗| dv dv∗ � 2s(s − 2)mνs−3(t)m
ν
1(t).
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One also splitsJ ν
s,1( f

ν, ( f ν)2) according to |v − v∗| � 1 and |v − v∗| < 1,

εJ ν
s,1( f

ν, ( f ν)2) = J1 + J2,

where

J1 = 2sε
∫
|v−v∗|�1

f ν
(
f ν∗
)2

�ν(|v − v∗|)
|v − v∗|2 (〈v〉s−2 − 〈v∗〉s−2)(v∗ · (v∗ − v)) dv dv∗,

J2 = 2sε
∫
|v−v∗|<1

f ν
(
f ν∗
)2

�ν(|v − v∗|)
|v − v∗|2 (〈v〉s−2 − 〈v∗〉s−2)(v∗ · (v∗ − v)) dv dv∗ .

Since �ν satisfies (B.2) and ε f ν � 1, one has

J1 � 4s
∫
|v−v∗|�1

|v − v∗|γ f ν f ν∗ (〈v〉s−2 + 〈v∗〉s−2)(〈v∗〉2 + 〈v∗〉〈v〉) dv dv∗
� 4s (mνs−2(t)m

ν
2(t)+ 2mνs−1(t)m

ν
1(t)+ mν0(t)m

ν
s (t)) .

For J2, we use that�ν(r) � 2 for r < 1 by (B.2) and ε f ν � 1.We also have |v∗ ·(v∗−v)| �
|v∗| |v − v∗|, and∣∣∣〈v〉s−2 − 〈v∗〉s−2

∣∣∣ � (s − 2) |v − v∗| sup
t∈(0,1)

〈tv + (1 − t)v∗〉s−3 .

Hence,
∣∣∣〈v〉s−2 − 〈v∗〉s−2

∣∣∣ �
{
(s − 2) |v − v∗| if s � 3 ,
C(s − 2) |v − v∗| (〈v〉s−3 + 〈v∗〉s−3) if s > 3 ,

for some C depending only on s. Consequently, if s � 3, we obtain

J2 � 4s(s − 2)mν0(t)m
ν
1(t),

whereas, if s > 3,

J2 � 4Cs(s − 2)
(
mνs−3(t)m

ν
1(t)+ mν0(t)m

ν
s−2(t)

)
.

Finally,

νs
∫

R3
f ν 〈v〉s−4(3 + (1 + s)|v|2) dv � νs(s + 3)mνs−2(t).

Combining the above estimates and (B.5)-(B.6), we deduce the existence of some constant
Cs depending on s, γ , T and ‖ fin‖L1

2
such that d

dt m
ν
s (t) � Csmνs (t), and (B.8) follows. ��

Lemma B.5. Let fin ∈ C∞(R3) ∩ H1(R3) ∩ W 3,∞(R3) satisfying (B.4). Let f ν be a
solution to (B.3) given by Proposition B.1. Then, for any T > 0 and s � 2, there exists some
constant C > 0 depending only on s, ε, T and ‖ fin‖L1

2
such that, for any t ∈ (0, T ),

d

dt
Mν

s (t)+ κ Dνs−2(t) � C Mν
s (t) , (B.9)

with

Mν
s (t) =

∫
R3
( f ν(t, v))2〈v〉s dv, Dνs (t) =

∫
R3

|∇(〈v〉 s
2 f ν(t, v))|2 dv.



870 R. Alonso, V. Bagland, L. Desvillettes & B. Lods

Proof. Let s � 0. We deduce from (B.3) that

1

2

d

dt

∫
R3
( f ν)2〈v〉s dv = −

∫
R3

(
�ν [ f ν ] + ν I3

)∇ f ν · ∇ f ν〈v〉s dv

−s
∫

R3

(
�ν [ f ν ] f ν∇ f ν

) · v〈v〉s−2 dv

+
∫

R3
bν [ f ν ] · ∇ f ν f ν(1 − ε f ν)〈v〉s dv

+s
∫

R3
bν [ f ν ] · v ( f ν)2(1 − ε f ν)〈v〉s−2 dv

−s ν
∫

R3
f ν∇ f ν · v 〈v〉s−2 dv . (B.10)

It follows from the second point of Proposition B.3 that
∫

R3

(
�ν [ f ν ] + ν I3

)∇ f ν∇ f ν〈v〉s dv � κ
∫

R3
|∇ f ν |2 〈v〉s−2 dv .

Proceeding as in the proof of (3.12), we obtain

1

2

d

dt
Mν

s (t)+
κ

2
Dνs−2(t) � s

∫
R3

〈v〉s−2
(
( f ν)2 − 2ε

3
( f ν)3

)
bν [ f ν ] · v dv

−
∫

R3
〈v〉s

(
1

2
( f ν)2 − ε

3
( f ν)3

)
cν [ f ν ] dv

+ s

2

∫
R3

〈v〉s−4( f ν)2Trace
(
�ν [ f ν ] · A(v)) dv

−εs

2

∫
R3
( f ν)2bν [( f ν)2] · v〈v〉s−2 dv

+κ (s − 2)2

4

∫
R3
( f ν)2〈v〉s−4 dv

+νs
2

∫
R3
( f ν)2〈v〉s−4(3 + (s + 1)|v|2) dv , (B.11)

where A(v) = 〈v〉2Id + (s − 2) v ⊗ v, v ∈ R
3. For the last two integrals in (B.11), we

clearly have

κ
(s − 2)2

4

∫
R3
( f ν)2〈v〉s−4 dv � κ

(s − 22

4
Mν

s−4(t),

and

νs

2

∫
R3
( f ν)2〈v〉s−4(3 + (s + 1)|v|2) dv � νs(s + 3)

2
Mν

s−2(t).

For the integral involving A in (B.11), we have by (B.2), for every i, j , |Ai, j | � s〈v〉2 and

|�νi, j [ f ν ]| � 2�ν ∗ f ν � 4| · |2+γ ∗ f ν . Hence,

∣∣∣∣ s2
∫

R3
〈v〉s−4( f ν)2Trace

(
�ν [ f ν ] · A(v)) dv

∣∣∣∣
� 18s2

∫
R6

〈v〉s−2( f ν)2|v − v∗|2+γ f ν∗ dvdv∗ � 18s2 mν2+γ (t)Mν
s+γ (t).
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For the first integral in (B.11), since 0 � 1
3 ( f

ν)2 � ( f ν)2 − 2ε
3 ( f

ν)3 � ( f ν)2, we have,
by (B.2),

∣∣∣∣s
∫

R3
〈v〉s−2

(
( f ν)2 − 2ε

3
( f ν)3

)
bν [ f ν ] · v dv

∣∣∣∣
� s

∫
R3

〈v〉s−2( f ν)2 |bν [ f ν ]| |v| dv

� 2s
∫

R6

�ν(|v − v∗|)
|v − v∗| f ν∗ 〈v〉s−1 ( f ν)2 dvdv∗

� 4s
∫

R6
|v − v∗|1+γ f ν∗ 〈v〉s−1 ( f ν)2 dvdv∗ .

Now, as for (3.42)-(3.43), there exists some universal constant C > 0 such that for every
v ∈ R

3 and every t ∈ [0, T ],
∣∣∣∣
∫

R3
|v − v∗|1+γ f ν∗ (t, v∗)dv∗

∣∣∣∣ � C(‖ fin‖L1
2

+ ‖ f ν(t)‖L2 )〈v〉max{0,1+γ }

� C(‖ fin‖L1
2

+ ε− 1
2 ‖ fin‖

1
2
L1 )〈v〉max{0,1+γ }, (B.12)

where we used that f ν � ε−1. Consequently, we get that
∣∣∣∣s
∫

R3
〈v〉s−2

(
( f ν)2 − 2ε

3
( f ν)3

)
bν [ f ν ] · v dv

∣∣∣∣
� Cε

∫
R3

〈v〉max{s−1,s+γ } ( f ν)2 dv � CεM
ν
s (t).

Similarly, since ε( f ν)2 � f ν , one has
∣∣∣∣−εs

2

∫
R3
( f ν)2bν [( f ν)2] · v〈v〉s−2 dv

∣∣∣∣
� s

2

∫
R3
( f ν)2|bν [ f ν ]|〈v〉s−1 dv � CεM

ν
s (t) .

For the second integral in (B.11), since 0 � 1
6 ( f

ν)2 � 1
2 ( f

ν)2 − ε
3 ( f

ν)3 � 1
2 ( f

ν)2, we
have by (B.2)

∣∣∣∣−
∫

R3
〈v〉s

(
1

2
( f ν)2 − ε

3
( f ν)3

)
cν [ f ν ] dv

∣∣∣∣
� 1

2

∫
R3

〈v〉s( f ν)2 |cν [ f ν ]| dv

�
∫

R6

(
�ν(|v − v∗|)

|v − v∗|2 + |� ′
ν(|v − v∗|)|
|v − v∗|

)
f ν∗ 〈v〉s ( f ν)2 dvdv∗

� (2 + C)
∫

R6
|v − v∗|γ f ν∗ 〈v〉s ( f ν)2 dvdv∗ .

Now, for a given v ∈ R
3, one has, thanks to the Hölder inequality,

∫
R3

|v − v∗|γ f ν∗ dv∗ �
∫
|v−v∗|�1

|v − v∗|γ f ν∗ dv∗ +
∫
|v−v∗|<1

|v − v∗|γ f ν∗ dv∗
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� ‖ f ν(t)‖L1 + ‖ f ν(t)‖L p

(∫
|v−v∗|<1

|v − v∗|qγ dv∗
) 1

q

� C̄

(
‖ fin‖L1 + ε

− p−1
p ‖ fin‖

1
p

L1

)

for p > 1 such that −γ q < 3 where 1
p + 1

q = 1. Hence,

∣∣∣∣−
∫

R3
〈v〉s

(
1

2
( f ν)2 − ε

3
( f ν)3

)
cν [ f ν ] dv

∣∣∣∣

� C̄

(
‖ fin‖L1 + ε

− p−1
p ‖ fin‖

1
p

L1

)
Mν

s (t).

For ν ∈ (0, 1) and γ ∈ (−2, 0), Lemma B.2 implies that all the above L1-moments are
bounded by some constant depending only on T and ‖ fin‖L1

2
. Thus, gathering the above

estimates, (B.9) follows. ��
Remark B.6. Performing the same manipulations as above but using the first point of Propo-
sition B.3, one obtains

d

dt
Mν

s (t)+ 2K0

∫
R3

|∇ f ν |2 〈v〉s+γ

min
{
(ν−1|v|)−γ , 2−γ , 2(ν|v|)−(2+γ )

}
dv � C Mν

s (t)

where again C depends on s, ε, T and ‖ fin‖L1
2
.

Proof of Theorem 1.5. Let us fix T > 0. Consider fin ∈ L1s0 (R
3) for some s0 > 2 satisfying

(1.7)–(1.9) for some ε0 > 0. Then, there exists a sequence of functions ( fin,k)k�1 in

C∞(R3) ∩ H1(R3) ∩ W 3,∞(R3) such that ( fin,k)k�1 converges towards f in L1s0 (R
3)

and

α′
ke

−β ′
k |v|2 � fin,k � αke

−βk |v|2

1 + εαke−βk |v|2
,

for some positive constants αk , α
′
k , βk and β ′

k .

For every k ∈ N∗, we set νk = 1
k and fk = f νk , where f νk denotes a solution to (B.3) with

initial datum fin,k given by Proposition B.1. Since ( fin,k)k�1 is bounded in L1s0 (R
3), we

deduce from Lemma B.4 that ( fk)k�1 is bounded in L2((0, T ); L1s0 (R3)). We now apply

Lemma B.5 with s = s0 > 2. Since ( fin,k)k�1 is bounded in L1s0 (R
3) ∩ L∞(R3), it is

bounded in L2s0 (R
3) and we deduce that there exists some constant CT,ε depending on T ,

ε and supk�1 ‖ fin,k‖L1
s0

such that, for any k ∈ N∗,

sup
t∈[0,T ]

‖ fk(t)‖2L2
s0

+
∫ T

0

∫
R3

〈v〉s0−2|∇ fk(t, v)|2 dv dt � CT,ε.

Consequently, ( fk)k�1 is bounded in L2((0, T ); H1(R3)). We then deduce from the weak

formulation associated to (B.3) that (∂t fk)k�1 is bounded in L1((0, T );
(W 2,∞(R3))′) and thus, for m � 4, in L1((0, T ); (Hm(R3))′). Now, for m � 4, we have

H1(R3) ∩ L1s0 (R
3) ⊂ L1(R3) ⊂ (Hm(R3))′,
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the embedding of H1(R3) ∩ L1s0 (R
3) in L1(R3) being compact. We may thus conclude

from [31, Corollary 4] that ( fk)k�1 is relatively compact in the space L2((0, T ); L1(R3)).

Therefore, there exists a function f ∈ L2((0, T ); L1(R3)) and a subsequence of ( fk)k�1

(not relabelled) such that ( fk)k�1 converges towards f ∈ L2((0, T ); L1(R3)) and a.e. on

(0, T ) × R
3. For ϕ ∈ C 2

0 (R
3), it is easy to check that the sequence (

∫
R3 fkϕ dv)k�1 is

equicontinuous and bounded in C ([0, T ]). The Arzelà-Ascoli Theorem thus ensures that it
is relatively compact in C ([0, T ]).
Finally,we obtain that (

∫
R3 fkϕ dv)k�1 converges towards

∫
R3 f ϕ dv inC ([0, T ]) and then

that ( fk)k�1 converges towards f in Cw([0, T ]; L2(R3)), where

Cw([0, T ]; L2(R3)) denotes the space of weakly continuous functions in L2(R3). We eas-
ily check that f preserves mass and energy and, passing to the limit k → ∞ in the weak
formulation, we obtain that f satisfies (1.11). Moreover, we can deduce from (B.8) that
f ∈ L∞((0, T ); L1s0 (R3)), and from Remark B.6 that ∇ f ∈ L2((0, T ); L2s0+γ (R3)).

Let us now prove the monotonicity of the entropy. We know that f ∈ L2((0, T );
H1
2+γ (R3)). Then, we deduce as in (B.12) that there exists some constant Cε depending on

ε and ‖ fin‖L1
2
such that, for every v ∈ R

3 and t ∈ [0, T ]
∣∣b[ f ](t, v)∣∣ � Cε 〈v〉max{0,1+γ }.

One also has, for every v ∈ R
3 and every t ∈ [0, T ], that |�[ f ](t, v)| � C‖ fin‖L1

2

〈v〉2+γ , for some universal constant C > 0. It thus follows from the weak formulation
associated to (1.10) that ∂t f ∈ L2((0, T ); (H1

2+γ (R3))′). We then deduce from [32, Ch.III

Lemma 1.2] that f ∈ C ([0, T ]; L2(R3)). As in [12, Lemma 4.18], one may then prove the
monotonicity of Sε( f ). ��
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