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ABSTRACT

In many cases, the unprecedented availability of data
provided by high-throughput sequencing has shifted
the bottleneck from a data availability issue to a
data interpretation issue, thus delaying the promised
breakthroughs in genetics and precision medicine,
for what concerns Human genetics, and phenotype
prediction to improve plant adaptation to climate
change and resistance to bioagressors, for what con-
cerns plant sciences. In this paper, we propose a
novel Genome Interpretation paradigm, which aims
at directly modeling the genotype-to-phenotype rela-
tionship, and we focus on A. thaliana since it is the
best studied model organism in plant genetics. Our
model, called Galiana, is the first end-to-end Neu-
ral Network (NN) approach following the genomes
in/phenotypes out paradigm and it is trained to pre-
dict 288 real-valued Arabidopsis thaliana phenotypes
from Whole Genome sequencing data. We show that
75 of these phenotypes are predicted with a Pear-
son correlation ≥0.4, and are mostly related to flow-
ering traits. We show that our end-to-end NN ap-
proach achieves better performances and larger phe-
notype coverage than models predicting single phe-
notypes from the GWAS-derived known associated
genes. Galiana is also fully interpretable, thanks to
the Saliency Maps gradient-based approaches. We
followed this interpretation approach to identify 36
novel genes that are likely to be associated with flow-
ering traits, finding evidence for 6 of them in the ex-
isting literature.

INTRODUCTION

Genome Interpretation (GI) is the umbrella term de-
scribing the scientific endeavor towards understanding

the genotype-to-phenotype relationship (1,2). Being able
to precisely model how the information encoded in our
genome leads to the observed phenotypes would indeed
constitute a crucial advancement for genetics and molecu-
lar biology, and could open a new era for precision medicine
(3).

Early efforts in this sense include Genome Wide Associ-
ation Studies (GWAS) (4) and various attempts at the in-
terpretation of variants in Whole Exome and Genome Se-
quencing studies (WES, WGS) (5,6). Unfortunately, the loci
discovered through GWAS are not causative for the pheno-
type under consideration (4), as they only are in linkage dis-
equilibrium with the truly causative alleles, and thus offer a
quite low resolution for GI. As a result a large part of the her-
itability of complex diseases is still left unexplained (4,7).
Moreover, the power of GWAS markers for the construc-
tion of actually predictive Polygenic Risk Scores has been
recently disputed (8,9).

On the other hand, WES and WGS studies can theoreti-
cally identify every form of genetic variation with respect to
a reference genome, and thus this data is much more likely
to contain the set of causative variants for the phenotypes
under study (5). Notwithstanding the richness of the infor-
mation contained in this data and the widespread availabil-
ity of this sequencing technology, the bottleneck has un-
fortunately only shifted from data availability to data in-
terpretation. In most real-life application, the generally few
causative variants for the phenotype of interest are indeed
hidden in the plethora of neutral variation regulating nor-
mal phenotypic expression and mildly deleterious variants
that are associated with other phenotypes, leading to the
proverbial needle in the haystack problem. To overcome this
issue, bioinformatics methods such as variant-effect predic-
tors (VEP) (10–13) and variant-prioritization tools (VPT)
(14–16) have been developed, respectively aiming at deter-
mining the functional impact of missense variants and pri-
oritizing the variants that are most likely to be involved in a
target phenotype. Although these approaches can be used as
building blocks for more comprehensive GI pipelines (15),
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they have severe conceptual limitations because for example
VEP assume perfect Mendelian inheritance and consider
only one variant at a time, while VPT can recommend the
set of variants that are most likely involved in a phenotype,
but do not aim at modeling how these variants influence that
phenotype.

In recent years, some methods for Genomic Prediction
for plants and animal breeding have been proposed (17),
in some cases involving Machine Learning (18,19). Never-
theless, these approaches mostly rely on Single Nucleotide
Polymorphism (SNP) markers (similarly to GWAS ap-
proaches) and aim at the prediction of relatively few (≤10)
phenotypes. A comprehensive ‘end-to-end’ GI approach,
able to model the phenotypic expression produced by a
given genome, is still currently missing, even though un-
covering how the genotype leads to the observed phenotype
would be a crucial achievement for genetics.

In this paper, we take a step towards full-fledged GI by at-
tempting the most detailed modeling so far of the genotype-
to-phenotype relationship in A. thaliana (20). A. thaliana
(AT from now on) is a small flowering plant that belongs to
the Brassicaceae family, and it presents several characteris-
tics that made this species the model organism for research
in plant genetics and molecular biology. AT is indeed char-
acterized by a small genome (∼125 Mb), a short life cycle, a
very efficient transformation method and the availability of
a wide range of genetic and molecular resources (including
a large collection of mutants) (21). AT is a self-pollinating
species, meaning that plants catalogued with the same ac-
cession number in (21) sampled in nature are homozygous.
These characteristics and the fact that several AT acces-
sions are widely found in nature at very different latitudes
(21), made AT an ideal species to study local adaptation to
very diverse environments and related phenotypes. More-
over, since the sequencing of its genome in 2000 (22), the
amount of available sequencing data, including WGS data
(21) and detailed phenotypic annotations (23), greatly in-
creased.

In this paper, we combined the AT WGS data from
1001genomes.org (21) with the corresponding phenotypic
annotations from AraPheno (23) and we built what, to the
best of our knowledge, is the the first in-silico model aimed
at the multi-phenotype interpretation of the AT genome.
Our model, called Galiana, is an end-to-end Neural Net-
work that takes as input AT sequencing data and per-
forms a multi-task regression, concurrently predicting 288
real-valued phenotypes describing morphological, struc-
tural and developmental traits of AT samples. Galiana is
able to predict 75 out of 288 phenotypes with a Pearson cor-
relation greater than 0.4.

Our modeling approach and its results are conceptually
different from the previous GWAS-based GI attempts on
AT. In particular, Galiana (i) is predictive for each target
phenotype instead of providing a purely qualitative analy-
sis and (ii) it is based on WGS data and thus it can directly
model the phenotypes from the directly causative variants.
Moreover, we show that our end-to-end approach, which
takes as input the entire AT genome in the form of a VCF
file, outperforms analogous models based on just the known
associated genes on 77% of the phenotypes for which it was
possible to run this comparison. At the same time, Galiana

is able to predict also phenotypes for which no gene associ-
ations are already known.

Finally, notwithstanding its complexity, our model is in-
terpretable in the sense that gradient-based methods belong-
ing to the Saliency Maps (24,25) family can be used to inves-
tigate how the predictions for each input sample have been
computed. In the genetics context, this translates to the abil-
ity of identifying the most relevant genes associated to each
phenotype, given the trained model. We thus extracted the
associated genes for the 75 most reliably predicted pheno-
types, and we performed a GO-terms enrichment analy-
sis. We then focused on the flowering-related phenoytpes,
which are the most represented class among the best pre-
dicted phenotypes, and we showed that Galiana identified
36 novel genes that are likely associated with the flowering
traits. Among these 36 putatively associated genes, 6 (17%)
have indeed been already characterized for playing a major
role in flowering, suggesting a certain degree of reliability in
these newly found associations.

MATERIALS AND METHODS

Dataset

From the 1001 AT genomes database (21) we downloaded
the WGS data of 1135 AT samples. From AraPheno (23)
we downloaded the corresponding phenotypic annotations,
consisting of 444 phenotypes from 16 studies. From this set
we removed 122 phenotypes and variables coming from a
single study, because of their relation to geographic and cli-
matic characteristics of the environment of origin of AT
samples. We also removed 34 phenotypes because they had
less than 70 observations each, ending up with 288 pheno-
types mapped over 1021 AT genomes coming from 46 coun-
tries.

The vast majority of these phenotypes are real valued
measurements of AT characteristics under certain growth
conditions (see (23) for more details). In case repeated mea-
surements have been performed for certain phenotypes, we
took the mean of these values as a regression target. A list of
the predicted phenotypes and their range of values is shown
in Supplementary Table S1. The number of AT samples
available for each phenotype is shown in Supplementary Ta-
ble S2. The number of AT samples available for each coun-
try are shown in Supplementary Table S3. The list of the
AT samples and their phenotypes used as labels for train-
ing is available in Supplementary Table S4. Supplementary
Figure S7 shows the distribution of the number of studies
targeting each AT sample. Each sample has been used in
5.73 independent studies on average.

Encoding the genetic variability into a ML-understandable
feature vectors

We used Annovar to annotate the VCF files containing the
variants found in each AT genome. Since no functional an-
notations are available for AT variants, from Annovar we
just retrieved the information regarding the variant type and
the kind of genomic region on which it is mapped. Each
variant is assigned to one of the following 17 types: (ex-
onic) nonsynonymous, (exonic) non-frameshift insertion,
(exonic) non-frameshift deletion, (exonic) stoploss, (exonic)
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frameshift insertion, (exonic) frameshift deletion, UTR3,
UTR5, exonic ncRNA, intronic ncRNA, upstream, down-
stream, intergenic, intronic, splicing, ncRNA splicing, ex-
onic stopgain.

Following the approach proposed in (1), we encoded the
variants by grouping them per-gene, in an attempt to obtain
a compact representation of the AT per-sample genetic vari-
ability while preserving the information related to the type
of variants affecting each gene. We thus represented each
of the 27655 genes gi as a 17-dimensional vector contain-
ing the occurrences of each type of variants occurring on
gi. Each AT sample is thus described by a (Ng = 27655, Fg
= 17) tensor representing the number and types of variants
mapped on each gene.

The tensor describing each input ends up containing the
number of each of the 17 types of variants annotated by
Annovar that occur on each gene and is thus similar to an
integer-valued histogram, which is not a suitable input for
NNs as it might raise numeric issues and convergence prob-
lems during the training. We thus scaled the value of each
gene by reshaping the vectors used as training from (Ns, Ng
= 27 655, Fg = 17) to (Ns × Ng, Fg), applying the standard-
ization z = (x − �)/� to each of the 17 dimensions, and
restoring the original shape of the tensor. Here, Ns is the
number or samples, � is the mean and � is the standard de-
viation.

Encoding the phenotype observations

The 288 phenotypic annotations we obtained after our fil-
tering of the phenotypes provided by AraPheno (23) are
real-valued with highly variable value ranges, means and
variances (See Supplementary Table S1 for an overview).
While trying to predict in a multi-task fashion the 288 phe-
notypes, this variability will impair the uniform training of
the phenotypes, because the losses of the phenotypes with
overall higher values will weigh more during training. To
overcome this problem, we applied standardization to each
phenotype, thus ensuring � = 0, � = 1 for all of them, re-
gardless of their original values.

The multi-task neural network model

We build a multi-task Neural Network (NN) model to si-
multaneously predict multiple phenotypes for each AT sam-
ple. The architecture of the NN is shown in Figure 1. Each
genome in each AT sample is represented by a (Ng, Fg) ten-
sor containing the histograms encoding the occurrences of
the 17 types of variants annotated by Annovar in each gene
gi ∈ Ng.

Similarly to (1), we processed this gene-level information
by using the same NN module G for all the genes in all the
samples, thus relying on weight sharing in order to minimize
the total number of trainable weights in the model (see Fig-
ure 1). The G module outputs a single value for each gene,
thus compressing the 17 dimensional vectors describing the
quantity and quality of the variants mapped on each gene
to a scalar value. As shown in the left column of Figure 1,
the G module is composed by a Dropout (p = 0.1) module
followed by a (17, 50) fully connected layer. The outputs of
this layer are processed by a LayerNorm followed by Tanh

activation and the final one dimensional output is produced
by a (50, 1) output layer.

These per-gene values are then concatenated (see Figure
1) into a (1, Ng = 27655) tensor encoding the compressed
information concerning the variants mapped on each gene
in the genome of each AT sample. This is then processed
by the P module, which is composed by a Dropout layer
(p = 0.2) and two fully connected layers (50 neurons each)
followed by LayerNorm, Tanh and Dropout (see left panel
in Figure 1). The last layer, applied on top of the P module, is
a (50, 288) linear layer producing the 288 regression outputs
associated with the AT phenotypes.

To optimize the network we used the Adam optimizer,
with L2 regularization (� = 10−5) and MSE loss. We trained
the model for 70 epochs using mini-batches composed of 10
AT samples and learning rate equal to 10−3. The goal of the
weight sharing in the G module is to reduce as much as pos-
sible the complexity of the NN, but the constraints of having
i) a minimum of one neuron representing each gene and ii)
the 288 outputs sets the final number of trainable parame-
ters to 1456599, which is relatively high with respect to the
dataset size. To reduce the effective number of parameters,
we relied on the L2 regularization, the various Dropout lay-
ers and a relatively small number of training epochs (70).

Since the goal of the network is to compute regressions
we used the Tanh as activation functions. To avoid the gra-
dient vanishing problems due to the bounded nature of
Tanh, we used a LayerNorm to normalize the values of
each layer before applying the activation. We implemented
the model using pytorch (26). The code is freely avail-
able from our git repository https://bitbucket.org/eddiewrc/
galiana/src/master/.

Interpreting the predictions with Saliency Maps

Recent studies (24,25) proposed various gradient-based
methods for the instance-based interpretation of NN mod-
els. Given a trained NN model M, the forward pass M(xi)
for one sample xi at a time is computed, alongside with
the gradient ∂Mt(xi)/∂xi of the target output yt = Mt(xi)
with respect to the input xi. This allows us to interrogate
the model in order to discover which elements in the input
feature vector xi are the more relevant for the prediction,
since the gradient indicates which input variables needs to
be changed the least in order to produce the largest change
in the output yt.

In our case, we used the SmoothGrad (24) approach,
which consists in repeating the forward/gradient computa-
tion steps 50 times for each sample, injecting Gaussian noise
sampled from N (μ = 0, σ = 0.1) in the input vector xi at
each iteration. This procedure has been shown to reduce the
noise in the resulting Saliency Maps (24).

Since Galiana is built to perform a multi-phenotypic re-
gression, we computed SmoothGrad separately for each
phenotype. Moreover, since in a regression we are inter-
ested in discovering input features that drive the value of
the predictions both up and down, we considered the abso-
lute value of the gradient on each input variable.

The goal of our interpretation attempt is to discover
which genes are associated with each phenotype. We thus
exploited the architecture of our network to simplify this

https://bitbucket.org/eddiewrc/galiana/src/master/
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Figure 1. The architecture of Galiana. The (17, N = 27 655) tensorial representation of each genome is used as input. Each 17-dimensional vector
representing the gene i is processed by the G module. The iterated applications of the G module produces the (1, 27 655) representation of the mutational
load on each gene, which is used as input for the fully connected module, which consists of a FF NN with two layers with 50 neurons each. Finally, the
last layer implements the multi-task regression over the 288 real-valued phenotypes.

task by computing the SmoothGrad gradients on shared G
neurons representing the activation associated to each gene
(see Figure 1) instead of computing the gradients on the in-
put features, which are represented as a (17, 27 655) tensor
and would thus require some per-gene aggregation of the
gradients that might introduce artifacts or noise.

Saliency Maps can sometimes lead to noisy results
(24,27), which could be tolerated when applied on image
recognition, but could have a much more detrimental effect
when the goal is to discover meaningful gene-phenotype as-
sociations. To ensure the highest possible consistency of the
selected genes, we performed several steps.

First, we computed the SM independently for each phe-
notype Pj, using the same cross-validation settings used to
compute the prediction results. For each phenotype Pj we
ranked each gene gi in function of the percentage of AT
samples annotated with Pj in which gi appeared among
the 100 most important genes. We thus obtained a ranking
of the AT genes in function of how many times they have
been selected among the 100 most relevant among the en-
tire genome. From this pool of genes, we selected the 5% of
highest ranking genes, which represent the 5% of the most
recurrently selected genes for each Pj.

Since NN training can converge on slightly different op-
timal solutions in different optimizations, due to the ran-
dom initialization of the weights, we repeated the cross-
validation and the gene-selection procedure 6 times, obtain-
ing 6 pools of the most recurrent 5% genes for each phe-
notype Pj. To enforce a consistency of the results and re-

move the randomness in the selection, for each phenotype
we computed an intersection between the selected genes,
thus keeping only the genes that appear in the top 5% rank-
ing in all the six repetitions of the cross-validation. We con-
sider this the final set of genes associated to each phenotype,
called FINAL ASSOC.

GO-terms enrichment analysis computation

To investigate the biological relevance of the genes se-
lected by the SM interpretation approach, we performed
a GO-terms enrichment analysis of the genes selected for
each phenotype using the standard hypergeometric test de-
scribed in (28,29). We performed the test on the genes result-
ing from the intersection of the SM results obtained from
the 6 cross-validation runs (FINAL ASSOC genes).

RESULTS

A Neural Network for the multi-phenotype prediction of AT
phenotypes

Galiana is an end-to-end Neural Network model for the
in-silico Genome Interpretation (GI) of A. thaliana (AT)
genomes. It takes AT genomes as input, in the form of Vari-
ant Calling Format (VCF) files and it produces as output
288 real-valued phenotypes associated with each genome.

From 1001genomes.org (21) we retrieved the 1135 AT
WGS samples from 46 countries and we annotated them
with 444 real-valued AT phenotypes collected in AraPheno
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(23). These phenotypes describe many different character-
istics of AT plants, including structural, developmental and
morphological traits, such as plant growth and seed yield
related traits or the metabolites concentration in the leaves.
After some pre-processing (see Methods for more details),
we obtained the final dataset, which encompasses 288 phe-
notypes mapped on 1021 genomes.

We trained and tested our model with a 5-fold cross-
validation and we evaluated the predictions with the Pear-
son correlation coefficient, the mean absolute error (MAE)
and the mean squared error (MSE) with respect to the ob-
served phenotypic values. To the best of our knowledge, this
is the first attempt at modeling the direct relation between
the genome of an organism and such a wide spectrum of
phenotypic aspects, which indeed cover in a very detailed
way the spectrum of the AT traits. The full list of pheno-
types considered is available in Supplementary Table S1.

Among the 288 phenotypes on which our model is
trained, for 75 of them the predictions showed a Pearson r >
0.4 and a Bonferroni-corrected P-value lower than 0.05/288
= 0.000174, which is the minimum reliability threshold we
adopted to consider our predictions successful in this study.
These 75 phenotypes predicted above the threshold are
shown in Supplementary Table S5. From this table we can
see that the best predicted phenotypes are related to the
growth rate, the flowering time (DTF*, FT*, LD*, SD),
seed dormancy and structural characteristics such as leaf
number (LN*), fruit number and root length.

To show which kind of phenotypic predictions Galiana
can produce, in Figure 2 we show 16 of the 75 phenotypes
as scatter plots. In general, we can see that the predictions
of flowering-related traits, such as the the days to flower-
ing (DTF, DTF Sweden, Spain, DTFplantingSummer, DT-
FlocSweden, DTF2, FT16, FT22, LDV, LD, SD, SDV, 0W
GH FT) have very high Pearson correlation, indicating that
Galiana is able to consistently model their value from the
AT genomes. Also seed dormancy (GR21, GR21 warm)
and size-related traits (Size Sweden 2009) are shown, with
correlations ranging between 0.5 and 0.7.

Other phenotypes predicted with high Pearson correla-
tion (see Supplementary Table S5) are related to the number
of leaves (RL, LN10, LN16, LN22), the number of fruits,
the root length (MS-mean Total length, root length days
4, 5), the growth rate, the reproductive growth time (MT
GH, LFS GH, LC Duration GH), metabolite content traits
(M216T665, M216T666) and stomatal process related traits
(delta 13C, delta 13C 261).

Among the most difficult phenotypes to predict, we have
the concentration of some elements such as Cu65, Fe57,
Ni60, Zn66, P31 and Ca43, which are predicted with a
Pearson correlation ≤0.2. Also the flower diameter and
the stomata density are some of the hardest phenotypes
to predict, with r = 0.14. Various root length and root
morphology-related phenotypes (LRLpMRL75, F-mean
total length, PF-mean total length, P-mean total length,
LRLpMRL0) are predicted with correlations between 0.28
and the selected reliability threshold of 0.4. The list of the
phenotypes predicted below the reliability threshold can be
found in Supplementary Table S6. The full list of predicted
phenotypes, regardless of the threshold, is available in Sup-
plementary Table S7.

In general, it appears that the multi-phenotypic predic-
tion of AT samples from sequencing data is a hard task and
that the genotype-to-phenotype relationship on such a wide
spectrum of phenotype is indeed driven by highly non-linear
mechanisms. For example, Supplementary Figure S6 shows
that there is no correlation between the genetic similarity
between pairs of AT samples (i, j) and the similarity of their
phenotypic profiles (r = 0.080).

Analysis of the synergistic effects between phenotypes during
training

From the results shown so far it appears that not all the tar-
get phenotypes are predicted with the same reliability. To
investigate the causes of the varying performances among
phenotypes, we first tried to relate the Pearson correlation
of the predictions with the number of samples available as
training for each phenotype (see Supplementary Figure S4),
finding a relatively low (r = 0.3) correlation. The sheer num-
ber of available samples for each phenotype (full list avail-
able in Supplementary Table S2) is thus not sufficient to ex-
plain the difference in the reliability of the predictions.

On the other hand, Arapheno’s comprehensive list of
phenotypes contains many similar traits, or even the same
trait measured in slightly different conditions, leading to a
certain degree of redundancy among the 288 phenotypes
used as prediction targets. To investigate this redundancy,
in Supplementary Figure S1 we clustered the phenotypes
in function of their similarity. To do so we used a multi-
dimensional scaling where the distance between phenotypes
(points in the plot) is inversely proportional to their abso-
lute Pearson correlation. Phenotypes that are more similar
(correlated) are thus grouped into clusters, and we can in-
deed see that root, flowering, metabolites concentration and
seed-related traits visually cluster together (see Supplemen-
tary Figure S1).

In the context of multi-task learning, the intuition behind
concurrently training the model to solve multiple problems
at once is that if the tasks are chosen in a suitable man-
ner, they could end up positively influence each other dur-
ing training, giving rise to synergistic effect (30–34). On the
other hand, since Galiana is trained simultaneously on all
the phenotypes, it is also true that the phenotypes belong-
ing to the largest clusters might be learned more efficiently
overall, just because they will have a larger loss weight dur-
ing training. We investigated this effect, showing that there
is indeed a Pearson correlation of 0.79 between the reliabil-
ity of the predictions for a phenotype P and the number of
phenotypes with an absolute value correlation ≥0.5 with P
(see Supplementary Figure S3). We obtained similar results
(r = 0.69) when we compared the quality of the predictions
and the mean absolute correlation of P with all the other
phenotypes (see Supplementary Figure S2). This suggests
that the phenotypes that are quantified by multiple similar
measurements in the dataset (e.g. the flowering trait group)
benefit from synergistic effects or are just assigned more rel-
evance during training due to their redundancy, and thus
are predicted better.

In relation to this last hypothesis, from Supplementary
Figure S1 we can see that this reasoning is not valid for every
cluster and class of phenotypes. For example, the two large
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Figure 2. Scatter plots showing the prediction results for 16 of the 75 significantly predicted phenotypes.

clusters of root-related phenotypes in the center-bottom
and bottom-right corner (TLRL, LRD, LRR, LRL, PF,
root, RGR labels) are characterized by extremely poor pre-
dictions (Pearson 0 ≤ r ≤ 0.35), with often not even signifi-
cant P-values (see Supplementary Table S6). To empirically
investigate this behavior, we modified the loss function of
our NN in order to re-weight the loss function used for each
phenotype P with a weight wP which is inversely propor-
tional to the average correlation of P with the other pheno-
types (see Supplementary Figure S2). In this way we force
the model to level the clustering/correlation-based differ-
ences between phenotypes during training, trying to ensure
that all the phenotypes are learned at the same pace. Inter-
estingly, all the re-weighting strategies we attempted led to
slightly lower performances (i.e. fewer phenotypes predicted
above the reliability threshold of Pearson ≥ 0.4), indicating
that the sheer similarity among the annotated phenotypes

is not likely to be the main reason driving the difference in
their prediction performances.

Another possible factor that might produce differences
in the maximum achievable accuracy among phenotypes
relates to the theoretical upper bound for the accuracy of
regressions (35,36). While it is commonly thought that the
maximum value that a regression could achieve in terms of
Pearson correlation is always 1, in reality the actual upper
bound for the predictions might be ≤1 and it depends on
both the experimental uncertainty and the variance of the
values in the dataset (35,36). Following the approach sug-
gested in (35,36), we computed the theoretical Pearson up-
per bound for each phenotype and in Supplementary Ta-
ble S8 we show the ones that have an upper bound <1.
The second column in Supplementary Table S8 shows the
maximum achievable Pearson correlation given the variance
among the repeated experimental measurements and the
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overall variance among the available annotations (35). Most
of these phenotypes represent the concentration of various
chemicals in the leaves (e.g. S64, Li7, Na34), thus providing
a statistical explanation for the lower prediction accuracy
achieved by Galiana on these phenotypes (see Supplemen-
tary Tables S6 and S7). For the phenotypes with infrequent
repeated measures, it was not possible to compute a mean-
ingful upper bound, and are thus excluded from this analy-
sis.

Also a biological explanation for the differential pre-
dictability of the 288 target phenotypes is nevertheless likely
to exist. For example, we can hypothesize that flowering-
related phenotypes are easier to predict with Galiana due
to the strong influence of the geographical origin of the ac-
cessions (i.e. the latitude) on these traits. More specifically,
it has been shown that flowering time, together with other
traits such as seed dormancy, follow a latitudinal cline that
does not depend on the population structure gradient (37–
39), which usually has a predominant effect on the predic-
tion of phenotypic traits.

Galiana predicts both inter and intra-country phenotype dy-
namics

In Figure 2, we showed examples of the correlations be-
tween the phenotypes and Galiana predictions across the
entire dataset, which contains samples from 46 nations.
Here we show that Galiana is not just able to predict the
‘average phenotype’ within each nation, but also to pre-
dict more subtle phenotype dynamics within each nation.
For example Supplementary Table S9 shows the most reli-
ably predicted (Pearson r > 0.4, P-value < 0.000174) phe-
notypes within the Swedish, Spanish, Italian, German, UK
and Russian AT populations. The generally lower number
of phenotypes predicted above this threshold is due to the
fact that the actual number of the available samples within
each specific nation is in many cases significantly lower with
respect to the entire dataset, which pools together samples
and phenotypic annotations from 46 countries and thus the
P-value significance is harder to reach. Supplementary Ta-
ble S3 shows the amount of samples available for each coun-
try, and Supplementary Table S2 shows how many anno-
tated samples are available for each phenotype. Supplemen-
tary Figure S5 shows a per-country clustering of the AT
genome. Since only Sweden (243 AT samples), Spain (180),
US (123), GER (118), Italy (73), UK (69) and Russia (60)
have at least 60 annotated samples, we restricted this per-
country analysis only to these nations. Below this threshold
it becomes indeed more difficult to obtain correlation values
that surpass the predictions P-value quality threshold.

In Figure 3, we show the scatter plot of 4 phenotypes for
each of the four of the nations with the highest number of
AT samples (from the leftmost column to the rightmost, re-
spectively Sweden, Italy, Spain and Russia). We can for ex-
ample notice that in the Swedish AT population, the con-
centration of Li7 and S64 are predicted with an acceptable
Pearson correlation (first column, r = 0.4 and r = 0.51 re-
spectively), even though these metabolite concentrations are
among the most difficult to predict across all the nations
(see Supplementary Table S6).

In general, the flowering time-related phenotypes such as
DTF3 (Sweden), FT10, FT16, DTF2 (Italy), DTF3 (Spain),
FT10, FT16, DTF2, DTF3 (Russia) are predicted with high
correlation even when data on single nations are taken into
account.

Considering the entire genome as input is more effective that
using only GWAS-associated genes

Galiana follows an end-to-end prediction approach in
which the entire AT genome (composed of 27 500 genes or-
ganized in five chromosomes) is used as input for the pre-
diction of the phenotypes. In the multi-task learning phi-
losophy, jointly learning multiple tasks might lead to bene-
ficial effects on the convergence during training and on the
generalization ability of the predictor (30–34), due to the
synergistic effect of simultaneously learning partially simi-
lar tasks and thanks to the informed regularization (30) ef-
fect that attending multiple tasks has on the risk of overfit-
ting. Ideally, Galiana should be able to select the genes that
are relevant for each phenotype, and benefit during train-
ing from the joint learning of groups of synergistic tasks.
To empirically verify that this end-to-end genome in, phe-
notypes out paradigm is truly beneficial for learning, we
compared our approach with the results obtained by sev-
eral phenotype-specific (mono-task) NN predictors trained
only on the genes that are known to be associated to each
phenotype. To do so we retrieved from araGWAS (40) all
the 35 phenotypes with GWAS-associated genes (listed in
Supplementary Table S10). For each of these 35 pheno-
types Pi we built a dedicated predictor (called GWAS NNi)
that takes as input only the genes that are known to be as-
sociated to Pi (see Supplementary Mat. for more details).
We thus compared the prediction performances in terms
of Pearson correlation, MSA and MSE between these 35
phenotypes predicted by Galiana and GWAS NNi. The re-
sults are shown in Figure 4, which indicates that the whole
genome multi-task learning has indeed a positive effect on
the predictions for 27 phenotypes out of 35 (77%) using
Pearson and for 23 out of 35 (67%) if considering MSE
and MAE (bottom panels). We used the paired Wilcoxon
test to compare the distributions of the prediction scores,
obtaining significant P-values for all the three metrics (top
panels), indicating that, notwithstanding the small number
of phenotypes for which at least one associated gene was
present, the multi-phenotypic prediction approach followed
by Galiana outperformed the GWAS NNi models consid-
ering only GWAS-associated genes.

Moreover, our end-to-end approach, which is agnostic
with respect to the genes associated to each phenotype, can
attempt the prediction of all the available 288 phenotypes,
while the GWAS NNi models are limited to only the phe-
notypes for which at least 1 associated gene exists, which
is only 35, about half of the phenotypes that Galiana can
predict with a Pearson correlation greater than 0.4.

Interpreting the model to discover novel gene-phenotype as-
sociations

In order to solve increasingly complex tasks, increasingly
complex ML methods are being used and developed, in an
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Figure 3. Plots visualizing the predicted correlations for four selected phenotypes while considering only AT samples located in Sweden, Italy, Spain and
Russia (represented by the columns, from left to right). This shows that Galiana predicts also intra-nation phenotype dynamics and not only among AT
samples belonging to different countries.

attempt to allow the recognition of highly non-linear pat-
terns. Incidentally, this caused the methods to become also
more obscure when it comes to understanding the internal
decision process that leads to the predictions. To overcome
this issue, various methods for interpreting ML models have
been developed (24,25,41), with also applications to biolog-
ical sequence analysis (42) and genetics (1,43).

In this study, we used the SmoothGrad (24) flavor of
the Saliency Map (SM) interpretation methods for NN.
We interpreted the predictions of the 75 most reliably pre-
dicted phenotypes (see Methods for more details). We chose
SmoothGrad due to its particular robustness (24,25). While
in the image recognition field the SM methods are generally
used to highlight the pixels that lead to the predicted class
(24), in the context of GI, the goal of the interpretation is to

uncover the genes that the model deems the most relevant
for the prediction of each phenotype. The intuition behind
SM is that once the model M is trained, one sample xi at a
time is fed to the NN and the gradient ∂Mt(xi)/∂xi of the
target phenotype prediction Pt = Mt(xi) with respect to the
input xi is computed. In this way, the model itself assigns
gradients to each element of the input feature vector, indi-
cating which input variables need to be changed the least in
order to produce the largest change in the predicted pheno-
type Pt.

We thus assume that the inputs with larger gradient val-
ues are the most relevant for the prediction. In the case of
Galiana, since we are doing multi-phenotypic regression,
for each sample we independently computed the gradient of
the inputs with respect to each phenotype t. We also ranked
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Figure 4. Visual comparison between our multi-phenotypic predictions (Galiana) and the single-phenotype models (GWAS NNi) based on the known
associated genes retrieved from (40). Galiana outperforms the GWAS-based NN 77% of the times on the 35 phenotypes on which the GWAS NN was
applicable.

the genes in function of the absolute value of their gradient,
since in a regression task we are interested in the signal that
drives both up and down the predicted value (see Materials
and Methods). We computed the SM using the same 5-fold
cross-validation procedure used to compute the prediction
results shown so far.

In order to reduce the noise and the possibly spurious
genes selected by SmoothGrad, thus increasing the con-
sistency of the resulting gene-phenotype associations, we
adopted a few processing steps. First, for each phenotype Pt
we ranked the genes gi in function of the percentage of AT
samples in which each gi was selected among the 100 most
relevant genes. Second, for each phenotype Pt we selected
only the highest ranking 5% of these genes, thus keeping
only the genes that are most frequently relevant for the pre-
diction Pt of a certain phenotype t. Third, we repeated the
SmoothGrad computation and the processing steps 1 and
2 on six independent cross-validation (CV) runs, obtaining
six pools of genes selected for each phenotype. Finally, for
each phenotype we computed the intersection between the
results of the six CVs, obtaining the final set of genes asso-
ciated to each phenotype, which is thus formed by only the
5% of most frequently highest ranked genes genes that ap-
peared in all the CVs. See Methods for more details about
this procedure. The genes selected for each phenotype are
shown in Supplementary Material S1.

GO-term enrichment analysis of the most relevant genes sug-
gest novel gene-phenotype associations

To investigate the biological relevance of the genes selected
with SmoothGrad on the 75 phenotypes considered, we ran
a GO-term enrichment analysis on these sets of genes, fol-
lowing the approach adopted in (28,29) (see Methods for
more details). This analysis reveals that 59 out of 75 pheno-
types presented significantly enriched GO-terms. The GO-
terms associated with each phenotype are shown in Supple-
mentary Material S2.

Since many of the most reliably predicted phenotypes are
related to flowering (i.e. Days To Flowering (DTF*) phe-
notypes), we performed a specific analysis using the genes
associated to these phenotypes, based on existing literature.
In particular, we focused on two studies (44,45) in which
the authors measured several flowering traits, together with
non-flowering phenotypes. In (44) the authors grew hun-
dreds of accessions in controlled growth chambers that sim-
ulate northern and southern European climates (including
photoperiod). In the second study (45), the authors mea-
sured several physiological parameters and phenotypes on
936 accessions from the 1001 Genomes Consortium (21),
grown in controlled conditions.

We then identified the genes associated to the enriched
GO-terms exclusively in DTF* phenotypes, separately for
each study. Supplementary Table S11 summarizes the 36
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genes identified with this analysis and specific to flower-
ing phenotypes for each study. For each gene, we included
a description of the related pathway and if the genes were
already described for having a role in flowering. Among
the pathways associated with the 36 genes identified with
this analysis, the most represented were associated to pri-
mary and specialized metabolism (seven genes, including
terpenes, carotenoids, amino acids and lipids), cell wall (six
genes) and cell cycle (three genes).

It is worth noting that two genes identified were in com-
mon between the two studies. The first is BBR2a, encoding
a spliceosome protein in eukaryotes that affects flowering
time by regulating Flowering Locus C splicing (46). The sec-
ond common gene was Nitrate Transporter 1.6 (NRT1.6),
encoding for a nitrate transporter (47) that was never de-
scribed as flowering time regulator.

DISCUSSION

In this paper, we propose what is, to the best of our knowl-
edge, the first end-to-end multi-phenotype attempt at the
Genome Interpretation (GI) of Arabidopsis thaliana (AT).
Our model, called Galiana, takes AT genomes as input, in
the form of VCF files and concurrently attempts the regres-
sion of 288 real-valued phenotypes. 75 of these phenotypes
are predicted with a Pearson correlation greater than 0.4.

From the results obtained from Galiana it emerges that
the phenotypes related to flowering are generally easier to
predict, with very high correlations. In the context of such
a heavy multi-task prediction problem, involving hundreds
of phenotypes, it is not trivial to determine how each task
interacts with the others in terms of synergistic and antag-
onistic effects (30) during training. We tried to investigate
the reasons for the differential accuracy obtained on dif-
ferent tasks by re-weighting the loss function, by consid-
ering the redundancy introduced by the presence of corre-
lated phenotypes, or by analyzing the intrinsic prediction
upper bound reachable with the data, without finding con-
clusive explanations. Our main hypothesis for what regards
flowering traits is that they are mainly related to the latitude
(37,38) and are less influenced by the population stratifica-
tion.

Another crucial aspect of our approach is that, notwith-
standing its complexity, Galiana is not a black box model,
since it is interpretable with gradient-based methods from
the Saliency Maps (24) family. We used this interpreta-
tion approach to determine which genes our model deemed
more relevant for the prediction of each of the 75 best pre-
dicted phenotypes, and we performed a GO-terms enrich-
ment analysis on them. This analysis identified 36 putative
flowering-related genes, and further investigations showed
that some of them (17%) were already known to be involved
in flowering in literature.

The development of end-to-end GI approaches which fol-
low the genomes in, phenotypes out paradigm and thus di-
rectly attempt the modeling of the genotype-to-phenotype
relationship, are, in our opinion, crucial for further achieve-
ments in genetics and precision medicine. High-throughput
sequencing came indeed years ago with great promises, but
shifted instead the bottleneck from data availability to data
interpretation. Nowadays, thanks to the recent democrati-

zation of the access to advanced Machine Learning tools
in the form of flexible Neural Network libraries (i.e. Py-
torch, TensorFlow), ad-hoc methods can be devised to pro-
cess data with non-conventional structure, such as genomes
and exomes, carefully addressing, if necessary, the limited
sample size by reducing the actual and effective numbers of
parameters (1) or approaching big-data size datasets scala-
bility issues thanks to mini-batching and parallelization on
GPUs.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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