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Albuminuria is the hallmark of both primary and secondary proteinuric glomerulopathies,
including focal segmental glomerulosclerosis (FSGS), obesity-related nephropathy, and di-
abetic nephropathy (DN). Moreover, albuminuria is an important feature of all chronic kid-
ney diseases (CKDs). Podocytes play a key role in maintaining the permselectivity of the
glomerular filtration barrier (GFB) and injury of the podocyte, leading to foot process (FP)
effacement and podocyte loss, the unifying underlying mechanism of proteinuric glomeru-
lopathies. The metabolic insult of hyperglycemia is of paramount importance in the patho-
genesis of DN, while insults leading to podocyte damage are poorly defined in other pro-
teinuric glomerulopathies. However, shared mechanisms of podocyte damage have been
identified. Herein, we will review the role of haemodynamic and oxidative stress, inflamma-
tion, lipotoxicity, endocannabinoid (EC) hypertone, and both mitochondrial and autophagic
dysfunction in the pathogenesis of the podocyte damage, focussing particularly on their role
in the pathogenesis of DN. Gaining a better insight into the mechanisms of podocyte injury
may provide novel targets for treatment. Moreover, novel strategies for boosting podocyte
repair may open the way to podocyte regenerative medicine.

The kidneys filter approximately 180 l of fluids everyday; however, there is no loss of proteins into
urine as the glomerular filtration barrier (GFB) retains 99.99% of plasma proteins. Alterations in the GFB
result in the development of proteinuria, ranging from albuminuria to massive nephrotic syndrome. Al-
buminuria is the hallmark of both primary and secondary proteinuric glomerulopathies, including focal
segmental glomerulosclerosis (FSGS), diabetic nephropathy (DN), obesity-related nephropathy, and an
important feature of chronic kidney diseases (CKDs). In addition, in patients with CKD, albuminuria is
a predictor of progression towards end-stage renal disease (ESRD) and is associated with an increased
risk of cardiovascular diseases. Glomerular podocytes are a component of the GFB and podocyte injury
is the main cause of albuminuria development. Herein, we will describe patterns of podocyte damage and
review underlying mechanisms, focussing particularly on DN.

Podocytes
Podocytes are highly specialised glomerular epithelial cells that form the GFB together with the fenestrated
endothelium and the glomerular basement membrane (GBM) [1,2]. The podocyte cell body bulges into
the urinary space and gives rise to long primary processes that branch into foot processes (FPs), enwrap-
ping the glomerular capillaries [3]. FPs of neighbouring podocytes interdigitate, leaving between them
long filtration slits that are bridged by a junction, named slit diaphragm (SD). Nephrin, NEPH1, FAT,
podocin, and ephrin B1 form the transmembrane/extracellular portion of the SD, connecting adjacent
FPs, while the cytoplasmic tails of these proteins interact with scaffold proteins, adapters, and signalling
molecules to regulate the podocyte cytoskeleton [4]. FPs contain a dense cytoskeletal network of actin
filaments connected with an array of linker proteins not only to the SD, but also to the GBM anchor
proteins, such as α3β1 integrin and dystroglycan. These interactions are essential to maintain the highly
ordered structure of the FPs [2] (Figure 1). The SD is considered the major restriction site to protein
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Figure 1. Schematic representation of podocyte FPs

The actin cytoskeleton of podocyte FPs is connected to both the SD, a specialised junction bridging the slit between FPs of

neighbouring podocytes, and the GBM. Abbreviations: CD2AP, CD2-associated protein; GAG, glycosaminoglycan; LG, laminin

G-like domain; MAGI, membrane-associated guanylate kinase; Nck, non-catalytic region of tyrosine kinase adaptor protein; PI3K,

phosphoinositide 3 kinase; TRPC5/6, short transient receptor potential channel 5/6; ZO-1, zonula occludens-1.

filtration; however, the negatively charged sialoglycoproteins that cover the podocyte abluminal surface facing the
GBM also contribute to the GFB by repulsing plasmatic anionic proteins. Moreover, flow-mediated compression of
the GBM against the FPs changes the physical properties of the GBM, enhancing GBM permselectivity [5,6]. Fi-
nally, secretion of vascular endothelial growth factor (VEGF) by podocytes affects the permeability of the glomerular
endothelium.

Patterns of podocyte injury
FP effacement
Podocyte injury alters both the SD and the FP cytoskeleton. Specifically, FPs undergo retraction with FP widening
and shortening. This simplified architecture is named FP effacement and is associated with proteinuria even in the
absence of podocyte loss. Early FP effacement is reversible, but if the underlying injury does not resolve, FP effacement
progresses until podocytes deprived of their FPs attach to the GMB exclusively through their cell bodies [3,7].

Podocyte loss
Podocyte loss, a key feature of progressive proteinuric glomerulopathies, is due to either apoptosis or podocyte de-
tachment. Dedifferentiation can protect podocytes from death, but alters their function/structure, possibly resulting
in detachment from the GBM [8]. Moreover, injury leads to activation of integrinαvβ3 that favours podocyte detach-
ment [9]. The entity of damage is also important and a podocyte loss above the threshold level of 30–40% is required
to trigger the development of glomerulosclerosis in FSGS [10]. In the adult kidney, podocytes have a limited capacity
of proliferation and lost podocytes cannot be adequately replaced [11]. However, remaining podocytes can adapt by
increasing their size to cover the denuded GBM.
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Podocyte density
In glomerulopathies characterised by glomerular hypertrophy, including DN, podocytes undergo hypertrophy to
cover the increased GBM surface area. This can result in reduced podocyte density without changes in podocyte
number [12].

GBM abnormalities
Podocytes produce most of the GBM components and secrete matrix metalloproteinases (MMPs) important in ex-
tracellular matrix remodelling [13,14]. Therefore, podocyte injury can alter the balance between GBM synthesis and
degradation, leading to changes in GBM thickening [13].

Podocytopathies
Podocyte injury is the unifying mechanism of proteinuric glomerulopathies, regardless of both the triggering cause of
podocyte damage (genetic, immune, infective, toxic, metabolic, haemodynamic) and the presence of other associated
histological abnormalities. Therefore, these diseases have been recently renamed ‘podocytopathies’ [8].

The key role of podocytes in proteinuric conditions was highlighted by studies on genetic causes of proteinuria.
More than 20 years ago, mutations in the nephrin gene (NPHS1) were identified as the cause of congenital nephrotic
syndrome of the Finnish type [15]. Since then more than 50 mutations have been discovered, affecting predominantly
components of the SD and the podocyte actin cytoskeleton [16–19]. These findings prompted research into podocyte
physiopathology and led to the recognition that podocyte injury is also the underlying mechanism of most acquired
proteinuric diseases, including DN.

Podocyte damage in DN
The term ‘diabetic kidney disease’ (DKD) encompasses all types of renal injury occurring in patients with diabetes.
The classical albuminuric form of DKD is predominantly due to glomerular/podocyte injury and is characterised
by both increased glomerular permeability to proteins and relentless renal function decline. DKD can also occur in
the absence of albuminuria and the non-albuminuric form is now the prevailing phenotype in patients with type 2
diabetes. However, the non-albuminuric phenotype appears predominantly associated with atypical vascular and/or
tubulointerstitial lesions rather than with podocyte injury [20].

Most of the available histological data in diabetes are from patients with the classical albuminuric phenotype.
Nephrin down-regulation is observed in early human DN and correlates with both albuminuria and enhanced FP
width [21–23]. Another early feature of DN is thickening of the GBM, resulting from overproduction of matrix com-
ponents, reduced turnover, and diminished MMP expression/activity [24–26]. Thickening of the GBM precedes the
development of albuminuria and is a predictor of renal survival [27]. Studies on kidney biopsies from patients with
established DN showed FP effacement [28] and podocyte loss/reduced density that strongly correlate with albumin-
uria [12,29,30]. Besides podocyte loss, podocyte detachment from the GMB is also involved and viable podocytes are
found in the urine of patients with DN [31].

Hyperglycaemia is a key determinant in the pathogenesis of the podocyte injury in diabetes. In the last decades,
a large number of studies on podocytes exposed to a high glucose milieu have proven that hyperglycaemia can alter
the phenotype of podocytes by inducing nephrin loss, changes in the production/degradation of extracellular matrix
components, enhanced prosclerotic cytokine transforming growth factor β1 (TGF-β1) signalling, remodelling of the
actin cytoskeleton, α3β1 integrin down-regulation, and both podocyte hypertrophy and apoptosis [32–39]. Excess
glucose entry into podocytes via the glucose transporters GLUT1 and GLUT4 increases flux through the polyol path-
way, accumulation of advanced glycation-end products (AGEs) precursors, activation of protein kinase C (PKC), and
increased hexosamine pathway activity that have long been considered the predominant mechanisms of glucotoxicity
[40]. Binding of extracellular AGEs to the advanced glycation-end product receptor (RAGE) expressed by podocytes
also contributes to podocyte injury and has been proposed as a druggable target [39,41–43]. These mechanisms of
diabetes-induced injury have been extensively described in previous reviews [39,44] and herein we will focus specif-
ically on emerging new mechanisms of podocyte injury that are shared by most proteinuric glomerulopathies and
discuss their implications for DN (Figure 2).

Mechanisms of podocyte injury
Haemodynamic insult
When the number of nephrons is reduced because of low nephron mass/nephron loss, there is a compensatory in-
crease in glomerular capillary pressure/filtration of single remnant nephrons. This makes it possible to keep total
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Figure 2. Pathways of podocyte injury

The picture shows selected mechanisms leading to podocyte damage such as inflammation, oxidative stress, organelle dysfunction

as detailed in the text. Abbreviations: ABCA1, ATP-binding cassette transporters A member 1; AF, autophagosome; AL, autolyso-

some; Ang-II, angiotensin-II; AT-1R, angiotensin II type 1 receptor; CB1R, endocannabinoid receptor of type 1; CB2R, endocannabi-

noid receptor of type 2; CCR2, C–C chemokine receptor 2; IL-1β, interleukin-1β; IL-1R, interleukin 1 receptor; MCP-1, monocyte

chemoattractant protein 1; mtROS, mitochondrial reactive oxygen species; NLRP3, NOD-, LRR- and pyrin domain-containing pro-

tein 3; NOX4/5, NADPH oxidase 4/5; TNF-α, tumour necrosis factor-α; TNFR, tumour necrosis factor receptor.

glomerular filtration rate (GFR) unchanged for a long time [45–47], but causes podocyte damage and represents an
important mechanism of CKD progression. In addition, in obesity and diabetes, both glomerular capillary hyper-
tension and single nephron hyperfiltration are early events, occurring prior to nephron loss [48–50]. In diabetes,
glomerular hypertension is driven by both an overactive renin–angiotensin system (RAS), causing efferent arteriole
vasoconstriction, and enhanced proximal tubular glucose/sodium reabsorption, leading to afferent arteriolar vasodi-
lation. The mechanism whereby mechanical forces contribute to podocyte injury is poorly understood, but both shear
stress and mechanical stretching are important [49,50].

Shear stress
The filtration flow produces shear stress that affects predominantly the lateral site of the FPs. Shear stress is very high
and further enhanced by hyperfiltration. Increased shear stress tends to detach the podocytes from the GBM, dragging
the FPs in the direction of flow. Beyond a certain limit, the SD–FP connection is disrupted, leaving an empty space
[51,52]. According to Kriz et al., FP effacement may represent the attempt of podocytes to cope with the increased
shear stress and to avoid detachment. Indeed, replacement of the SD with a tight junction would close the slit, abolish
shear stress, and allow the system to correct the underlying defect [51]. Lack of FPs and SD in cultured podocytes
is an important limit to the study of shear stress in vitro; however, there is evidence that podocytes undergo both
cytoskeleton reorganisation and apoptosis in response to fluid shear stress [53–56].
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Mechanical stretch
Glomerular capillary hypertension increases the pressure gradient between the glomerular capillary and the Bow-
man space. This expands the glomerular capillaries leading to podocyte stretching. In vitro studies have shown that
podocyte stretching induces changes in both actin cytoskeleton and cell morphology, down-regulation of α3 inte-
grin, increased fibronectin production, down-regulation of nephrin, and apoptosis [57–64], proving that stretching
can dramatically alter the podocyte phenotype. Moreover, a recent study provided the first in vivo evidence that
podocytes are mechanosensitive by showing that glomerular capillary hypertension can increase podocyte intracel-
lular Ca2+ concentration in living mice [65].

Therapeutic relevance
Blockade of the RAS is a well-established therapy for DN. A local RAS is present within the glomeruli and RAS
inhibition can limit the direct deleterious effects of Angiotensin-II (Ang-II) on podocytes. However, RAS blockade
is believed to provide benefit predominantly by lowering glomerular capillary pressure through efferent arteriole
vasodilation [66,67].

Recently, sodium/glucose cotransporter 2 (SGLT2) inhibitors and glucagon-like peptide-1 receptor agonists
(GLP1-RAs) were proven to reduce albuminuria/GFR decline in patients with DKD. Moreover, SGLT2 inhibitors
also showed efficacy in patients with non-diabetic proteinuric glomerulopathies [68–72]. The underlying mecha-
nism is still unclear; however, amelioration of the haemodynamic insult is likely implicated. Inhibition of SGLT2
blocks sodium/glucose reabsorption in the proximal tubules, while activation of the GLP-1 receptor reduces tubu-
lar Na+ reabsorption [73] by inhibiting the sodium–hydrogen exchanger 3 [74]. The resulting enhanced delivery
of Na+ to the macula densa reactivates the tubular–glomerular feedback. This leads to afferent arteriole vasocon-
striction and reduces glomerular capillary pressure/filtration [73–75]. Several other mechanisms of renoprotection
have been proposed for both classes of drugs [75,76]; however, it is unclear whether they can have direct effects on
podocytes. There is no evidence that podocytes express the GLP-1 receptor in vivo [77], while preliminary data in
a model of protein-overload proteinuria and a small group of patients with membranous nephropathy [78] suggest
that podocytes may express SGLT2 and be a direct target of SGLT2 inhibitors.

Oxidative stress
Reactive oxygen species (ROS) play a key role in the activation of various intracellular signalling pathways. How-
ever, increased ROS production and/or insufficiency of antioxidant systems can lead to ROS accumulation and cause
oxidative stress. In kidney cells, oxidative stress has several deleterious effects, including lipid peroxidation, DNA
damage, protein modification, activation of both pro-inflammatory and pro-fibrotic pathways, and apoptosis [79].
Consistently, mice knockout for superoxide dismutase are more susceptible to adriamycin, Ang-II, and protein over-
load glomerulopathies [80]. Moreover, in vitro studies have shown that a variety of insults (adriamycin, puromycin,
Ang-II, TGF-β, high glucose, AGEs) cause podocyte damage by increasing oxidative stress [81–84]. The predominant
source of ROS in renal cells is still a matter of debate; however, both mitochondria and NADPH oxidases (NOXs) are
believed to be important [85,86].

Mitochondrial ROS
Electrons leaking from the mitochondrial electron transport chain (ETC) react with oxygen to form superoxide an-
ions [87]. Mitochondrial ROS (mtROS) cause inflammation via nuclear factor kB (NF-kB)/inflammasome activation
and apoptosis through the release of mitochondrial cytochrome c into the cytosol [88,89]. Accumulation of mtROS
has been shown in various CKD, including DN and FSGS, and enhanced mtROS production recently confirmed in di-
abetic db/db mice by real-time mitochondrial redox assessment [90]. Moreover, podocyte-specific overexpression of
the antioxidant metallothionein ameliorates experimental DN [91], while podocyte-restricted deletion of mitochon-
drial glycerol 3-phosphate dehydrogenase exacerbates mitochondrial oxidative stress, podocyte loss, and proteinuria
in animal models of both DN and FSGS [92]. However, most of the studies did not identify the glomerular cell type
in which mtROS exert their deleterious effect [93–95]. Furthermore, it is unclear whether alterations of the ETC are
either the cause or the consequence of oxidative stress.

NOXs
NOXs are transmembrane proteins that transfer electrons across biological membranes, generating anion superoxide.
Among NOX isoforms, NOX4 and NOX5 are of particular relevance. In diabetic mice, podocyte-specific induction
of NOX4 resulted in GBM thickening, albuminuria, and podocyte loss [96], while both global and podocyte-specific
NOX4 deletion attenuated albuminuria, nephrin down-regulation, and FP effacement [97–99]. In cultured podocytes,
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both high glucose and TGF-β1 induce NOX4 expression, resulting in enhanced ROS production [90,97,100]. More-
over, NOX4-derived ROS induce inflammation, fibrosis, and podocyte apoptosis [97,100,101]. Despite these promis-
ing preclinical findings, treatment with the specific NOX1/4 inhibitor GKT137831, given on the top of RAS inhibition,
failed to show efficacy in patients with DKD [102]. However, rodents do not express NOX5 and, in transgenic ani-
mals expressing humans NOX5, NOX4 deletion is no longer protective, suggesting a predominant role of NOX5 over
NOX4 in humans [103]. Consistent with this, NOX5 is overexpressed by podocytes in human DN and in podocytes
exposed to high glucose. Moreover, transgenic mice overexpressing NOX5 exclusively in podocytes develop albumin-
uria and FP effacement [104,105]. Ongoing studies will clarify if targeting NOX5 may be beneficial in patients with
DN. A role for NOX in podocyte injury has also been demonstrated in other CKD. Exogenous advanced oxidation
protein products (AOPPs), which are both markers and triggers of oxidative stress, are increased in the circulation
in patients with CKD. Moreover, AOPPs induce podocyte injury both in vivo and in vitro through activation of the
RAGE-NOX-ROS-Wnt/β-catenin pathway [106–108].

Inflammation
A low-grade glomerular inflammation is believed to contribute to the pathogenesis of non-immune proteinuric
glomerulopathies. Injured podocytes can release chemokines, inducing recruitment of monocytes, and inflamma-
tory cytokines, contributing to glomerular inflammation. Besides fuelling local inflammation, podocytes also express
the receptors for various inflammatory cytokines and are thus potential targets of the deleterious effects of a proin-
flammatory environment [109]. Indeed, exposure of podocytes to macrophage-conditioned medium induces cell
shrinkage, disorganisation of F-actin microfilaments, loss of cell processes, and down-regulation of both nephrin and
podocin [110]. Moreover, abrogation of macrophage infiltration ameliorates podocyte injury and albuminuria in DN
[111,112], indicating that infiltrating macrophages play a critical role in podocyte dysfunction/injury. Of particular
relevance to DN and other proteinuric diseases are the inflammatory systems/pathways described below.

MCP-1/CCR2
Podocytes secrete the chemokine monocyte chemoattractant protein 1 (MCP-1) and binding of MCP-1 to the cog-
nate receptor, C–C chemokine receptor 2 (CCR2) on monocytes drives glomerular monocyte recruitment/activation.
Overexpression of MCP-1 prominently by podocytes is observed in several proteinuric diseases, including diabetic
and hypertensive glomerulopathies [109,113,114]. Consistently, high glucose, AGEs, and Ang-II induce MCP-1 ex-
pression in cultured podocytes via activation of NF-kB [115–117]. The transcription factor, Twist family BHLH
transcription factor 1 (TWIST1) is an important negative regulator of MCP-1 expression in podocytes. TWIST1 is
overexpressed in both human proteinuric glomerulopathies and animal models of proteinuria and podocyte-specific
TWIST1 deletion increases MCP-1, which then promotes glomerular macrophage accumulation, podocyte injury,
and proteinuria [118]. Besides inducing podocyte injury indirectly by attracting macrophages, MCP-1 has also di-
rect effects on podocytes as CCR2 is exposed by podocytes and overexpressed in both DN and crescent glomeru-
lonephritis [119,120]. In vitro studies have clarified that binding of MCP-1 to CCR2 can induce/mediate nephrin
down-regulation [120], podocyte migration, and TGF-β1-induced podocyte apoptosis [119,121].

Intervention studies in experimental animals have provided convincing evidence of a pathogenic role of the
MCP-1/CCR2 system in DN. In experimental DN, blockade/deletion of either MCP-1 or CCR2 reduces mono-
cytes/macrophages infiltration, proteinuria, and podocyte injury [120,122–128]. Moreover, in diabetic mice lacking
CCR2, re-expression of CCR2 exclusively in podocytes exacerbated DN [129]. In humans, a selective inhibitor of
CCR2 (CCX140-B) added to standard care and the Spielgelmer NOX-E36 showed benefit in patients with DKD in
phase II clinical trials [130,131], though an improvement of glucose control was also observed in these studies. A
phase II clinical trial of CCX140-B in FSGS is underway.

Tumour necrosis factor-α/tumour necrosis factor-α receptor
Podocytes produce tumour necrosis factor (TNF)-α and also express the TNF-α receptors (TNFRs) [132,133]. TNF-α
infusion induces albuminuria and podocyte apoptosis in vivo and exposure of cultured podocytes to TNF-α causes
nephrin loss and apoptosis [134–138]. However, TNF-α deletion specifically in podocytes does not affect albuminuria
in proteinuric glomerulopathies, suggesting that TNF-α derived from either infiltrating monocytes or other resident
glomerular cells plays a major role in the podocyte injury [118]. Both activation of the phosphoinositide 3 kinase
(PI3K)-Akt pathway and alterations of the podocyte actin cytoskeleton are considered the predominant mechanisms
of TNF-α-induced podocyte injury [135,136,139]. Recently, additional pathways of damage have been described. For
instance, TNF-α induces in podocytes the expression of the transmembrane protein retinoic acid receptor responder
1 (RARRES1), which is cleaved by MMPs into soluble RARRES1. Soluble RARRES1 is then endocytosed by podocytes
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and induces apoptosis via a serine/threonine-protein kinase (RIOK1)-p53-dependent mechanism [140,141]. In the
context of DN, high glucose and Ang-II have been shown to induce TNF-α expression [142,143]. Moreover, block-
ing of TNF-α by etanercept, a soluble TNFR2 fusion protein, reduces albuminuria in diabetic mice [144]. However,
evidence that this benefit was due to abrogation of TNF-α deleterious effects specifically in podocytes is lacking.

Inflammasome/IL-1β
The inflammasome is a molecular complex that can cleave the precursors of the interleukins (IL)-1β and IL-18, result-
ing in the production of mature inflammatory cytokines. Moreover, the inflammasome induces pyroptosis, which is
a special form of inflammation-driven apoptosis [145]. In cultured podocytes, Ang-II, aldosterone, high glucose, and
AGEs activate the inflammasome NLR family pyrin-domain containing 3 (NLRP3) [146–149] and this leads to both
nephrin loss and podocyte apoptosis [147]. Moreover, NLRP3 activation is observed in podocytes in high fat-diet
(HFD)-induced nephropathy, DN, and following Ang-II/aldosterone infusion. Genetic/pharmacological blockade of
NLRP3 ameliorates both albuminuria and podocyte injury in these models [146–151]. Studies in chimeric animals
have proven that the NLRP3 inflammasome expressed by renal resident cells, particularly podocytes, rather than in
inflammatory cells is the main contributor to the pathogenesis of DN [149]. Data in humans are still lacking; how-
ever, two recent randomized controlled trials (RCTs) have proven that treatment with the selective mineralocorticoid
receptor antagonist finerenone has renal and cardioprotective effects in patients with DKD [152,153] and NLRP3
blockade may be implicated.

Janus kinase-signal transducer/activator of transcription protein pathway
The Janus kinase (JAK)-signal transducer/activator of transcription protein (STAT) signalling pathway is a major
transducer of inflammatory signals. In podocytes this pathway is activated not only by inflammatory cytokines, but
also by diabetes-related insults, such as high glucose, AGEs, mechanical stretch, and Ang-II [154–156]. Moreover, an
increased expression of JAK-STAT genes was found in kidney glomerular cells, including podocytes, of patients with
early DN [157] and renal activation of the JAK-STAT pathway reported in patients with FSGS [158]. Overexpression
of JAK2 specifically in podocytes exacerbated both albuminuria and podocyte loss in experimental DN [159]. In ad-
dition, exposure of podocytes to AGEs enhanced STAT3 acetylation and blockade of STAT3 acetylation attenuated
proteinuria in db/db mice [160]. Recently, a phase II RCT in patients with DKD showed a 40% reduction in albu-
minuria in subjects receiving the JAK1/2 inhibitor baricitinib for 6 months, though no benefit was observed on renal
function [161].

Cytoskeleton and glycocalyx
The actin cytoskeleton is important in preserving the complex podocyte structure and is believed to play a key role in
FP effacement. Several mutated genes causing FSGS regulate the actin cytoskeleton and/or its attachment at GBM
[162,163]. Mutations of genes encoding for cytoskeleton components/modulators (ACTN4, INF2, AHRGAP24,
AHRGDIA) alter podocyte FPs in experimental animals [164–166] and deletion of actin-related protein 3 (ARP3),
which mediates the formation of branched actin networks, leads to podocyte detachment [167].

The Rho family of small GTPases (Cdc42, RhoA, Rac1) is the master regulator of the actin cytoskele-
ton in podocytes and both excessive and insufficient Rho activity can be detrimental [168]. Podocyte-specific
Cdc42-deficient mice develop congenital nephrotic syndrome and mice with constitutively active RhoA/Rac1 in
podocytes show both FP effacement and proteinuria [169–174]. Nephrin phosphorylation triggers actin cytoskeletal
remodelling via Rac1 [175] and Rac1 activation induces internalisation of β1-integrin, reducing podocyte adhe-
siveness to the GBM [173]. TPCR5, a non-selective channel that promotes influx of Ca2+ into podocytes, induces
podocyte migration by forming a complex with Rac1 [176] and deletion of short transient receptor potential channel
5 (TRPC5) has protective effects in experimental models of podocyte injury [177]. In FSGS, soluble urokinase plas-
minogen activator receptor (suPAR) activatesβ3-integrin and promotes both Cdc42/Rac1 activity and FP effacement
[178].

The actin cytoskeleton of podocytes has also been implicated in the pathogenesis of DN. Podocyte-specific Rac1
deficiency ameliorates both podocyte damage and proteinuria in experimental DN by suppressing the Rac1/P21
RAC1-activated kinase 1 (PAK1)/p38/β-catenin signalling cascade [179]. SSLIT-ROBO Rho GTPase-activating pro-
tein 2 (SRGAP2a), which suppresses podocyte motility by inactivating RhoA and Cdc42, is down-regulated in both
DKD patients and db/db mice. A transcriptional profile of renal biopsy from DKD patients showed that SRGAP2a
is one of the genes strongly associated with proteinuria and increasing podocyte SRGAP2a levels ameliorates both
podocyte injury and proteinuria in db/db mice [180].
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The cross-talk between podocytes and other glomerular cells can also affect the podocyte actin cytoskeleton. For
instance, glomerular endothelial cells (GECs) and mesangial cells release slit guidance ligand 2 (SLIT2) and binding
of SLIT2 to the roundabout receptor for SLIT2 (ROBO2) receptor on podocytes inhibits actin polymerisation and
reduces podocyte adhesion [181]. Endothelin 1 (ET-1) has also been involved. Podocytes and GECs can secrete ET-1
and they both express the ET-1 A (ETA) and B (ETB) receptors. In podocytes, protein overload induces the release of
ET-1 through Rho kinase activation and actin cytoskeleton rearrangement [182]. Moreover, in both DN and FSGS,
binding of ET-1 secreted by podocytes to the ETA receptor exposed by GEC induces mitochondrial oxidative stress
and dysfunction in GECs, which in turn lead to the release of factors inducing podocyte injury [183–185].

Recent studies have highlighted the importance of the glycocalyx in the ET-1-mediated cross-talk between
podocytes and GECs. Glomerular glycocalyx is formed by proteoglycans, glycoproteins, glycolipids, and glycosamino-
glycans. Increased expression of proteolytic enzymes (MMP9, hyaluronidase, heparanase), which degrade the glyco-
calyx, was observed in diabetic patients and implicated in the pathogenesis of albuminuria [186,187]. In experimen-
tal DN, GECs-derived ET-1 induces podocyte production of heparanase, which in turn promotes heparan sulphate
degradation and glycocalyx disruption on the surface of both podocytes and GECs [188]. In non-diabetic models,
degradation of the GECs glycocalyx was instead due to increased GECs expression of heparanase and hyaluronoglu-
cosaminidase in response to podocyte-released factors and ET-1 [189]. Treatment with the ETA receptor antagonist
atrasentan prevented glycocalyx degradation in patients with DKD through reduction in glomerular and endothe-
lial heparanase expression [190]. In line with these experimental studies, treatment with ETA receptor antagonists
showed anti-proteinuric/renoprotective effects in patients with DKD and FSGS [191,192].

The endocannabinoid system
The endocannabinoid system (ECS) comprises the cannabinoid receptors of type 1 (CB1R) and of type 2 (CB2R),
the two endocannabinoids (ECs), anandamide (AEA) and 2-arachidonoylglycerol (2-AG), and the enzymes involved
in their synthesis and degradation [193]. The ECS plays an important role in multiple aspects of neural functions
[194,195] and is involved in the control of both glucose and lipid metabolism in the liver and adipose tissue [196–198].
In non-metabolic organs, the EC receptors are expressed at low levels, but may undergo up/down-regulation in
pathological conditions. In addition, in various chronic degenerative diseases an increased CB1R signalling has been
causally linked to the development of oxidative stress, apoptosis, and fibrosis, while an overactive CB2R appears ben-
eficial as it down-regulates inflammatory processes [199].

The hypothesis of a possible relevance of the ECS in podocytes originates from a bulk of work showing that
podocytes have structural and molecular similarities with neurons [200–202]. Consistent with this, studies performed
in both experimental animals and human renal biopsies have shown that normal podocytes express the CB2R at high
levels and have all the enzymatic armamentarium for the synthesis and catabolism of the two ECs [203]. The physio-
logical role of CB2R signalling in normal podocytes is unknown; however, given the importance of CB2R in suppress-
ing inflammation, a high CB2R tone may be required to keep inflammation at bay and to prevent inflammation-driven
podocyte injury [203,204].

Most of the studies exploring the role of the ECS in podocyte injury were performed in the context of
haemodynamic/metabolic-induced renal diseases, such as obesity-induced nephropathy, Ang-II-nephropathy, and
DN. Overall this work has demonstrated that the ECS is altered in these pathological conditions and that correction
of these ECS abnormalities ameliorates SD protein loss, albuminuria, and podocyte apoptosis, proving that the ECS is
implicated in the pathogenesis of the podocyte injury [205–207]. Specifically, in both human and experimental DN,
podocytes show both CB1R overexpression and CB2R down-regulation [203,205,206,208,209]. Studies on cultured
podocytes suggest that hyperglycaemia is the likely mechanism of CB1R up-regulation, while mechanical stretch-
ing is involved in podocyte CB2R loss [205,206,210]. The causal link between altered CB1R/CB2R signalling and
podocyte injury have been proven by studies of both pharmacological and genetic manipulation of the ECS. Trans-
genic mice overexpressing CB1R spontaneously develop both albuminuria and nephrin loss [211]. Moreover, in dia-
betic animals, treatment with CB1R blockers and/or CB2R agonists as well as selective CB1R deletion in podocytes
ameliorates both albuminuria and loss of SD proteins [203,205,206,208,212,213]. Importantly, the efficacy of CB1R
blockade was also proven in diabetic animals with established albuminuria and in combination with RAS inhibition
to mimic the clinical scenario [214]. In vitro studies have clarified that activation of the CB1R on podocytes induces
nephrin loss via a Gi/o-cAMP-NOX4-dependent pathway and that both high glucose- and AGE-induced nephrin
down-regulation are mediated by CB1R [205]. In addition, CB1R blockade reduces Ang-II-induced SD protein loss,
suggesting that signalling through CB1R may be the final common pathway whereby not only hyperglycaemia, but
also Ang-II causes podocyte damage [205]. Although CB2R signalling has potent anti-inflammatory effect, studies in
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chimeric animals and cultured podocytes clarified that activation of the CB2R expressed on podocytes plays a major
role in preventing both nephrin loss and albuminuria. This occurs via CB2R-mediated CCR2 down-regulation that
prevents MCP-1-induced nephrin loss [210].

In view of potential future clinical applications, it is important to underscore that novel specific and
peripheral-restricted CB1R blockers, such as AM6545 and JD5037, that do not cross the blood–brain barrier and
are thus devoid of undesired central side effects are now available and are currently under testing in humans in the
context of metabolic liver diseases [215]. Therefore, pharmacological manipulation of the ECS may represent a novel
strategy for podocyte protection.

Autophagy
Autophagy is a conserved process by which cytoplasmic components, including organelles, are sequestrated within
double-membraned vesicles termed autophagosomes, and then delivered to the lysosomes for degradation and recy-
cling. Autophagy is under the control of the nutrient-sensing mTOR complex 1 (mTORC1), AMP-activated protein
kinase (AMPK), and NAD-dependent deacetylase Sirt-1 pathways. mTORC1, which is activated by amino acids and
growth factors, suppresses autophagy, whereas AMPK and Sirt-1, which are activated by energy depletion and in-
creased NAD+ levels, respectively, promote autophagy [216].

Podocytes have high levels of basal autophagy [217,218] and at variance with other cell types basal autophagy is pri-
marily regulated by AMPK, rather than by mTORC1 signalling [219]. Autophagy allows the removal of both dysfunc-
tional organelles and misfolded proteins, and serves as an energy-saving mechanism through recycling. Therefore,
the maintenance of an intact basal autophagic flux is crucial for both integrity and function of podocytes. Moreover,
under conditions of cellular stress, autophagy is activated in podocytes to preserve cell homoeostasis.

Among proteinuric conditions, autophagy is of particular relevance in DN given the close link between autophagy
and cell metabolism. The effect of diabetes on autophagy is complex as excess of nutrients and/or energy would in-
hibit autophagy, whereas enhanced diabetes-induced cellular stresses would activate autophagy [220]. Studies in both
streptozotocin (STZ)-induced diabetes and culture podocytes exposed to high glucose have shown an early induction
of autophagy, followed by inhibition [221]. β-arrestins, which are up-regulated by high glucose in podocytes, have
been proposed as a mechanism of autophagy inhibition via suppression of autophagy-related protein (Atg) 7 (Atg7)
[222]. Moreover, AGEs inhibit autophagy in podocytes by activating mTORC1 and blocking transcription factor EB
(TFEB) [223]. On the other hand, studies in both patients with DN and podocytes exposed to AGEs suggest that
autophagy blockade due to lysosomal dysfunction rather than autophagy deficiency is the major abnormality in DN
[224]. Consistent with the notion that lysosomal dysfunction is important in altering podocyte autophagy, mice with
podocyte-specific deletion of lysosomal enzymes, such as prorenin receptor and cathepsin D, show autophagosome
accumulation and FP effacement [225,226].

The importance of autophagy is highlighted by studies of genetic/pharmacological modulation of autophagy in
animal models of proteinuria. Podocyte-specific deletion of the autophagic gene Atg5 dramatically increases the
susceptibility to the development of puromycin-, diabetes-, and HFD-induced nephropathy [218,221]. Global dele-
tion of SIRPα, which positively controls autophagy, exacerbates adriamycin, puromycin, and DN [227]. Conversely,
pharmacological induction of autophagy, using either the mTORC1 inhibitor rapamycin [228–231] or a variety of
AMPK/SIRT1 activators [232–234] ameliorates podocyte injury in DN. However, the complete ablation of mTORC1
activity in podocytes by Raptor deletion led to the early development of proteinuria in diabetic mice [235,236], in-
dicating that while excessive mTORC1 activation is detrimental, basal mTORC1 activity is required for maintaining
physiological functions of podocytes. Taken together, these findings indicate that autophagy in podocytes may rep-
resent a promising target in DN and other glomerulopathies. Of interest, a highly effective oral inhibitor of activated
AMPK degradation has been recently developed [237] and will be tested in humans. However, given the high degree
of complexity of autophagy, fine-tuning of podocyte autophagy is required to achieve clinical benefit. Of interest,
among current anti-diabetic drugs both metformin and SGLT2-i have pro-autophagic properties that are believed to
contribute, at least in part, to their renoprotective effects in DN [238,239].

Mitochondria
The most important function of mitochondria is the generation of ATP through oxidative phosphorylation (OX-
PHOS). Moreover, mitochondria are also involved in a vast array of other cellular functions, including calcium ho-
moeostasis, cell metabolism, and apoptosis [240]. Injured mitochondria not only produce less ATP, but also release
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dangerous molecules, such as mtROS, cytochrome c, and free mitochondrial DNA (mtDNA) [241,242]. Highly or-
chestrated processes of mitochondrial quality control enable cells to avoid the dangers of mitochondrial injury. Mito-
chondrial fusion reduces mitochondrial stress by mixing the content of both damaged and healthy mitochondria, thus
diluting stress [243]. Fission segregates damaged portions of the mitochondria that are then removed by mitophagy
[244]. Defective mitochondria are replaced by mitochondrial biogenesis [245]. Although mice with podocyte-specific
deletion of crucial components of the mitochondrial quality control do not have a renal phenotype [246], these pro-
cesses may become important in podocytes exposed to stressful conditions and/or having enhanced metabolic needs.

OXPHOS
The importance of OXPHOS as an energy source in podocytes is a matter of debate. Podocytes have less mitochondria
compared with other kidney cells and cultured podocytes rely predominantly on anaerobic glycolysis to meet their en-
ergy requirements [246]. However, OXPHOS components increase during podocyte differentiation [247], suggesting
relevance in podocyte homoeostasis. Moreover, cultured podocytes lacking interdigitating FPs might have differ-
ent energy requirements compared with podocytes in vivo. Finally, OXPHOS may become important in podocytes
exposed to stress. Consistent with the notion that OXPHOS is relevant in podocytes, mutations of genes (COQ2,
PDSS2, COQ6 ADCK4, PDSS1) involved in coenzyme Q10 biosynthesis cause the development of FSGS in hu-
mans [248–252]. A mouse with a spontaneous homozygous missense mutation of decaprenyl diphosphate synthase
subunit 2 (PDSS2) develops proteinuria and FP effacement [253]. Podocyte-specific AarF domain-containing pro-
tein kinase 4 (ADCK4) ablation results in abnormally large and dysfunctional mitochondria and FSGS development
[254,255]. Inhibition of mitochondrial OXPHOS machinery by selective deletion of CR6-interacting factor 1 (CRIF1)
results in mitochondrial dysfunction, FP effacement, and proteinuria [256]. In DN, exposure of podocytes to high
glucose reduces OXPHOS [247] and glomeruli from Pima Indians with early DN show dysregulation of genes encod-
ing components of the respiratory chain [257]. Moreover, there is evidence that hyperglycaemia reduces OXPHOS in
podocytes via Smad4-mediated inhibition of the degradation of the ATP synthase inhibitor [258].

mtDNA
In humans, mtDNA 3243 A>G mutation causes the development of FSGS. A large-scale proteomics analysis of urine
samples from adult patients with mitochondrial diseases found this mutation in 75 out of 117 subjects [259], indicat-
ing that it is the most common genetic mitochondrial disorder with renal involvement. mtDNA is highly susceptible
to oxidative stress because of lack of protective histone proteins and proximity to mtROS and there is renal accumu-
lation of oxidative mtDNA lesions and loss of mtDNA copy number in experimental DN [260,261]. High glucose,
aldosterone, and peroxide hydrogen reduce mtDNA in podocytes [262,263] and mtDNA-depleted podocytes show
increased mtROS levels, reduced mitochondrial membrane potential, and nephrin down-regulation [262]. Mecha-
nisms of mtDNA repair are highly relevant and podocyte-specific deletion of Mpv17, which is involved in mtDNA
maintenance, results in mitochondrial dysfunction and severe glomerular disease under conditions of stress [264].

Fusion–fission
Enhanced mitochondrial fragmentation due to increased mitochondrial fission is observed in podocytes in both hu-
man and experimental DN [265]. Mitochondrial fission is under the control of dynamin-related protein 1 (Drp1),
which, once activated through phosphorylation, translocates to the outer mitochondrial membrane and promotes
fission [266]. In experimental DN, genetic strategies blocking Drp1 expression/phosphorylation specifically in
podocytes reduce mitochondrial fission, ameliorate podocyte damage, and protect against DN progression [267–269].
In keeping with this, in vitro pharmacological inhibition/deletion of Drp1 protects podocytes exposed to high glu-
cose, aldosterone, palmitate from mitochondrial dysfunction and injury [270–272]. By contrast, puromycin and adri-
amycin enhance podocyte mitochondrial fission by repressing mitofusin 1, which is a key driver of mitochondrial
fusion [273].

Mitophagy
Mitophagy is a mechanism of selective degradation of mitochondria via autophagy. It is predominantly controlled
by the PTEN-induced kinase 1 (PINK1)/Parkin pathway that is responsible for both tagging and delivery of mito-
chondria to autophagosomes [274]. Increasing evidence indicates impaired mitophagy in DN. PINK1 expression is
reduced in both diabetic mice and podocytes exposed to high glucose [275]. The SIRT1-PGC1α-FOXO1 pathway is
implicated in PINK1 down-regulation [276,277] and podocyte-specific forkhead box protein O1 (FOXO1) overex-
pression restores PINK1 expression and reduces both mitochondrial dysfunction and podocyte injury [278].
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Figure 3. TNT formation between podocytes

(A) Representative image showing a TNT-like channel interconnecting two podocytes (magnification 630×, scale bar = 50 μm).

Serial Z-stack images prove that the TNT does not adhere to the substrate. Colours represent the Z-depth (depth coding; red:

bottom, blue: top). (B) Schematic representation of TNT-mediated mitochondrial transfer between podocytes.

Mitochondrial biogenesis
Peroxisome proliferator-activated receptor-γ co-activator (PGC-1α) is the master regulator of mitochondrial biogen-
esis and silencing of PGC-1α leads to podocyte injury by disrupting mitochondrial function. Decreased glomerular
PGC-1α expression has been reported in both patients with DKD and experimental models of both FSGS and DN
[279–281]. Sirt1, AMPK, and Tug1 are positive regulators of PGC-1α and they are likely implicated. Sirt1 activates
PGC-1α via deacetylation and podocyte-specific deletion of Sirt1 not only decreases PGC-1α expression, but also in-
creases the susceptibility to both adriamycin and DN [282]. Moreover, it exacerbates both albuminuria and podocyte
damage in aged non-diabetic mice [283]. On the contrary, overexpression of Sirt1 in podocytes attenuates DN pro-
gression [284]. Activation of the AICAR-AMPK-PGC-1α pathway improves experimental DN [234]. Overexpression
of Tug1 in podocytes rescues PGC-1α expression, improves mitochondrial bioenergetics, and reduces both podocyte
injury and albuminuria in db/db mice [285,286]. Although PGC-1α may represent a potential target to improve
podocyte health, a recent study has shown that PGC-1α overexpression in podocytes induces the formation of giant
mitochondria and increases podocyte both proliferation and dedifferentiation, resulting in collapsing glomerulopa-
thy. Therefore, the level of PGC-1α expression needs to be tightly regulated to maintain podocyte health.

Lipotoxicity
Growing evidence indicates that lipids can contribute to podocyte injury. Lipid accumulation in renal cells, includ-
ing podocytes, may cause lipotoxicity and CKD has been proposed as a form of fatty kidney disease. Moreover, the
podocyte SD is assembled in specialised plasma membrane domains (lipid rafts), which are enriched in both choles-
terol and sphingolipids. Therefore, changes in podocyte lipid metabolism/composition may affect podocyte intracel-
lular signalling.

Cholesterol
Most of the studies linking cholesterol to podocyte injury focused on the ATP-binding cassette transporters A mem-
ber 1 (ABCA1) that mediates cholesterol efflux from podocytes. Both ABCA1 down-regulation and podocyte accu-
mulation of lipid droplets are observed in patients with FSGS and DN [134,287] as well as in cultured podocytes
exposed to Ang-II, TNF-α, and serum from patients with early DN and FSGS [134,257,287,288]. Furthermore,
podocyte-specific ABCA1 deletion exacerbates albuminuria in both experimental DN and TNF-induced glomeru-
lopathy [134,257]. However, accumulation of the mitochondrial phospholipid cardiolipin, leading to mitochondrial
dysfunction, rather than accumulation of free cholesterol appears to be the predominant mechanism linking ABCA1
deficiency to podocyte apoptosis. Consistent with this, deletion of sterol-o-acyltransferase-1 (SOAT1), which converts
free cholesterol into cholesterol esters, induces free cholesterol accumulation, but does not cause glomerular injury in
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Table 1 Ongoing clinical trials on new drugs in FSGS and DKD

Mechanism of
action NCT number Drug Phase Subjects (n) RCT (Y/N) Population Primary outcome

Dual ETAR and
AT1R antagonist

NCT03493685 Sparsentan III 371 Y FSGS Slope eGFR
UP/C ≤ 1.5 g/g
UP/C ↓ 40%

NCT05003986 Sparsentan II 57 N FSGS, MCD, Alport
Syndrome,
IgA Nephropathy,
IgA-Associated Vasculitis

Safety
change in UP/C

ETAR antagonist NCT04573920 Atrasentan II 80 N FSGS, Alport Syndrome, IgA
nephropathy, DKD on the
top of RASi and SGLT2i

Change in UP/C (FSGS)
Change in UA/C (DKD)

APOL1 antagonist NCT04340362 VX-147 II 16 N APOL1-mediated FSGS Change in UP/C

CCR2 inhibitor NCT03703908 CCX140-B II 13 N FSGS Change in UP/C

FLAP NCT04492722 AZD5718 II 632 Y 67% DKD; 33% non-DKD Change in UA/C

SLIT2 antagonist NCT03448692 PF-06730512 II 44 N FSGS Change in UP/C

TRPC5 inhibitor NCT04387448 GFB-887 II 125 Y FSGS, TR-MCD, DKD on
top of RASi or ARB

Change in UP/C
Change in UA/C

PDE4 NCT04755946 Roflumilast III 48 Y DKD Change in UA/C
Absolute change in eGFR

Non-specific PDE
inhibitor

NCT03625648 Pentoxifylline IV 2510 Y DKD Time to ESKD or death

Periferally CB1R
inverse agonist

NCT04880291 GFB-024 I 56 Y Healthy overweight and
obese volunteer, T2DM
treated with lifestyle
modification or metformin

Safety and tolerability

IL-33 monoclonal
Ab

NCT04170543 MEDI3506 II 565 Y DKD on top of RASi or ARB
and dapagliflozin

Change in UA/C

Monoclonal
Ab-based inhibitor
of VEGF-B

NCT04419467 CSL346 II 100 Y DKD Change in UA/C

PPARα activator NCT04929379 Fenofibrate II 40 Y DKD (T1DM) Baseline-adjusted eGFR
Baseline-adjusted levels of
21 serum biomarkers of
increased ESKD risk

TP NCT04881123 SER150 II–III 100 Y DKD on top of RASi or ARB >30% change in UA/C

Selective MR
modulator

NCT04595370 AZD9977 II 540 Y HFrEF+CKD (40% DKD) on
top of dapaglifozin

Change in UA/C

MSCs NCT04125329 UC-MSCs I 15 N DKD Safety

NCT04562025 UC-MSCs NA 38 Y DKD Safety

NCT04216849 UC-MSCs I–II 54 Y DKD Change in UA/C

NCT02585622 MSCs I–II 48 Y DKD Safety

NCT03840343 Autologous MSCs I 30 N DKD Safety

Trials were selected by using as key words, FSGS (focal segmental glomerulosclerosis), DN (diabetic nephropathy). Only trials that are yet to be completed have been
included. Search on clinicaltrails.gov was performed on 27 October 2021. Abbreviations: APOL1, apolipoprotein L1; ARB, angiotensin receptor blocker; AT1R, angiotensin
II receptor type 1; CB1R, cannabinoid receptor type 1; CCR2: C–C chemokine receptor type 2; eGFR, estimated glomerular filtration rate; ESKD, end-stage kidney
disease; ETAR, endothelin receptor subtype A; FLAP, 5-lipoxygenase-activating protein; HFrEF, heart failure with reduced ejection fraction; MCD, minimal change disease;
MR, mineralocorticoid receptor; PDE4, phosphodiesterase 4; PPARα, peroxisome proliferator-activated receptor α; RASi, renin–angiotensin system inhibitor; SGLT2i,
sodium/glucose cotransporter-2 inhibitor; TP, thromboxane; TPCR5, transient potential channel receptor 5; T1DM, type 1 diabetes; T2DM, type 2 diabetes; UA/C, urine
albumin/creatinine; UC-MSC, human umbilical cord MSC; UP/C, urine protein/creatinine; VEGF-B, vascular endothelial growth factor type B.
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mice with podocyte-specific deletion of ABCA1. Moreover, the cardiolipin peroxidase inhibitor elamipretide amelio-
rates both albuminuria and podocyte loss in mice with established DN [257]. Small molecule drugs that up-regulate
ABCA1-dependent cholesterol efflux by targeting oxysterol efflux by targeting oxysterol-binding protein-like 7 (OS-
BPL7) normalise proteinuria and prevent renal function decline in both adtiamycin-induced nephropathy and Alport
Syndrome [289].

Sphingolipids
Recent studies implicate sphingolipids and in particular ceramide in podocyte injury. This is not surprising
given the central role of ceramide in promoting apoptosis, cell cycle arrest, and senescence [290,291]. Mice with
podocyte-specific deletion of the acid ceramidase main catalytic subunit (ASAH1) show glomerular ceramide accu-
mulation, FP effacement, and nephrotic proteinuria [292]. In these mice, further deletion of sphingomyelin phospho-
diesterase 1 (Smpd1), which hydrolyses sphingomyelin to ceramide, prevents ceramide accumulation, and protects
against podocyte injury. Sphingomyelinase-like phosphodiesterase 3b (Smpdl3b), which inhibits ceramide conversion
into ceramide-1-phosphate (C1P), is increased in the glomeruli from patients with DN and db/db mice and Smpdl3b
deletion specifically in podocytes protects from the development of albuminuria [293]. Ceramide is also metabolised
by sphingosine kinase (SPHK) to sphingosine 1 phosphate (S1P), which is then degraded to phosphoethanolamine
and hexadecenal by S1P lyase (SGPL1). The importance of S1P has been highlighted by the discovery that genetic
SGPL1 deficiency, leading to S1P and ceramide accumulation, is associated with the development of FSGS in humans.
Moreover, mice with global SGLP1 deletion develop both FP effacement and severe proteinuria [294–297], though
evidence of a specific relevance of S1P in podocytes is still lacking.

Podocyte repair/regeneration
Given the poor capacity of podocytes to proliferate and thus to replace lost podocytes [11], strategies for podocyte
repair/regeneration are of great interest.

Parietal epithelial cells
Recent studies suggest that glomerular parietal epithelial cells (PECs) covering the Bowman’s capsule are podocyte
precursors and can replace lost podocytes. Studies of single lineage tracing in experimental FSGS support this no-
tion [298–300]. Recently, using dual lineage tracing of both podocytes and PECs, it was convincingly shown that
PECs can transdifferentiate in adult podocytes in FSGS [301]. Cells of the renin lineage have also been proposed as
podocyte precursors based on experiments of single/dual lineage tracing in models of both FSGS and nephron loss
[302–304]. There is, thus, an increasing quest for novel approaches that may favour transdifferentiation of precur-
sors into podocytes. In mice with FSGS, treatment with RAS inhibitors leads to partial podocyte replenishment after
podocyte loss [305], suggesting podocyte regeneration. Inhibition of the chemokine, C–X–C motif chemokine ligand
12 (CXCL12) is another potential strategy as CXCL12 is released by healthy podocytes and suppresses PECs transdif-
ferentiation [300]. Moreover, retinoic acid favours PECs differentiation into podocytes [306,307] and in experimental
proteinuric glomerulopathies treatment with all-trans retinoic acid increases the number of both podocytes and cells
with a mixed PEC/podocyte phenotype [307]. Evidence of replacement of lost podocytes by local precursors in DN
is limited. However, in leptin-deficient BTBR ob/ob mice, leptin re-expression reverted advanced DN, indicating
that restoration of lost podocytes is possible [308]. Moreover, cells expressing both podocyte and PEC markers were
observed in both the glomerular tuft and the Bowman’s capsule in kidney biopsies from patients with DN [309].

Stem cells
Mesenchymal stem cells (MSCs) have been proposed as a potential therapeutic strategy for regenerative medicine.
Today, we know that the beneficial effects of exogenous MSCs are predominantly due to MSC release of both soluble
factors and extracellular vesicles (EVs). MSC-derived EVs can horizontally transfer to podocytes miRNAs, mRNAs,
and proteins, affecting the podocyte phenotype. In a 3D glomerular fluidic system, treatment with MSC-EVs de-
creases adriamycin-induced both podocyte apoptosis and albumin permeability [310]. In db/db mice, EVs released
by adipose tissue-derived MSC (ADMSC-EVs) ameliorate both albuminuria and podocyte apoptosis by transfer of
miR-486, miRNA-215-5p, miRNA-26a-5p [311–313]. Podocytes can also be obtained from induced pluripotent stem
cells (iPSCs) [314]. Recent studies have shown that iPSC-derived podocytes transplanted into mouse kidneys can in-
tegrate within the glomeruli [315] and reconstitute the kidney glomerular–capillary wall function on a microfluidic
chip [316]. Therefore, both healthy and patient-specific human podocytes can be generated from iPSCs to model
podocyte diseases, screen drugs, and develop cell-based treatment. From pluripotent stem cells, it is also possible to
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generate kidney organoids [317]. Of interest, a recent study has identified gene expression signatures of podocytes
during human nephrogenesis and organoid development and discovered that elements of these signatures were reac-
tivated in progressive glomerular disease, including DN [318].

Tunnelling nanotubes
Tunnelling nanotubes (TNTs) are nanosized open-ended membrane channels without contact with the substrates that
interconnect cells. TNTs are a mechanism of cell-to-cell communication that allows horizontal intercellular transfer
of various cellular components, including organelles as mitochondria and lysosomes [319,320] (Figure 3). Transfer of
organelles from healthy to damaged cells via TNTs represents an important survival mechanism and TNT-mediated
mitochondrial exchange is considered a mechanism of mitochondrial quality control [321]. Recent data show that
podocytes exposed to injury can form TNTs via an M-Sec-dependent mechanism. In adriamycin-treated podocytes
the M-Sec–TNT system allows mitochondria transfer, ameliorates mitochondrial bioenergetics, and partially reverts
podocyte injury. Moreover, in vivo M-Sec is overexpressed by podocytes in both human and experimental FSGS and
M-Sec deletion causes podocyte injury, mitochondrial abnormalities, and the spontaneous development of progres-
sive FSGS [322].

Podocytes and personalised medicine
In the past decade, there has been growing interest in the use of omics techniques to study the kidney. Omics data de-
rived from kidney biopsy tissue coupled with genetic, epigenetic, proteomics, metabolomics analyses and clinical data
(phenotypes, longitudinal outcomes) have the potential not only to identify novel biomarkers and druggable targets,
but also to clarify cellular responses to insults and disease mechanisms. Achieving a more comprehensive molecular
understanding of proteinuric glomerulopathies through systems biology is instrumental for providing personalised
care to people with CKD/DKD [323].

Transcriptomics data from human kidney biopsy samples can be integrated with genetic information to clarify the
functional effect of genetic polymorphisms [324]. For instance in patients with FSGS comparison of the transcriptome
of subjects with high-risk vs. low-risk ApoL1 variants showed differences in expression and/or coexpression of genes
involved in mitochondrial regulation [325]. Differential gene expression profiling can help identify transcriptional
changes that are involved in the pathogenesis of the renal injury or can predict outcomes. Integration of transcrip-
tomic data from human kidney biopsies with data from animal models can identify shared pathways of injury and help
select appropriate models for preclinical studies [326]. Transcriptional data can also be integrated with structural data
in order to identify both markers and pathways of progression. Novel approaches, such as digital pathology, computa-
tional image analysis, and pattern recognition, can complement traditional histological assessment. The NEPTUNE
digital pathology scoring system, which enables morphologic profiling of renal structures, including podocyte dam-
age, has been validated and shows good reproducibility [327]. Using this scoring system, patients with FSGS/minimal
change disease were grouped into clinically and biologically relevant subgroups that were associated not only with
clinical outcomes, but also with molecular signatures, reflecting activation of immune/inflammatory pathways
[328].

Single-cell RNA sequencing (scRNA-seq) technology can also be applied to kidney biopsy samples to obtain
cell-specific data. scRNA-seq transcriptome analyses can redefine cellular types and subtypes within the glomeruli
based upon their transcriptional profile and improve disease classification. In addition, this novel approach can give
insight on the molecular processes at the cellular level [329] and identify podocyte-specific changes that occurs dur-
ing disease onset, progression, and remission [330]. A recent study profiled 4332 individual glomerulus-associated
cells isolated from human living donor renal biopsies and mouse kidney. The study identified genetic programmes
for all glomerular cell types, including podocytes, and demonstrated remarkable species differences [331]. Although
scRNA-seq is very promising for the study of podocyte pathophysiology, new strategies for tissue processing into
single cells, such as microfluidic systems, are required [332]. Moreover, integration of large and complex scRNA-seq
data into biological mechanisms is still very challenging [332]. However, rapid progress in statistical, computational,
and artificial intelligence methods will enable mapping of very large datasets in the near future.

Conclusion and future perspective
Despite progress in our understanding of the mechanisms of podocyte injury, several questions remain unanswered.
In particular, the study of mitochondria, lipid metabolism, and autophagy in podocytes is still in its infancy and awaits
further investigation in both health and disease. The lack of podocytes forming a filtration slit in culture represents an
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important limit to in vitro studies, given the importance of the SD for podocyte structure, intracellular signalling, re-
sponse to haemodynamic stress, and likely cell metabolism. Moreover, renal biopsies are rarely performed in DKD and
usually only in advanced stages of the disease, limiting our ability to relate mechanisms of hyperglycaemia-induced
podocyte damage to early podocyte abnormalities. New high-resolution imaging systems and systems biol-
ogy approaches are likely to significantly enhance our understanding of podocyte biology in the next future
[333,334].

Novel drugs have recently become available for the treatment of diabetic and other proteinuric glomerulopathies.
Dual inhibition of SGLT2 and RAS is highly effective in reducing both proteinuria and eGFR decline in patients with
DKD [68] and other proteinuric forms of CKD [69]. RCTs have also proven benefit of both finerenone and atrasentan
in DKD [152,153,191]. However, there is still a residual risk of progression to ESRD and stimulated emission deple-
tion (STED) super-resolution microscopy has revealed a significant residual podocyte injury in db/db mice treated
with metformin and both RAS and SGLT2 inhibitors [335]. Available drugs predominantly target the hemodynamic
insults; therefore, non-hemodynamic mechanisms described in this review may represent additional promising tar-
gets. Drugs acting upon oxidative stress, inflammation, lipotoxicity, ECS, autophagy, and mitochondrial dysfunction,
have been tested in experimental models of proteinuria and some are currently under clinical development (Table
1). However, in the last 20 years, drugs that were very effective in experimental animals failed to prove efficacy in
humans. To improve translation of results from preclinical to clinical studies, it would be important to test novel
drugs in animal models that closely replicate the clinical scenario, including treatment with standard-of-care therapy,
and to apply study designs similar to that used in RCTs [336]. The discovery that patients with mutations of genes
involved in coenzyme Q10 biosynthesis respond to oral coenzyme Q10 supplementation demonstrates that a person-
alised medicine approach, targeting specific mechanisms of podocyte injury, may be advantageous [337]. Moreover,
culturing podocytes derived from iPSCs on the chip and kidney organoids represent new important tools in drug
discovery [316]. Besides preventing and/or halting the progression of podocyte injury, an emerging approach is to
favour podocyte repair/replacement by either activating podocyte precursors or modulating podocyte phenotype via
both EVs and TNTs. In particular, genetically engineered EVs may represent next-generation cell-free therapeutic
products for podocyte regenerative medicine.
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