
07 January 2023

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Capsule Networks with Routing Annealing

Publisher:

Published version:

DOI:10.1007/978-3-030-86362-3_43

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer Science and Business Media Deutschland GmbH

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1844236 since 2022-02-28T13:12:54Z



Capsule Networks with Routing Annealing

Riccardo Renzulli[0000−0003−0532−5966], Enzo Tartaglione[0000−0003−4274−8298],
Attilio Fiandrotti[0000−0002−9991−6822], and Marco

Grangetto[0000−0002−2709−7864]

Computer Science Department, University of Turin, 10149 Turin, TO, Italy
{name.surname}@unito.it

Abstract. Capsule Networks overcome some shortcomings of convolu-
tional neural networks organizing neurons into groups of capsules. Cap-
sule layers are dynamically connected by means of an iterative rout-
ing mechanism, which models the connection strengths between capsules
from different layers. However, whether routing improves the network
performance is still object of debate. This work tackles this issue via
Routing Annealing (RA), where the number of routing iterations is an-
nealed at training time. This proposal gives some insights on the effective-
ness of the routing for Capsule Networks. Our experiments on different
datasets and architectures show that RA yields better performance over
a reference setup where the number of routing iterations is fixed (even
in the limit case with no routing), especially for architectures with fewer
parameters.

Keywords: Capsule Networks · Routing · Annealing.

1 Introduction

Capsule Networks (CapsNets) [8, 9, 16], received lots of attention lately as they
tackle several shortcomings of Convolutional Neural Networks (CNNs). The hu-
man visual system is known to recognize objects (e.g., faces) decomposing them
in hierarchy of parts (e.g., mouth and nose) with poses imposing coordinate
frames to represent shapes [7]. While CNNs can detect the presence of objects
in an image, they cannot however capture the spatial relationships between its
parts mainly due to max pooling layers progressively dropping spatial informa-
tion. CapsNets attempt to preserve and leverage an image representation as a
hierarchy of parts with poses introducing two architectural novelties.
First, neurons are organized in groups called capsules, where each capsule ac-
counts for a different visual entity, e.g. for a different part of an object. Then,
neurons inside each capsule account each for a different property or attribute of
the object such as pose (position, size, orientation) and properties (color, defor-
mation, etc.) [16]. The output of each capsule is a vector, where the normalized
vector length is the probability that the image contains the object the capsule
accounts for [16].
Second, pooling layers are replaced by a routing algorithm, which captures the



2 R. Renzulli et al.

part-objects spatial relationships between one capsule layer and the following.
Unlike conventional neural networks, each capsule chooses to which capsules
of the next layer to forward its output. Capsules activations are multiplied by
learnable weight matrices in order to cast the votes for how the poses of the
capsules of the next layer will be. The routing algorithm iteratively computes
the agreement between the predictions of a capsule layer for the following layer.
The routing algorithm outputs both the poses of the following capsule layer and
the probabilities with which parts are assigned to objects. Therefore, the infor-
mation flow across layers is not given by the network topology anymore, rather
it is dynamically controlled by the routing algorithm.
Recently, the contribution of the routing algorithm to CapsNets generalization
ability and robustness to affine transformations has been questioned [5, 14]. Typ-
ically, the number of routing iterations r is fixed once and for all during training
and inference. Dropping the routing procedure is equivalent to run just one it-
eration (uniform routing in [14], r = 1) so that the coupling coefficients are not
updated and they are all initialized equally. In [5, 14] it is shown that by sim-
ply averaging the predictions instead of finding the coupling coefficients between
capsules through the routing algorithm yields better results. To the present date,
it is not clear whether the routing algorithm improves the performance of Cap-
sNets and what is the optimal number of iterations.
This work provides new evidence on the benefits of routing proposing Routing
Annealing (RA), a novel technique where the number of routing iterations is iter-
atively found at training time. With RA, the number of iterations of the routing
algorithms increases whenever the network performance reaches a loss plateau.
We observed that, for the same number of routing iterations, a gradual ramp
thereof allows to reach better minima of the loss function. Our experiments over
multiple datasets show better performance when using RA, especially when the
number of capsules in the network is limited, i.e. where CapsNets performance
is weaker. We also found that the number of routing iterations depends on the
number of capsules, their dimensions and on the dataset itself.
The rest of this work is organized as follows. In Sec. 2 we first provide the back-
ground on CapsNets instrumental to understanding this work, then we discuss
recent literature on routing. Next, in Sec. 3 we present Routing Annealing (RA),
our proposed training procedure for CapsNets. Finally, in Sec. 4 we experiment
with RA and a reference routing algorithm over multiple datasets, highlighting
the benefits of the former. Sec. 5 drawn the conclusions and discusses further
developments of this work.

2 Background and Related Works

This section first describes those aspects of CapsNet instrumental to the un-
derstanding of this work, namely their architecture and the routing algorithm
introduced by Sabour et al. [16]. Then, we review the literature especially related
to the routing algorithm and we make some considerations on this procedure.



Capsule Networks with Routing Annealing 3

2.1 CapsNet Architecture

Fig. 1 shows the CapsNet architecture proposed in [16] for MNIST classification,
consisting in one convolutional layer and two capsule layers. Due to its relevance
for our work and for sake of simplicity, our overview on CapsNets will focus on
this specific architecture.

Conv1

INPUT

PrimaryCaps

Routing

D
ig
itC

a
p
s

D2

K

N

T

vj

Fig. 1: CapsNet architecture described in [16]. There are one convolution layer
(Conv1) and two capsule layers (PrimaryCaps and DigitCaps). The routing al-
gorithm controls the information flow between capsule layers.

The first layer (Conv1) is a convolutional layer that converts pixel intensities to
the activities that are given in input to the first capsule layer.
The PrimaryCaps layer is implemented as a convolutional layer with a 9×9 filters
[16] and T ×D1 channels where T is the number of primary capsules types and
D1 is the dimension of a capsule vector. Overall, there are T ×M ×N primary
capsules. Let us denote as uj primary capsules vectors normalized with the
squashing function introduced in [16]. Each capsule is composed of a pose vector
whose magnitude models the probability that the object that detects is present
in the image. The output layer (DigitCaps) comprises of K D2-dimensional digit
capsules vj , one for each output class.
The information flow between primary and digit capsules is governed by a routing
algorithm which aims to organize these capsules into a part-whole hierarchy.
One of the most employed is the one introduced in [16]. This is an iterative
procedure that computes both the poses of digit capsules from the poses of
primary capsules and the strengths of the connections between the latter two.
Each primary capsule predicts a pose for each digit capsule: if there are a lot
predictions agreeing with each others, this means that they are in correct spatial-
relationship to activate a specific digit capsule. The routing algorithm aims to
find clusters of these agreements. Let W ij ∈ RD1×D2 be the matrix which
projects the information flow between the i-th primary capsule and the j-th digit
capsule. This can be learned through standard error gradient backpropagation.
The prediction, or vote, of a primary capsule i for the digit capsule j is defined



4 R. Renzulli et al.

as ûj|i = W ijui which is the input for the routing algorithm described in [16]
and shown in Alg. 1. This procedure shows how to dynamically compute the

Algorithm 1 Dynamic routing algorithm

1: procedure Routing(ûj|i, r)
2: for each primary capsule i and digit capsule j: bij ← 0
3: for r iterations do
4: for each primary capsule i: ci ← softmax(bi)
5: for each digit capsule j: sj ←

∑
i

cijûj|i(bi)

6: for each digit capsule j: vj ← squash(sj)
7: for each primary capsule i and digit capsule j: bij ← bij + vj · ûj|i
8: end for
9: return vj

10: end procedure

poses vj of the digit capsules given the predictions ûj|i. At the beginning of the
routing algorithm (line 2) the logits bij are initialized equally and they are the
log prior probabilities that capsule i should be coupled to capsule j. The core
of the routing algorithm is depicted in lines 3-8. At every iteration, a “routing
softmax” (line 4) is applied to the logits bij to obtain the corresponding coupling
coefficient cij . Then, the total input sj of capsule j of the DigitCaps layer is
computed as the weighted average of the input predictions (line 5). Each vote
ûj|i is weighted by the corresponding coupling coefficient cij . vj is defined as
the normalized ”squashed” sj (line 6). Then each bij is refined by measuring the
agreement between the output vj of a capsule j and the prediction ûj|i (line
7). Therefore, if there is a strong agreement, the corresponding link strength
bij between capsules i and j is increased, decreased otherwise. Finally, after r
iterations of lines 4-7, the routing algorithm output the final pose vj for each
digit capsule.

2.2 Literature review and considerations on the routing algorithm

Ever since, different routing algorithms and architectures for capsule networks
have been proposed and have found applications in various tasks [2, 4, 11, 18]. We
refer to routing-based CapsNets as those models that employ a routing algorithm
in the architecture of the network. Hinton et al. [9] employ the Expectation-
Maximization algorithm for the iterative routing procedure and build a deeper
capsule network with convolutional capsule layers. Wang et al. [17] model the
routing strategy as an optimization problem that minimizes a clustering-like
loss and a KL divergence between the coupling distribution. Li et al. [13] re-
duce the computational complexity of the routing process using master and
aide branches. Hahn et al. [6] describe a self-routing method that incorporates
mixture-of-experts into capsule network models so as they do not require agree-
ments anymore. De Sousa Ribeiro et al. [3] replace the routing algorithm with



Capsule Networks with Routing Annealing 5

variational inference of part-object connections in a probabilistic capsule net-
work, leading to a significant speedup without sacrificing performance. Further-
more, Ahmed et al. [1] exploit attention modules and differentiable binary router
to remove the recurrence of the routing algorithm to estimate the coupling coef-
ficients. Lenssen et al. [12] exploit group convolutions to guarantee equivariance
of pose vectors as well as invariance of output activations. Rajasegaran et al. [15]
propose a deep capsule network architecture which uses a novel 3D convolution
based dynamic routing algorithm aiming at improving the performance of Cap-
sNets for more complex image datasets.
Despite of all the contributions mentioned before it is still no clear if CapsNets
really need a routing algorithm. Paik et al. [14] highlight that running just one
iteration of the routing algorithm (namely assigning the connection strengths
uniformly or randomly) leads to better results. This is explained as more it-
erations of the routing algorithms do not change the classification result but
polarize the link strengths [14]. Gu et al. [5] mitigate this problem with a simple
but effective solution in which the transformation matrices are shared between
all capsule types. However, in contrast with the present work, they do not change
the number of iterations during the training process neither the number of cap-
sule types and their dimensions, which as we will see they do have a strong
impact on the number of iterations of the routing algorithm.

3 Methodology

This section first describes the standard methodology training algorithm and
Routing Annealing (RA), the routing training technique we propose in this work,
and then discusses its relation with the simulated annealing.

3.1 Training with Fixed Routing

As a reference, Alg. 2 shows the standard strategy for training a CapsNet. The
network parameters are optimized with standard backpropagarion of the error
gradients for a number of epochs until some stop criterion is met. For each
epoch, the forward pass (line 5-11) is computed, followed by error gradients
backpropagation and parameter update (line 12). The training procedure ends
when the loss computed over a validation set does not decrease for p epochs
in a row (p is usually termed as patience). The algorithm returns the network
(i.e., the learned parameters set) that yields the lowest loss on the validation
set. In this procedure, as can be note from line 6 which refers to Alg. 1, the
number of routing iterations r is fixed once for all (usually, r=3), so we refer to
this technique as Fixed Routing (FR). Notice that when the trained network is
deployed for inference, the routing algorithm is executed for r iterations, as well.
A standard procedure towards optimising the iterations number would be to
optimize r with a grid-search strategy: one runs as many simulations as r values
to test, during which r is kept constant. However, we experimentally show that
this approach leads to sub-optimal performance, which motivates the design of
our routing technique.



6 R. Renzulli et al.

Algorithm 2 Training with Fixed Routing : learns the network parameters for
a fixed number of iterations r.

1: procedure Fixed-Routing(r, p)
2: initialize CapsNet
3: e← 0; L? ← 0; e? ← 0
4: while e− e? < p do
5: compute all primary capsules poses ui and votes ûj|i
6: compute all digit capsules poses: vj ← Routing(ûj|i, r)
7: evaluate current loss L on the validation set
8: if L < L? then
9: L? ← L; e? ← e

10: end if
11: e← e + 1
12: backpropagate error gradients and update parameters
13: end while
14: return CapsNet network of epoch e? with the best loss value
15: end procedure

3.2 Training with Routing Annealing

In this section we propose Routing Annealing (RA), an iterative method to
jointly optimize the number of routing iterations r? and the network parame-
ters. In a nutshell, RA finds r? adaptively during training for a given capsule
architecture over a given dataset and is described in pseudo-code as Alg. 3. The
algorithm takes as input: r0, the initial value of r; rT , the maximum value for
r; s, the schedule used to increase r; the patience p, in number of epochs. Let
us denote as rk the value of r at step k: we say that every time r increases, an
annealing step is performed. We denote as L?

k and e?k the lowest losses achieved
so far and the corresponding epochs for each rk. The main difference between
Alg. 2 and 3 lies in line 3 where we loop over the possible values of r instead
over the number of epochs and in line 8 where the number of routing iterations
is increased. In line 5, Alg. 1 is used as core routing algorithm. At step k, we
increase r by s if the validation loss L?

k does not decrease for p epochs (lines
7-8). Every time r is increased, the training does not start from scratch again.
Instead it is resumed with the network weights with the best loss achieved with
the previous value of r, namely the network at epoch e?k−1 (line 9). Here we
assume that we save the network weights for each epoch. When r reaches the
maximum allowed rT , the training procedure ends and best network obtained
during training along with the corresponding number of routing iterations is
returned (lines 16-17). To summarize, RA increases the value of r when the val-
idation loss does not decrease for p epochs in a row. As an upper bound for the
number of routing iterations, we stop the training when r reaches its maximum
value rT . When r increases, the training restarts with the weights of the network
with the best validation loss obtained with its previous value. By comparison,
using the standard training procedure mentioned in Sec. 3.1, the weights need
to be reinitialize for every simulation with a a different value for r.



Capsule Networks with Routing Annealing 7

Algorithm 3 Training with Routing Annealing : learns the number of iterations
r? jointly with the network parameters.

1: procedure Routing-Annealing(r0, rT , s, p)
2: r; r ← r0; L?

0 ← +∞; e?0 ← 0 , e← 0; k ← 0
3: while r ≤ rT do
4: compute all primary capsules poses ui and votes ûj|i
5: compute all digit capsules poses: vj ← Routing(ûj|i, r)
6: evaluate loss L on the validation set
7: if (L ≥ L?

k) and (e− e?k ≥ p) then
8: k ← k + 1; r ← r + s; rk ← r; L?

k ← +∞; e?k ← 0
9: load CapsNet network of epoch e?k−1

10: else if L < L?
k then

11: L?
k ← L; e?k ← e

12: end if
13: e← e + 1
14: backpropagate error gradients and update parameters
15: end while
16: k? ← argmin

k
L?; r? ← rk?

17: return CapsNet network of epoch e?k? and r?

18: end procedure

3.3 Rationale

RA takes inspiration from the simulated annealing (SA) algorithm, a probabilis-
tic technique used in combinatorial-optimization problems to minimize a cost
function. In our approach, we relate the temperature of our system being in-
versely proportional to the number of routing iterations r: the highest r, the
highest the agreement between the capsules and the lowest the noise.
The number of routing iterations relates to the distribution of the coupling co-
efficients cij . According to Alg. 1, when r is low, the agreement is low as well.
When r = 1, all the coupling coefficients will have the same value, 1

K . Increasing
the routing iterations, a certain number of coupling coefficients becomes domi-
nant over others, since Alg. 1 looks for capsule’s agreement. Considering that cij
are normalized values, we can say that, for the i-th capsule

∑
j∈Ki

cij → 1 and∑
j∈Ki

cij → 0, where Ki is a subset of the K coupling coefficients for the i-th

primary capsule and Ki is its complementary set. When r = 1, the cardinality
of Ji is exactly K, but increasing r, its cardinality drops to some optimal value
K?

i : this means that the i-th primary capsule will be coupled to K?
i digit cap-

sules only, avoiding noisy coupling to the others (which are K −K?
i ). A visual

representation of this effect is displayed in Fig. 2. As r increases, many coupling
coefficients drop to zero, while others converge to higher coupling values. In this
way, the routing algorithm learns how to build relationships between primary
and digit caps, discarding noisy information, which helps in improving the gen-
eralization of the model. In the next section we are going to test on-the-field



8 R. Renzulli et al.

i-th primary caps

D
igit caps

1

2

K

K-1

.

.

.

(a)

i-th primary caps

D
igit caps

1

2

K

K-1

.

.

.

(b)

i-th primary caps

D
igit caps

1

2

K

K-1

.

.

.

(c)

Fig. 2: Routing coupling coefficients between the i-th primary capsule and K
digit capsules. The highest the line weight, the highest the corresponding cou-
pling coefficient. When r = 1 (a) the coupling coefficients have all the same
value, while increasing r (b, c) a portion of the coupling parameters survives,
while the others drop to zero. In the case of (c), K? = 2 and Ki = {1,K − 1}.

our RA strategy, observing in particular the generalization capability of the RA
models compared to the other state-of-the-art approaches.

4 Experiments

In this section we compare our proposed Routing Annealing (RA) method in
Alg. 3 against the reference method in Alg. 2. First we show that, with RA,
the network performs better as the number of routing iterations r improves,
whereas this is not the case with the reference algorithm. Then, we further
validate RA on multiple datasets and settings showing that it delivers best gains
especially where the number of parameters the network can afford is low, i.e.
where CapsNets performance is weaker.

4.1 Experimental Setup

We experiment with the CapsNet in Fig. 1 at classifying natural images in a fully
supervised scenario. We consider the MNIST, Fashion-MNIST and CIFAR10
datasets. For all datasets, 5% of the training set samples are reserved for vali-
dation. MNIST and Fashion-MNIST are composed of 28x28 images; concerning
CIFAR10, we randomly crop the original 32x32 images into 24x24 patches for
training whereas crops from the image center are used for testing as done in [16].
Our experiments consider several flavors of the architecture in Fig. 1 with differ-
ent types T ∈ {1, 2, 4, 8, 16, 32} and dimensions (D1, D2) ∈ {(2, 4), (4, 8), (8, 16)}
of capsules. We train the network minimizing a margin loss [16] with the Adam
optimizer [10] with a constant learning rate equal to 0.001 and a batch size of
128. No weight decay, dropout or other regularization techniques were used.
Concerning the proposed RA method, we train the network with the procedure



Capsule Networks with Routing Annealing 9

in Alg. 3, with the following configuration: r0 = 1, rT = 50, s = 1 and p = 10. As
we discussed in Sec. 3.2, RA can be applied to any iterative routing algorithm
but this work use as base routing algorithm the one described in Alg. 1.
About the reference method, we use FR which employs the procedure in Alg. 2,
i.e. where the number of routing iterations r is fixed (common values in literature
are r = 1 [5] or r = 3 [16]).

4.2 Preliminary analysis on MNIST

Preliminary, we assess the effect of the number of routing iterations r on MNIST
for a minimal capsule network where the PrimaryCaps layer has only T = 1 cap-
sule types and vectors have dimension D1 = 2 while the DigitCaps layer vectors
have D2 = 4 elements. This network has only 65k parameters, which helps iso-
lating the effect of r, whereas the architecture in [16] has 6M parameters (8.2M
with the decoder).
In Fig. 3 we report the learning curves for FR and RA. For FR, we train a new
CapsNet from scratch for each and every value of r. In the case of RA, instead,
we train one model only, where we gradually increase the number of routing
iterations (when the network loss reaches a plateau). We plot the best loss and
accuracy values for every r. Fig. 3 shows that as r increases, the proposed RA en-
ables decreasing loss that reflects into higher classification accuracy. Conversely,
with a fixed routing strategy, the loss function diverges as r increases. We explain
the gap between the two loss curves with the following hypothesis. Each itera-
tion of the routing algorithm strengthens or weakens the connections between a
capsule of the primary layer and all the capsules of the digit layer. Therefore,
imposing high r for all the training epochs leads the CapsNet to be overconfident
on its predictions on the link strengths, preventing the network form learning
the correct connections between the capsules.

0 10 20 30 40 50
r

0.010

0.015

0.020

0.025

0.030

L
os
s

0 10 20 30 40 50
r

97.8

98.0

98.2

98.4

98.6

98.8

99.0

A
cc
u
ra
cy

(%
)

Fixed routing

Routing annealing

Fig. 3: Loss function (left) and classification accuracy (right) on MNIST test set
for a CapsNet with T = 1, D1 = 2, D2 = 4 (means and stds of 5 seeds) as a
function of the number of routing iterations r.



10 R. Renzulli et al.

4.3 Results

Next, we experiment with the more complex datasets Fashion-MNIST and CI-
FAR10. Fig. 3 showed that RA performs better than the fixed routing reference
for large r values.

88

90

92

1

1

1

3

3

3

9

9

8

Caps types 1

1

1

1

3

3
3

9

6
7

Caps types 2

1

1
1

3

3
3

7
6 7

Caps types 4

(2,4) (4,8) (8,16)

88

90

92
1

1
1

3 3
37

7 6

Caps types 8

(2,4) (4,8) (8,16)

1
1 1

3 3 3
7

5 5

Caps types 16

(2,4) (4,8) (8,16)

1 1 1
3 3

3

5 4 3

Caps types 32

Fixed routing (r = 1)

Fixed routing (r = 3)

Routing annealing (r⋆)

(a) Fashion-MNIST

40

50

60

70

80

1

1

1

3

3

3

29

29

29

Caps types 1

1

1
1

3

3

3

29

26

29

Caps types 2

1

1
1

3

3
3

30

27
28

Caps types 4

(2,4) (4,8) (8,16)

40

50

60

70

80

1
1 1

3

3
3

27
25

23

Caps types 8

(2,4) (4,8) (8,16)

1
1 1

3
3

3
16

17
14

Caps types 16

(2,4) (4,8) (8,16)

1
1 1

3 3 3
11

16 9

Caps types 32

Fixed routing (r = 1)

Fixed routing (r = 3)

Routing annealing (r⋆)

(b) CIFAR10

Fig. 4: Classification accuracy (%) on Fashion-MNIST (a) and CIFAR10 (b) test
set for different capsule types T and dimensions (D1, D2). On top of each bar it
is shown the number of iterations r used during training/inference, for RA it is
shown the median value of r?.



Capsule Networks with Routing Annealing 11

For fixed routing experiments we only consider r = 1 and r = 3, as done in much
of the recent literature. Fig. 4a and 4b show that RA performs better than fixed
routing (both r = 1 and r = 3) in all the settings. Such experiments brought us
to the following observations.
First, coherently with our previous findings on MNIST, RA delivers the most
appreciable gains when the network can afford only few learnable parameters.
We recall here that for each capsule we have a matrix of weights W ij and these
matrices have shapes D1 × D2, namely the dimensions of the capsule vectors.
This means that the number of capsules types T and their dimensions, along with
the convolutional layers, drive the number of parameters of the network. This
behaviour can be explained observing that finding agreements between many
high-dimensional capsule is not trivial. Running more iterations of the routing
algorithm tends to polarize the coupling coefficients, namely the link strengths
between capsules, such that it results in a simple route where each primary
capsule sends its output to only one digit capsule Therefore, when there are
a lot of capsules, introducing some level of uncertainty with a low value of r
helps the network to not be overconfident on its predictions and to not overfit
on the training data. As a matter of fact, Fig. 4a shows that with 32 capsule
types of 8-dimensional primary capsules and 16-dimensional digit capsules, our
proposed method RA finds r? = 3, namely the value used in the original for-
mulation of CapsNets in [16]. Second, in high-dimensional settings the same
conclusions about routing as in [5] and in [14] hold for the fixed routing pro-
cedure, which achieves higher accuracy with r = 1 than r = 3. Nevertheless,
RA always achieves better performance in all cases, sometime even with fewer
routing iterations.
Third, Fig. 4b shows that r? for CIFAR10 is not the same as for Fashion-MNIST
in Fig. 4a for identical network conditions. This means that despite r? differs
from dataset to dataset, nevertheless our method can find it.

5 Conclusion

In this work we proposed a novel training technique for routing-based CapsNets
where the number of iterations is iteratively found at training time rather than
being fixed. This work also shows experiments in settings with a different num-
ber of capsule types and their dimensions, namely the network capacity in terms
of trainable parameters, and on several datasets. We show that this value de-
pends heavily on the size of the network and on the dataset used. Typically, the
smaller the network, the higher the number of iterations the network requires to
improve its generalization capability. Given the potentiality of our technique, in
future works we plan to apply RA on more complex and sophisticated routing
algorithms such as EM routing [9].

References

1. Ahmed, K., Torresani, L.: Star-caps: Capsule networks with straight-through at-
tentive routing. In: Advances in Neural Information Processing Systems. vol. 32,



12 R. Renzulli et al.

pp. 9101–9110. Curran Associates, Inc. (2019)
2. Algamdi, A.M., Sanchez, V., Li, C.T.: Dronecaps: Recognition of human actions

in drone videos using capsule networks with binary volume comparisons. In: 2020
IEEE International Conference on Image Processing (ICIP). pp. 3174–3178 (2020)

3. De Sousa Ribeiro, F., Leontidis, G., Kollias, S.: Introducing routing uncertainty in
capsule networks. In: Advances in Neural Information Processing Systems. vol. 33,
pp. 6490–6502. Curran Associates, Inc. (2020)

4. Duarte, K., Rawat, Y., Shah, M.: Videocapsulenet: A simplified network for action
detection. In: Advances in Neural Information Processing Systems. vol. 31, pp.
7610–7619. Curran Associates, Inc. (2018)

5. Gu, J., Tresp, V.: Improving the robustness of capsule networks to image affine
transformations. In: Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR) (June 2020)

6. Hahn, T., Pyeon, M., Kim, G.: Self-routing capsule networks. In: Advances in
Neural Information Processing Systems. vol. 32, pp. 7658–7667. Curran Associates,
Inc. (2019)

7. Hinton, G.: Some demonstrations of the effects of structural descriptions in mental
imagery. Cognitive Science pp. 231–250 (1979)

8. Hinton, G.E., Krizhevsky, A., Wang, S.D.: Transforming auto-encoders. In: Arti-
ficial Neural Networks and Machine Learning – ICANN 2011. pp. 44–51. Springer
Berlin Heidelberg, Berlin, Heidelberg (2011)

9. Hinton, G.E., Sabour, S., Frosst, N.: Matrix capsules with EM routing. In: Inter-
national Conference on Learning Representations (2018)

10. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: 3rd In-
ternational Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings (2015)

11. LaLonde, R., Xu, Z., Irmakci, I., Jain, S., Bagci, U.: Capsules for biomedical image
segmentation. Medical Image Analysis 68, 101889 (2021)

12. Lenssen, J.E., Fey, M., Libuschewski, P.: Group equivariant capsule networks. In:
Advances in Neural Information Processing Systems. vol. 31, pp. 8844–8853. Cur-
ran Associates, Inc. (2018)

13. Li, H., Guo, X., Dai, B., Ouyang, W., Wang, X.: Neural network encapsulation. In:
Computer Vision – ECCV 2018. pp. 266–282. Springer International Publishing,
Cham (2018)

14. Paik, I., Kwak, T., Kim, I.: Capsule networks need an improved routing algorithm.
In: Proceedings of The Eleventh Asian Conference on Machine Learning. Proceed-
ings of Machine Learning Research, vol. 101, pp. 489–502. PMLR, Nagoya, Japan
(17–19 Nov 2019)

15. Rajasegaran, J., Jayasundara, V., Jayasekara, S., Jayasekara, H., Seneviratne, S.,
Rodrigo, R.: Deepcaps: Going deeper with capsule networks. In: 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 10717–
10725 (2019)

16. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: Ad-
vances in Neural Information Processing Systems. vol. 30, pp. 3856–3866. Curran
Associates, Inc. (2017)

17. Wang, D., Liu, Q.: An optimization view on dynamic routing between capsules.
In: ICLR (2018)

18. Zhao, Y., Birdal, T., Deng, H., Tombari, F.: 3d point capsule networks. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (June 2019)


