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Abstract and TOC 
Collagen proteins are spread in almost every vertebrate’s tissue with mechanical function. 

The defining feature of this fundamental family of proteins is its well-known collagen triple 

helical domain. This helical domain can have different geometry, varying in helical 

elongation and inter-strands contact, as a function of the aminoacidic composition. The 

helical geometrical features play an important role in the interaction of the collagen protein 

with cell receptors, but for the vast majority of collagen compositions, these geometrical 

features are unknown. Quantum mechanical (QM) simulations based on density functional 

theory provide a robust approach to characterize the scenario on the collagen composition-

structure relationships. In this work we analyze the role of the adopted computational 

method in predicting collagen structure for two purposes. Firstly, we look for a cost-effective 

computational approach to apply to a large scale composition-structure analysis. Secondly, 

we attempt to assess the robustness of the predictions by varying the QM methods. 

Therefore, we have run geometry optimization on periodic models of collagen protein using 

a variety of approaches, based on the most commonly used DFT functionals (PBE, HSE06 

and B3LYP) with and without dispersion correction (D3ABC). We have coupled these 

methods with several different basis sets, looking for the highest accuracy/cost ratio. 

Furthermore, we have studied the performance of the composite HF-3c method, and the 

semiempirical GFN1-xTB method. Our results identify a computational recipe that is 

potentially capable of predicting collagen structural features in line with DFT simulations, 

with orders of magnitude reduced computational cost, encouraging further investigations on 

the topic. 
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Introduction 
Collagen proteins are key elements of most vertebrate’s tissues with mechanical function. 

These proteins are known to give elasticity to tissues, leading to extraordinary light and 

strong materials (e.g. mammal’s bones) when combined with bio-minerals. The peculiar 

triple helical motif (known as collagen triple helix) defines entirely this family of proteins.1–3 

This compact organization requires a strict aminoacid sequence. Indeed, in each of the three 

strands, a Glycine (Gly) is found every three aminoacids, leading to the peculiar Gly-X-Y 

pattern. The other aminoacids (X and Y) can vary, but Proline (Pro) and (2S,4R)-4-Hydroxyl-

proline (Hyp) are the most commonly found, in X and Y, respectively.4 The collagen triple 

helix can be more or less packed, depending on the amino acids in X and Y.5,6 This topic 

has been debated for decades.7 Nowadays, there is general consensus that Pro-rich 

collagens prefer a 7/2 helical packing, and Pro-poor collagens a 10/3 one. A 7/2 helix 

contains 7 aminoacidic triplets into two helix turns, while a 10/3 helix contains 10 aminoacidic 

triplets in three helix turns, making a 7/2 helix tighter than a 10/3 helix.8,9 

The main experimental technique providing evidence on collagen triple helicity is X-ray 

diffraction on crystals of collagen-like peptides. Unfortunately, the amount of data on Pro-

poor collagens is scarce, mainly coming from Pro-rich collagens with only few different 

residues in the core of the peptide sequence.5,10 This lack of experimental data does not 

allow to have a clear understanding of the role of the composition on the structure of 

collagen, which is important on both basic and applicative levels. Indeed, predicting collagen 

structure is a key information in the interaction of collagen protein with cell receptors.11 

In this scenario, molecular simulations are a promising tool for predicting the geometrical 

packing of collagen triple helices as a function of the aminoacidic composition. We have 

recently proposed a computational approach based on hybrid DFT-D simulation, which can 
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predict correctly the helical packing for Pro-rich collagens.9 The computational procedure is 

fairly simple. It consists of simulating collagen triple helices with exactly the ideal 7/2 and 

10/3 helical geometry and directly compare their energy. Its intrinsic simplicity allows a 

straight-forward extension of this type of analysis to all natural (and not) Gly-X-Y collagen 

triplets. Unfortunately, the large composition/conformational variability of collagen 

discourages the use of state-of-the-art hybrid DFT simulation, despite recent progress in 

speeding up DFT when dealing with the simulation of large molecules. Indeed, the adoption 

of DFT to study large systems requires high performance computing (HPC) facilities to 

account for the relatively large request of central memory and specific computer codes able 

to exploit massive parallelism, as shown recently for the case of Crambin protein.12 

However, when considering that collagen features depend upon its aminoacid 

composition/conformation and, in perspective, the most promising ones should also be 

studied when interacting with the hydroxyapatite (the natural partner in the definition of many 

collagen-based biomaterials), it turned out that DFT is a too costly approach.  A possible 

alternative is to adopt semiempirical methods, as reviewed in Ref. 13 for noncovalent 

interactions for chemical and biochemical applications.   

Therefore, in this work, we have investigated the role of the computational approach in the 

prediction of collagen protein helical features, looking for a cost-effective approach to 

substitute to DFT simulations. Furthermore, we have tested the consistency of collagen 

protein predictions as a function of the adopted Quantum Mechanical (QM) method. This 

would allow a future use of QM techniques for reliable structural (helical packing) and 

properties predictions on a large number of collagen protein models, thus filling the gap on 

the collagen structure-composition relationship. 

The main “hyper-parameters” that can affect a QM investigation are the Hamiltonian type 

and the basis set employed. Regarding the Hamiltonian, we have chosen to compare the 

most common DFT functionals employed in both plain-wave and Gaussian-based 

simulations, e.g. the pure DFT PBE functional,14 the hybrid HSE06 functional,15 and the well-

established hybrid B3LYP functional.16–18 The role of dispersion interactions has been taken 

into account by comparing dispersion-corrected (DFT-D) with plain DFT simulations. 

Furthermore, we have also tested the HF-3c method,19 which gave cost-effective results in 

predicting molecular crystals,20 polymers,21 microporous,22 and layered materials 

properties.23 Among the various available semiempirical Hamiltonians, we have tested the 

GFN1-xTB method, which provided excellent results for several applications.24,25 To our 
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knowledge, this is the first application of the xTB method, in the GFN1-xTB flavor, to true 

periodic bio-polymeric systems. 

As for the basis set (BS) employed for the DFT simulations, we have relied on several BSs 

made of atom-centered Gaussian-type functions as well as plane waves functions. 

Simulations run with Gaussian functions BSs suffer the well-known basis set superposition 

error (BSSE), which is relevant for weakly bonded systems, such as the collagen triple 

helices. BSSE can artificially shorten the inter-molecular distances and overestimate 

interaction energies. These spurious effects can be minimized by using large BSs, but the 

cost of the simulation rapidly increases with the BS size reducing its applicability. Therefore, 

we have compared different types of Gaussian based BSs, with a growing number of BS 

functions, analyzing the accuracy/cost of the resulting simulations. We compared two types 

of Pople type basis sets,26 as well as two types of Ahlrichs type basis sets.27–29 A plane wave 

basis set is also employed as reference method, being intrinsically BSSE-free. 

Finally, we have also tested “hybrid” methodologies such as the DFT-D//HF-3c approach, 

which combines a fast geometry optimization run at the HF-3c level with an accurate energy 

prediction at the DFT level,20–22 and, the even faster HF-3c//GFN1-xTB and DFT-D//GFN1-

xTB approaches in which the geometry optimization is run at the very cheap semiempirical 

GFN1-xTB level. The comparison between these computational approaches is performed 

evaluating several features of the collagen triple helix, such as the helical packing, the 

geometry and the inter-strand interaction energy. The results of this work allow to clearly 

identify a cost-effective computational procedure, capable of predicting preferred collagen 

helical organization in line with state-of-the-art hybrid DFT simulations at a reduced 

computational cost. 

 

Computational Details 
We computed energies and relaxed geometries within the HF and DFT frameworks, by 

means of the CRYSTAL17 code.30 For the HF framework, we employed the HF-3c method,19 

based on a HF calculation with the minimal MINIX Gaussian-type basis set. Despite the 

minimal quality basis set, the inclusion of the pair-wise semi-empirical corrections, i.e. i) 

BSSE correction,31 ii) inclusion of dispersion interactions,32 iii) correction of the systematic 

error in the inter-atomic distances,19 greatly improves the results. We have recently refined 

the HF-3c method for periodic system geometries, by reducing the D3 dispersion term. 

Specifically, the dipole-quadrupole term (s8) of the D3 scheme is scaled by a factor of 0.27. 

We named the resulting method as HF-3c-027.20 The HF-3c-027 gave excellent results in 
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computing protein, molecular crystal and microporous crystal structures, see Ref.20–22 Most 

DFT simulations were run using the B3LYP hybrid functional,14 and corrected with the D3 

scheme which is available in the CRYSTAL17 suite,32 including the Axilrod–Teller–Muto 

(ATM)-three-body-term (D3ABC).33,34 The recent D4 dispersion scheme has not been 

implement in the CRYSTAL suite, but it will be take into consideration in the future.35 We 

also employed the GGA PBE functional,14 and the hybrid HSE06 functional,15 which are the 

most common functionals employed in plane-wave simulations. DFT simulations were 

carried out using several basis sets made of Gaussian functions, such as Pople-type 6-31G* 

and 6-311G* basis sets, and Ahlrichs-type VTZP and QZVP basis sets.26–29 The basis sets 

are fully reported in Table S1-S4. 

Atomic positions and cell vectors optimization were performed adopting the analytical 

gradient method. The Hessian was upgraded with the Broyden-Fletcher-Goldfarb-Shanno 

(BFGS) algorithm.36–38 We set tolerances for the convergence of the maximum allowed 

gradient and the maximum atomic displacement to default values. The recently introduced 

DIIS extrapolator technique has been employed to speed up the SCF convergence.39 Details 

on the tolerance values controlling the Coulomb and exchange series in periodic systems,40 

and the shrink factor (k points sampling) used in the calculations are set to 6 6 6 6 14 and 4 

4, respectively. Only when the QZVP basis set is employed the tolerances on the integral 

are tighten to 7 7 7 7 25 for ensuring SCF convergence. We tested the effect of tightening 

integral tolerance to have a formally correct comparison between all methodologies. The 

variations in the values obtained using different integral tolerances are negligible for all the 

cases. 

To compare Gaussian and plane wave basis sets, we run plane wave periodic simulations 

with the Vienna Ab-initio Simulation Package (VASP),41–44 using the PBE and PBE-D2 

functionals.45 The kinetic energy cut-off has been set to 500 eV and 1000 eV, and the SCF 

iterative procedure was converged to a tolerance in total energy of ΔE = 10-6 eV. The 

Monkhorst-Pack sampling of the Brillouin zone was used for the k-points mesh, with the 

same number of k-points as in CRYSTAL17 calculations. 

We run the semiempirical GFN1-xTB Hamiltonian24 simulations within the periodic boundary 

conditions as implemented in the CP2K code,46,47 version 7.1. The graphical visualization 

and structural manipulation of structures was performed with MOLDRAW version 2.0.48 

Images were rendered with VMD.49 
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Results and Discussion 
Molecular Models and Computed Quantities 

In this work, we consider four simplified models of collagen as 1D biopolymers, by varying 

their aminoacidic composition and triple helix features. Regarding the composition, all 

collagen models are homo-trimeric collagens, e.g. the three strands composing the protein 

are identical. Furthermore, each strand is made by the repetition of only one type of Gly-X-

Y aminoacidic triplet. The two different collagen compositions studied here are Gly-Gly-Hyp 

(GGO) and Gly-Ala-Hyp (GAO), which are reported graphically in Figure 1 a) and b). They 

differ for one aminoacid only, i.e. the aminoacid in X position of the triplet. As for the helicity, 

we have simulated collagen models that have 7/2 and 10/3 helicity, see Figure 2. We refer 

to Ref.8,9 for a detailed description of these different helical models. Combining the two 

different helicities and compositions results in four collagen models, which are named 

hereafter as GXO-H with X = G and A as a function of the composition, and H = 7/2 and 

10/3 in function of the helical symmetry imposed to the model, e.g. GGO-7/2, GGO-10/3, 

GAO-7/2 and GAO-10/3. 

As for the side chain aminoacidic conformation, the Hyp puckering is kept fixed to the UP 

conformation with the most stable OH orientation found in collagens with GPO composition 

by DFT simulations.8 The UP puckering of Hyp is the side conformation expected by 

theoretical and experimental works,8,21,50,51 due to the OH substitution on position 4R of the 

pyrrolidine ring, which differs from the most common side chain conformation of plain Pro 

residue.21,52 The other aminoacids within the models (Gly and Ala) have no relevant side 

chain conformation variability. 
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Figure 1 Graphical representation of the GGO-7/2 (TOP) and GAO-7/2 (BOTTOM) helices 

relaxed at the B3LYP-D/VTZP level. Colour code: Oxygen in red, Hydrogen in white, 

Nitrogen in blue, Carbon in brown-green. a): van der Waals representation of collagen triple 

helix highlighting the unit cell length and the aminoacid in the X position. b): Single 

aminoacidic triplet extracted from the collagen triple helix as balls and sticks. c): Interaction 

between GXO triplets (X= G or A). All atoms are reported in balls and sticks with hydrogen 

atoms omitted from clarity of representation. We have reported the three collagen strands 
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as tubes in grey scale, and the aminoacid in X position in white colour. Each aminoacid is 

labelled with a number associated to the collagen strand number (named as 1, 2 and 3). 

 
Figure 2 Graphical representation of collagen 7/2 and 10/3 helices represented as a 1D 

polymers. Each of the three independent collagen strands are represented as coloured 

tubes. The length of the helical repetition is also reported for clarity. 

For all our triple helical models, we have computed the binding energy between collagen 

single strands (BE*), with the following expression: 

BE*= E(F//COL) - E(COL//COL) (1) 

The name following the double slash identifies the optimized geometry at which the energy 

has been computed. For instance, E(COL//COL) is the energy of a collagen triple helix, COL, 

in its fully optimized geometry, and E(F//COL) is the energy of the single collagen strand, F, 

in the triple helix optimized geometry. The use of Gaussian-type orbitals poses a severe 

problem when the interaction energy between various molecules is computed due to basis 

set superposition error (BSSE). Therefore, we corrected the BE* for BSSE (BE*C) through 

the counter-poise method (CP). 

BE*C= BE* - BSSE (2) 

We have also compared helical packing stability (ΔE-helix) within the same compositions. 

This is defined as (for X= G and A): 
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ΔE-helix = E(GXO-10/3) - E(GXO-7/2) (3) 

where E(GXO-10/3) is the E(COL//COL) for the 10/3 helix and E(GXO-7/2) is the 

E(COL//COL) for the 7/2 helix. 

 

The Role of Basis Set 

To assess the role of the basis set in collagen DFT simulations we have run B3LYP-D 

simulations using four different basis sets. Two BSs are of the Pople split-valence type,26 

and two are of the Ahlrichs VZ type.27 For the former case, we have employed 6-31G* and 

6-311G* basis sets,26 for the latter case, TZP and QZP basis sets. We have carried out the 

results and the discussion focusing on the computational cost of the calculation, along with 

the geometry and energy (BE*C, BSSE and ΔE-helix) prediction. Regarding geometry, we 

have relegated the torsional angles values and the inter-strands electrostatic contact lengths 

in the SI, see Figure S2-S3. To have a more concise view on collagen geometry, we have 

only reported the geometrical rise per triplet compared with the experimental values in the 

main text.5 This geometrical feature is computed as the length of the polymer unit cell divided 

by the number of triplets within the unit cell. 

The first element of discussion is the computational cost of the selected BSs. For instance, 

for the GGO-7/2 case, the AO number in the 1D unit cell are 2023, 2471, 2695 and 3325 for 

the 6-31G*, 6-311G*, VTZP and QZVP BSs, respectively. The needed time for an energy 

and gradient calculation (SCF+G) increases by 2, 9 and 30 times for 6-311G*, VTZP and 

QZVP cases with respect to the fastest 6-31G* BS. 

As for the geometry, in Figure 3 we have compared the rise per triplet of 10/3 and 7/2 helices 

in real collagens and in our models. We expect some discrepancy between the predicted 

values and the experimental ones, as the latter are averaged on different aminoacidic 

compositions and not specifically set for GAO and GGO homo-trimeric collagens. We also 

have run geometry optimization without relaxing the unit cell parameters and using the ideal 

geometrical rise per triplet values. Such helices are the ones usually considered in the X-

ray diffraction works on collagen. We showed that this does not give different results on 

values like the ΔE-helix, with exception for the GFN1-xTB case, which is discussed later in 

the text. At the same time, relaxing the polymer unit cell gives an indication of the deviation 

of the real collagen helices from the ideal cases. In our opinion this is an interesting 

argument of discussion, thus we performed in all cases cell optimization. 
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Relaxed structures adopting the Pople type BSs are not close to the experimental ones.5 

The 6-31G* BS predicts the 10/3 helix as more compressed than the 7/2 helix, for both GGO 

and GAO cases. By incrementing the BS size, the agreement improved. Indeed, the 6-

311G* BS correctly predicts the rise per triplet order, despite the relative internal difference 

being underestimated. This is computed as 0.08/0.06 Å for GGO/GAO, to be compared to 

an experimental value of 0.34 Å. Using the larger Ahlrichs type BSs, the computational 

prediction is closer to experiment. The relative difference between helices is 0.23/0.24 Å for 

GGO/GAO (at the B3LYP-D/QZP level) with negligible differences between TZP and QZP 

basis sets. 

All methodologies give similar estimation of the binding energy between collagen strands 

(BE*C), for both GGO-7/2 and GAO-10/3 helices (see Figure 4). This is not the case for the 

other helices, e.g. GGO-10/3 and GAO-7/2. Indeed, using the 6-31G* BS for the GGO-10/3 

case, and the 6-31G* and the 6-311G* BSs for the GAO-7/2 case, we compute BE*C fairly 

different from the ones obtained with Ahlrichs BSs. This is correlated with differences in the 

electrostatic contacts between the protein strands, see Figure S2 and S3, which are the 

main responsible of the electrostatic component of the interstrand interaction energy. Due 

to the lower BSSE, whose contribution to the BE*C is commented hereafter, the geometries, 

and thus the BE*C, computed with the Ahlrichs BSs are considered as internal reference. 

The BSSE reduces by increasing the quality of the basis set, see Figure 4. The high value 

for Pople type BSs (more than 23 kJ∙mol-1∙triplet-1) is at the origin of the variations in the 

electrostatic contact lengths. The Ahlrichs VZ BSs reduces the BSSE by a factor three (up 

to values lower than 7 kJ∙mol-1∙triplet-1), with similar results for TZP and QZP BSs. 

The computed ΔE-helix values are reported in Figure 5. Interestingly, all BSs compute the 

7/2 helix more stable than the 10/3 helix, but with different ΔE-helix values. The results at 

the 6-31G* level give a different order of ΔE-helix values for GGO and GAO composition, 

with respect to QZP. Conversely, the results at the 6-311G* level tend to over-stabilize the 

7/2 helix for both GGO and GAO, with respect to QZP. As for the results on geometry and 

BE*C, the TZP BS gives coherent results with the more expensive QZP BS. 

Furthermore, we have checked the role of the residual BSSE of the QZP basis set, by 

comparing with the BSSE-free plane-wave (PW) basis set, using the PBE-D functional with 

both the QZP BS and the PW BS. The results are gathered in Table S5, which indicates that 

both BSs give very similar relaxed structures. This is an indication of the reliability of the 

QZP BS as our internal selected reference BS. 
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Considering the discussion carried out so far, the best cost-effective BS is the Ahlrichs TZP 

BS. Indeed, this BS ensures the quality of the results of the QZP BS at 1/3 of its 

computational cost. Therefore, in the next paper section, we will address the role of the 

Hamiltonian adopting the TZP BS as standard. 

Figure 3. BS effect on the collagen rise per residue, using the B3LYP-D functional. 

Experimental rise per triplet reported as dashed line. Values are in Å. 

 
Figure 4. BE*C (first row) and CP correction for BSSE (second row) in kJ∙mol-1∙triplet-1 by 

varying the BS quality at the B3LYP-D level. Results reported for GGO (first column) and 

GAO (second column) helices. 
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Figure 5. BS effect on ΔE-helix using the B3LYP-D functional. Positive values of ΔE-helix 

indicate that a 7/2 packing is preferred. Values in kJ∙mol-1∙triplet-1. 

The Role of the Hamiltonian 

To understand the role of the DFT functional in collagen simulations, we have tested some 

of the most commonly used DFT functionals for periodic and molecular simulations, e.g. the 

hybrid B3LYP-D and HSE06-D functionals, and the DFT PBE-D functional. We have also 

considered the role of dispersion, by the data computed with the B3LYP functional in the 

bunch of tested methods. Among the non-DFT Hamiltonians, we have included in the 

analysis the cheap HF-3c, HF-3c-027 and GFN1-xTB methods. The results analysis is 

carried out in line with the previous paper section, e.g. we will focus on the method’s 

computational burden, computed rise per triplet value, and estimated energy values (BE*C 

and ΔE-helix). 

Regarding the computational burden for a SCF+G calculation, B3LYP/TZP, HSE06/TZP and 

PBE/TZP methods are respectively 32, 48 and 10 times slower than HF-3c. HF-3c is faster 

also than the B3LYP/6-31G* method by at least 4 times. Clearly, the semiempirical GFN1-

xTB method is the fastest among the chosen Hamiltonians, being several orders of 

magnitude faster than HF-3c. 
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As for the geometry, the computed values of rise per triplet for the four collagen models as 

a function of the Hamiltonian type are reported in Figure 6. By analyzing the results, we can 

state the following: 

• For the DFT-D methods, all functionals give quite similar results, with negligible 

differences from B3LYP-D and HSE06-D, and PBE-D predicting slightly more 

elongated helices than the hybrid functionals in agreement with previous work.53–55  

• B3LYP functional computes over-elongated helices. This is in line with previous 

finding of Ref.9 for a Gly-Pro-Pro collagen model, in which we demonstrated that 

dispersion interactions must be included in the simulation to improve the agreement 

with the experiments. 

• HF-3c methods compute relative difference between 7/2 and 10/3 helices in good 

agreement with the experiments, as the computed mean value is 0.41 ± 0.02 Å which 

is fairly close to the experimental one of 0.34 Å. Furthermore, the dispersion scaled 

version of HF-3c (HF-3c-027) accurately matches the experiment, with a deviation 

lower than 0.1 Å. 

• Regardless the adopted methodology, the GAO helices are more compressed than 

the GGO ones, e.g. with a smaller rise per triplet. To gain further insights on this, we 

have relaxed the geometry for straight polymers with a poly-proline type II geometry,8 

and GGO and GAO compositions. The computed unit cell lengths are 9.813 Å (GGO) 

and 9.522 Å (GAO), at the B3LYP-D level, which elongate to 9.966 Å (GGO) and 

9.721 Å (GAO) at the B3LYP level. These results indicate that the compression due 

to the Ala presence does not depend on neither the triple helical organization of 

collagen nor the dispersion interactions. We believe that this indicates a structural 

propensity of Ala (bond lengths, bond angles and dihedral angles) to make shorter 

peptide chains than Gly. 

• GFN1-xTB computes helical rise per triplet in good agreement with experimental 

values for the 7/2 helix. Unfortunately, for the 10/3 helices, the rise per triplet value 

almost collapses on to the 7/2 experimental value, making the packing of 10/3 and 

7/2 helices very similar. 

In Figure 7 we have compared the BE*C computed for our models as a function of the 

Hamiltonian. The main findings are the followings: 

• The B3LYP method underestimates the BE*C compared to DFT-D methods. This 

underestimation depends on the lack of dispersion correction, which accounts for 

more than 50% of the inter-strands energy (for the B3LYP-D case), see Figure S11. 
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• The HF-3c and HF-3c-027 methods underestimate the BE*C with respect to DFT-D 

methods. The reason is that the pure electrostatic interaction (HF/MINIX energy) is 

underestimated due to the adopted minimal basis set (Figure S10). 

• All DFT-D methods predict the 7/2 helices to have higher inter-strands interactions 

than the 10/3 helices. Instead, pure DFT (no dispersion included), compute an inter-

strands interaction similar for both helices. This is in line with the findings for the GPP 

case, see Ref.9 On average, the computed BE*C difference between 7/2 and 10/3 

helices of 13 kJ∙mol-1∙triplet-1, comes from both dispersion interactions, (higher in a 

more compact 7/2 helix) and better inter-strand electrostatic contacts, see Figure 

S10. 

• GFN1-xTB computes inter-strand energies that are generally in line with full hybrid 

and much more expensive DFT simulations. Interestingly, the GFN1-xTB results are 

in better agreement with DFT-D simulations than the more computationally 

demanding HF-3c method. 

As for the preferred helical packing, for which the results are gathered in Figure 8, we can 

state that: 

• The 7/2 helical packing is clearly favored for GGO collagens using any HF-D or DFT-

D method, with small differences among methodologies. For GAO compositions, the 

7/2 packing is only slightly more stable than the 10/3. This result indicates that 

increasing the size of the residue in the X position may induce collagen to pack into 

more elongated helices. 

• The B3LYP method tends to over-stabilize elongated helices. This trend is in line with 

the results obtained for the GPP composition, see Ref. 9 As we have already pointed 

out, including the -D correction is crucial to have results in line with the experimental 

evidence. 

• Interestingly, the B3LYP-D/TZP//HF-3c-027 (SP-B3LYP-D/TZP) method, which 

combines a geometry optimization carried out with the fast HF-3c-027 method and 

an energy estimation only at the more expensive B3LYP-D/TZP method, gives results 

quantitatively in line with those obtained by full DFT calculations. 

• Plain GFN1-xTB slightly stabilizes the 10/3 helices more than the reference DFT-D. 

This tendency of GFN1-xTB leads to results in fair agreement with DFT-D for the 

GGO case. Conversely, for the GAO case, the 10/3 helix is found to be more stable 

than the 7/2 one. Using either a HF-3c or B3LYP-D single point energy estimation on 

the GFN1-xTB relaxed geometries, over stabilizes the 7/2 geometry, leading to 
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results in qualitative agreement with those obtained from full DFT-D simulations, with 

larger deviations. These deviations arise from the over-shrunk geometry of 10/3 helix, 

see Figure 6. To solve this problem, we relaxed the geometry of collagen keeping the 

unit cell length fixed to the ideal values of 7/2 and 10/3 helices, e.g. GFN1-xTB-cellfix 

method, see Figure 8. In this way, the results are in quantitative agreement with full 

DFT-D results. 

• We have also explored the performance of the small basis set global hybrid functional 

PBEh-3c, its screened exchange variant HSE-3c and a generalized gradient 

approximated B97-3c functionals evaluated in a medium-sized basis set, all recently 

implemented in the CRYSTAL17 code. We have computed the relative stability of the 

7/2 vs 10/3 helix for GAO and GGO polymers as a single point energy evaluation 

(SP) at the HF-3c-027 geometries. This class of methods extends the accuracy of the 

simplest HF-3c by increasing significantly the computer time, as reported in Ref.56. 

The time ratio for modeling large molecular complexes was: HF-3c(1):B97-

3c(10):PBEh-3c(50) and HF-3c(1):HSE-3c(8):PBEh-3c(10) for a single crystal case. 

For the present case of collagen (polymer), the ratio is similar: HF-3c(1):PBEh-

3c(6):HSE-3c(20):B97D-3c(38). The difference with the molecular case can arise 

from the different techniques adopted by molecular codes for the calculation of long-

range effects in the evaluation of the bi-electronic integrals compared to the 

CRYSTAL17 implementation. Regarding the periodic case, the chosen integral 

tolerances and different periodicity can alter slightly the trend cost of the different 

methodologies. In the present case, the cost of B97D-3c is due to the long tails of the 

adopted triple zeta basis set which overcome the cost of handling the exact exchange 

in PBEh-3c. While it would be worth adopting in future work the PBEh-3c method, 

here we only focused on the relative stability of the 7/2 vs 10/3 helix for GAO and 

GGO polymers computed as a single point energy evaluation (SP) at the HF-3c 

geometries. The results are shown in the Figure S11 of the supplementary 

information and showed that the more sophisticated methods reduced the absolute 

stability of both biopolymers with respect to HF-3c, while maintaining the proper order 

of stability. The relative stability of about 2 kJ∙mol-1∙triplet-1 at HF-3c, becomes about 

3 kJ∙mol-1∙triplet-1 for B97-3c, HSE-3c, PBEh-3c and increases up to about 4 kJ∙mol-

1∙triplet-1 at B3LYP-D3. 
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Figure 6. Effect of the methodology on the rise per triplet (Å) compared with experimental 

helices (exp). D = D3ABC. 

 
Figure 7. BE*C (in kJ∙mol-1∙triplet-1) for GGO and GAO, with 7/2 and 10/3 helices and 

different methodology. D = D3ABC. 
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Figure 8. Effect of the methodology on the ΔE-helix (in kJ∙mol-1∙triplet). D = D3ABC. Positive 

value of ΔE-helix stabilizes the 7/2 helix over the 10/3 one (grey shaded area). The best 

reference is for B3LYP-D/TZP method.  

 

Conclusions 
In this work we have carefully checked the role of the quantum mechanical approach on 

computing structure, inter-strands binding energy and helical packing of Pro-rich collagen 

protein models. Our purpose is to establish a cost-effective approach to apply for a 

comprehensive study on the relationship between collagen structure and composition. This 

is of fundamental importance on both fundamental and applicative levels. 

Within the DFT framework, we have chosen the most commonly employed DFT functionals 

in solid state and molecular simulations, i.e. the PBE functional and the two hybrid HSE06 

and B3LYP functionals. The role of the basis set size is also analyzed, studying several 

types of basis sets (BSs), from contracted split valence type basis sets up to a large QZVP 

basis set. Within the cost-effective methods recently proposed, we check the HF-3c method 

and the semiempirical GFN1-xTB method. To our knowledge, the latter is for the first time 

applied to periodic biopolymers. 

From a computational point of view, the main results of this work can be summarized as 

follows: 
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• The Ahlrichs TZVP outstands among the selected BSs, giving results in agreement 

with the more expensive QZVP (here considered as reference) at 1/3 of the 

computational cost. Unfortunately, the much cheaper Pople BSs give results which 

are not trustworthy, due to a significative BSSE. Even if all BSs compute helical 

propensity (DE-helix) in a similar way, the Pople BSs compute geometries and 

binding energies in strong disagreement with the reference. Therefore, we 

discourage the use of such BSs for collagen simulations and in general for organic 

systems in which non-covalent interactions are important. 

• Regardless of the type of functional employed, all DFT-D approaches give coherent 

results for all the studied collagen features. The HF-3c method, underestimates the 

collagen inter-strand binding energy with respect to DFT-D methods. This may be 

due to the limited MINIX basis set encoded in HF-3c model chemistry. For error-

balancing, HF-3c predictions on the helical features make only small deviations with 

respect to full DFT-D ones. These deviations are further reduced using energy 

estimations at the DFT-D level on relaxed HF-3c structures, e.g. DFT-D/HF-3c 

method. This hybrid method saves computational time of roughly one order of 

magnitude with respect to full DFT-D. 

• Results obtained from GFN1-xTB are promising. It gives results in line with DFT-D, if 

the cell optimization is neglected. In principle, this approach is several orders of 

magnitude faster than the full DFT-D. Worth further future testing are the other flavors 

of the GFN-xTB method which currently are not implemented or still have limitations 

for computing systems with periodic boundary conditions. 

Considering the computational advantage of using symmetry in the simulation, we suggest 

to use the DFT-D//HF-3c method for estimation of the helical propensity of homo-trimeric 

collagens, such as the one employed here. For hetero-trimetric collagens, in which no 

symmetry can be exploited, we suggest the GFN1-xTB approach, with the recipe of keeping 

the cell parameter fixed at the ideal rise per triplet of the 7/2 and 10/3 helices. These results 

are coherent with those obtained from DFT-D//DFT-D with a computational gain of several 

order of magnitude. As for the choice of the DFT functional, we suggest the PBE functional 

as the best accuracy-cost compromise. 

Finally, from a biological point of view, we can state that GGO collagens prefer to pack in a 

tight helix, e.g. 7/2 helix. Similarly, GAO collagens seem to prefer the tight 7/2 helical 
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packing, but the energy stability of the 7/2 geometry is close to the 10/3 one. This suggests 

that increasing the size of the residue in the X position of the collagen triplet may induce 

collagen to pack into more loose and elongated helices to make room for larger lateral 

chains. A following work is under preparation on Gly-X-Hyp collagen triple helices with even 

larger residues in X, such as Leucine and Phenylalanine, to further explore this hypothesis. 

We believe that the present results provide computational recipes to allow exploring the 

helical propensity of collagen as a function of the residue content by a large screening 

workflow. 
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