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Abstract
We consider the probabilistic applicative bisimilarity (PAB) —
a coinductive relation comparing the applicative behaviour
of probabilistic untyped λ-terms according to a specific oper-
ational semantics. This notion has been studied by Dal Lago
et al. with respect to the two standard parameter passing
policies, call-by-value (cbv) and call-by-name (cbn), using
a lazy reduction strategy not reducing within the body of
a function. In particular, PAB has been proven to be fully
abstract with respect to the contextual equivalence in cbv
[6] but not in lazy cbn [16].
We overcome this issue of cbn by relaxing the laziness

constraint: we prove that PAB is fully abstract with respect
to the standard head reduction contextual equivalence. Our
proof is based on Leventis’ Separation Theorem [19], using
probabilistic Nakajima trees as a tree-like representation of
the contextual equivalence classes.
Finally, we prove also that the inequality full abstraction

fails, showing that the probabilistic applicative similarity is
strictly contained in the contextual preorder.

CCSConcepts: • Software and its engineering→ Seman-
tics; • Theory of computation→ Program semantics.

Keywords: Probabilistic lambda calculus, Bisimilarity, Full
abstraction, Observational equivalence, Separation
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1 Introduction
The probabilistic λ-calculus Λ⊕ extends the pure untyped
λ-calculus with a sum M ⊕ N , evaluating to M or N with
equal probability 0.5. The operational semantics gives then
a function mapping a term M to a probability distribution
JMK of values. Exactly as in standard λ-calculus, different
design choices may affect the meaning JMK of a term.

First, one has to decide how to evaluate a β-redex, i.e. the
application of a function λx .M to an argument N . There are
two main evaluation mechanisms: the call-by-value policy
(cbv) consists first in evaluating N to some value V and
then replacing the parameter x inM with V , while the call-
by-name policy (cbn) replaces x with N as it is, before any
evaluation. It is well-known that the two policies give rise to
different results, especially in a probabilistic setting. Consider
for example the term (λvz.vv)(T ⊕ F), where T = λxy.x and
F = λxy.y. In cbv, we first evaluate T ⊕ F, yielding either T
or F with equal probability, and then we pass the result to
the function λvz.vv , producing either λz.TT or λz.FF, both
with probability 0.5. By contrast, in cbn we pass the whole
term T ⊕ F to the function before evaluating it, obtaining
λz.(T ⊕ F)(T ⊕ F) with probability 1.

Second, one has to define which redexes to evaluate in a
term, if any. Also in this case, there are various choices in
λ-calculus: the lazy strategy, forbidding any reduction in the
body of a function, so that λx .M is a value whatever M is,
or the head reduction, consisting in reducing the redex in
head position, which is at the left of any application. Again,
the choice gives rise to different meanings, the meaning of a
termw.r.t. the head reduction is a distribution of head normal
forms.
By the way, let us remark here that some variants of the

standard head reduction have been considered in the liter-
ature, as for example the head spine reduction that, given
a β-redex (λx .M)N , first evaluates the body ofM and then
evaluates the outermost redex according to cbn. A side result
of our paper is that the head and head spine strategies are ac-
tually equivalent, even in a probabilistic setting (Theorem 2).DOI: 10.1145/3373718.3394806

https://doi.org/10.1145/3373718.3394806
https://doi.org/10.1145/3373718.3394806
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Comparing terms by their operational semantics is too nar-
row, as higher-order normal forms differ often by syntactical
details that are inessential with respect to their computa-
tional behaviour. Contextual equivalence is usually consid-
ered: two termsM,N are contextually equivalent (M =cxt N
in symbols) whenever they “behave” the same in any possi-
ble “programming context”. This definition depends on the
notion of context and on that of observable behavior. In Λ⊕ ,
a context C is a term with a special variable [·], the hole, and
what we observe is the total mass of the distribution JC[M]K,
i.e. the total probability of getting a result from the evalua-
tion of the term C[M] obtained by replacing the hole with
M . The definition of =cxt depends therefore on the chosen
operational semantics but it is more canonical than the latter.
Proving that two terms are contextually equivalent is

rather difficult since we have to consider all contexts, hence
the quest for more tractable equivalences comparable with
=cxt. We say in particular that an equivalence ≡ over λ-terms
is sound with respect to =cxt whenever the former implies
the latter (i.e. ≡ ⊆ =cxt), it is complete if the converse holds
(i.e. =cxt ⊆ ≡) and it is fully abstract if it is both sound and
complete, i.e. the two relations coincide.

In probabilistic λ-calculus, the first results in this line of re-
search have been achieved in the setting of the denotational
semantics of the Λ⊕ head reduction. In particular, Ehrhard et
al. prove that the equivalence ≡D∞ induced by the reflexive
object D∞ of the cartesian closed category of probabilistic
coherence spaces [11] (as well as of the weighted relations
[17]) is sound. More recently, Leventis proves a fundamental
separation theorem, giving as a consequence that the prob-
abilistic Nakajima tree equality is complete [19]. From the
latter result, Clairambault and Paquet derive a fully abstract
game model of Λ⊕ and as a corollary also the full abstraction
of D∞ [5]. The latter result has been also achieved indepen-
dently by Leventis and Pagani [20].
All the above results deal with the head reduction, i.e. a

non-lazy cbn operational semantics. For lazy strategies, a
different approach is available, based on the notion of ap-
plicative bisimulation, which is the true object of this paper.
The idea dates back to [1] and consists in looking at the
operational semantics as a transition system having λ-terms
as states and transitions given by the evaluation of the ap-
plication between λ-terms. The benefit of this setting is to
transport into λ-calculus the whole theory of bisimilarity
and its associated coinductive reasoning, which is a funda-
mental tool for comparing processes in concurrency theory.
Basically, two terms M and N are applicative bisimilar (in
symbols M ∼ N ) whenever their applications MP and NP
reduce to applicative bisimilar values for any argument P .

This approach has been lifted to the probabilistic λ-calculus
in a series of works by Dal Lago et al. [6, 7, 16], introducing
the notion of probabilistic applicative bisimilarity (PAB) for
lazy semantics. In particular, PAB is proven to be sound with
the contextual equivalence in both cbv and cbn, but only cbv

PAB is fully abstract. In case of lazy cbn, we have terms like:

M ≜ λxy.(x ⊕ y) N ≜ (λxy.x) ⊕ (λxy.y) (1)

such that M =cxt N but M ≁ N . In fact, lazy PAB is able
to discriminate between a term where a choice can be per-
formed before any interaction, like N , and a term that needs
to interact in order to trigger a choice, like M . Notice that
this difference is caught also by cbv contextual semantics,
as these two terms are distinguished by the context C =
(λv .(vIΩ)(vIΩ))[·] in cbv (the total mass of JC[M]Kcbv is
0.25, while that of JC[N ]Kcbv is 0.5), but not in cbn (namely,
JC[M]Kcbn = JC[N ]Kcbn has mass 0.25).
In [16] the authors analyse this example remarking that

the cbn policy misses the “capability to copy a term after
having evaluated it”. This is indeed a fundamental primitive
in probabilistic programming: when implementing a proba-
bilistic algorithm we need often to toss a coin and then to
pass the result of this tossing to several subroutines. It is so
common to extend a probabilistic language with a let-in
constructor, often called sampling, evaluating a choice before
passing it to a function even in a cbn semantics. As expected,
it is shown [15] that such an extension recovers cbn PAB full
abstraction, as terms like (1) become contextually different.
Let us remark that we are here in front of two discon-

certing facts. First, it has been proven that in simply typed
languages the presence of the let-in constructor does not
affect the discriminating power of the contextual equiva-
lence, for example in probabilistic PCF the lazy cbn contex-
tual equivalence coincides with the equality in the model
of probabilistic coherence spaces [12, 13], with or without
a sampling primitive. Why this striking difference with an
untyped framework? Second, we have already mentioned
several denotational models of Λ⊕ which are fully abstract
with respect to a pure cbn contextual equivalence, so without
this “capability to copy a term after having evaluated it”. Is
it really so necessary for getting a fully abstract PAB?

The first question can be easily answered by focussing on
the laziness constraint of the operational semantics. Every
λ-abstraction is a value for a lazy semantics. This does not
affect the set of observables in a simply typed setting (as
PCF), because this is defined on ground types (booleans,
numerals, etc). By contrast, every term is a function in an
untyped setting, so the laziness radically changes what we
can observe in the behaviour of a term. The goal of this paper
is to show that also the second question deals with laziness:
we prove that PAB is fully abstract for the head reduction
(Theorem 23). This is unexpected: non-lazy semantics seems
not needing the sampling primitives in order to have fully
abstract PAB, even with a cbn policy and an untyped setting.
On a more technical side, we stress that our proofs of

soundness and completeness follow a different reasoning
than the one used in probabilistic lazy semantics [6, 7, 15].
First, the soundness (∼ ⊆ =cxt) does not need an Howe lifting
[14], as we prove a Context Lemma (Lemma 9) for =cxt and
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an applicative property of ∼ (Lemma 15), the latter using the
notion of probabilistic assignments as in [16]. Second, and
more fundamental, the proof of completeness (=cxt ⊆ ∼) is
not achieved by transforming PAB into a testing equivalence
using a theorem by van Breugel et al. [25]. Rather, we use
Leventis’ Separation property [19] to prove that the contex-
tual equivalence is a probabilistic applicative bisimulation
and so contained in PAB by definition (Theorem 23).
What about inequalities? All equivalences so far intro-

duced have an asymmetric version: the contextual preorder
and the probabilistic applicative similarity (PAS). We prove
also that PAS is sound but not complete with respect to the
contextual inequality. A counterexample to the full abstrac-
tion in the asymmetric case is given in Section 4 and it is
further discussed in the Conclusion.
We refer to the extended version [8] for the details of

many proofs.

Notation. We write N for the set of natural numbers, R
for the set of real numbers and [0, 1] for the unit interval of
R.

A subprobability distribution over a countable setX is a func-
tion f : X → [0, 1] such that

∑
x ∈X f (x) ≤ 1. Distributions

are ranged over by D ,E ,F , . . . andD(X ) denotes the set of
all subprobability distributions over X . Given a distribution
D ∈ D(X ), its support supp(D) is the subset of all elements
in X such that D(x) > 0, its mass

∑
D is simply

∑
x ∈X D(x).

Given x1, . . . ,xn ∈ X , the expression p1x1 + . . . + pnxn is
used to denote the distributionD ∈ D(X )with finite support
{x1, . . . ,xn} such that D(xi ) = pi , for every i ≤ n. Notice
that, in this case,

∑
D =

∑n
i=1 pi . The symbol ⊥ denotes

the empty distribution and x can denote both an element
in X and the distribution having all its mass on x . Given
a (possibly infinite) index set I , a family {ri }i ∈I of positive
real numbers such that

∑
i ∈I ri ≤ 1 and a family {Di }i ∈I of

distributions, the distribution
∑

i ∈I ri · Di is defined, for all
x ∈ X , by (

∑
i ∈I ri · Di )(x) =

∑
i ∈I ri · Di (x).

A relation R over a set X is a subset of X × X . Given a
relation R over a set X and Y ⊆ X , R(Y ) denotes the image
of Y under R, i.e. the set {x | ∃y ∈ Y (y,x) ∈ R}, Rop

represents the converse of R, i.e. {(x ,y) | (y,x) ∈ R}, and
R∗ the reflexive and transitive closure of R. Moreover, if R
is an equivalence relation, then X/R stands for the set of all
equivalence classes of X modulo R.

2 Preliminaries
This section introduces the fundamental notions of the paper.
We first present the syntax and the operational semantics of
the probabilistic λ-calculus Λ⊕ , on top of which we shall con-
sider the contextual equivalence and the contextual preorder
relations. Then, we recall Larsen and Skou’s probabilistic
(bi)similarity on labelledMarkov chains [18] and, in the spirit

of Abramsky’s work on applicative (bi)similarity [1] and fol-
lowing [6, 7, 15, 16], we apply it to the operational semantics
of Λ⊕ , getting the probabilistic applicative (bi)similarity.

2.1 The Probabilistic λ-calculus Λ⊕

The set Λ⊕ of probabilistic λ-terms over a given set V of
variables is generated by the following grammar:

M,N := x | λx .M | (MN ) | M ⊕ N (2)

where x ∈ V . We consider the usual conventions as in [3],
so for example application is left-associative and has higher
precedence than λ-abstraction. Parenthesis can be omitted
when clear from the context. A term is in (or is a) head normal
form, or hnf for short, if it is of the form λx1 . . . xn .yN1 . . .Nm ,
for some n,m ∈ N. If n = 0 then the term is also called neu-
tral. Head normal forms are ranged over by metavariables
like H . The set of all hnfs will be denoted by HNF, the set of
all neutral terms will be denoted by NEUT.
Terms are considered modulo renaming of bound vari-

ables. The set FV (M) of the free variables of a term M and
the capture-free substitution M[N /x] of N for the free oc-
currences of x inM are defined in the standard way. Finite
subsets of V are ranged over by Γ. Given Γ, the set of terms
(resp. head normal forms) whose free variables are within Γ
is denoted ΛΓ

⊕ (resp. HNFΓ).

Example 1. Useful terms are the identity I ≜ λx .x , the
boolean values T ≜ λxy.x and F ≜ λxy.y, the duplica-
tor ∆ ≜ λx .xx , the Turing fixed-point combinator Θ ≜
(λx .λy.(y(xxy)))(λx .λy.(y(xxy))) and the ever looping term
Ω ≜ ∆∆. An example of probabilistic λ-term that does not
belong to the standard λ-calculus is hid ≜ I ⊕ Ω.

Let D(HNF) be the set of all subprobability distributions
over HNF, called head distributions. Let D ∈ D(HNF), we
define λx .D as (λx .D)(H ) ≜ D(H ′), if H = λx .H ′, for some
H ′ ∈ HNF, otherwise (λx .D)(H ) ≜ 0. If X ⊆ HNF, we let
D(X ) ≜

∑
H ∈X D(H ). We may also write D(X ) for a generic

subset X ⊆ Λ⊕ of terms, meaning in fact D(X ∩ HNF).
Subprobability distributions allow us to model divergence

and to look at some distributions as “approximations” of
others. To formally define this, we lift the canonical order
on R pointwise: we set D ≤D E if and only if ∀H ∈ HNF,
D(H ) ≤ E (H ). Notice that ≤D is a directed-complete partial
order over D(HNF), ⊥ being the least element.
We now endow Λ⊕ with a big-step probabilistic oper-

ational semantics in two stages, following Dal Lago and
Zorzi [9]. First, the rules of Figure 1 define a big-step ap-
proximation relationM ⇓ D between a termM and a head
distribution D . This relation is not a function: many differ-
ent head distributions can be put in correspondence with
the same term M , because of the rule s1 that allows one
to “give up” while looking for a distribution of a term. The
big-step semantics is then the supremum of all such finite
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M ⇓ ⊥
s1

x ⇓ x
s2

M ⇓ D

λx .M ⇓ λx .D
s3

M ⇓ D {H [N /x] ⇓ EH,N }λx .H ∈ supp(D)

MN ⇓
∑

λx .H ∈ supp(D)

D(λx .H ) · EH,N +
∑

H ∈ supp(D) ∩NEUT
D(H ) · HN

s4 M ⇓ D N ⇓ E

M ⊕ N ⇓
1
2
· D +

1
2
· E

s5

Figure 1. Big-step approximation.

approximations:

JMK ≜ sup{D |M ⇓ D} (3)
Observe that this supremum is guaranteed to exist since
{D ∈ D(HNF) | M ⇓ D} is a directed set, as can be proved
by induction onM .

Example 2. Consider the termM ≜ ∆(T⊕F). One can easily
check that the rules in Figure 1 allow us to deriveM ⇓ D for
anyD in the following set

{
⊥, 1

4 ·λy.T,
1
4 ·λy.F,

1
2 ·I,

1
4 ·λy.T+

1
4 ·λy.F,

1
4 ·λy.T+

1
2 · I,

1
4 ·λy.F+

1
2 · I,

1
4 ·λy.T+

1
4 ·λy.F+

1
2 · I

}
.

The latter head distribution is the supremum of this set and
so it defines the semantics ofM .

Example 2 is about normalizing terms, which means here
terms M with semantics of total mass

∑
JMK = 1 and such

that there exists a unique finite derivation givingM ⇓ JMK.
Standard non-converging terms gives partiality:

Example 3. By inspection on the rule s4 in Figure 1, one
can check that Ω ⇓ D only if D = ⊥, so JΩK = ⊥. As a
consequence we also have, e.g. JΩ ⊕ IK = 1

2 · I.

The probabilistic λ-calculus allows us also for almost sure
terminating terms, namely termsM such that

∑
JMK = 1 but

without finite derivations ofM ⇓ JMK:

Example 4. Consider the derivation of MM ⇓
∑n

i=1
1
2i · y

depicted in Figure 2, where M ≜ λx .(y ⊕ xx). Any such
finite approximation of JMMK gives a head distribution of
the form

∑n
i=1

1
2i · y, for some n ≥ 1, but only the limit sum

supni=1
∑ 1

2i · y is equal to y, thus yielding JMMK = y.

The operational semantics can be defined inductively as
follows:

Proposition 1. For everyM,N ∈ Λ⊕ and H ∈ HNF:
(1) J(λx .H )N K = JH [N /x]K.
(2) Jλx .MK = λx .JMK.
(3) JMN K is equal to the following distribution:∑

λx .H ∈ supp(JMK)

JMK(λx .H ) · JH [N /x]K

+
∑

H ∈ supp(JMK) ∩NEUT

JMK(H ) · HN .

(4) JM ⊕ N K = 1
2JMK + 1

2JN K.

Moreover, for every H ∈ HNF, JHK = H .

Note that, if M is deterministic, i.e. a term without the
probabilistic sum ⊕, then eitherM has a unique head normal
formH and JMK(H ) = 1, orM is a diverging term and JMK =
⊥. So J·K generalises the usual deterministic semantics.

2.2 The Head Spine Reduction is Equivalent to the
Head Reduction

The rules in Figure 1 do not correspond to the standard
head reduction of the λ-calculus, but implement a variant
of it, called head spine reduction in [24]. Let us see the dif-
ference on a deterministic λ-term, e.g. M ≜ (λx .(λy.x)y)z.
The (small-step) head reduction first evaluates the outer-
most redex of M , getting (λy.z)y, and then the latter term,
terminating in the hnf z. The small-step reduction relation
associated with Figure 1 is detailed in [8], but just the in-
spection of the rule s4 may convince the reader that this
reduction will first evaluate the body of λx .(λy.x)y to an
hnf, so getting the term λx .x and then it fires the application
of the latter to the variable z, getting z. The two reduction
sequences are different but they give the same result (and ac-
tually with the same number of reduction steps). We prove in
Theorem 2 that this is always the case, even in a probabilistic
setting1.

We decided to consider the head spine reduction as it has
a compact big-step presentation and it fits perfectly into the
Λ⊕-Markov chain definition (see Remark 1). Also, it allows us
for a simpler proof of the soundness property (Theorem 16).
On the other side, the equivalence with the head reduction
makes available the separation property (here Theorem 18)
that Leventis proved for the head reduction strategy [19]
and that will play a crucial role for completeness.
In order to state Theorem 2 let us define precisely the

probabilistic head reduction operational semantics H∞. Fol-
lowing [10, 11], we define it as the limit of the small-step

1To the best of our knowledge, this result does not appear in the earlier
literature, even in the deterministic case.
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s2
y ⇓ y

s2
x ⇓ x

s4
xx ⇓ xx

s5
y ⊕ xx ⇓ 1

2 · y +
1
2 · xx

s3
M ⇓ 1

2 · λx .y +
1
2 · ∆

s2
y ⇓ y

...

M ⇓ 1
2 · λx .y +

1
2 · ∆

s2
y ⇓ y

...

M ⇓ 1
2 · λx .y +

1
2 · ∆

s2
y ⇓ y

s1
MM ⇓ ⊥

s4
MM ⇓ 1

2 · y

...
s4

MM ⇓
∑n−1

i=1
1
2i · y

s4
MM ⇓

∑n
i=1

1
2i · y

Figure 2. A derivation in the big-step semantics ofMM ⇓
∑n

i=1
1
2i · y, whereM ≜ λx .(y ⊕ xx) and ∆ = λx .xx .

transition matrix H over Λ⊕ . ForM,N ∈ Λ⊕ we set:

H(M,N ) ≜



1 ifM = E[(λy.P)Q] and N = E[P[Q/y]]
1
2 ifM = E[P1 ⊕ P2], P1 , P2 andN = E[Pi ]

1 ifM = E[P ⊕ P], and N = E[P]

1 ifM = N ∈ HNF
0 otherwise

where E is a head context, i.e. a special one-hole context of
the form λx1 . . . xn .[·]L1 . . . Lm , with n,m ≥ 0 and Li ∈ Λ⊕

(we slightly anticipate from Subsection 2.3). The matrixH
is stochastic, i.e. for anyM ,

∑
N ∈Λ⊕

H(M,N ) = 1.
Intuitively, the entryHn(M,N ) of the n-th powerHn of

the matrix H describes the probability that M reduces to
N after at most n steps of head reduction. Notice that the
head normal forms are absorbing states of the process, so
for M ∈ Λ⊕ and H ∈ HNF, the sequence (Hn(M,H ))n∈N is
monotone increasing and bounded by 1, so it converges. We
define its limit by:

H∞(M,H ) ≜ sup
n∈N

Hn(M,H ) ∀M ∈ Λ⊕,∀H ∈ HNF. (4)

This quantity gives the total probability of M to reduce to
the hnf H in an arbitrary number of head reduction steps.

Theorem 2. LetM ∈ Λ⊕ , H ∈ HNF, we have:

JMK(H ) = H∞(M,H ).

Hence, our definition of J·K is just another way of pre-
senting the operational semantics generated by the head
reduction and discussed, for example, in [11, 19, 20]

2.3 Contextual Equivalence
A context of Λ⊕ is a term containing a unique occurrence of
a special variable [·], called the hole. This is generated by:

C := [·] | λx .C | CM | MC | C ⊕ M | M ⊕ C . (5)

We denote by CΛ⊕ the set of all contexts. Given C ∈ CΛ⊕

andM ∈ Λ⊕ , then C[M] denotes a term obtained by substi-
tuting the unique hole in C with M allowing the possible
capture of free variables ofM .

The typical observation in Λ⊕ is the probability of con-
verging to a value. Since values are hnfs, contextual preorder
≤cxt and contextual equivalence =cxt can be defined as follows:

M ≤cxt N iff ∀C ∈ CΛ⊕,
∑

JC[M]K ≤
∑

JC[N ]K , (6)

M =cxt N iff ∀C ∈ CΛ⊕,
∑

JC[M]K =
∑

JC[N ]K . (7)

Note thatM =cxt N if and only ifM ≤cxt N and N ≤cxt M .

Example 5. Consider the termsM ≜ λxyz.z(x⊕y) andN ≜
λxyz.(zx ⊕ zy). They can be discriminated by the context
C ≜ [·]ΩI∆, whereΩ, I, and∆ are as in Example 1. In Figure 3
we show that

∑
JC[M]K = 1

4 and
∑

JC[N ]K = 1
2 .

Contexts enjoy the following monotonicity property:

Lemma 3. Let M,N ∈ Λ⊕ . If JMK ≤D JN K then ∀C ∈ CΛ⊕

JC[M]K ≤D JC[N ]K.

An immediate consequence of Lemma 3 is the soundness
of the operational semantics:

Proposition 4. LetM,N ∈ Λ⊕ : if JMK ≤D JN K (resp. JMK =
JN K) thenM ≤cxt N (resp.M =cxt N ).

Thanks to Proposition 4, one can prove that quite different
terms are indeed contextually equivalent, as the following
example shows:

Example 6. The termMM in Example 4 and y are contex-
tually equivalent, i.e.MM =cxt y, since JMMK = y.
However, not all contextually equivalent terms have the

same semantics: the term λx .x and its η-expansion λxy.xy
are contextually equivalent but Jλx .xK = λx .x , λxy.xy =
Jλxy.xyK.

Proving contextual equivalence might be rather difficult
since its definition quantifies over the set of all contexts.
Fortunately, various other tools can be deployed to show
the equivalence of terms. An example is bisimilarity, we
shall discuss in the next subsection. Checking that two terms
are bisimilar requires the existence of a particular relation,
called “bisimulation”. Proving that bisimilarity and contex-
tual equivalence actually coincide would imply that the latter
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...
M ⇓ M

...
λyz.z(Ω ⊕ y) ⇓ λyz.z(Ω ⊕ y)

...
λz.z hid ⇓ λz.z hid

...
∆ ⇓ ∆

s1
Ω ⇓ ⊥

...
I ⇓ I

s5
hid ⇓ 1

2 · I

...

hid ⇓ 1
2 · I

s4
hid hid ⇓ 1

4 · I
s4

∆ hid ⇓ 1
4 · I

s4
(λz.z hid)∆ ⇓ 1

4 · I
s4

(λyz.z(Ω ⊕ y))I∆ ⇓ 1
4 · I

s4
MΩI∆ ⇓ 1

4 · I

s2
z ⇓ z

s4
zx ⇓ zx

s2
z ⇓ z

s4
zy ⇓ zy

s5
zx ⊕ zy ⇓ 1

2 · zx +
1
2 · zy

s3
N ⇓ 1

2 · λxyz.zx +
1
2 · λxyz.zy

s1
(λyz.zΩ)I∆ ⇓ ⊥

...
λyz.zy ⇓ λyz.zy

...
λz.zI ⇓ λz.zI

...
∆ ⇓ ∆

...
I ⇓ I

...
I ⇓ I

s4
II ⇓ I

s4
∆I ⇓ I

s4
(λz.zI)∆ ⇓ I

s4
(λyz.zy)I∆ ⇓ I

s4
NΩI∆ ⇓ 1

2 · I

Figure 3. The derivations in the big-step semantics of MΩI∆ ⇓ 1
4 · I and NΩI∆ ⇓ 1

2 · I, where M ≜ λxyz.z(x ⊕ y),
N ≜ λxyz.(zx ⊕ zy), ∆ = λx .xx , and hid = Ω ⊕ I. The double inference line means multiple applications of the same rule.

can be established using the muchmore tractable operational
techniques coming from bisimilarity.

2.4 Probabilistic Applicative (Bi)Similarity
We recall here themain definitions and basic properties given
in [16], as these do not depend on a specific operational
semantics. First, we introduce labelled Markov chains and its
associated probabilistic (bi)similarity [18]. Then, we apply
these notions to the operational semantics of Λ⊕ , getting the
probabilistic applicative (bi)similarity.

A labelled Markov chain is a triple M = (S,L,P), where
S is a countable set of states, L is a set of labels (actions)
and P is a transition probability matrix, i.e. a function P :
S × L × S −→ [0, 1] satisfying the following condition:

∀s ∈ S, ∀l ∈ L :
∑
t ∈S

P(s, l , t) ≤ 1 .

If X ⊆ S, we let P(s, l ,X ) denote
∑

t ∈X P(s, l , t).
A probabilistic simulation R inM is a preorder over S s.t.:

∀(s, t) ∈ R,∀X ⊆ S,∀l ∈ L, P(s, l ,X ) ≤ P(t , l ,R(X )) (8)

A probabilistic bisimulation R is an equivalence over S s.t.:

∀(s, t) ∈ R,∀E ∈ S/R,∀l ∈ L, P(s, l ,E) = P(t , l ,E) (9)

The probabilistic similarity ≾ (resp. probabilistic bisimilar-
ity ∼) is the union of all probabilistic simulations (resp. bisim-
ulations). For all s, t ∈ S:

s ⪯ t ⇔ ∃R probabilistic simulation s.t. s R t , (10)
s ∼ t ⇔ ∃R probabilistic bisimulation s.t. s R t . (11)

Proposition 5 (e.g. [16]). The relation≾ (resp. ∼) is a proba-
bilistic simulation (resp. bisimulation). Moreover, it holds that
∼ = ≾ ∩≾op .

In order to apply these notions to Λ⊕ , we need to preset
its operational semantics as a labelled Markov chain (Defi-
nition 1). Intuitively, terms are seen as states, while labels
are of two kinds: one can either evaluate a term (this kind of
transition will be labelled by τ ), obtaining a distribution of
hnfs, or apply a hnf to a termM (this kind of transition will
be labelled byM). For technical reasons, it is useful to con-
sider only closed terms and to consider for each closed hnf
H = λx .H ′ two distinct representations, depending on the
way we consider it: either as a term or properly as a normal
form, and in the latter case we indicate it as H̃ ≜ νx .H ′ to
stress the difference. Consequently, we define �HNF as the set
of all “distinguished” closed hnfs, namely {H̃ | H ∈ HNF∅}.
More in general, if X ⊆ HNF∅, we define X̃ ≜ {H̃ | H ∈ X }.

Definition 1. The Λ⊕-Markov chain is the triple (Λ∅
⊕ ⊎�HNF, Λ∅

⊕ ⊎ {τ }, P⊕), where the set of states is the disjoint
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union of the set of closed terms and the set of “distinguished”
closed hnfs, labels (actions) are either closed terms or the τ
action, and the transition probability matrix P⊕ is defined
in the following way:

(i) for every closed termM and distinguished hnf νx .H :

P⊕(M,τ ,νx .H ) ≜ JMK(λx .H ) ,

(ii) for every closed termM and distinguished hnf νx .H :

P⊕(νx .H ,M,H [M/x]) ≜ 1 ,
(iii) in all other cases, P⊕ returns 0.
A probabilistic applicative (bi)simulation is a probabilis-

tic (bi)simulation of the Λ⊕-Markov chain. The probabilistic
applicative similarity, PAS for short, and the probabilistic
applicative bisimilarity, PAB for short, are defined as in (10)
and (11). From now on, with ≾ (resp. ∼) we mean probabilis-
tic applicative similarity (resp. bisimilarity).

Remark 1. In the Λ⊕-Markov chain, a termM can be thought
at the head of a (potentially infinite) stack of applications,
where at each time we first evaluate the head of the stack
until we reach a head normal form H (point (i)), and then
we apply H to the next term of the stack (point (ii)). This is
exactly the behaviour of the head spine reduction on an ap-
plicationMN1 . . .Nn . Lemma 15 formalizes these intuitions.

The notions of PAS and PAB are defined on closed terms.
We extend them to open termsM,N ∈ Λ{x1, ...,xn }

⊕ , by:
M ≾ N ⇔ λx1 . . . xn .M ≾ λx1 . . . xn .N , (12)
M ∼ N ⇔ λx1 . . . xn .M ∼ λx1 . . . xn .N . (13)

One can notice that the order of the abstractions in the term
closure does not affect the obtained relation.
The following proposition is analogous to Proposition 4,

stating the soundness of the operational semantics with re-
spect to both PAS and PAB.

Proposition 6. LetM,N ∈ Λ⊕ : if JMK ≤D JN K (resp. JMK =
JN K) thenM ≾ N (resp.M ∼ N ).

Proof. We prove only the inequality soundness, as the equal-
ity one is an immediate consequence by Proposition 5. More-
over, the proof is for closed terms, as the case of open terms
follows from Proposition 1.(2).
Let M,N ∈ Λ∅

⊕ be such that JMK ≤D JN K, and consider
the relation R = {(P ,Q) ∈ Λ∅

⊕ × Λ∅
⊕ | JPK ≤D JQK} ∪

{(νx .H ,νx .H ) ∈ �HNF × �HNF}. If we show that R is a PAS,
then R ⊆≾, and hence M ≾ N . Clearly, R is a preorder.
Now, let (P ,Q), (νx .H ,νx .H ) ∈ R, and let X ⊆ Λ∅

⊕ ∪�HNF. It
is straightforward that P⊕(νx .H , l ,X ) ≤ P⊕(νx .H , l ,R(X )),
for all l ∈ Λ∅

⊕ ∪ {τ }. Moreover, for all F ∈ Λ∅
⊕ we have

0 = P⊕(P , F ,X ) ≤ P⊕(Q, F ,R(X )). Last:

P⊕(P ,τ ,X ) =
∑

νx .H ∈X

P⊕(P ,τ ,νx .H ) = JPK(X ∩ HNF)

≤ JQK(X ∩ HNF) = P⊕(Q,τ ,R(X )).

Hence, for all l ∈ Λ∅
⊕ ∪ {τ } and X ⊆ Λ∅

⊕ ∪ �HNF, we have
P⊕(P , l ,X ) ≤ P⊕(Q, l ,R(X )). □

Example 7. Let us show that I ∼ λxy.xy so that, from the
soundness (Theorem 16), one can infer I =cxt λxy.xy.
Let us define R1 ≜

{
(I, λxy.xy), (λxy.xy, I)

}
, as well as

R2 ≜
{
(̃I,νx .λy.xy), (νx .λy.xy, Ĩ)

}
and R3 ≜ ∼. Let R ≜

(R1 ∪ R2 ∪ R3)
∗. Since R1 ∪R2 ∪R3 is a symmetric relation,

then its reflexive and transitive closureR ≜ (R1 ∪ R2 ∪ R3)
∗

is an equivalence. Let us prove that it is a probabilistic bisim-
ulation.

We have to prove thatP⊕(M, l ,E) = P⊕(N , l ,E),∀(M,N ) ∈

R, ∀E ∈ (Λ∅
⊕ ∪ �HNF)/R, ∀l ∈ Λ∅

⊕ ∪ {τ }. Notice that, if this
holds for (M,N ) ∈ (R1 ∪ R2 ∪ R3), then we are done. In-
deed, suppose (M,N ) ∈ R. Then there exists n ≥ 0 and
P0, . . . , Pn ∈ Λ∅

⊕ ∪ �HNF such that P0 = M , Pn = N and
Pi−1RjiPi for every 1 ≤ i ≤ n, where 1 ≤ ji ≤ 3. Hence,
we have P⊕(M, l ,E) = P⊕(P0, l ,E) = . . . = P⊕(Pn , l ,E) =

P⊕(N , l ,E), ∀E ∈ (Λ∅
⊕ ∪ �HNF)/R, ∀l ∈ Λ∅

⊕ ∪ {τ }.
Let us now show the case (M,N ) ∈ (R1 ∪ R2 ∪ R3). If

(M,N ) ∈ R3 we just apply Proposition 5. Otherwise, it suf-
fices to consider (I, λxy.xy) and (̃I,νx .λy.xy). Recall that, by
Definition 1, P⊕(M,N ,E) = 0 and P⊕(H̃ ,τ ,E) = 0, for all
M,N ∈ Λ∅

⊕ , H̃ ∈ �HNF and E ∈ (Λ∅
⊕ ∪ �HNF)/R. On the

one hand, since (̃I,νx .λy.xy) ∈ R, we have Ĩ ∈ E if and
only if νx .λy.xy ∈ E, for all E ∈ (Λ∅

⊕ ∪
�HNF)/R. This implies

P⊕(I,τ ,E) = P⊕(λxy.xy,τ ,E), for all E ∈ (Λ∅
⊕∪

�HNF)/R. On
the other hand, since terms are considered modulo renaming
of bound variables, by Proposition 1 we have JN K = Jλy.NyK,
for all N ∈ Λ∅

⊕ (notice that this equality may fail if N has free
variables). By Proposition 6, N ∼ λy.Ny, and hence N ∈ E

if and only if λy.Ny ∈ E, for all E ∈ (Λ∅
⊕ ∪ �HNF)/R. This

implies P⊕ (̃I,N ,E) = P⊕(νx .λy.xy,N ,E), for all N ∈ Λ∅
⊕

and for all E ∈ (Λ∅
⊕ ∪ �HNF)/R.

Example 8. We show that the termsM ≜ λxyz.z(x ⊕y) and
N ≜ λxyz.(zx ⊕ zy) in Example 5 are not bisimilar. Indeed,
suppose for the sake of contradiction that a probabilistic
bisimulation R such that (M,N ) ∈ R exists. By definition R

is an equivalence relation. Let E ∈ (Λ∅
⊕ ∪ �HNF)/R be such

that νx .λyz.z(x ⊕y) ∈ E. Then it must be that P⊕(M,τ ,E) =
1 = P⊕(N ,τ ,E), and it follows that both νx .λyz.zx and
νx .λyz.zy are in E, so that (νx .λyz.z(x ⊕ y),νx .λyz.zx) ∈ R.
Then it must be that P⊕(νx .λyz.z(x ⊕ y),Ω,E1) = 1 =
P⊕(νx .λyz.zx ,Ω,E1), for some E1 ∈ (Λ∅

⊕ ∪ �HNF)/R con-
taining both λyz.z(Ω ⊕ y) and λyz.zΩ ∈ E1, which implies
(λyz.z(Ω ⊕ y), λyz.zΩ) ∈ R. By a similar reasoning, we
get that R contains the pairs (νy.λz.z(Ω ⊕ y),νy.λz.zΩ),
(λz.z(Ω ⊕ I), λz.zΩ), and (νz.z(Ω ⊕ I),νz.zΩ). Now, let E2
be an equivalence class containing Ω ⊕ I. From P⊕(νz.z(Ω ⊕

I), I,E2) = 1 = P⊕(νz.zΩ, I,E2) we get that Ω ∈ E2, i.e. (Ω ⊕

I,Ω) ∈ R. Finally, if E3 is an equivalence class such that
νx .x ∈ E3, then P⊕(Ω ⊕ I,τ ,E3) = 1

2 = P⊕(Ω,τ ,E3). This is
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a contradiction, since P⊕(Ω,τ ,E3) = 0. Therefore, the terms
M and N are not bisimilar.

3 Soundness
A fundamental technique to establish the soundness of ap-
plicative (bi)similarity is based on Howe’s lifting [14]. This
method shows that applicative bisimilarity is a congruence,
i.e. an equivalence relation that respects the structure of
terms, which is the hard part in the soundness proof. This
technique has been used in e.g. [6, 16] for, respectively,
the lazy cbn and cbv semantics of Λ⊕ . We consider here
a different approach. Following the reasoning by Abram-
sky and Ong [2], we shall first prove that ≾ is included in
≤app (Lemma 15), which requires a technical Key Lemma
(Lemma 14) specific to the probabilistic framework and then
we conclude by applying a Context Lemma (Lemma 9). The
latter result says that the computational behaviour of the con-
textual semantics is functional. This property has also been
called operational extensionality in Bloom [4]. Milner [21]
proved a similar result in the case of simply typed combi-
natory algebra. To the best of our knowledge, the Context
Lemma lacks a corresponding formulation in the probabilis-
tic λ-calculus Λ⊕ , so we prove it in the following subsection.

3.1 Context Lemma
The Context Lemma states that only the subset of applicative
contexts “really matter” in establishing contextual equiva-
lence. We define an applicative context as a context E ∈ CΛ⊕

of the form (λx1 . . . xn .[·])P1 . . . Pm , where n,m ∈ N and
P1 . . . Pm ∈ Λ∅

⊕ . We denote by AΛ⊕ the set of all applicative
contexts.
The applicative contextual preorder ≤app (resp. applica-

tive contextual equivalence =app) is defined by restricting the
quantifier ∀C to the subset AΛ⊕ of CΛ⊕ in the contextual
preorder (resp. equivalence) definition (6) (resp. (7)).

Lemma 7. LetM,N ∈ ΛΓ∪{x }
⊕ . Then:

(1) IfM ≤app N then λx .M ≤app λx .N .
(2) If λx .M ≤cxt λx .N thenM ≤cxt N .
(3) IfM ≤cxt N then, for all L ∈ Λ⊕ ,ML ≤cxt NL.

In order to prove the Context Lemma more easily, we shall
adopt a slightly more general notion of context, allowing
multiple holes. A generalized context of Λ⊕ is a term contain-
ing holes [·], generated by the following grammar:

C := x | [·] | λx .C | CC | C ⊕ C . (14)

We denote by GΛ⊕ the set of all generalized contexts. If
C ∈ GΛ⊕ andM ∈ Λ⊕ , then C[M] denotes the term obtained
by substituting every hole in C withM allowing the possible
capture of free variables ofM .

Lemma 8. Let M,N ∈ Λ∅
⊕ be such that M ≤app N . Then∑

JC[M]K ≤
∑

JC[N ]K, for all C ∈ GΛ⊕ .

Proof (sketch). By Theorem 2 it is enough to show that, for
all n ∈ N and for all generalized contexts C ∈ GΛ⊕ :∑

H ∈HNF
Hn(C[M],H ) ≤

∑
H ∈HNF

H∞(C[N ],H ) . (15)

The proof is by induction on (n, |C|), where |C| is the size of
C ∈ GΛ⊕ , i.e. the number of nodes in the syntax tree of C.
Since C must be of the form C0C1 . . . Ck , for some k ∈ N, we
proceed by case analysis, looking at the structure of C0. □

Lemma 9 (Context Lemma). LetM,N ∈ Λ⊕ . Then:
(1) M ≤cxt N if and only ifM ≤app N .
(2) M =cxt N if and only ifM =app N .

Proof. Point (2) follows directly from point (1). Lemma 8
gives us point (1) forM,N ∈ Λ∅

⊕ . We extend it to open terms
by applying Lemma 7.(1) and Lemma 7.(2). □

3.2 The Soundness Theorem
We start with some preliminary lemmas.
Lemma 10. Let H ,H ′ ∈ HNF{x } . Then, the following are
equivalent statements:
(1) λx .H ≾ λx .H ′,
(2) νx .H ≾ νx .H ′,
(3) ∀P ∈ Λ∅

⊕, H [P/x] ≾ H ′[P/x] .

Proof (sketch). The implication (1) ⇒ (2) ⇒ (3) is by defi-
nition and by Proposition 5. To prove (3) ⇒ (2), it suffices
to show that the relation R ≜ {(νx .H ,νx .H ′) ∈ �HNF ×�HNF | ∀P ∈ Λ∅

⊕, H [P/x] ≾ H ′[P/x]} ∪ ≾ is a probabilistic
applicative simulation. Similarly, (2)⇒ (1) holds by showing
that the relationR ≜ {(λx .H , λx .H ′) ∈ HNF×HNF | νx .H ≾
νx .H ′} ∪≾ is a probabilistic applicative simulation. □

Let us recall that, given X ⊆ HNF, ≾(X ) denotes the im-
age of X under ≾. Moreover, given X ⊆ HNF{x } , νx .≾(X )

denotes the set of distinguished hnfs {νx .H | H ∈ ≾(X )},
while λx .≾(X ) denotes the set of terms {λx .M | M ∈ ≾(X )}.
Lemma 11. Let X ⊆ HNF{x } . We have:

≾(λx .X ) ∩ HNF∅ = λx .≾(X ) ∩ HNF∅,
≾(νx .X ) = νx .≾(X ) .

Lemma 12. Let M,N ∈ Λ∅
⊕ . For all X ⊆ HNF∅, JMK(X ) ≤

JN K(≾(X )) if and only ifM ≾ N .

The forthcoming Lemma 14 describes the applicative be-
haviour of ≾ and it requires an auxiliary result about the
so-called “probabilistic assignments”. Probabilistic assign-
ments were first introduced in this setting by [16] to prove
the soundness of PAS in the lazy cbn.
Definition 2 (Probabilistic assignments). A probabilistic as-
signment is defined as a pair ({pi }1≤i≤n , {rI }I ⊆{1, ...,n }), with
all pi , rI in [0, 1], such that, for all I ⊆ {1, . . . ,n}:∑

i ∈I

pi ≤
∑

J ⊆{1, ...,n }
s.t. J∩I,∅

r J . (16)



The Benefit of Being Non-Lazy
in Probabilistic λ-calculus LICS ’20, July 8–11, 2020, Saarbrücken, Germany

Lemma 13 ([16]). Let ({pi }1≤i≤n , {rI }I ⊆{1, ...,n }) be a prob-
abilistic assignment. Then for every I ⊆ {1, . . . ,n} and for
every k ∈ I there is sk, I ∈ [0, 1] such that:

(1) ∀j ∈ {1, . . . ,n}, pj ≤
∑

J ⊆{1, ...,n }
s.t. j ∈J

sj, J · r J .

(2) ∀J ⊆ {1, . . . ,n},
∑

j ∈{1, ...,n }
s.t. j ∈J

sj, J ≤ 1.

Following essentially the same ideas of [16], we shall use
the above property to decompose and recombine distribu-
tions in the proof of the following lemma.

Lemma 14 (Key Lemma). Let M,N ∈ Λ∅
⊕ . If M ≾ N then,

for all P ∈ Λ∅
⊕ ,MP ≾ NP .

Proof (sketch). By Lemma 12 it suffices to prove that, for all
X ⊆ HNF∅ and for all D ∈ D(HNF) such that MP ⇓ D ,
it holds that D(X ) ≤ JNPK(≾(X )). The non-trivial case is
when the last rule ofMP ⇓ D is s4, i.e. when:

D(X ) =
∑

λx .H ∈ supp(E )

E (λx .H ) · FH,P (X ) (17)

forM ⇓ E andH [P/x] ⇓ FH,P . Notice that supp(E ) is finite,
say supp(E ) = {λz.H1, . . . , λz.Hn}.
Proposition 1 gives us:

JNPK(≾(X )) =
∑
λx .H

JN K(λx .H ) · JH [P/x]K(≾(X )) (18)

One would be then tempted to compare the sums (17) and
(18) term by term. In fact, by hypothesis we know that
for every λx .H , E (λx .H ) ≤ JN K(≾{λx .H }). This gives that
every term E (λx .H ) · FH,P (≾(X )) of (17) is smaller than∑

λx .H ′∈≾(λx .H )JN K(λx .H ′)·JH ′[P/x]K(≾(X )). Unfortunately
we cannot conclude, as different hnfs λx .H do not always
generate disjoint ≾(λx .H ) (e.g. think about η-equivalent
hnfs), so that we cannot factor (18) according to≾(λx .H1),. . . ,
≾(λx .Hn). Here is where Lemma 13 on probabilistic assign-
ments plays a role, permitting to “disentangle” the different
quantities JN K(≾{λx .H1}), . . . , JN K(≾{λx .Hn}). In fact, one
can prove that for all λz.H ′ ∈

⋃
i ∈I ≾{λz.Hi } (notice that,

sinceN ∈ Λ∅
⊕ , JN K(

⋃
i ∈I ≾{λz.Hi }) = JN K(

⋃
i ∈I ≾{λz.Hi }∩

HNF∅)), we can apply Lemma 13 and get sH ′

1 , . . . , sH ′

n ∈ [0, 1]
such that:
(1) ∀i ≤ n, E (λz.Hi ) ≤

∑
λz .H ′∈≾(λz .Hi )

sH
′

i ,

(2) ∀λz.H ′ ∈
⋃

i ∈I ≾(λz.Hi ), JN K(λz.H ′) ≥
∑n

i=1 s
H ′

i .
From this, we have:

D(X ) ≤

n∑
i=1

( ∑
λz .H ′∈≾(λz .Hi )

sH
′

i

)
· FHi ,P (X )

≤

n∑
i=1

∑
λz .H ′∈≾(λz .Hi )

sH
′

i · JH ′[P/z]K(≾(X ))

≤
∑

λz .H ′∈
⋃n
i=1 ≾(λz .Hi )

( n∑
i=1

sH
′

i

)
· JH ′[P/z]K(≾(X ))

≤
∑
λz .H ′

JN K(λz.H ′) · JH ′[P/z]K(≾(X )) = JNPK(≾(X ))

and hence D(X ) ≤ JNPK(≾(X )). □

Lemma 15. LetM,N ∈ Λ∅
⊕ . IfM ≾ N thenM ≤app N .

Proof. Wehave to show thatM ≾ N implies
∑

JMP1 . . . PnK ≤∑
JNP1 . . . PnK, for any sequence P1, . . . , Pn ∈ Λ∅

⊕ . The proof
is by induction on n, using Lemma 12 for the base case and
Lemma 14 for the induction step. □

Theorem 16 (Soundness). LetM,N ∈ Λ⊕ . Then:
(1) M ≾ N impliesM ≤cxt N .
(2) M ∼ N impliesM =cxt N .

Proof. Point (2) follows from point (1) since it holds that
∼ = ≾ ∩ ≾op (Proposition 5) and =cxt is ≤cxt ∩ (≤cxt)

op .
Concerning point (1), we first prove it for closed terms. So,
let M,N ∈ Λ∅

⊕ be such that M ≾ N . By Lemma 15, it holds
that M ≤app N . By Lemma 9, this implies M ≤cxt N . Now,
let M,N ∈ Λ{x1, ...,xn }

⊕ be such that M ≾ N . From (12), we
have that λx1 . . . xn .M ≾ λx1 . . . xn .N . Because these are
closed terms, we obtain λx1 . . . xn .M ≤cxt λx1 . . . xn .N . By
repeatedly applying Lemma 7.(2), we concludeM ≤cxt N . □

4 Full Abstraction
We prove that PAB is complete, hence fully abstract (The-
orem 23), while PAS is not, giving a countexemple to PAS
completeness in Section 4.3.

As mentioned in the Introduction, the completeness prop-
erty is usually achieved by transforming PAB into a testing
semantics defined by Larsen and Skou [18], proven equiva-
lent to probabilistic bisimulation by van Breugel et al. [25],
and then showing that every test is definable by a context in
the language, see e.g. [6, 15]. This reasoning is not so sim-
ple to implement in our setting, as the testing definability
needs a kind of sampling primitive, which is not clear if rep-
resentable in a call-by-name semantics (see the discussion
in the Introduction).
Fortunately, we succeed in following a different path,

based on Leventis’ Separation Theorem [19]. The idea is to
prove that (a trivial extension of) the contextual equivalence
is a probabilistic applicative bisimulation, hence contained
in ∼ by definition (Eq. (11)). Basically, this amounts to check
that for any contextual equivalence class E of hnfs and any
M =cxt N , we have JMK(E) = JN K(E) (see Eq. (9)). How to
prove it? We associate terms with a kind of infinitary, ex-
tensional normal forms, the so-called probabilistic Nakajima
trees (Section 4.1). The Separation Theorem states that two
termsM and N share the same Nakajima tree whenever they
are contextually equivalent (Theorem 18), so that we can use
such trees as representatives of the contextual equivalence
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classes. Lemma 21 shows that the quantity JMK(E) depends
only on the Nakajima tree of M and that of E, so we can
conclude with Lemma 22 giving JMK(E) = JN K(E) and hence
the full abstraction result Theorem 23.
On the other hand, the counterexample to the complete-

ness of PAS (Eq. (21)) uses the Context Lemma.

4.1 Probabilistic Nakajima Trees
A Böhm tree [3] is a labelled tree describing a kind of in-
finitary normal form of a deterministic λ-term. In more de-
tails, the Böhm tree BT (M) of a λ-term M can be given co-
inductively as follows:

• If the head reduction of M terminates into the hnf
λx1 . . . xn .yM1 . . .Mm , then:

λx1 . . . xn .y
BT (M) ≜

BT (M1) BT (Mm)

. . .

where BT (M1), . . . , BT (Mm) are the Böhm trees of the
subtermsM1, . . . ,Mm of the hnf ofM .

• Otherwise, the tree is a node labelled by Ω.
The notion of Böhm tree is not sufficient to characterize

contextual equivalence because it lacks extensionality: the
terms y and λz.yz have different Böhm trees and yet y =cxt
λz.yz holds. To recover extensionality, we need the so-called
Nakajima trees [22], which are infinitely η-expanded repre-
sentations of the Böhm trees. The Nakajima tree BT η(H ) of
a hnf H = λx1 . . . xn .yM1 . . .Mm is the infinitely branching
tree:

λx1 . . . xnxn+1 . . . .y

BT η(M1) BT η(xn+1)BT η(Mm)

. . .. . .BT η(H ) ≜

where x1 . . . xnxn+1 . . . is an infinite sequence of pairwise
distinct variables and, for i > n, the xi ’s are fresh.

Nakajima trees represent infinitary η-long hnfs. Every hnf
H = λx1 . . . xn .yM1 . . .Mm η-expands into the head normal
form λx1 . . . xn+k .yM1 . . .Mmxn+1 . . . xn+k for any k ∈ N
and xn+1 . . . xn+k fresh: Nakajima trees are, intuitively, the
asymptotical representations of these η-expansions.
To generalize such a construction to probabilistic terms

we define by mutual recursion the tree associated with a hnf
and the tree of an arbitrary termM as a subprobability distri-
bution over the trees of the hnfsM reduces to. Hence, strictly
speaking, a probabilistic Nakajima tree is not properly a tree.

Following Leventis [19] we shall give an inductive, “level-
by-level” definition of the probabilistic Nakajima trees.

The set PT
η
ℓ
of probabilistic Nakajima trees with level at

most ℓ ∈ N is the set of subprobability distributions over

value Nakajima treesVT
η
ℓ
. These sets are defined by mutual

recursion as follows:

VT
η
0 ≜ ∅

VT
η
ℓ+1 ≜ {λx1x2 . . . .yT1,T2, . . . | Ti ∈ PT

η
ℓ
, ∀i ≥ 1},

PT
η
0 ≜ {⊥},

PT
η
ℓ+1 ≜ {T : VT

η
ℓ+1 → [0, 1] |

∑
t ∈ VT

η
ℓ+1

T (t) ≤ 1}.

where ⊥ represents the zero distribution. Value Nakajima
trees are ranged over by t , and probabilistic Nakajima trees
are ranged over by T .
Let ℓ ∈ N. By mutual recursion we define a function

VT
η
ℓ+1 associating with each H ∈ HNF its value Nakajima

tree VT η
ℓ+1(H ) of level ℓ + 1, and a function PT

η
ℓ
associating

with eachM ∈ Λ⊕ its probabilistic Nakajima tree PT η
ℓ
(M) of

level ℓ:
• If H = λx1 . . . xn .yM1 . . .Mm , then VT

η
ℓ+1(H ) is:

λx1 . . . xnxn+1 . . . .y

PT
η
ℓ
(M1) PT

η
ℓ
(xn+1)PT

η
ℓ
(Mm)

. . .. . .

where x1 . . . xnxn+1 . . . is an infinite sequence of pair-
wise distinct variables and, for i > n, the xi ’s are fresh;

• PT
η
ℓ
(M) ≜

{
t 7→

∑
H ∈(VT η

ℓ
)−1(t )JMK(H ) if ℓ > 0

⊥ otherwise.
We say thatM and N have the same Nakajima tree, and we

writeM =PTη N , if PT η
ℓ
(M) = PT

η
ℓ
(N ) holds for all ℓ ∈ N.

Theorem 2 assures that the above definition based on the
operational semantics J·K given in (3) is equivalent to the
one given by Leventis in [19], based on the head reduction.

Example 9. Figure 4 depicts the Nakajima trees of level,
respectively, 1 and 2 associated with term Θ(λf .(y ⊕ y f )),
where Θ is the Turing fixed-point combinator (Example 1).
Distributions are represented by barycentric sums, depicted
as ⊕ nodes whose outgoing edges are weighted by probabili-
ties. Notice that the more the level ℓ increases, the more the
top-level distribution’s support grows.

Proposition 17 ([19]). LetM,N ∈ Λ⊕ . If PT
η
ℓ
(M) = PT

η
ℓ
(N )

for some ℓ ∈ N, then PT
η
ℓ′
(M) = PT

η
ℓ′
(N ) for all ℓ′ ≤ ℓ.

Theorem 18 (Separation [19]). LetM,N ∈ Λ⊕ . IfM =cxt N
thenM =PTη N .

4.2 The Completeness Theorem
In the previous subsection probabilistic Nakajima trees have
been inductively presented by introducing “level-by-level”
their finite representations. To recover the full quantitative
information of a Nakajima tree we shall need a notion of
approximation together with some general properties.
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⊕

λx1x2 . . . .y

⊥ ⊥

1

. . .

⊕

λx1x2 . . . .y

⊕

λz1, z2 . . . .x1

⊥ ⊥

⊕

λz1, z2 . . . .x2

⊥ ⊥

λx1x2 . . . .y

⊕

λz1, z2 . . . .y

⊥ ⊥

⊕

λz1, z2 . . . .x1

⊥ ⊥

1
2

1

. . .

. . .

1

. . .

1
2

. . .

1

. . .

1

. . .

Figure 4. From left, the Nakajima trees PT η
1 (Θ(λf .(y ⊕ y f ))) and PT η

2 (Θ(λf .(y ⊕ y f ))).

Definition 3. Let r , r ′ ∈ R and ϵ > 0. We say that r ϵ-
approximates r ′, and we write r ≈ϵ r

′, if |r − r ′ | < ϵ .

Fact 19. Let r , r ′, r ′′ ∈ R and ϵ, ϵ ′ > 0. If r ≈ϵ r ′ and
r ′ ≈ϵ ′ r

′′ then r ≈ϵ+ϵ ′ r
′′.

Lemma 20. Let {An}n∈N be a descending chain of countable
sets of positive real numbers satisfying

∑
r ∈An r < ∞, for all

n ∈ N. Then: ∑
r ∈

⋂
n∈N An

r = inf
n∈N

( ∑
r ∈An

r

)
. (19)

A consequence of Theorem 18 is that for every contextual
equivalence class E ∈ Λ∅

⊕/=cxt and for every level ℓ ∈ N
there exists a unique value Nakajima tree t of that level such
that VT η

ℓ
(H ) = t for all H ∈ E. Let tE, ℓ denote such a tree.

Lemma 21. LetM ∈ Λ∅
⊕ and E ∈ Λ∅

⊕/=cxt. We have:

(1) JMK(E) = infℓ∈N (PT
η
ℓ
(M)(tE, ℓ)).

(2) ∀ϵ > 0 ∃ℓ ∈ N ∀ℓ′ ≥ ℓ: JMK(E) ≈ϵ PT
η
ℓ′
(M)(tE, ℓ′).

Proof. Let EV ≜ E ∩ HNF∅, notice that JMK(E) = JMK(EV).
As for point (1), we have H ∈ EV if and only if ∀ℓ ∈ N
VT

η
ℓ
(H ) = tE, ℓ if and only if ∀ℓ ∈ N H ∈ (VT

η
ℓ
)−1(tE, ℓ), so

that EV =
⋂

ℓ∈N(VT
η
ℓ
)−1(tE, ℓ). Moreover, by Proposition 17,

for all ℓ ∈ N it holds that:
(VT

η
ℓ+1)

−1(tE, ℓ+1) = {H ∈ HNF∅ | VT
η
ℓ+1(H ) = tE, ℓ+1}

⊆ {H ∈ HNF∅ | VT
η
ℓ
(H ) = tE, ℓ}

= (VT
η
ℓ
)−1(tE, ℓ) .

(20)

Therefore, ((VT η
ℓ
)−1(tE, ℓ))ℓ∈N is a descending chain, so that

{JMK(H ) | H ∈ (VT
η
ℓ
)−1(tE, ℓ)}ℓ∈N is. Moreover, by definition

we have
∑

H ∈(VT η
ℓ
)−1(tE, ℓ )JMK(H ) ≤

∑
JMK ≤ 1, for all ℓ ∈ N.

Hence, by applying Lemma 20 and by definition of Nakajima
tree equality, we have:

JMK(E) =
∑
H ∈EV

JMK(H ) =
∑

H ∈
⋂

ℓ∈N((VT
η
ℓ
)−1(tE, ℓ ))

JMK(H )

= inf
ℓ∈N

∑
H ∈(VT η

ℓ
)−1(tE, ℓ )

JMK(H )

= inf
ℓ∈N

(PT
η
ℓ
(M)(tE, ℓ)).

Let us prove point (2). On the one hand, (PT η
ℓ
(M)(tE, ℓ))ℓ∈N

is clearly a bounded below sequence. On the other hand,
from (20) it is also monotone decreasing. Indeed, for all ℓ ∈ N:

PT
η
ℓ+1(M)(tE, ℓ+1) =

∑
H ∈(VT η

ℓ+1)
−1(tE, ℓ+1)

JMK(H )

≤
∑

H ∈(VT η
ℓ
)−1(tE, ℓ )

JMK(H ) = PT
η
ℓ
(M)(tE, ℓ).

Thus, limℓ→∞(PT
η
ℓ
(M)(tE, ℓ))ℓ∈N = infℓ∈N (PT

η
ℓ
(M)(tE, ℓ)) =

JMK(E), and point (2) follows by definition of limit. □

Lemma 22. Let M,N ∈ Λ∅
⊕ . If M =cxt N then JMK(E) =

JN K(E), for all E ∈ Λ∅
⊕/=cxt.

Proof. Suppose toward contradiction that JMK(E) , JN K(E)
and consider ϵ > 0 such that 2ϵ ≤ |JMK(E) − JN K(E)|. By
Lemma 21.(2) there exist ℓ ∈ N such that:

JMK(E) ≈ϵ PT
η
ℓ
(M)(tE, ℓ) JN K(E) ≈ϵ PT

η
ℓ
(N )(tE, ℓ) .

By Theorem 18, from M =cxt N we obtain M =PTη N , and
hence PT η

ℓ
(M) = PT

η
ℓ
(N ). By Fact 19, JMK(E) ≈2ϵ JN K(E),

i.e. |JMK(E) − JN K(E)| < 2ϵ . A contradiction. □

Remark 2. Observe that the statement of Lemma 22 may
fail when Λ⊕ is endowed with a different operational seman-
tics than head reduction. As an example, recall the terms
M ≜ λxy.(x ⊕y) and N ≜ (λxy.x)⊕ (λxy.y) discussed in the
Introduction (Eq. (1)). In the lazy cbn,M and N are contex-
tually equivalent [16]. Moreover,M is a value for lazy cbn,
while N reduces with equal probability 1

2 to T = λxy.x and
F = λxy.y. However, M , T and F are pairwise contextually
inequivalent since, by setting C = [·]IΩ, we have that C[M],
C[T], and C[F] converge with probability 1

2 , 1, and 0, respec-
tively. Therefore, by setting E as the lazy cbn contextual
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equivalence class containingM , we have JMK(E) = 1, while
JN K(E) = 0.

Theorem 23 (Full abstraction). For allM,N ∈ Λ⊕ :

M =cxt N ⇔ M ∼ N .

Proof. The right-to-left direction is Theorem 16.(2). Concern-
ing the converse, we first consider the case of closed terms.
So, let M,N ∈ Λ∅

⊕ be such that M =cxt N . We prove that
there exists probabilistic applicative bisimulation R contain-
ing =cxt. We define R as follows:

{(P ,Q) ∈ Λ∅
⊕ × Λ∅

⊕ | P =cxt Q}

∪ {(νx .H ,νx .H ′) ∈ �HNF × �HNF | λx .H =cxt λx .H
′} .

Let us prove that R is a probabilistic applicative bisimulation.
Since =cxt is an equivalence relation, then R is. Now, let
(νx .H ,νx .H ′), (P ,Q) ∈ R, E ∈ (Λ∅

⊕ ∪ �HNF)/R, and let l ∈

Λ∅
⊕ ∪ {τ }. We have to show that:
(1) P⊕(P , l ,E) = P⊕(Q, l ,E),
(2) P⊕(νx .H , l ,E) = P⊕(νx .H

′, l ,E).
Let us prove point (1). If l ∈ Λ∅

⊕ then P⊕(P , l ,E) = 0 =
P⊕(Q, l ,E). If l = τ we define Ê ≜ {λx .H ∈ HNF∅ | νx .H ∈

E} ∪ {P ′ ∈ Λ∅
⊕ | P ′ ∈ E}. Then, by definition:

P⊕(P ,τ ,E) = JPK(Ê) P⊕(Q,τ ,E) = JQK(Ê) .

Since (P ,Q) ∈ R and E ∈ (Λ∅
⊕ ∪ �HNF)/R, it holds that

P =cxt Q and Ê ∈ Λ∅
⊕/=cxt . By applying Lemma 22 we have

JPK(Ê) = JQK(Ê), and hence P⊕(P ,τ ,E) = P⊕(Q,τ ,E).
Let us now prove point (2). If l = τ then P⊕(νx .H ,τ ,E) =
0 = P⊕(νx .H

′,τ ,E). Otherwise, let l = L ∈ Λ∅
⊕ . Since =cxt is

≤cxt∩(≤cxt)
op , by Lemma 7.(3) we have that λx .H =cxt λx .H ′

implies (λx .H )L =cxt (λx .H
′)L. From Proposition 1.(1) and

Proposition 4 we have:

H [L/x] =cxt (λx .H )L =cxt (λx .H
′)L =cxt H

′[L/x] .

Therefore, H [L/x] ∈ E if and only if H ′[L/x] ∈ E, and hence
P⊕(νx .H ,L,E) = P⊕(νx .H

′,L,E).
Now, let M,N ∈ Λ{x1, ...,xn }

⊕ be such that M =cxt N . Since
=cxt is ≤cxt ∩ (≤cxt)

op , by repeatedly applying Lemma 7.(1)
and Lemma 9.(1), λx1 . . . xn .M =cxt λx1 . . . xn .N . Since these
terms are closed, we obtain λx1 . . . xn .M ∼ λx1 . . . xn .N . Fi-
nally, from (13) we concludeM ∼ N . □

4.3 PAS is Not Complete
Theorem 23 establishes a precise correspondence between
PAB and contextual equivalence. But what about PAS and
contextual preorder? The soundness theorem (Theorem 16)
states that the former implies the latter, so that it is natu-
ral to wonder whether the converse holds as well. Surpris-
ingly enough, as in the case of the lazy reduction strategies
(see [16] and [6]), the answer is negative.

A counterexample to PAS completeness is given by:

M ≜ λx .x(Ω ⊕ I), N ≜ λx .(xΩ ⊕ xI). (21)

whose Markov chain is sketched in Figure 5. First, observe
thatM and N are incomparable with respect to PAS:

Lemma 24. NeitherM ≾ N nor N ≾ M hold.

Proof. LetM ≾ N . Then, P⊕(M,τ , M̃) ≤ P⊕(N ,τ ,≾(M̃)), so
that νx .xΩ ∈ ≾(M̃), and M̃ ≾ νx .xΩ. Hence, P⊕(M̃, I, I(Ω ⊕

I)) ≤ P⊕(νx .xΩ, I,≾(I(Ω⊕I))). Thismeans that IΩ ∈ ≾(I(Ω⊕

I)), so that I(Ω ⊕ I) ≾ IΩ. So 1
2 = P⊕(I(Ω ⊕ I),τ , Ĩ) ≤

P⊕(IΩ,τ ,≾(̃I)) = 0. A contradiction.
Now, suppose N ≾ M . Then we have P⊕(N ,τ ,νx .xI) ≤

P⊕(M,τ ,≾(νx .xI)), so that M̃ ∈ ≾(νx .xI), and νx .xI ≾ M̃ .
Hence, P⊕(νx .xI, I, II) ≤ P⊕(M̃, I,≾(II)). This means that
I(Ω ⊕ I) ∈ ≾(II), so that II ≾ I(Ω ⊕ I). Therefore, 1 =
P⊕(II,τ , Ĩ) ≤ P⊕(I(Ω ⊕ I),τ ,≾(̃I)) = 1

2 . A contradiction. □

However, the two terms can be compared through the
contextual preorder relation:

Lemma 25. It holds thatM ≤cxt N .

Proof (sketch). By Lemma 9 it is enough to show thatM ≤app
N . SinceM,N ∈ Λ∅

⊕ , this amounts to check that for all finite
sequences L1, . . . ,Ln ∈ Λ∅

⊕ , it holds that
∑

JML1 . . . LnK ≤∑
JNL1 . . . LnK. The proof easily follows once one has:

JL[Ω/x]K ≤D JL[I/x]K, (22)∑
JL[(Ω ⊕ I)/x]K ≤ 1

2 ·
∑

JL[Ω/x]K + 1
2 ·

∑
JL[I/x]K, (23)

for any term L. The first inequation is an easy consequence
of Proposition 4, while the second one can be proven by
induction on an approximation of J·K. □

Theorem 26. PAS is not complete (hence fully abstract) with
respect to contextual preorder.

5 Conclusion
We have considered the untyped probabilistic λ-calculus Λ⊕

endowed with an operational semantics based on the head
spine reduction, a variant of the head reduction strategy
giving rise to the same big-step semantics (Theorem 2). We
have proven that probabilistic applicative bisimilarity is fully
abstract with respect to contextual equivalence (Theorem 23).
The soundness part is a consequence of a Context Lemma
(Lemma 9). The completeness proof relies on the Separation
Theorem, introducing probabilistic Nakajima trees [19].

Our result completes the picture about fully abstract de-
scriptions of the probabilistic head reduction contextual
equivalence, adding finally a coinductive characterisation.
To the best of our knowledge, this picture can be resumed
by the equivalences of all the following items, forM and N
probabilistic λ-terms:

1. M and N are contextually equivalent,
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M N

M̃ νx .xΩ νx .xI

I(Ω ⊕ I) . . . IΩ . . . II . . .

. . . Ĩ . . . Ĩ

1 τ
1
2

τ 1
2

τ

L,I1 I L,II1 I1 L,I

1
2

τ 1
2

τ 1 τ 1 τ

Figure 5. Markov chain forM = λx .x(Ω ⊕ I) and N = λx .(xΩ ⊕ xI).

2. M and N have the same probabilistic Nakajima tree
[19, 20],

3. M and N have the same denotation in the reflexive
arenaU of the cartesian closed category of probabilis-
tic concurrent game semantics [5],

4. M and N have the same denotation in the reflexive ob-
ject D∞ of the cartesian closed category of probabilis-
tic coherence spaces or of the R+-weighted relations
[5, 20],

5. M and N are applicatively bisimilar (this paper),
6. M andN are testing equivalent according to the testing

language T0 (a consequence of [25] and this paper).
Last, we have shown a counterexample to the full abstrac-

tion problem for probabilistic applicative similarity (Equa-
tion (21)). We conjecture that extending the calculus with
Plotkin’s parallel disjunction [23], as done in [7], is enough
to restore this property. This is left to future work.
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