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Abstract

In this paper we introduce a map Φ, which we call zonoid map, from the
space of all non-negative, finite Borel measures on Rn with finite first mo-
ment to the space of zonoids of Rn. This map, connecting Borel measure
theory with zonoids theory, allows to slightly generalize the Gini volume
introduced, in the context of Industrial Economics, by Dosi et al. (2016).
This volume, based on the geometric notion of zonoid, is introduced as a
measure of heterogeneity among firms in an industry and it turned out to
be a quite interesting index as it is a multi-dimensional generalization of
the well known and broadly used Gini index.
By exploiting the mathematical context offered by our definition, we prove
the continuity of the map Φ which, in turn, allows to prove the validity of
a SLLN type theorem for our generalized Gini index and, hence, for the
Gini volume. Both results, the continuity of Φ and the SLLN theorem, are
particularly useful when dealing with a huge amount of multi-dimensional
data.

MSC 2010 Classfication: 28B05; 28A78

keywords: Gini Index, zonoid, empirical distribution, Hausdorff metric

1 Introduction
Many problems in the social and system sciences are naturally multivariate and
cannot be easily represented with a continuous or parametric approach.
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An example is the economical production theory that studies and represents the
determinant factors driving production process dynamics. An industry is defined
as a set of firms operating within the same sector and we can think about firm
productivity as the “ability" to turn inputs into outputs.
The classic approach in production theory is based on a number of assumptions
regarding firm behaviour and firm production possibilities, in particular the profit
maximization and the cost minimization assumption. Following these assump-
tions, an ad hoc parametrized family of production functions is introduced to
estimate a number of economical indices and to assess both, the productivity and
the efficiency of a firm. Production functions satisfy, in addition, certain topo-
logical properties such as convexity and continuity, thus implying that firms with
similar technologies will adopt analogous production techniques or, equivalently,
that firms tend to be homogeneous.
Despite these assumptions, a growing availability of longitudinal microdata at
firm-level has evidenced the fundamental role of heterogeneity in all relevant
aspects regarding firms production activity, thus suggesting a switch from a con-
tinuous/parametric approach (which seems to be inadequate in presence of wide
asymmetries) to a discrete/nonparametric point of view. Here geometry and ge-
ometric measure theory come into help.
To evidence the fragilities of the classic theory, Hildenbrand (1981) adopted a
different perspective, by considering the empirical distribution induced by a set
X = {yn}n=1,...,N ⊂ Rm+1

+ of firms composing the industry (see Section 4 for
details), and introducing a geometric approach, the zonoid representation. Geo-
metrically, a zonoid is a centrally symmetric, compact, convex set of the euclidean
space which is induced by a Borel measure with finite expectation. In particular,
the zonoid induced by the empirical distribution of a given industry is a convex
polytope which is called a zonotope. Zonotopes can also be written as a sum of
line segments, in addition, they are dense in the space of zonoids with respect to
the topology induced by the Hausdorff metric.
More recently, Dosi et al. (2016) (see also Dosi et al. (2021)) adopted Hilden-
brand’s construction to assess the rate of productivity and technological change
of a given industry both on the microeconomic point of view (i.e. firm-level pro-
ductivity) and on the macroeconomic point of view (i.e. aggregate productivity).
Moreover a measure of heterogeneity of the industry, called the Gini volume, is
introduced. The above approach relies entirely on the geometry of the zonotope
induced by the empirical distribution of the industry and it is highly nonpara-
metric. The Gini volume can also be seen as a measure of concentration of the
empirical distribution. Indeed it is nothing else than a multi-dimensional general-
ization of the well known Gini index broadly used in social sciences and economics
as measure of statistical concentration (see Remark 4.11).
The aim of this paper is to look at the Gini volume in a slightly more general

2



mathematical context than the one in Dosi et al. (2016). This broader setting
includes tools of measure theory and geometric properties of zonoids. It allows
to generalize the definition of Gini volume to a broader class of measures and to
prove the validity of a strong law of large numbers (SLLN for short) result for
this generalized index. This turns out to be very useful when dealing with huge
number of high dimensional data.
We introduce the zonoid map Φ: Mn → Zn from the space Mn of all non-
negative, finite Borel measures on Rn with finite first moment to the space Zn of
zonoids of Rn. This is possible thanks to the dual aspect, provided by the zonoid
representation, between the theory of Borel measures with finite first moment and
the geometry of convex bodies. Such map turns out to be continuous and allows
to prove the validity of a SLLN type theorem for the Gini volume. More precisely,
we prove the continuity of Φ on the subspace of Borel probability measures with
support on a compact K ⊂ Rn (see Proposition 2.2). In turn, Proposition 2.2
provides the key ingredient to prove the main result of this paper, Theorem 4.13.
Another interesting consequence of the continuity of Φ is that every “discrete" dis-
tribution µ can be substituted by a suitable “continuous" distribution ν in such a
way that the zonoid Z(ν) = Φ(ν) is a good approximation of Z(µ) = Φ(µ) at any
desirable degree. This seems to suggest that a very large but finite data-set can
be approximated with a continuous distribution, which may simplify the analysis
without a great loss of information. This will be object of further studies.
Moreover, from the continuity of the map Φ, we can deduce a notion of robustness
for the Gini volume. Indeed small changes in the value of the distribution induced
by a concrete data-set X (e.g. of technological data), lead to a small change in
the related zonoid and, consequently, in the Gini volume. In turn, this robustness
allows to improve the computational aspect of the method by considering random
samples instead of the whole data-set in order to compute the Gini volume.
In conclusion, it is worth to remark that our approach is in the same spirit of
the one used in Koshevoy and Mosler (1997). Their generalizations of the Gini
index and Gini mean difference to the multi-dimensional case adopt very sim-
ilar mathematical techniques. For example, Corollary 3.3 and an analogous of
Theorem 4.13 apply to their generalization too. On the other hand, their indices
assess different quantities from applied point of view. For instance, the way the
volume of the Zonotope is normalized in order to give rise to the two indices is
different. In particular, while we generalize the normalization introduced by Dosi
et al. (2016), a normalization chosen for its applied meaning ( as explained in
Subsection 4.2 ), their approach uses the concept of lift Zonoid and it is useful
to straightforwardly apply several mathematical results.
For further applications of zonoid theory to other branches of economics, such
as finance and stochastic processes, we refer to Molchanov and Schmutz (2011),
Molchanov et al. (2014).
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Zonoids can also be defined as the expectation of a random segment. For a thor-
ough investigation of this different approach we refer to Mosler (2002) and, for a
complete introduction to the general theory of random sets and its applications
to econometrics, to Molchanov (2018) and Molchanov and Molinari (2018).
The paper is organized as follows. In Section 2 we introduce basic notions and
preliminary results. In Section 3 we define the empirical distribution and the em-
pirical zonoid and prove that a SLLN theorem holds. In Section 4 we investigate
the zonotope approach in production theory proposed in Hildenbrand (1981), we
generalize the Gini volume introduced in Dosi et al. (2016) and we present a SLLN
result for this new generalized Gini index. In Section 5 we present applications
of our result and in Section 6 our conclusions.

2 Notations and preliminary results
A zonoid is a convex body of Rn (i.e. it is compact and convex) which is centrally
symmetric and contains the origin. A zonotope is a Minkowski sum of a finite
number of line segments. In particular a zonoid is a polytope if and only if it is a
zonotope. In this section we recall their relation with measure theory. We mainly
refer to Bolker (1969), Billingsley (1968), and Mosler (2002). For a more detailed
presentation of the content of this and the following Section in the context of this
paper see Terni (2019).

2.1 An introduction to zonoids

LetMn be the set of all non-negative, finite Borel measures µ on Rn (with respect
to the euclidean topology) whose first moment

m(µ) =

∫
Rn

x dµ(x)

is well defined (here the integration is made component-wise). For every µ ∈Mn,
the zonoid associated to the measure µ is the set

Z(µ) =

{∫
Rn

φ(x) · x dµ(x)

∣∣∣∣ φ : Rn → [0, 1] measurable
}
⊆ Rn.

It can be considered as a geometric representation of the underlying measure:
indeed, if we denote with Bn the class of Borel subsets of Rn, then the zonoid
Z(µ) can be seen as the closure of the convex hull of the image of the map

F : Bn → Rn ; F (B) =

∫
B

x dµ(x).
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The zonoid Z(µ) is centrally symmetric about 1
2
m(µ) (sometimes we may also

refer to m(µ) as the mean or the gravity center of the distribution).
On the functional point of view, if we denote by Zn the set of zonoids of Rn we
can consider the map

Φ: Mn → Zn ; Φ(µ) = Z(µ),

which we call the zonoid map. The zonoid map satisfies the following properties:

1. it is a homomorphism of semigroups: Z(µ + ν) = Z(µ) + Z(ν) for every
µ, ν ∈ Mn, where the sum on the right-hand side of the equality is the
Minkowski sum;

2. it is positively homogeneous: for every α > 0 we have Z(αµ) = αZ(µ);

3. it is linearly equivariant: for every linear map L : Rn → Rk we have L(Z(µ)) =
Z(L∗µ), where L∗µ is the push-forward measure of µ with respect to L. In
particular, the linear image of a zonoid is a zonoid.

In addition, the zonoid map is clearly surjective but on the other hand it is not
injective, since every zonoid is induced by a measure with support contained in
the unitary sphere Sn−1 (for a proof, see Bolker (1969)).

2.2 Zonotopes and zonoids

First of all note that a zonoid is a zonotope if and only if it is induced by a finite
atomic measure, i.e. a measure with finite support (cfr. Bolker (1969)).
Now, let Kn be the set of convex bodies of Rn. It is a classical result that if we
equip Kn with the Hausdorff distance

dH(K,L) = min {ε ≥ 0| K ⊆ L+ ε ·Bn, L ⊆ K + ε ·Bn} ,

where Bn is the unit ball in Rn, then (Kn, dH) is a complete, sequentially compact
metric space.
Since the set of polytopes is dense in Kn with respect to the topology induced
by the Hausdorff distance, the subset of zonotopes is dense in Zn ⊆ Kn. That
is, every zonoid can be arbitrarily approximated (in the Hausdorff metric) by
a zonotope, which has both a geometrical and combinatorial nature (see Bolker
(1969) for the proof and the geometrical characterization of a zonotope and Ziegler
(1995) for the combinatorial aspects). It is worth remarking that in combinato-
rial geometry there is an identification between zonotopes and arrangements of
hyperplanes, although we won’t deal with these aspects of the theory. Figure 1
displays a zonotope generated by 4 line segments in R3.
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Figure 1: Zonotope generated by 4 line segments.

2.3 Continuity of the zonoid map

In this subsection and in the rest of the paper we will deal with the space Pn(K)
of Borel probability measures with support contained in K and equipped with the
topology induced by the weak convergence. Here K is either a compact subset
of Rn, i.e. K ∈ Cn, or the non-negative octant Rn

+ or the whole space Rn. In the
latter case we simply write Pn instead of Pn(Rn).
We recall that a sequence (µn)n∈N ⊂ Pn(K) is said to converge weakly to µ ∈
Pn(K) if

lim
n→∞

∫
K

f dµn =

∫
K

f dµ

for every real-valued, continuous and bounded function f defined on K. In this
case we write µn ⇒ µ.
Let Pn1 (K) := Pn(K)∩Mn be the space of probability measures with finite first
moment and whose support is contained in K. A family of measures (µi)i∈I in
Pn1 (K) is uniformly integrable if

lim
β→∞

sup
i∈I

∫
‖x‖≥β

‖ x ‖ dµi(x) = 0.

The following Theorem, corollary of a more general result related to lift zonoids1
(see Section 2.4 of Mosler (2002)), holds.

Theorem 2.1. Let (µk)k∈N, µ ∈ Pn1 (K). If (µk) is uniformly integrable and
µk ⇒ µ, then Z(µk)

dH−→ Z(µ).

1For a more detailed discussion on lift zonoids in the context of this work we refer the
interested reader to Terni (2019).
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Note that we have the equality Pn1 (K) = Pn(K) when K is compact. In par-
ticular, a family of measures (µi)i∈I in Pn(K) is always uniformly integrable
when K is compact. Hence, as a corollary of Theorem 2.1, we have the following
Proposition.

Proposition 2.2 (Continuity on compact sets). For every K ∈ Cn, the zonoid
map

Φ: Pn(K)→ Zn ; Φ(µ) = Z(µ)

is continuous.

Proof. Every family of measures with support contained in a compact set is uni-
formly integrable. Hence, by Theorem 2.1 the map Φ is a sequentially continuous
map between two metric spaces, in particular it is a continuous map.

As aforementioned, beside the case in which K is a compact set, it is of common
interest the case in which K coincides with Rn

+.
Set P+

1 = Pn1 (Rn
+). We are interested in describing another sufficient condition,

beside uniform integrability, that a family (µk)k∈N of measures in P+
1 needs to

satisfy in order to obtain a convergence result. With this aim we recall that a
sequence (µk)k∈N ⊂ P1 = Pn1 (Rn) is said to be convergent in mean to µ ∈ P1

(write µk
M−→ µ) if it converges weakly to µ and the sequence (m(µk)) converges

to m(µ) for k →∞. Hildenbrand (1981) proved the following result.

Theorem 2.3. Given (µk)k∈N ⊂ P
+
1 and µ ∈ P+

1 , then µk
M−→ µ implies

Z(µk)
dH−→ Z(µ).

Remark that for any K compact subset of Rn, a sequence (µk)k∈N ⊂ P(K) is
convergent in mean to µ ∈ P(K) if and only if it is weakly convergent to µ.
Before to move to the next section, we briefly recall here that a fundamental
example of Borel probability distribution on Rn is the Dirac measure δx ∈ Pn, x ∈
Rn, defined as:

δx(B) =

{
0, if x /∈ B
1, if x ∈ B

for every B Borelian subset of Rn.
Clearly, the support of the Dirac measure δx coincides with the singleton {x}. In
addition, the space of atomic probability measures (i.e. those distributions with
finite support) coincides with the space

Qn =

{
N∑
i=1

αiδxi ∈ Pn : N ∈ N, x1, . . . , xN ∈ Rn,

N∑
i=1

αi = 1, αi ∈ [0, 1]

}
.
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This is the space of convex combinations of Dirac measures which is a dense
subset of Pn with respect to the topology induced by the weak convergence (
further details can be found in Billingsley (1968) ).
The Dirac measure plays an important role in the next and in the last section of
this paper.

3 Zonoids related to empirical distributions

We begin with the following Definition.

Definition 3.1. Let X = {yk}k=1,...,N ⊂ Rn be a finite set. The empirical
distribution of X is the Borel measure

µ̂ =
1

N

N∑
k=1

δyk ,

the zonoid related to the empirical distribution Z (µ̂) is the empirical zonoid.

As noticed in Subsection 2.2, since µ̂ is a measure with finite support then the
induced empirical zonoid Z(µ̂) is indeed a zonotope.
In many application contexts, the empirical distribution is induced by a data-set
X of technological data which are subject to errors of various kind. Hence, it is
desirable that a small change in the distribution should lead only to a small change
in the related zonoid or, equivalently, that the map Φ should satisfy a continuity
result. This is quite useful when one needs to rely on samples, for instance when
the collection of technological data (e.g. the production activity of an industry
in several countries) is time consuming and costly. In this respect, in Proposition
2.2 we have already stated a continuity result for zonoids in the compact case.
An analogous result can be stated for the non compact case P+

1 . The following
version of the Glivenko-Cantelli Theorem for separable metric spaces holds (see
Varadarajan (1958)).

Theorem 3.2. Let (E, d) be a separable metric space and X1, X2, . . . be indepen-
dent E-valued random variables with distribution µ (we consider on E the σ-field
of Borelian subsets). Let µ̂N be the empirical measure

µ̂N =
1

N

N∑
i=1

δXi
,

then we have µ̂N ⇒ µ for N →∞ with probability 1.
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Notice that Theorem 3.2 implies that the empirical zonoid which is derived from
a large sample of the true distribution µ will yield a good approximation of Z(µ).
A consequence of Theorem 3.2 and Theorem 2.3 is the following Corollary.

Corollary 3.3. Let X1, X2, . . . be independent Rn
+-valued random variables with

distribution µ ∈ P+
1 . Let µ̂N be the empirical measure

µ̂N =
1

N

N∑
i=1

δXi
,

then we have
Z(µ̂N)

dH−→ Z(µ)

with probability 1.

Proof. The usual law of large numbers implies m(µ̂N)
‖·‖−→ m(µ) with probability

1, hence we can combine it with Theorem 3.2 to conclude that µ̂N
M−→ µ with

probability 1 and thus the thesis follows by Theorem 2.3.

To conclude we remark that Corollary 3.3 can actually be extended to X1, X2, . . .
independent Rn-valued random variables with distribution µ ∈ P1 (see Mosler
(2002)).

4 A generalization of the Gini index.
In recent years, a wide literature based upon empirical analyses has robustly ev-
idenced the permeating presence of heterogeneity in all relevant aspects of the
dynamics of production processes. Recently Dosi et al. (2016) introduced the
Gini Volume, a new non parametric index to assess the degree of heterogeneity
of an industry. Their construction is based on the paper Hildenbrand (1981), in
which the author applies the theory of zonoids to the one of industrial production.
In this section we recall the definition of such index, we provide a slight gener-
alization by means of the zonoid representation and we prove the validity of a
SLLN type result.

4.1 The zonotope approach

Hildenbrand (1981) suggested a geometrical representation of a given industry.
Such representation is highly nonparametric and it is based upon observed pro-
duction activity, that is, every industry is represented as a set

X = {yn}n=1,...,N ⊂ Rm+1
+ ,

where:
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• N is the number of productive units (i.e. the firms) making up the industry;

• every point yn is called the observed production activity of the n-th firm;

• the first m coordinates of yn represent the input quantities adopted by the
n-th firm and the last coordinate is the output quantity produced under
the period of observation (we say we are in the m-input, 1-output case)2.

Let X = {yn}n=1,...,N ⊂ Rm+1
+ be a fixed set which represents a given industry.

Hildenbrand (1981) defines the production set of the n-th firm as the line segment

[0, yn] .

The size of the n-th firm is the euclidean norm of the vector
−→
0yn, ‖ yn ‖.

Notice that the definition of production set corresponds, roughly speaking, to the
assumption that each firm doesn’t change its production activity under the period
of observation, thus it can be seen as a first order approximation of the problem.
In Hildenbrand (1981) there is a geometric representation of the industry X from
the aggregate point of view.

Definition 4.1. The short-run total production set of the industry X is the
Minkowski sum of the production set of each firm, that is, the zonotope

Z =
N∑
n=1

[0, yn].

Consider the empirical measure of the industry X, that is, the measure

µ̂ =
1

N

N∑
n=1

δyn .

We recall that µ̂ is a probability measure with finite support, hence it is an atomic
probability with finite mean and we have µ̂ ∈ P+

1 . As noted by Hildenbrand, for
every Borelian set B the quantity 100 · µ̂(B) can be seen as the percentage of
production units having their characteristics in the set B.

Definition 4.2. The short-run mean production set of the industry X is the
zonoid Z(µ̂), where µ̂ is the empirical distribution of X.

The term “mean” adopted in the above definition follows from the observation
that Z(µ̂) is an homothetic copy of the short-run total production set Z. Indeed
we have

Z = N · Z(µ̂).
2We replaced Rn with Rm+1 to be consistent with the notation in Hildenbrand (1981) and

Dosi et al. (2016).
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Remark 4.3. As a convex body, every zonoid Z(µ) is uniquely determined by
its support function, defined as follows:

ψµ : Rn → R ; ψµ(ξ) = sup {〈x, ξ〉| x ∈ Z(µ̂)} .

It is an interesting fact that in Hildenbrand (1981), an economic interpretation
of the support function of Z(µ̂) is given: if we write ξ = (−ξ1, . . . ,−ξm, ξm+1) ∈
Rm+1, then the quantity ψµ̂(ξ) = sup {〈x, ξ〉| x ∈ Z(µ̂)} can be considered as
the maximum mean profit with respect to the price system ξ subject to the
technological restrictions defined by the mean production set Z(µ̂).

Building by Hildenbrand’s work, Dosi et al. (2016) introduced a new framework
to study the rate and direction of technical change and to assess the firm level
heterogeneity, which we are now going to examine.

4.2 Heterogeneity and Gini volume

Empirical evidence reports a wide and persistent heterogeneity across firms op-
erating in the same industry, thus the phenomenon requires attention.
Intuitively, heterogeneity can be associated in mathematical statistics to the vari-
ance, namely it measures how much the industry is far from being homogeneous
or, equivalently, how much the various productive units differ from the “mean”
productive unit.

Definition 4.4. Let X = {yn}n=1,...,N ⊂ Rm+1
+ be an industry and let Z be the

related short-run total production set. The total production activity is the sum

ΣZ =
N∑
n=1

yn ∈ Z.

Geometrically, the line segment dZ := [0,ΣZ ] is the main diagonal of the zonotope
Z and it seems to be a good candidate to represent the “ ‘mean” productive
technology of the industry: indeed we have

ΣZ

N
= m (µ̂) ,

where m (µ̂) is the expectation of the empirical measure µ̂ related to the industry
(i.e. the set) X.
For a better visualization, let us analyse two limit cases, one the opposite of the
other.

11



• Maximal homogeneity: every production set lies on the line spanned
by the main diagonal dZ . This corresponds to the situation where every
production activity adopts the same productive technology and any two of
them only differ by their intensities (i.e. their size). In this case, we have
Z = dZ , which is a zonotope with null volume;

• Maximal heterogeneity: production sets are represented by segments
on positive semi-axis and the zonotope Z is a parallelotope in Rm+1 with
diagonal dZ . This case has to be regarded as a limit case: indeed, produc-
tion sets on positive semi-axis would imply that there are firms with either
nonzero inputs and zero output or nonzero output and zero inputs, which
is quite absurd.

Building from these two cases, Dosi et al. (2016) defined the following index as a
candidate measure of heterogeneity.

Definition 4.5. TheGini volume for the short run total production set Z induced
by the industry X is the ratio

G(Z) =
Vm+1(Z)

Vm+1(PZ)
∈ R,

where PZ is the (m+ 1)-dimensional parallelotope

PZ :=

{
z ∈ Rm+1 : 0 ≤ z ≤

N∑
i=1

yn = ΣZ

}
.

Observe that the Gini volume does not depend on the units of measure or the
number of firms, thus it allows comparisons across space and time. In addition,
we have the inequality

0 ≤ G(Z) ≤ 1,

where the minimum is attained at the maximal homogeneity case and the maxi-
mum is attained in the maximal heterogeneity case.

Remark 4.6. Clearly, the inequality N ≥ m+ 1 must be satisfied, otherwise the
Gini volume would be null (observe that in applications the number N is usually
large). When N ≥ m+ 1, then we have the equality

Vm+1(Z) =
∑
i∈I

|∆i|,

where I = {i = (i1, . . . , im+1) ∈ Rm+1 | 1 ≤ i1 < · · · < im+1 ≤ N} and ∆i is the
determinant of the matrix whose rows are the vectors

{
yi1 , . . . , yim+1

}
. On the

other hand, we have
Vm+1(PZ) = Πm+1

i=1 〈ΣZ , ei〉,
where {ei}i=1,...,m+1 is the canonical basis and 〈 , 〉 is the standard scalar product.
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The following continuity result on the Gini volume holds.

Theorem 4.7. Let Zm+1
+ be the space of zonotopes Z that are contained in Rm+1

+

and verify Vm+1(PZ) 6= 0. Then the Gini volume, seen as a real-valued function
defined on Zm+1

+ equipped with the topology induced by the Hausdorff metric, is
continuous.

In order to prove this theorem we need the following Lemma (see Schneider
(2013)).

Lemma 4.8. The volume functional Vm+1 is continuous on the space of convex
bodies in Rm+1 with respect to the Hausdorff metric.

Proof of Theorem 4.7. Since the volume functional is continuous by Lemma 4.8,
the only thing left to prove is the continuity of the map

Z 7→ PZ .

Indeed, the function is also uniformly continuous, in fact for every couple of
zonotopes Z, Z ′ with dH(Z,Z ′) ≤ ε we have

Z ⊆ Z ′ + ε ·Bm+1 ⊆ PZ′ + ε ·Bm+1,

hence the inclusion
PZ ⊆ PZ′ + ε ·Bm+1

follows easily from the definition of PZ . Clearly we can exchange the roles of Z
and Z ′ to get the inequality

dH(PZ , PZ′) ≤ ε.

The Gini volume defined above can be expressed in terms of the empirical distri-
bution µ̂ of the set X as showed in the following Remark.

Remark 4.9. Note that, for every µ ∈ P+
1 , the associated zonoid Z(µ) is con-

tained in the m+ 1-dimensional parallelotope

P (µ) :=
{
z ∈ Rm+1 : 0 ≤ z ≤ m(µ)

}
, (1)

where ≤ is applied component by component. In this respect we have the equality

G(Z) =
Vm+1(Z(µ̂))

Vm+1(P (µ̂))
= G (Z (µ̂)) ,

which can be easily deduced from the relations Z = N ·Z(µ̂) and PZ = N ·P (µ̂).
In particular, we have Vm+1(PZ) 6= 0 if and only if the expectation m(µ̂) ∈ Rm+1

+

is a vector with strictly positive coordinates.
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4.3 A generalized Gini index and its robustness

Remark 4.9 suggests an extension of the Gini volume definition to the set of
zonoids induced by P+

1 .

Definition 4.10. Let µ ∈ P+
1 be a Borel distribution such that m(µ) is a vector

with strictly positive coordinates. The generalized Gini index related to µ is the
ratio

G (Z (µ)) =
Vm+1(Z(µ))

Vm+1(P (µ))
,

where P (µ) is the parallelotope defined in Remark 4.9.

In the following Remark we show how the generalized Gini index defined above
is, indeed, a generalization of the Gini index.

Remark 4.11. Let µ ∈ P1
1 be a univariate probability distribution with support

contained in R+ and such that m(µ) 6= 0 (equivalently m(µ) > 0). Consider the
lifted measure induced by µ, that is, the bivariate probability distribution

µ = δ1 ⊗ µ,

where δ1 ∈ P1
1 is the Dirac measure which assigns unitary mass to the point 1.

Observe that we can write µ ∈ P+
1 if we set m+ 1 = 2.

In Mosler (2002) it is proved that the zonoid Z(µ) (which is also called the lift
zonoid induced by µ) is a bidimensional convex body bordered by two curves,
the generalized Lorenz curve and the dual generalized Lorenz curve induced by
µ. We recall that the generalized Lorenz curve induced by the distribution µ is
defined as

Lµ(t) =

(
t,

∫ t

0

Qµ(s) ds

)
, 0 ≤ t ≤ 1,

where Qµ(s) is the quantile function of µ:

Qµ(s) = inf {x ∈ R : µ (]−∞, x]) ≥ s} .

The dual generalized Lorenz curve is obtained by symmetrization of the gener-
alized Lorenz curve with respect to the center of symmetry of Z(µ), that is, the
point C =

(
1
2
, 1
2
m(µ)

)
∈ R2. Figure 2 shows the zonoid Z(µ) and the parallelo-

tope P (µ) when µ is the exponential distribution with parameter 1, that is, when
µ = Exp(1). The generalized Lorenz curve is represented by the lower curve
below the dotted line displayed in the figure, which corresponds to the segment
whose endpoints are the origin and the point (1,m(µ)). The dual generalized
Lorenz curve is represented by the upper curve above the dotted line. On the
other hand, the rectangle (the square) containing the zonoid in Figure 2 coincides

14



Figure 2: Lorenz curve.

with the 2-dimensional parallelotope P (µ).
On the right figure, the light grey surface represents the portion of plane between
the dotted line and the generalized Lorenz curve, while the dark grey surface rep-
resents the portion of P (µ) which is situated below the generalized Lorenz curve.
By a symmetry argument, we can observe that the proposed generalization in
Definition 4.10 graphically coincides with the ratio between the area of the light
grey surface and the area of the dark grey surface united with the light grey
surface. Hence the term generalized Gini index in the Definition 4.10 is justified.

Let P (µ) be the parallelotope defined in Remark 4.9, the following continuity
result holds.

Theorem 4.12. Let (µk)k∈N ⊂ P
+
1 and µ ∈ P+

1 be Borel distributions such that
Vm+1(P (µ)) 6= 0 and Vm+1(P (µk)) 6= 0 for every index k. If µk

M−→ µ, then the
sequence G(Z(µk)) converges to G(Z(µ)).

Proof. The proof follows immediately by Theorem 2.3 and the observation that
if µk

M−→ µ, then P (µk)
dH−→ P (µ).

Notice that the above Theorem applies to the index of heterogeneity proposed in
Dosi et al. (2016).
The following is our final and main result, a SLLN type theorem, which may be
used in a more general context, beside the production theory one.

Theorem 4.13. Let µ ∈ P+
1 be a Borel distribution such that the expectation

m(µ) is a vector with strictly positive coordinates and let X1, X2, . . . be indepen-
dent Rm+1

+ -valued random variables with distribution µ. Let µ̂N be the empirical
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measure

µ̂N =
1

N

N∑
i=1

δXi
,

then the sequence G(Z(µ̂N)) is eventually defined and it converges to G(Z(µ))
with probability 1.

Proof. Observe that, since we have µ ∈ P+
1 , the expectation m(µ) is a vector

with strictly positive coordinates if and only if the parallelotope P (µ) has non-
empty interior or, equivalently, if and only if Vm+1 (P (µ)) 6= 0. By the usual
law of large numbers we have m(µ̂N) → m(µ) with probability 1, hence the
sequence of parallelotopes P (µ̂N) has eventually non-empty interior and thus the
index G(Z(µ̂N)) is eventually well defined almost surely. At this point, we can
conclude by Theorem 3.2 and Theorem 4.12.

5 Applications to the Gini volume

In this section we consider two examples to explain some possible applications of
our results.

5.1 On the efficiency of computations via sub-samples

Recently, based on the software Zonohedron3 in Dosi et al. (2016), Cococcioni
et al. (forthcoming) developed a Stata4 command to compute the Gini volume
of a data-set of vectors. The computational complexity of the algorithm behind
both softwares is O(N l), where N and (l + 1) are, respectively, the number of
vectors in the set considered and the dimension of the vector space. Hence, as
pointed out by Cococcioni et al. (forthcoming) the use of a sub-sample can effi-
ciently reduce the computational time.
To better estimate the extent of our results we have applied the aforementioned
algorithm to the analysis of an industry composed by 1400 firms. This data
sample is obtained from the data base AMADEUS5. We firstly considered the
number of employees and the fixed assets as inputs and the turnover values as

3Zonohedron is written by Federico Ponchio and can be downloaded at http://vcg.isti.
cnr.it/~ponchio/zonohedron.php.

4Stata is a general-purpose statistical software package developed by StataCorp for data
manipulation, visualization, statistics, and automated reporting. Stata is very popular for
empirical studies among economists.

5AMADEUS, a commercial database provided by Bureau van Dijk, contains balance sheets
and income statements for over 21 million European firms over the period 2004-2013. We
selected the 2007 data-set of an Italian industry of 1400 firms (4-digit NACE classification).
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output, i.e. we considered the 3-dimensional case. It took 0.364 minutes for the
Stata command to compute the Gini volume for the industry with 1400 firms.
The computation time drops to 0.002 minutes when we focused on 200 firms ran-
domly drawn from the data sample. This benefit of efficiency becomes even larger
when dealing with the analysis in higher dimension. For example, if we further
introduce the material cost into our analysis as a 3rd input, i.e., the dimension
of the vector space is 4, the computation times for 1400 and 200 firms are, re-
spectively, 151.844 and 0.116 minutes. In dimension 6, according to Cococcioni
et al. (forthcoming), shirinking the sample size from 250 to 200 decreases the
computation time by almost 12 hours.
In conclusion, considering a lower number of elements in the data-set following
our continuous results, reduces drastically the time of computations of the Gini
volume defined by Dosi et al. (2016).

5.2 On the accuracy of computations via sub-samples

In this subsection we address the question on the size that a sub-sample of a given
data-set should have in order to get an accurate estimation of the Gini volume.
We do this by means of an empirical example. Further studies are needed in order
to provide a more precise theoretical answer.
Let’s denote by G the Gini volume of the entire data-set and by gj the Gini
volume of the j-th round sub-sample of a fixed size. Both G and gj are computed
by means of the Stata command developed by Cococcioni et al. (forthcoming).
We consider the

standard gj =
gj −G
sdj(gj)

where sdj(·) computes the standard deviation over j.
We investigate around 100 different industries6 by fixing sub-samples of the size
of 10%, 20%, 30%, and 40% for each one, re-sampling 1000 times in each case.
The results are plotted in Figure 3. The majority of industries (around the 70%)
behaved as represented in the left panel of Figure 3. In this case the mode provides
an almost perfect approximation of G when the size of the sub-sample is the 40%.
In other cases the mode of standard gj approximates G almost perfectly already
with a 10% sub-sample, as depicted in the right panel of Figure 3. In those cases
the distribution of the standard gj becomes multimodal when the sub-sample size
arrives to 40%.
Those computations show that a 40% sub-sample is enough to provide a good

6Italian industries (4-digit NACE classification) in 2011 with the number of firms within
ranges from 387 to 699 extracted from AMADEUS.
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approximation of the Gini volume. Notice that if with the choice of the 40% the
distribution of the standard gj is multimodal, then a better approximation can
be obtained by shrinking the size of the sub-sample.
From this example two evidences arise:

1. the original sample can be non-trivially reduced;

2. the choice of a suitable sub-sample is a problem worthy to be investigated.

Those considerations show how our theoretical result on the robustness of the
generalized Gini index can be fruitfully applied to the computation of the Gini
volume making it faster and, in some cases, feasible.
On the other hand there is an unexpected and interesting consequence of this
example. Our robustness result could indirectly provide a new way to study
the distribution of firms in an industry. In particular, it could cast a light on
how the different techniques in an industry are used, which ones are the most
popular and which are the most effective (over time). Indeed if we consider the
industries represented in the right panel of Figure 3, it is reasonable to infer that
the distribution of the firms inside those industries is rather different than the
distribution of the firms inside the industries represented in the left panel. One
possible explanation for this difference is that in this minority of industries, the
firms distribute in clusters of homogeneous techniques. Indeed in this case if we re-
sample too many firms within one cluster (still possible for random re-sampling),
the gj approximates only the Gini volume of that cluster but not necessarily
the Gini volume, G, of the industry. This is consistent with the multimodal
distribution of the standard gj when the sub-sample size arrives to 40%. Hence,
by re-grouping the firms which show homogeneous techniques, we could be able
to identify the prominent techniques in the industry and study them (over time).
Since establishing which are the most effective techniques in an industry is a
problem widely studied, we believe that this finding deserves further studies.

6 Conclusions

In this paper we deal with a multi-dimensional generalization of the well known
Gini index. Our generalization moved from the definition of the Gini volume
provided by Dosi et al. (2016) and its first application is to the computation of
this exact Gini volume. Indeed the Gini volume defined by Dosi et al. (2016) is a
very useful tool to study the heterogeneity of an industry, but its computational
complexity in higher dimension makes difficult to use it in the interesting case in
which a large number of inputs is involved. Theorem 4.13 provides a theoretical
result which can be used to reduce the sample size and hence the computational
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Figure 3: The kernel distributions of the standard gj for different sub-sample sizes (solid line)
compared with the standard normal distribution (dashed line). The M, �, and ◦ represent the
mean, median, and mode of the distributions of the standard gj .

complexity of the Gini volume. Moreover the examples studied in Subsection 5.2
show how the distribution of the firms inside an industry is a non-trivial and
an interesting function to be studied. Indeed a more accurate study of those
distributions could answer to interesting questions such as:

1. are there techniques which are dominant in a given industry?

2. are the dominant techniques the most efficient ones?

3. is the efficiency of the dominant techniques predictive of the future growth
of the industry?
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All those questions are very important in Industrial Economics and this could
provide a new way to investigate them from a totally different point of view.
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