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Abstract. We propose a large margin preference learning model based
on game theory to solve the label ranking problem. Specifically, we show
the proposed formulation is able to perform multiclass classification by
solving a single convex optimization problem. Generally, such formula-
tion, although theoretically well-founded, requires to learn a large num-
ber of parameters. To reduce the computational complexity, we propose
a strategy based on the solution of smaller subproblems, that can be
further optimized by exploiting techiniques borrowed from multi-armed
bandits literature. Finally, we show how the proposed framework exhibits
state-of-the-art results on many benchmark datasets.

Keywords: game theory · svm · large margin · kernel method · large
scale

1 Introduction

For many years, Support Vector Machine (SVM) has been one of the most stud-
ied and heavily used Machine Learning (ML) method. Besides its state-of-the-art
performance in many learning tasks, its success is mainly due to its theoretical
foundation. SVM roots in statistical learning theory [20] and follows the prin-
ciple of structural risk minimization to control the generalization ability of a
learning machine. It belongs to the family of large margin models and its ele-
gant formulation makes it suitable for connections with other theoretical fields.
An example being its strong relation with game theory (GT). For instance, it
is well known that hard margin SVM can be cast into a two-players zero-sum
game [1]. GT has also been related to other ML techniques, including, boost-
ing [8] and linear regression [13]. More recently, similar connections have been
made between Preference Learning (PL) and GT [16].

Starting from this last finding, we present a theoretically well-founded pref-
erence learning framework inspired by game theory for multi-class classification
problems. Specifically, we define a (generalized) linear PL model in which the
large margin problem is cast into a two-players zero-sum game. The proposed
framework is general enough to be easily used with kernel in order to handle
non-linear problems. We show how this model can be trained by solving a sim-
ple convex optimization problem. However, akin other kernel methods, like SVM,
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it could not be suited for large scale problems. To this regard we also propose a
technique inspired by multi-armed bandits to speed up the learning process.

The remainder of the paper is structured as follows: Section 2 introduces all
the necessary background. Section 3 and 4 describe the main contributions of the
paper. Finally, Section 5 and 6 show the experimental assessment and discuss
possible future research directions.

2 Background

2.1 Preference Learning

Preference learning (PL) is a sub-task in machine learning in which the input
data consists of preference relations. In PL problems, the goal is to construct
a preference model able to predict preferences for previously unseen items. The
typical assumption is that preferences are in agreement with some utility function
gθ. The task then becomes to find the parameters θ of the utility function g.

Label ranking is one of the main PL tasks [10]: given a set of input patterns
xi ∈ X , i ∈ [1, . . . , n], and a finite set of labels Y ≡ {y1, y2, . . . , ym} the goal
is to learn the utility function gθ : X × Y → R which assigns a fitness score
for each instance-label pair (x, y). Label ranking represents a generalization of
a classification task, since, given an instance x, gθ implicitly defines a total
order over Y. In the label ranking context, the training set consists of pairwise
preferences yi �x yj , i 6= j, i.e., for the pattern x, yi is preferred to yj . In the
special case of classification, in which x is associated to a unique label yi, the
preferences’ set is

{yi �x yj | 1 ≤ j 6= i ≤ m}.

In this work we focus on (generalized) linear preference models [19, 2] on
some feature space F induced by an embedding function φ, i.e., gw(φ(x), y) =
wᵀψ(φ(x), y), where w is the parameters vector, ψ is a joint representation of
instance-label pairs, and φ : X → Rd is the embedding function.

Since the preferences are ranked according to the utility function, given a
preference yi �x yj then gw(φ(x), yi) > gw(φ(x), yj) should hold, and thus

wᵀψ(φ(x), yi) > wᵀψ(φ(x), yj)⇒ wᵀ(ψ(φ(x), yi)− ψ(φ(x), yj)) > 0,

which can be interpreted as the margin (or confidence) of the preference.
The instance-label joint representation used in this work is based on the

Kesler’s construction for multi-class classification [15, 6, 11]. That is a very pow-
erful tool for extending learning algorithms for binary classifiers to the multi-class
setting. The Kesler’s construction allows, by using an appropriate instances’ rep-
resentation, to solve multi-class problems using a single linear function instead
of decomposing them into many binary sub-problems. The construction can be
formalized as in the following.

Given an instance (possibly embedded in a feature space) φ(x) with label y,
we define the instance-label representation ψ : Rd × Y → Rd·m as ψ(φ(x), y) =
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emy ⊗ φ(x), where the symbol ⊗ indicates the Kronecker product and emy is the
y-th canonical basis of Rm:

ψ(φ(x), y) = emy ⊗ φ(x) = (0
↑
1

; 0
↑
2

; . . . ; φ(x)
↑
y

;0; . . . ; 0
↑
m

) ∈ Rd·m,

where 0 are d-dimensional zero vectors. Therefore, given a preference yi �x yj
we construct its corresponding embeddings z ∈ Rd·m as

z = ψ(φ(x), yi)− ψ(φ(x), yj) = (emyi − emyj )⊗ φ(x)

= (0; . . . ; φ(x)
↑
yi

;0; . . . ; −φ(x)
↑
yj

;0; . . . ;0) ∈ Rd·m.

At prediction time, given a new instance xnew, labels are ranked according
to the score gw(φ(xnew), y), ∀y ∈ Y. In case of classification, the predicted label
for xnew is ŷ = arg maxy∈Y gw(φ(xnew), y).

2.2 Game Theory

Game theory is the science of strategic reasoning that studies the behaviour of
rational game players who are trying to maximize their utility. Specifically, in
this paper, we focus on finite two-players zero-sum games. The strategic form
of a two-players zero-sum game is defined by a triplet (P,Q,M), where P and
Q are finite non-empty set of strategies for player P and Q, respectively, and
M : P × Q → R is a function that associates a value M(i, j) to each pair of
strategies (i, j) s.t. i ∈ P, j ∈ Q. M(i, j) represents the payoff of Q and the loss of
P. Since P and Q are finite sets, M can be represented as a matrix M ∈ R|P |×|Q|,
called payoff matrix (or game matrix), such that Mij = M(i, j), where |P | and
|Q| are the number of available strategies for P and Q, respectively. Each matrix
entry Mi,j represents the loss of P, or equivalently the payoff of Q, when the
strategies i and j are played by the players. The game takes place in rounds in
which the two players play simultaneously: the row player (P) picks a row p ∈ P ,
and the column player (Q) picks a column q ∈ Q of M. The goal of the player P
is to define a strategy that minimizes its expected loss V . Conversely, the player
Q aims at finding a strategy that maximizes its payoff. Players strategies are
typically represented as stochastic vectors p ∈ SP and q ∈ SQ, respectively,

where SP = {p ∈ R|P |+ | ‖p‖1 = 1} and SQ = {q ∈ R|Q|+ | ‖q‖1 = 1}. It is well
known [14] that the best pair of optimal strategies (p∗,q∗), i.e., the saddle-point
(or Nash equilibrium) of M, can be computed by

V ∗ = p∗ᵀMq∗ = min
p

max
q

pᵀMq = max
q

min
p

pᵀMq,

where V ∗ is the value of the game.
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3 PL maximal margin as a two-players zero-sum game

In Section 2.1 we have introduced the concept of margin of a preference. Akin
classical classification scenarios [17], also in PL contexts large margins corre-
spond to good generalization capability of the ranker [1].

As mentioned previously, we consider a hypothesis space H composed by
linear functions, i.e., H ≡ {z 7→ wᵀz | w, z ∈ Rd·m}, ‖w‖2 = 1}. Given a hy-
pothesis w, we say that w satisfies a preference z if its margin is strictly positive,
that is, iff ρw(z) = wᵀz > 0. We assume to have a set of training preferences of
the form T ≡ {(y+ �x y−)}, |T | = n(m− 1) which can be easily transformed to
their corresponding vectorial representation as previously described. According
to the maximum margin principle, we aim to select w such that it maximizes
the minimum margin over the training preferences. Following the line of [1, 16],
we cast the margin maximization problem into a two-players zero-sum game.
Specifically, let Q ≡ H, and let P ≡ T be the set of strategies for the player Q

and P, respectively. The game takes place in rounds, where Q selects an hypoth-
esis w ∈ H and P selects a preference z from T . Q wants to maximize its payoff,
which is the margin achieved by w on z. Conversely, P aims to minimize its loss
by defining a mixed strategy over the set of training preferences, which can be
seen as a probability distribution p ∈ SP over the preferences. The value of this
game, i.e., the expected margin, is computed by solving

V ∗ = min
p

max
‖w‖2=1

Ep [ρw(z)] = min
p

max
‖w‖2=1

|P |∑
i=1

piρw(zi) (1)

= min
p

max
‖w‖2=1

|P |∑
i=1

piw
ᵀzi = min

p
max
‖w‖2=1

wᵀ

 |P |∑
i=1

pizi

 . (2)

It is well known that the unitary norm maximizer of Eq. (2) is

w ∝
|P |∑
i=1

pizi = Zᵀp,

where Z ∈ R|P |×(d·m) is the matrix with the preference embeddings arranged in
the rows, and hence we can rewrite Eq. (2) as

V ∗ = min
p

|P |∑
i=1

pi

|P |∑
j=1

pjz
ᵀ
i zj = min

p
pᵀKzp, (3)

where Kz ∈ R|P |×|P | is a kernel matrix between preferences, that is Kz[i, j] =
zᵀi zj . Given the Kesler’s construction described in Section 2.1, then Kz can be
computed as:

Kz[i, j] = (0, . . . , φ(xi)
↑
y+i

; . . . ; −φ(xi)
↑
y−i

; . . . ;0)ᵀ(0; . . . ; φ(xj)
↑
y+j

; . . . ; −φ(xj)
↑
y−j

; . . . ;0)
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= (Jy+i = y+j K + Jy−i = y−j K− Jy+i = y−j K− Jy−i = y+j K)κ(xi,xj),

where κ(xi,xj) = φ(xi)
ᵀφ(xj) is the kernel function induced by φ, and J·K is the

indicator function. Equation (3) shows that it is possible to learn the maximal
margin hypothesis in the preference space by solving a quadratic optimization
problem. This formulation allows to solve a multi-class classification problem
without the need of decomposing it in multiple binary classification problems.
However, when the number of preferences is huge computing (3) on the whole
kernel matrix Kz can be prohibitive. For this reason in the next section we
provide a technique for efficiently approximating the value of the game, and
thus learning the model.

4 Approximating the value of the PL game

There is a large body of research in the game theory community which deals
with the problem of approximating the value of the game for huge game matri-
ces [9, 7, 4, 3, 5]. However, such techniques assume the availability of the whole
game matrix which is not always feasible in our context. More recently [16],
an incremental approach for solving large game matrices w.r.t. the number of
columns has been proposed in which only a budget of columns are considered
at each iteration. Unfortunately, limiting the number of columns only could not
be enough when the number of preferences is huge. For this reason, we propose
a method that approximates the value of the game (as well as the strategies of
the players) by combining the solutions of many sub-games that consider only
squared sub-matrices of the whole game matrix Kz.

Specifically, let T be the number of sub-games we want to solve, and let
Πt ∈ {0, 1}|P |×s be the selection matrix used to select rows/columns from Kz

for the t-th game. Thus, each sub-game matrix Kt ∈ Rs×s (s � |P |) can be
obtained as Kt = Πᵀ

tKzΠt. Let p̂t be the optimal strategy for the t-th sub-
game, then we can project back the solution by computing pt = Πtp̂t

Once all pt have been computed, we aim to combine these sub-strategies in
order to get a strategy for the whole game. The best convex combination of the
pt’s can be achieved by solving the following convex optimization problem

α∗ = min
α∈S T

αᵀ (PᵀKzP)α = min
α∈S T

αᵀGα, (4)

where P ∈ RT×|P | is the matrix where the strategies (pt) of the sub-games are
arranged in the rows, and G = PᵀKzP ∈ RT×T . Clearly, the value of the game
Ṽ = α∗Gα∗ is an approximation of V ∗ and specifically V ∗ ≤ Ṽ

From the formulation given in (4) it seems that it is still necessary to compute
the whole kernel matrix Kz. However, it can be observed that since P is built
upon the best strategies of the sub-games, in each row at most s entries are
non zero. Hence, computing G can be highly optimized, e.g., by computing each
row individually. Nevertheless, when the number of preferences is particularly
large computing G remains computationally expensive. Anyhow, it is possible
to get a reasonable approximation avoiding to solve the optimization problem
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by fixing α∗ to the uniform distribution, which corresponds to computing the
average over pt.

4.1 Sub-game selection strategy

Even though Ṽ is the best we can achieve from the combination of the partial
strategies pt, the sub-game selection plays a key role to get good value of the
game with the proposed method.

A näıve way of computing the sub-game matrix is by randomly drawing
rows/columns from the uniform distribution. This strategy has the advantage of
being highly parallelizable, since each sub-game can be solved independently.

Borrowing from the reinforcement learning literature, we propose a general-
ization of the strategy presented above in which samples are randomly drawn
from a distribution that depends on the solution of the previous sub-games. The
main idea is to iteratively adjust the distribution according to how much the pre-
viously selected preferences (i.e., strategies) contributed to the mixed-strategy
(i.e., their weight in the hypothesis). Specifically, let dt ∈ S |P | be probability
distributions over all the training preferences at iteration t, and let d1 = 1 1

|P |
be the uniform distribution over all preferences. At iteration t+1 a new random
sample of preferences is drawn accordingly to dt+1 which is defined as

dt+1 = (1− λ)dt + λpt

where 0 ≤ λ ≤ 1, and pt is the solution of the t-th game as in Section 4.
Essentially, λ defines how much the previous strategies influence the sampling
distribution for the next games. λ = 0 means that the previous games have
no influence in the next sampling. Conversely, λ = 1 indicates that all random
samples will be drawn according to p1 (i.e., the solution of the first sub-game).
In other words λ is a trade-off between exploration (λ → 0) and exploitation
(λ → 1), with a similar effect of ε in the ε-greedy algorithm [18] for the multi-
armed bandit problem.

Finally, the ranker hypothesis is computed as a combination over all pt, that
is

w ∝

[
T∑
t=1

αtpt

]ᵀ

Z,

where α can be optimized as in Eq. (4), or fixed, for example, to the unifrom
distribution. Algorithm 1, dubbed LMPG (Large Margin Preference Game), pro-
vides the pseudo-code of the method just described. In the following we will in-
dicate with LMPG∗ the algorithm when s = |P |, LMPG-α when α is optimized
according to (4), and with LMPG when α is fixed to the uniform distribution.

5 Experiments

In this section, experiments done to empirically evaluate techniques described
in Section 3 and 4 are presented.
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Algorithm 1: LMPG: Large Margin Preference Game

Input:
P : set of training preferences
s : sample size
λ: exploration-exploitation trade-off hyper-parameter
T : number of iterations

Output:
w̃: preference ranking model

1 d1 ← 1 1
|P |

2 for t← 1 to T do
3 Q← random sampling (w/o replacement) over P of s preferences

according to dt

4 Kt ← kernel matrix s.t. Kt[i, j] = zᵀi zj ,∀zi, zj ∈ Q
5 pt ← min

p
pᵀKtp

6 dt+1 ← (1− λ)dt + λpt

7 end
8 computing α (e.g., by means of (4))

9 p←
∑T

t=1 αtpt

10 w̃←
∑|P |

i=1 pizi, zi ∈ P
11 return w̃

The proposed techniques have been evaluated on five different publicly avail-
able datasets:

tic-tac-toe is a dataset containing 958 ending positions of the game tic-tac-
toe, and the task is to classify whether the × is the winner;

breast-cancer is the well known Breast Cancer Wisconsin Diagnostic Dataset,
where the task is to classify a tumor as malignant or benign. For more details
about the dataset please refer to [12];

mnist-49 mnist is a (well known) dataset of handwritten digits. We extracted
from it a single classification task which consists in classifying the digit 4
against the digit 9;

segment This dataset is an image segmentation database. 7 outdoor images are
possible istances and images have been randomly selected. The images were
handsegmented to create a classification for every pixel. Each instance is a
3x3 region.

w8a Dataset used for fast training of support vector machines using sequential
minimal optimization.

Table 1 summarizes the information of the selected datasets. Note that, since
segment is a multiclass dataset, the number of preferences correspond to the
number of examples, multiplied the number of classes (minus 1), for a total of
11088 preferences.

All experiments concerning the LMPG method have been carried out using
the same procedure. We set T = 500, λ have been tested in the set of values
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dataset # classes training set size test set size # features

tic-tac-toe 2 766 192 27
breast-cancer 2 545 137 90
mnist-49 2 11025 2757 779
segment 7 1848 (11088) 462 19
w8a 2 39799 9950 300

Table 1. Datasets information: number of classes, training set and test set size, and
number of features. In parenthesis the corresponding number of preferences. When not
indicated the number of preferences is equal to the number of examples.

method hyper-parameters accuracy precision recall F1

b
r
e
a
s
t

LMPG∗ 0.9635 0.9625 0.9585 0.9605
LMPG-α 0.9635 0.9625 0.9585 0.9605
LMPG λ = 0.1, s = 0.05|P | 0.9708 0.9685 0.9685 0.9685
SVM C = 1, d = 2 0.9708 0.9685 0.9685 0.9685

t
-
t
-
t

LMPG∗ 1.0000 1.0000 1.0000 1.0000
LMPG-α 1.0000 1.0000 1.0000 1.0000
LMPG λ = 0.01, s = 0.2|P | 1.0000 1.0000 1.0000 1.0000
SVM C =10, d = 5 1.0000 1.0000 1.0000 1.0000

m
n
i
s
t
-
4
9 LMPG∗ 0.9935 0.9935 0.9935 0.9935

LMPG-α 0.9935 0.9935 0.9935 0.9935
LMPG λ = 0.01, s = 0.2|P | 0.9938 0.9938 0.9938 0.9938
SVM C = 103, d = 4 0.9935 0.9935 0.9935 0.9935

s
e
g
m
e
n
t LMPG∗ 0.9524 0.9561 0.9569 0.9560

LMPG-α 0.9545 0.9600 0.9586 0.9587
LMPG λ = 0.1, s = 0.15|P | 0.9654 0.9692 0.9682 0.9684
SVM C = 10, d = 2 0.9632 0.9670 0.9670 0.9665

w
8
a

LMPG∗ - - - -
LMPG-α - - - -
LMPG λ = 0.01, s = 0.2|P | 0.9853 0.9340 0.7947 0.8502
SVM C = 10, d = 2 0.9861 0.9147 0.8308 0.8677

Table 2. Performance of all proposed methods against SVM with polynomial kernel.
For each dataset the best results are highlighted in boldface. Missing values (-) indicate
the computation did not end in a reasonable amount of time.

{0, 0.01, 0.02, 0.1, 0.2} and we considered as sample size 5%, 10%, 15% and 20%
of the whole number of preferences.

The plots presented in Figure 1 and 2 describe how the value of the game
changes according to the dimension of the sample size, and λ. The baseline (red
line) describes the optimal value of the game obtained by LMPG∗, the continuous
curve is the value given by LMPG−α, while the dashed one is the value obtained
using LMPG.

Both figures exhibit the same pattern: the game values produced using λ = 0
are significantly worse than the one achieved by LMPG∗. The best value for λ
to obtain small values of the game seems to be 0.01. It is possible to observe
that, with sufficient sample size and a small λ greater than 0, the approximated
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(c) sample size = 15%
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(d) sample size = 20%

Fig. 1. Value of the game on the breast-cancer dataset varying both the sample size
and λ.

value obtained thanks to sampling and without the optimization of α is close
enough to the optimal value and thus is able to perform well also in classification
tasks. These findings reflect what was supposed theoretically in previous sections,
especially about the values’ magnitude ordering.

Figure 3 presents the accuracy results obtained by our algorithms using dif-
ferent sample sizes and λ. These charts show a pattern that follows the previous
findings: generally speaking, a small λ produces the best results and again the
sample size seems to be relevant to obtain good results, although in segment

best results are obtained using the sample size equal to the 15% of the dataset.

The proposed strategies have been compared to soft SVM. SVMs have been
validated using 5-fold validation: C has been validated in the set {1, 10, 102, 103}
and the degree of the homogeneous polynomial kernel in the range [1,5]. For our
methods we used the best performing kernel (during validation) for SVM. Table
2 shows the comparison of the proposed technique with the λ and sample size
that produce the best results against validated SVM. It is possible to observe
that the proposed strategy performs better or as good as SVM in 4 out of 5
datasets (tic-tac-toe, mnist-49, segment and breast-cancer). The ranker
produced by averaging over different strategies performs almost always (except
on tic-tac-toe) better than the hypothesis obtained considering the optimal
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Fig. 2. Value of the game on the tic-tac-toe dataset varying both the sample size
and λ.

strategy distribution. This phenomenon can be explained by the fact that the
optimal distribution corresponds to solving a hard margin problem, while the av-
eraged one might represent a more soft solution. Note that this can be correlated
with the low values for C obtained when validating SVM.

6 Conclusions

We proposed a principled game theoretical framework used for the multi-class
classification task. We presented the mathematical formulation of a preference
learning model able to solve the multi-class classification task as a single op-
timization problem. To reduce the complexity of the problem, we presented
optimization strategies that exploit typical properties of reinforcement learn-
ing and solves reduced-size subproblems. In the experimental section, the pro-
posed framework has exhibited state-of-the-art results. Among the future re-
search paths we plan to explore, we aim to study the efficiency of the proposed
algorithms. As already pointed out, using uniform sampling leads to a highly
parallelizable version of the algorithm, yet results are not as good as those ob-
tained by using adaptive sampling for preferences selection. One aspect of the
theoretical framework that needs to be further developed is the study of the-
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(a) breast-cancer
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Fig. 3. Accuracy of the proposed method varying the sample size (curves) and the
value of λ (x axis) on (a) breast-cancer, (b) tic-tac-toe, (c) mnist-49, (d) segment,
and (e) w8a.

oretical bounds limiting the differences in the value of the games when using
different approaches. Empirical results suggest that these bounds can be strict
provided mild assumptions, thus our technique can be easily applied to other
domains.
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