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Abstract: Among halogenated molecules, those containing chlorine atoms are fundamental in many
areas such as pharmaceuticals, polymers, agrochemicals and natural metabolites. Despite the fact
that many reactions have been developed to install chlorine on organic molecules, most of them rely
on toxic and hazardous chlorinating reagents as well as harsh conditions. In an attempt to move
towards more sustainable approaches, photoredox catalysis and electrocatalysis have emerged as
powerful alternatives to traditional methods. In this review, we collect the most recent and significant
examples of visible-light- or current-mediated chlorination published in the last five years.
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1. Introduction

The incorporation of halogen atoms into molecules is of great importance in organic
synthesis as well as in materials science and medicinal chemistry. Halogenated, and more
specifically chlorinated, compounds are not only widespread in nature (Figure 1a) [1–3],
but also essential intermediates in the preparation of complex molecules and active phar-
maceutical ingredients.

 
 

 

 
Reactions 2022, 3, Firstpage–Lastpage. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/reactions 

Review 

Recent Progresses in the Preparation of Chlorinated Molecules: 
Electrocatalysis and Photoredox Catalysis in the Spotlight 
Stefano Parisotto, Emanuele Azzi, Alberto Lanfranco, Polyssena Renzi and Annamaria Deagostino * 

Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy;  
stefano.parisotto@unito.it (S.P.); emanuele.azzi@unito.it (E.A.); alberto.lanfranco@unito.it (A.L.); 
polyssena.renzi@unito.it (P.R.) 
* Correspondence: annamaria.deagostino@unito.it 

Abstract: Among halogenated molecules, those containing chlorine atoms are fundamental in many 
areas such as pharmaceuticals, polymers, agrochemicals and natural metabolites. Despite the fact 
that many reactions have been developed to install chlorine on organic molecules, most of them rely 
on toxic and hazardous chlorinating reagents as well as harsh conditions. In an attempt to move 
towards more sustainable approaches, photoredox catalysis and electrocatalysis have emerged as 
powerful alternatives to traditional methods. In this review, we collect the most recent and 
significant examples of visible-light- or current-mediated chlorination published in the last five 
years. 

Keywords: chlorination; photoredox catalysis; electrocatalysis; visible light; halogenation 
 

1. Introduction 
The incorporation of halogen atoms into molecules is of great importance in organic 

synthesis as well as in materials science and medicinal chemistry. Halogenated, and more 
specifically chlorinated, compounds are not only widespread in nature (Figure 1a) [1–3], 
but also essential intermediates in the preparation of complex molecules and active 
pharmaceutical ingredients. 
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Figure 1. Selected examples of (a) chlorinated pharmaceuticals and (b) natural metabolites.  

Chloroalkanes are all-round building blocks in organic chemistry. They are 
fundamental precursors to alcohols, ethers, amines and thioethers, which are prepared 
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Figure 1. Selected examples of (a) chlorinated pharmaceuticals and (b) natural metabolites.

Chloroalkanes are all-round building blocks in organic chemistry. They are funda-
mental precursors to alcohols, ethers, amines and thioethers, which are prepared through
displacement by appropriate nucleophiles. They are also used in the Finkelstein reac-
tion to make more reactive iodoalkanes [4]. Moreover, organochlorine compounds can
be converted into synthetically important organometallic species, such as Grignard and
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organolithium reagents, and can produce reactive radical intermediates through halogen
atom transfer (XAT) [5]. In the area of pharmaceuticals, both aromatic and aliphatic chloro
compounds are key intermediates in the preparation of a large variety of drugs. Some
of them are active ingredients themselves and used as antibiotics (e.g., floxacillin and
dicloxacillin), anesthetics (e.g., halothane and isoflurane) and anti-inflammatory drugs (e.g.,
alclometasone) (Figure 1b) [6–9]. In addition, vinyl chloride, used in the plastic manufac-
ture for the preparation of polyvinyl chloride (PVC), is among the largest petrochemicals
in world production [10]. Some of them also find application as paint additives [11], and
in food packaging [12]. Finally, some chlorinated hydrocarbons (e.g., dichloromethane,
chlorobenzene and tetrachloroethylene) are used as solvents in organic chemistry and in
cleaning applications, such as degreasing and dry cleaning.

Therefore, the continuous interest towards the development of new methods to in-
corporate chlorine atoms is not surprising. The formation of C-Cl bonds can be achieved
via three general approaches: electrophilic addition to C-C multiple bonds, nucleophilic
displacement of leaving groups or radical chlorination of C-H bonds. Alkenes are read-
ily converted in the corresponding dichloro and monochloro derivatives upon reaction
with Cl2 or HCl, respectively. Chlorine can also be used for the chlorination of aromatic
hydrocarbons. In such cases, a Lewis acid (FeCl3, AlCl3) is necessary to generate a strong
chlorinating species able to overcome the low reactivity of the substrate. Chloroalkanes
can be prepared starting from available alcohols upon conversion of the hydroxyl group
into a better leaving group. This can be carried out through sulfonylation, followed by
replacement with a chloride salt. Alternatively, alcohols can be activated in situ with
thionyl chloride [13], or with PPh3/CCl4 in the Appel reaction [14]. Finally, the radical C-H
chlorination is a powerful tool for the synthesis of this class of compounds, since the direct
substitution of hydrogen atoms in largely available alkanes is highly desirable. This last
strategy relies on the formation of a carbon-centered radical, through hydrogen atom trans-
fer (HAT), that is quenched, for instance, by one of the several available N-chloroimides
1a–e (Figure 2).

Reactions 2022, 3, FOR PEER REVIEW 2 
 

through displacement by appropriate nucleophiles. They are also used in the Finkelstein 
reaction to make more reactive iodoalkanes [4]. Moreover, organochlorine compounds 
can be converted into synthetically important organometallic species, such as Grignard 
and organolithium reagents, and can produce reactive radical intermediates through 
halogen atom transfer (XAT) [5]. In the area of pharmaceuticals, both aromatic and 
aliphatic chloro compounds are key intermediates in the preparation of a large variety of 
drugs. Some of them are active ingredients themselves and used as antibiotics (e.g., 
floxacillin and dicloxacillin), anesthetics (e.g., halothane and isoflurane) and anti-
inflammatory drugs (e.g., alclometasone) (Figure 1b) [6–9]. In addition, vinyl chloride, 
used in the plastic manufacture for the preparation of polyvinyl chloride (PVC), is among 
the largest petrochemicals in world production [10]. Some of them also find application 
as paint additives [11], and in food packaging [12]. Finally, some chlorinated 
hydrocarbons (e.g., dichloromethane, chlorobenzene and tetrachloroethylene) are used as 
solvents in organic chemistry and in cleaning applications, such as degreasing and dry 
cleaning. 

Therefore, the continuous interest towards the development of new methods to 
incorporate chlorine atoms is not surprising. The formation of C-Cl bonds can be achieved 
via three general approaches: electrophilic addition to C-C multiple bonds, nucleophilic 
displacement of leaving groups or radical chlorination of C-H bonds. Alkenes are readily 
converted in the corresponding dichloro and monochloro derivatives upon reaction with 
Cl2 or HCl, respectively. Chlorine can also be used for the chlorination of aromatic 
hydrocarbons. In such cases, a Lewis acid (FeCl3, AlCl3) is necessary to generate a strong 
chlorinating species able to overcome the low reactivity of the substrate. Chloroalkanes 
can be prepared starting from available alcohols upon conversion of the hydroxyl group 
into a better leaving group. This can be carried out through sulfonylation, followed by 
replacement with a chloride salt. Alternatively, alcohols can be activated in situ with 
thionyl chloride [13], or with PPh3/CCl4 in the Appel reaction [14]. Finally, the radical C-
H chlorination is a powerful tool for the synthesis of this class of compounds, since the 
direct substitution of hydrogen atoms in largely available alkanes is highly desirable. This 
last strategy relies on the formation of a carbon-centered radical, through hydrogen atom 
transfer (HAT), that is quenched, for instance, by one of the several available N-
chloroimides 1a–e (Figure 2).  

 
Figure 2. Common chlorinating reagents. 

Despite the many applications of electrophilic and radical chlorination reactions, 
most of them require hazardous or toxic reagents, an inert atmosphere and harsh reaction 
conditions such as a high temperature or an excess of the chlorinating agent and initiator. 
These features are difficult to reconcile not only with the high chemo-, regio-, site- and 
stereoselectivity requirements in modern organic synthesis, but also with the present need 
for alternative and more sustainable processes.  

In such a scenario, photoredox catalysis and electrocatalysis offer alternative ways to 
efficiently prepare a large variety of chlorine-containing molecules. Both approaches 
provide access to high-energy intermediates (e.g., radicals) under very mild reaction 
conditions, by promoting the movement of single electrons in redox processes. In 
photoredox catalysis, they are triggered by single-electron transfer (SET) events produced 
by a photocatalyst upon photoexcitation, while in electrocatalysis, they occur on the 
surface of metal electrodes connected to an external circuit. Recent reviews on the 

Figure 2. Common chlorinating reagents.

Despite the many applications of electrophilic and radical chlorination reactions,
most of them require hazardous or toxic reagents, an inert atmosphere and harsh reaction
conditions such as a high temperature or an excess of the chlorinating agent and initiator.
These features are difficult to reconcile not only with the high chemo-, regio-, site- and
stereoselectivity requirements in modern organic synthesis, but also with the present need
for alternative and more sustainable processes.

In such a scenario, photoredox catalysis and electrocatalysis offer alternative ways
to efficiently prepare a large variety of chlorine-containing molecules. Both approaches
provide access to high-energy intermediates (e.g., radicals) under very mild reaction condi-
tions, by promoting the movement of single electrons in redox processes. In photoredox
catalysis, they are triggered by single-electron transfer (SET) events produced by a photo-
catalyst upon photoexcitation, while in electrocatalysis, they occur on the surface of metal
electrodes connected to an external circuit. Recent reviews on the halogenation of organic
molecules have shown how powerful the modern tools based on visible light [15,16] and
electrochemistry are [17]. Even though photoredox catalysis and electrolysis present several
differences, as recently shown by a comprehensive review by Rovis [18], they are conceptu-
ally very close. For such a reason, in this review, we collect the most recent progress in the
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preparation of chloro compounds by means of electrocatalysis and photoredox catalysis, to
highlight similarities and differences between the two approaches.

2. Chlorination Enabled by Visible Light Photoredox Catalysis

Photoredox catalysis is based on the ability of photocatalysts, transition-metal com-
plexes or organic dyes to undergo an electronic transition from the ground state (PC) to
the excited state (PC*) upon irradiation with visible light. Once produced, the excited state
can be quenched by reagents through single-electron transfer in either the oxidative or the
reductive quenching cycle. In a reductive quenching cycle (Scheme 1a), SET from the donor
(D) to PC* results in the ground state PC•− and the oxidized donor (D+). A subsequent
SET from PC•− to an acceptor (A) results in the restoration of the photocatalyst and the
reduced acceptor A−. Alternatively, in an oxidative quenching cycle (Scheme 1b), SET
from PC* to an acceptor (A) results in the ground state PC•+ and the reduced acceptor
(A−). A subsequent SET from a donor (D) to PC•+ regenerates the photocatalyst (PC),
affording the oxidized donor (D+).
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2.1. Photoredox Electrophilic Amplification of NCS and Related Reagents

In 2016, König demonstrated that photocatalysis is a valuable alternative way to
activate NCS for the chlorination of arenes [19]. N-Chlorosuccinimide 1a is a common
chlorination reagent but requires activation. Nevertheless, it is more reactive than N-
chloroamines, as a consequence of the two carbonyl groups on the succinimide, which
reduce the electron density on the nitrogen and increase the electrophilicity of the chlorine.
NCS oxidation generates an even more reactive intermediate 2, because of the formation
of a N-radical cation, possibly capable of giving SEAr even on electron-poor arenes. The
oxidation potential of 1a (E0(C/C+) = +1.10 V) does not match that of the photoexcited
state of [Ru(bpy)3]Cl2 3 (E0(RuII*/RuI) = +0.77 V). This means that its activation via the
reductive quenching cycle is not possible. However, in an oxidative quenching cycle, the
so-formed Ru(III) complex is a stronger oxidizer (E0(RuIII/RuII) = +1.29 V). Indeed, the
authors reported that, in the presence of (NH4)2S2O8 as the sacrificial oxidant, anisole 4
was selectively chlorinated at the para position, affording 4-chloroanisole 5 in 92% yield
(Scheme 2). Without photocatalytic activation, they did not observe any conversion after
three hours, and product 5 was produced in less than 5% yield after sixteen hours, despite
the complete conversion of the substrate. Nevertheless, the electrophilic amplification was
not sufficient to chlorinate electron-poor arenes such as acetanilide and acetophenone.
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To unlock the direct electrophilic amplification of NCS without the use of sacrifi-
cial oxidizers, photocatalysts possessing a higher oxidizing photoexcited state are nec-
essary. In 2019, Lamar et al. reported the use of organic dyes for the introduction of
chlorine into aromatic substrates [20]. Choosing naphthalene 7 as the model reactant
(E0(C/C+) = +1.64 V), they extensively screened organic photocatalysts, using white LED
irradiation under aerobic conditions. Methylene green 6 ended up being the best one, pro-
ducing 1-chloronaphthalene 8 in 72% yield. Oxygen was responsible for the regeneration of
the ground-state photocatalyst, as demonstrated by the formation of H2O2. Nevertheless,
in order to enhance the efficiency of the catalytic process, 10 mol% of (NH4)2S2O8 was also
added, and the molarity of the reaction was increased from 0.1 M to 0.2 M in acetonitrile.
Under the optimized conditions, a library of (hetero)aromatic molecules bearing electron-
donating and withdrawing groups was chlorinated in good to excellent yields (selected
products 9–12) (Scheme 3).
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In an attempt to further evolve towards sustainable processes, Lamar and LeBlanc
described two new catalytic systems based on FDA-approved food dyes (Fast Green FCF
13 and Brilliant Blue FCF 14) capable of functionalizing aromatics and heteroaromatics
under mild conditions [21]. The methodology was exploited for the chlorination of known
pharmaceuticals, such as lidocaine 15 and phenazone 16, as well as for the preparation
of agrochemicals (nitrofungin 17 and chloroxylin 18) (Scheme 4). Additionally, the two
organocatalysts were employed with two distinct N-chloro reagents, NCS 1a and DMDCH
(1,3-dichloro-5,5-dimethylhydantoin 1e). Mechanistic investigations of the separate systems
indicated two different modes of activation. Fast Green FCF 13 indeed acted as a light-
promoted photoredox catalyst oxidizing NCS 1a, while Brilliant Blue FCF 14 served as a
chlorine-transfer catalyst with DCDMH 1e, not necessarily involving visible light.
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Similarly, other chlorinating reagents can undergo electrophilic amplification by ex-
ploiting visible light photoredox catalysis. Trichloroisocyanuric acid (TCCA, 1d), for
example, which usually requires activation under acidic conditions, was used to chlorinate
a large group of arenes 20a and heteroarenes 20b under air and irradiation with white
light using the inexpensive brilliant green 19 [22]. Chlorinated derivatives 21a and 21b
were isolated with yields between 35% and 96% (Scheme 5). Noteworthy, the reported
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methodology was highly efficient even on electron-poor rings, presented short reaction
times, with some substrates undergoing chlorination in 5–10 min, and was scalable up to
the gram scale with no erosion in the yield. In comparison to other chlorinating agents,
such as Palau’chlor [23], the TCCA/BG system was proven as a valuable complementary
method and, in many examples, provided a superior alternative for the chlorination of
arenes and heteroarenes.
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N-Chlorosuccinimide 1a has not only been used in SEAr reactions for the production
of chlorinated aromatic compounds, but also to quench radical (cation) intermediates. In
2020, Wu described a visible light chlorination of benzylic C-H bonds, employing NCS
1a and Fukuzumi’s dye (Acr+-Mes, 24) [24]. The reaction, conducted in dichloromethane
under argon and blue LED irradiation and described in Scheme 6, converted a library
of substituted toluenes 22, affording the corresponding benzyl chlorides 23 in moder-
ate to good yields after 4 h. The authors conducted an extensive study on the reaction
mechanism, based on quenching analysis of the photocatalyst. They proposed a mecha-
nism involving the initial oxidation of NCS 1a by the photoexcited catalyst (Acr•-Mes·+),
generating Acr•-Mes, which can reduce a second equivalent of NCS to afford NCS• and
regenerate the ground-state Acr+-Mes. Subsequently, NCS•− releases further Cl− with the
generation of succinimidyl radical 25, which abstracts a hydrogen atom from substrate 22
to give benzylic radical 26. NCS may react with radical 26, affording benzylic chloride 23
and succinimidyl radical 25, which results in chain propagation.

Reactions 2022, 3, FOR PEER REVIEW 6 
 

Ar H Ar Cl

Acr+-Mes 5 mol%
NCS

CH2Cl2, rt
455 nm, 4h

Acr+-Mes

Acr+-Mes

h

Acr -Mes

NCS

NCS

-Cl-

N
O

O

NCS

NCS

22 23

Ar

H

22

Ar Cl
23

Ar
26

H

25

N

Me

Me

Me

Me

Mesityl Acridinium (24)19 examples, 21-85% yield

 
Scheme 6. Benzylic chlorination with Fukuzumi’s salt 24. 

Under similar conditions, Mal and co-workers were able to develop a chlorinative 
cyclization of aryl alkynoates 27, to synthetize coumarins 29. Additionally, in this report, 
the mechanistic hypothesis was based on data coming from several techniques (Stern–
Volmer, electrochemical and EPR analysis), together with on–off and radical trapping 
experiments. The reaction involved the oxidation of 27 by SET from the excited 
photocatalyst and dearomatization through cyclization to give spiro compound 28. 
Subsequent aryl migration and final HAT from the succinimidyl radical generated 
chloroisocoumarins 29 (Scheme 7). 

 
Scheme 7. Synthesis of chloroisocoumarins 29 via chlorinative cyclization. 

2.2. Photoredox Chlorination Using Alternative Chlorinating Reagents 
Despite the excellent results obtained with NCS 1a and related reagents, several 

groups have devoted great efforts towards the development of methodologies that rely 
on the use of alternative, more sustainable reagents capable of incorporating chlorine 
atoms into molecules. In 2017, Hu demonstrated that the catalytic system reported the 
year before by König and depicted in Scheme 2 was also effective in the activation of NaCl, 
a more sustainable chlorine source [25]. The oxidative quenching cycle of [Ru(bpy)3]Cl2 
was triggered by using Na2S2O8 and used to oxidize Cl- to Cl+ or its equivalent (HClO), 
probably via a chlorine radical intermediate. The in situ generated electrophilic chlorine 
was then incorporated into several aromatic substrates, showing good yields and 
functional group tolerance. The authors demonstrated the potential utility of the reaction 
by preparing clofibrate 32a, 32b (precursor of glibencamide), and 32c (precursor of 
metoclopramide), (Scheme 8). 

 
Scheme 8. Chlorination of arenes 30 with NaCl. 

Halogenidric acids are valuable alternatives as halogen atom sources. This concept 
was demonstrated by König, who used the organophotocatalyst 4CzIPN 33 to chlorinate 
electron-rich arenes 30 under blue light and an oxygen atmosphere, with a mixture of HBr 

Scheme 6. Benzylic chlorination with Fukuzumi’s salt 24.

Under similar conditions, Mal and co-workers were able to develop a chlorinative
cyclization of aryl alkynoates 27, to synthetize coumarins 29. Additionally, in this report, the
mechanistic hypothesis was based on data coming from several techniques (Stern–Volmer,
electrochemical and EPR analysis), together with on–off and radical trapping experiments.
The reaction involved the oxidation of 27 by SET from the excited photocatalyst and
dearomatization through cyclization to give spiro compound 28. Subsequent aryl migration
and final HAT from the succinimidyl radical generated chloroisocoumarins 29 (Scheme 7).
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2.2. Photoredox Chlorination Using Alternative Chlorinating Reagents

Despite the excellent results obtained with NCS 1a and related reagents, several
groups have devoted great efforts towards the development of methodologies that rely on
the use of alternative, more sustainable reagents capable of incorporating chlorine atoms
into molecules. In 2017, Hu demonstrated that the catalytic system reported the year
before by König and depicted in Scheme 2 was also effective in the activation of NaCl,
a more sustainable chlorine source [25]. The oxidative quenching cycle of [Ru(bpy)3]Cl2
was triggered by using Na2S2O8 and used to oxidize Cl− to Cl+ or its equivalent (HClO),
probably via a chlorine radical intermediate. The in situ generated electrophilic chlorine
was then incorporated into several aromatic substrates, showing good yields and functional
group tolerance. The authors demonstrated the potential utility of the reaction by preparing
clofibrate 32a, 32b (precursor of glibencamide), and 32c (precursor of metoclopramide),
(Scheme 8).
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Scheme 8. Chlorination of arenes 30 with NaCl.

Halogenidric acids are valuable alternatives as halogen atom sources. This concept
was demonstrated by König, who used the organophotocatalyst 4CzIPN 33 to chlorinate
electron-rich arenes 30 under blue light and an oxygen atmosphere, with a mixture of HBr
and HCl (Scheme 9) [26]. The catalyst has a dual role, as it is able to oxidize both bromide
and chloride anions to their respective radical species. Bromine radicals recombine to
bromine as the active brominating agent. The in situ formed bromo arenes are subsequently
attacked by chlorine radicals, yielding the desired chlorinated compounds.
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The chloride ion (introduced in the form of a salt or HCl) was also employed for
electrophilic aromatic oxidative chlorination using biomimetic or bioinspired approaches.
In particular, in 2016, Hering, inspired by flavin adenine dinucleotide (FAD)-dependent
halogenases, replaced the biomolecules FAD and NADH2 with the inexpensive organic
dye riboflavin tetraacetate and anisyl alcohol as the sacrificial reducing agents [27]. By
irradiating at 455 nm under air, an equimolar mixture of acetic and hydrochloric acids
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was effectively used to add a chlorine atom on aryl ethers and anilines. Similar conditions
provided α-monochlorination on aceto- and propiophenone. More recently, Gulder and
co-workers managed to combine photocatalysis and biocatalysis by using flavin mononu-
cleotide (FMN) together with a vanadium-dependent haloperoxidase from Acaryochloris
marina (AmVHPO) [28]. To avoid the use of sacrificial reductants, they used a redox-active
buffer or even water as the electron source. In the reaction vessel, the H2O2 produced in situ
by FMN was directly used by the peroxidase to halogenate electron-rich (hetero)aromatics
using KCl.

Reaction solvents such as dichloromethane can act as chlorinating reagents as well. In
2019, Wu and Cui published a visible-light-mediated chlorination of silanes by accessing
silyl radicals using photocatalytic Si-H activation promoted by neutral Eosin-Y 35. Under
simple operative conditions, more than twenty silanes 36 were quantitatively converted
in the corresponding chlorosilanes 37, widely used reagents in organic synthesis and in
materials science (Scheme 10). Moreover, the strategy was also transferred from stirred
reactor vessels to continuous-flow micro-tubing reactors. Under flow conditions, the
chlorination was amenable to gram-scale production, and, even more importantly, the
stepwise chlorination of di- and trichlorosilanes was successfully achieved in a highly
selective manner. Regarding the mechanism, silyl radical 38a was generated by the HAT
between the light-activated photocatalyst 35 (EY*) and hydrosilane 36. The derived silyl
radical subsequently abstracted the chlorine from CH2Cl2 to deliver the silyl chloride
product 36 and the chloromethyl radical species (38b). A reverse hydrogen atom transfer
(RHAT) between radical 37 and the catalyst (EY·-H) regenerated the ground-state eosin Y
35 (EY) and produced chloromethane.
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Finally, acyl chlorides can be used as well as chlorinating reagents. The chloroacylation
of styrenes 39 was reported by Oh in 2020 employing fac-Ir(ppy)3 40 as the photocatalyst to
cleave the C-Cl bond in the acyl chloride and produce Cl− and a nucleophilic acyl radical
41a [29]. Upon acylation, benzyl radical 41b is oxidized to the corresponding cation 41c,
thus regenerating the ground-state photocatalyst. The interception of chloride from 41c
finally produces β-chloroketones 42 (Scheme 11). The authors pointed out the essential role
of KHCO3, which prevented the dehydrochlorination of the product by keeping a neutral
pH during the course of the reaction.
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2.3. Photoredox Chlorination of Nitrogen-Containing Aliphatic Molecules

Alkane chlorination is probably one of the first reactions that undergraduate students
meet during their studies, and they also learn that, because of the similar BDEs, more
than one C-H bond is usually chlorinated, producing mixtures of regioisomers difficult to
separate. In addition to this, the standard radical halogenation requires high temperatures,
radical initiators and hazardous reagents (Cl2). Photoredox catalysis can provide for milder
reaction conditions, the choice of safer and alternative chlorinating reagents and also site
selectivity, for example, when the substrate contains nitrogen atoms. One classic example of
how this high regioselectivity is achieved is represented by the Hofmann–Löffler–Freytag
reaction [30], producing cyclic amines, typically pyrrolidines, by the thermal or photochem-
ical decomposition of N-chloroamines in the presence of a strong acid (H2SO4 or CF3CO2H)
(Scheme 12).
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Scheme 12. Hofmann–Löffler–Freytag reaction.

When N-chloroamine 43a is protonated, the homolytic cleavage of the N-Cl bond
under the influence of heat, light or other initiators affords radical cation 43b and the
chlorine radical. The ammonium radical undergoes a favored intramolecular 1,5-HAT to
afford alkyl radical 43c which, capturing a chlorine radical, forms alkyl chloride 43d. The
alkyl chloride is later cyclized under the influence of a base, producing pyrrolidine 43e.
The key to the regioselectivity relies on the site-selective hydrogen abstraction occurring on
the intermediate containing the N-centered radical, accessible through photoredox catalysis
from N-Cl- or N-OX (X = H or R)-containing substrates.

In 2018, Leonori proved that the remote functionalization of cyclic and acyclic oximes
44 was indeed possible via a radical-promoted C-C and C-H bond cleavage cascade, by
using the aforementioned Fukuzumi acridinium salt 24 [31]. The methodology provided
access to a series of γ-chlorinated nitriles and imines, depending on the structure of the
starting material. When cyclic oximes 44 were used, the formation of the corresponding
imidyl radical 45a by the excited photocatalyst triggered C-C bond cleavage to open the
ring, producing a terminal cyano group and a C-centered radical 45b. The radical was
then quenched by NCS 1a to afford chlorinated nitrile 46. When linear oximes 47 were
used instead, the imidyl radical 48a underwent 1,5-HAT, affording radical imine 48b. NCS
1a was again responsible for the chlorination, this time of both the radical and the imino
group, producing stable γ-Cl,N-Cl imines 49 (Scheme 13).
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Additionally, aliphatic amines can undergo a similar γ-chlorination. In 2020, Yu
published a methodology to functionalize sulfonamides using sodium hypochlorite [32].
More than twenty sulfonamides 50 were successfully chlorinated with good to excellent
yields, even at the gram scale (Scheme 14). Chlorination at the allylic or benzylic position,
as well as across a cyclohexyl moiety, was not feasible. According to the mechanistic
hypothesis, the reactive N-chloroamine 51a was produced directly in the reaction mixture
and underwent single-electron reduction to N-centered radical 51b from photoexcited
[Ru(bpy)3]Cl2. 1,5-HAT generated radical 51c reacting with a second equivalent of 51a,
initiating a chain reaction (as suggested by the quantum yield measurement of 3.23), and
producing product 52.
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Scheme 14. Remote chlorination of aliphatic sulfonamides 50.

To conclude this section, one example of cyclic amine chlorination is presented. Aryl
piperidines 53 were functionalized under aerobic conditions, in the presence of NCS
1a, affording 3,3-dichloro-2-hydroxy-piperidines 54 via two subsequent chlorinations of
an intermediate enamine, followed by the capture of O2 by an α-amino radical species
(Scheme 15) [33].
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To gain insights into the mechanism, the authors ran control experiments. When
2,2,6,6-tetramethylpiperidinooxy (TEMPO) and 2,6-di-tert-butyl-4-methylphenol (BHT)
were added to the reaction mixture as radical scavengers, the formation of the product
was completely suppressed, indicating that a free radical process was involved in the
transformation. Additionally, when the model reaction was performed under a molecular
oxygen (18O2) atmosphere, the 18O-labeled 54 was isolated, confirming that the oxygen in
the product was coming from the molecular oxygen in the air.

3. Chlorination Enabled by Electrocatalysis

Electrocatalysis pivots on the use of electrical energy to apply a potential across a
pair of electrodes immersed into a solution of the components to be electrolyzed. In
an electrolysis experiment, four key features are present: (1) an anodic oxidation, (2) a
cathodic reduction, (3) conservation of the charge in the solution and (4) the presence
of a soluble supporting electrolyte to ensure the low electrical resistance of the solution.
Common to many organic electrochemical transformations, only one of the two electrodes
(working electrode) generates a useful product, while on the counter electrode, a non-
productive reaction takes place. For net-oxidative processes, proton reduction to H2 at the
counter electrode is the most common non-productive reaction. For net-reductive reactions,
sacrificial oxidation of an amine or the anode itself (e.g., Zn, Mg, Al, Cu) is commonly
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encountered. In this section, there are many examples in which both electrodes produce
useful intermediates. Some common mechanisms in electrolysis are depicted in Scheme 16
and are those herein presented.
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One major difference between the two approaches is that while in photoredox catalysis,
the redox events take place on the same site (i.e., the photocatalyst), in electrocatalysis,
they occur on two distinct places (cathode and anode). This feature makes it possible to
physically separate the two events, when necessary, via the use of a divided cell, provided
that a method to accommodate the movement of ions from one half-cell to the other is
employed. This is usually achieved by interfacing the two half-cells with a separator, such
as a sintered-glass frit, a porous ceramic, a porous polymer sheet or a semipermeable
ion-selective membrane (e.g., Nafion). The other fundamental difference is that, in direct
electrolysis, redox events occur at the interface between the electrode and solution, which
can produce a localized, high concentration of radicals. In contrast, redox chemistry in
photoredox catalysis occurs in the solution and provides a low radical concentration. As
a result, the coupling of two transient radicals is feasible in electrochemistry if they are
generated at the same electrode, whereas this is more challenging in photoredox catalysis.

3.1. Electrocatalyzed Dichlorination of Alkenes

Just like photoredox catalysis is employed (in combination with NCS 1a or chloride
salts) to replace Cl2 in the electrophilic chlorination of arenes, electrocatalysis is a valuable
alternative to achieve alkene chlorination under mild and more sustainable reaction condi-
tions. In 2017, Lin described a manganese-catalyzed alkene dichlorination, with MgCl2 as
the chlorine source, producing H2 and Mg(OAc)2 as the sole by-products (Scheme 17) [34].
Optimizing the dichlorination of indene 55, the authors observed that the direct electrolysis
of LiCl on the Pt electrode was not satisfying, giving poor yields of 56 and no syn:anti
selectivity. Therefore, a redox-active metal was added to impart kinetic control over the
difunctionalization, and they obtained good results, in terms of diastereoselectivity, with
Mn(OTf)2. The high diastereoselectivity came from a combination between the steric and
electronic properties of the chlorine transfer agent Mn(III)−Cl 57. Further improvements
were observed when LiCl was replaced with MgCl2. The reaction was extended to several
styrenes and alkenes, producing the corresponding dichloro derivatives in good yields and
diastereoselectivity. Moreover, oxidatively sensitive functional groups (alcohols, aldehydes,
amines) were tolerated.
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An interesting alternative for the preparation of vicinal dichlorides 62 was recently pre-
sented by Morandi. The methodology involved an electronically assisted shuttle paradigm,
with inexpensive 1,2-dichloroethane (DCE) 59 used as the chlorine source [35]. In the cell,
two consecutive cathodic reductions of DCE are leveraged to produce chloride anions
in the reaction medium, releasing ethene 63. Following this, the oxidation of Cl− to Cl+

affords an intermediate chloronium ion 61, which is converted in the final product 62 via
ring opening from Cl− in an overall redox-neutral process (Scheme 18). Optimal reaction
conditions featured graphite electrodes in an Et4NBF4 solution (0.1 M in DCE), at 50 ◦C.
MnCl2 was used as the mediator. In many cases, a solution of 1,1,1,2-tetrachloroethane
60 in MeCN was used instead of neat DCE 59 to obtain better yields. Under optimized
conditions, thirty alkenes were efficiently dichlorinated. Noteworthy, soil contaminated
with lindane (gamma-hexachlorocyclohexane) 63 could also be used for the synthesis of
1,2-dichlorododecane 64.
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[37]. This salt is directly oxidized on the graphitic carbon to the electrophilic 
trifluoromethyl radical 71a (anodic event A), capable of reacting with electron-rich 
alkenes, affording the alkyl radical 71b. Concomitant oxidation of Cl−, assisted by 
Mn(OAc)2 (anodic event B), generates the radical chlorinated reagent Mn(III)-Cl 72, able 
to quench intermediate 71b, giving the final product 73 (Scheme 20). The two events could 
be merged thanks to the different natures of the two radical species. The alkene is indeed 
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metal-based radical 71c. The authors investigated the scope of the reaction, and several 
different styrenes and alkenes were efficiently trifluoromethylchlorinated (selected 
products 74–76).  
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In 2021, Hilt published the first electrochemical cis-dichlorination of alkenes [36]. The
key reagent in such a transformation was PhSeCl 67, which has a double role (Scheme 19).
On one side, it can be oxidized at the anode, in the presence of tetrabutylammonium
chloride (TBAC, 66), to form PhSeCl3 67a, but on the other side, it can undergo a non-
catalyzed anti-chloroselenation of cyclohexene 68, affording intermediate 67b. PhSeCl3,
being a strong electrophile, may induce a nucleophilic chlorination on intermediate 67b,
with inversion of the configuration, producing cis dichlorocyclohexane 69. The reaction
could be applied to cyclic as well as linear olefins, also bearing hydroxyl and acethoxyl
moieties. Lower yields were observed on styrenes, and the authors attributed the result to
the redox lability of the substrates.
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3.2. Electrocatalyzed Heterofunctionalization of Alkenes

After having developed the electrocatalyzed dichlorination of olefins 70, Lin applied
an anodically coupled electrolysis to merge two distinct oxidative events and therefore
make the heterofunctionalization of alkenes possible. In particular, he developed a protocol
to incorporate the trifluoromethyl moiety using Langoi’s reagent 71 (CF3SO2Na) [37].
This salt is directly oxidized on the graphitic carbon to the electrophilic trifluoromethyl
radical 71a (anodic event A), capable of reacting with electron-rich alkenes, affording the
alkyl radical 71b. Concomitant oxidation of Cl−, assisted by Mn(OAc)2 (anodic event B),
generates the radical chlorinated reagent Mn(III)-Cl 72, able to quench intermediate 71b,
giving the final product 73 (Scheme 20). The two events could be merged thanks to the



Reactions 2022, 3 244

different natures of the two radical species. The alkene is indeed more likely to react with a
transient free radical, such as 71a, than with the persistent metal-based radical 71c. The
authors investigated the scope of the reaction, and several different styrenes and alkenes
were efficiently trifluoromethylchlorinated (selected products 74–76).
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The same group later applied a similar concept to achieve alkene chloro-alkylation 
by anodic generation of a carbon-centered radical from malonitrile through proton-
coupled electron transfer [38]. 
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The same group later applied a similar concept to achieve alkene chloro-alkylation by
anodic generation of a carbon-centered radical from malonitrile through proton-coupled
electron transfer [38].

When anodic and cathodic events are combined, the chloro-chalcogenation of alkenes
is possible (Scheme 21). This was demonstrated by Chen, who reported a cobalt-catalyzed
electrochemical oxychlorination of styrenes 77 to α-chloroacetophenones 78 [39]. To obtain
reproducibility, reticulated vitreous carbon (RVC) electrodes were used. Despite prolonging
the reaction times, due to the lower current density, they provided better results. Like
manganese in the previous examples, cobalt was fundamental in mediating the anodic
oxidation of MgCl2 to a Co(III)-Cl radical species 79a. Oxygen was directly reduced on the
cathode to a persistent radical superoxide ion, capable of quenching the transient benzyl
radical 79b, affording alcohol 79c. β-Chloroketone 80 was formed by the oxidation of 79c,
but the author did not investigate whether the process was electrochemical or not.
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With excellent atom economy, Lei used sulfonyl chlorides 81 as bifunctional reagents to
produce β-chloro(vinyl)sulfones 83 via a redox-neutral chlorosulfonylation of alkenes and
alkynes 82, Scheme 22 [40]. In the designed reaction, the cathodic reduction of sulfonyl chlo-
ride 81, followed by the cleavage of the S-Cl bonds, produces Cl− and the sulfur-centered
radical 84a, which reacts with the substrate to give intermediate 84b. Chloride anions are
not wasted, but oxidized at the anode, with the assistance of MnCl2, to give Mn(III)-Cl 72.
Final radical coupling produces the chlorinated product 83, regenerating the manganese
catalyst. The reaction was extended to several styrenes and aryl acetylenes. Moreover, a
radical ene–yne cyclization was attempted on propargyl amine 85, and pyrrolidine 86 was
isolated in 50% yield.
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3.3. Electrocatalyzed Arene Chorination

As highlighted in the Introduction, photocatalysis and electrochemistry are closely
related, despite some differences: one among all seems to be the choice of the substrates.
Indeed, photoredox catalysis has mostly been used as an alternative mode of activation for
aromatic electrophilic substitution, thus affording chloroarenes, with few methodologies
applied to alkenes. The opposite trend appears when looking into electrochemistry. The
methodology reported thus far in this review is the addition of one of two chlorine atoms to
olefins. Nevertheless, there are some recent examples of aromatic chlorination performed
under electrochemical conditions.

For example, in 2021, Fang and Guo reported a C-5 selective chlorination of 8-
aminoquinoline 87, catalyzed by copper acetate [41]. Dichloromethane was used as the
source for chlorine radicals, being formed at the anode by the oxidation of small amounts
of Cl− released in the electrolytic cell upon DCM heterolysis, according to the authors’
hypothesis. Aminoquinoline 87 is able to coordinate copper by the two nitrogen atoms,
and intermediate 88a can evolve towards product 89 through two different catalytic cycles.
One possibility involves the direct addition of the chlorine radical to produce chlorinated
intermediate 88b, with the concomitant reduction of the metal center to Cu(I). Anodic oxi-
dation produces arenium ion 88d (Scheme 23, path B). Alternatively, the same species can
be formed from complex 88a after anodic oxidation to radical cation 88c and the subsequent
interception of the chlorine radical. In such a catalytic cycle, there is no change in the oxida-
tion state of copper. Wheland intermediate 88c evolves to the final product 89, regenerating
the metal catalyst. Protons are reduced at the cathode to equilibrate the overall anodic
process. A fairly high current of 100 mA was essential for obtaining satisfying results.
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The substrate scope of the reaction was explored, and moderate to excellent yields were
obtained when substituted benzamides bearing electron-donating or electron-withdrawing
groups were employed. Electron-rich substrates exhibited higher reactivity compared with
electron-deficient ones. The different positions of the substituents on the benzene ring
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did not remarkably affect the reaction efficiency. In addition, alkyl amides were smoothly
chlorinated in good yields. The preparation of 89 was also scaled up to the gram scale using
a flow electrolytic cell, allowing the synthesis of 1.19 g of product 89 in 24 h (91.2% yield).

8-Aminoquinolines are peculiar heteroaromatic rings, and due to the distance between
the two nitrogen atoms, they have been extensively used as the directing group for the
ortho-functionalization of benzoic acids. The process takes advantage of the proximity
between the dicoordinated metal center and the C-H bond, which can undergo metalation,
producing a reactive metallacycle. In such a context, palladium is among the most used
metals, and an electrochemical version of the process has been reported for the synthesis
of ortho-chlorobenzamides, by Kakiuchi and co-workers [42]. After the initial screening
of the reaction conditions, they observed that unsubstituted 8-aminoquinoline 87 was
not the ideal bidentate ligand, since it could undergo chlorination itself, probably by a
mechanism similar to the one later exploited by Fang. To avoid such a side reaction, a
5,7-dichloro-8-quinolinyl group was chosen as the directing unit. After testing several
conditions, they optimized the process which occurred at 90 ◦C, with a 100 mA current,
in the presence of 10 mol% PdCl2. Crucial for the success of the reaction was the setup,
consisting of a divided cell, which prevented the reduction of palladium at the cathode. Cl+

or synthetically equivalent species were generated in the anodic semi-cell, with chloride
coming from the cathodic reduction of HCl. The reaction was applied to several substituted
benzamides 90, and the corresponding chlorinated products 91 were recovered in good to
excellent yields (Scheme 24). In all cases, dichlorination occurred to some extent, producing
around 10% of the undesired product 92, with the only exception of meta-bromo and -CF3
substituents, which strongly deactivated the aromatic ring toward a second substitution.
Finally, palladium-catalyzed C−H chlorination under anodic oxidation conditions was
applied to the convergent synthesis of vismodegib 95 from pyridine 93 and benzamide 94.
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Prior to the alkene dichlorination using dichloroethane as the source of Cl+ species
reported by Morandi and previously described in this review, Jiao and co-workers explored
bifunctional electrocatalysis as a possible way to perform aromatic chlorination, decompos-
ing DCE 59 to vinyl chloride 96 and hydrochloric acid [43]. They initially investigated the
viability of the electrolytic dehydrochlorination of dichloroethane 59, and they observed
that a 100 mA current in a solution of n-Bu4NOH in DCE 59 led to the formation of vinyl
chloride 96 (48%), ethylene 63 (46%) and HCl. Since chloride oxidation to Cl+ could be
coupled at the anode, they tested and demonstrated the possibility of a one-pot aromatic
chlorination. Under optimized conditions, they were indeed able to efficiently chlori-
nate various anilides, bioactive compounds and heterocycles (selected examples 97a–c)
(Scheme 25).
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In the Introduction of this review, we highlighted how the chlorination reaction is
among the most straightforward approaches to introduce chloride into molecules, but it
comes with several drawbacks when excess chlorine gas is used, such as handling Cl2
itself and the highly corrosive HCl that is generated. Electrocatalysis could be helpful
in this scenario, assuming that chlorine is generated in situ. First, the rate of Cl2 gen-
eration could be regulated by electrochemical parameters, leading to minimum escape
from the reaction and facilitating reaction handling under ambient conditions. Second,
the presence of an excess of the chloride source could be feasible, avoiding the generation
of HCl. In 2021, Cheng et al. published the first example of an electrochemical aromatic
chlorination with in situ generated chlorine. The authors identified trichloroacetonitrile 98
as the optimal Cl2 source, being decomposed on a graphite felt cathode, in the presence of
tetraethylammonium chloride as the supporting electrolyte. In optimizing the chlorina-
tion of para-chloroacetamide 99, other solvents were tested (CCl4, CHCl3 and DCE), but
only traces of product 100 were observed. Moreover, without CCl3CN, no product was
formed, thus excluding a mechanism involving the direct oxidation of the electrolyte. The
existence of chlorine was confirmed by the tetrachlorination of N-tosyl diallylamine, as
previously reported by Fu [34], which excluded a radical pathway. In addition to this, they
demonstrated that CCl3CN 98 could donate all three chlorine atoms, producing acetonitrile.
Product 100 was in fact produced in 91% yield after three hours when 0.67 equivalents of
CCl3CN 98 were used. In addition to this, the reaction could also be scaled up, and 153 g (1
mole) of para-fluoroacetamide 101 gave product 102 in 90% NMR yield and 73% isolated
yield (Scheme 26).
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3.4. Electrocatalyzed Miscellaneous Reactions

In the section dedicated to the photochemical functionalization of nitrogen-containing
substrates, the C-C bond cleavage on cyclic oxime esters was presented. A similar strategy
can be used in electrolysis to access chlorinated products from alcohols, again via ring
opening. The concept was presented for the first time by Browne and Morrill, who reported
in 2019 the electrochemical deconstructive chlorination of cycloalkanols 103, to synthesize
γ- and β-chloroketones 105 [44]. Additionally, they demonstrated that by employing
micro-reactor technology and a recirculating flow, the method could be performed at the
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gram scale, with incorporated purification. The reaction pivots on the formation of alkoxy
radicals directly by O-H homolysis, not a trivial process to achieve under mild reaction
conditions, due to the high BDE of RO-H bonds (~105 kcal/mol). The formation of radical
104a does not occur on the electrode surface, but by means of the Mn(III)-Cl species 72,
which is also used as an active chlorinating species. The formation of the alkoxy radical
also produces HCl, with protons being reduced to hydrogen on the cathode surface. In a
similar process to that described by Leonori with oxime esters, alkyl radical 104b is formed
upon β-scission from alkoxy radical 104a and, similar to other electrochemical processes,
undergoes chlorination by a second equivalent of Mn(III)-Cl 72 (Scheme 27). The full scope
of the electrochemical process was explored starting with the deconstructive chlorination of
cyclobutanols. It has been observed that 1-arylcyclobutan-1-ols containing aromatic systems
with electron-donating groups at the ortho or para positions underwent decomposition. This
instability was attributed to the ionization of the C–OH bond in the presence of Brønsted
and/or Lewis acids, forming unproductive stabilized carbocations. In such cases, the issue
was overcome by employing a syringe pump addition of the substrate over two hours and
using tetrabutylammonium acetate as the supporting electrolyte. With a choice of two
suitable reaction conditions in hand, they converted a variety of 1-arylcyclobutan-1-ols 103
into the corresponding γ-chlorinated ketones 105 in good to excellent isolated yields. In
addition, a representative selection of 1-aryl- and 1-alkylcyclopropan-1-ols 103 could be
readily transformed to β-chlorinated ketones 105. Furthermore, to demonstrate scalability,
the batch process was translated to a recirculating flow electrochemical setup. Not only did
switching from batch to flow allow for a gram-scale synthesis, but also, due to the decreased
distance between the electrodes in the flow, the supporting electrolyte was not required,
thus making the overall process even more efficient from a sustainability perspective.
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Electrochemistry can be exploited not only to achieve synthetically relevant ring-
opening processes, but also for the opposite purpose. Indeed, if a nucleophilic group is
tethered to the substrate being chlorinated, it is not surprising that a cyclization can be
promoted by a careful design of the reaction. One example, from 2020, is the electrochemical
dearomative chlorocyclization on tryptamine and tryptophols 106, leading to biologically
and pharmaceutically relevant hexahydropyrroloindolines 108 [45]. Without the help of
any metal catalyst, LiCl is oxidized at the anode to an electrophilic Cl+ species, capable of
giving an electrophilic addition to the electron-rich indolic substrate 106, leading to the
dearomatized chloronium intermediate 107. The tethered hydroxyl or acetylated amino
group is then able, by nucleophilic ring opening, to afford the final tricyclic product
108. Hydrogen evolution at the cathode, from the supporting acetic acid, ensures redox
neutrality (Scheme 28). The method was developed more specifically to obtain brominated
derivatives; for such a reason, the scope was restricted to seven chlorinated products. The
authors hypothesized the direct anodic oxidation of chloride ions by comparing the yield
of chloro (spanning from 50 to 86%) and bromo derivatives (higher than 90%). According
to Lei and co-workers, the result was consistent with the higher oxidation potential for Cl−.
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To conclude this section on electrolysis, three examples of non-aromatic C(sp2)-H
chlorination, all from 2021, are reported. The first one, by Liu, is a chlorination of electron-
deficient C-H bonds in quinones 109, coumarins 110 1,3-diketones 111 and quinoxalines
112 using six equivalents of HCl [46]. The reaction occurred under simple experimental
conditions, in an undivided cell, with a graphite felt anode and a platinum cathode, using a
solution of Et3NBF4 in acetonitrile, affording chlorinated products 113–116 with moderate
to good yields (Scheme 29). Despite the non-aromatic nature of both the starting material
and products, the reaction should actually be considered an aromatic chlorination, at
least according to the mechanism hypothesized by the authors to explain the chlorination
of benzoquinone 109. Cathodic reduction of benzoquinone 109 may easily generate the
corresponding aromatic hydroquinone 117, which undergoes electrophilic chlorination
with chlorine from the anodic oxidation of Cl−. Anodic oxidation of the chlorinated
hydroquinone 118 gives the desired product. This was not indicated by the authors, but H2
should be generated at the cathode to ensure redox neutrality.
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quinoxalines 112.

Liu et al. prepared a series of 3-chlorochromones 120 by the electrochemical chlorina-
tion of enaminones 119 [47]. The reaction was based on a cascade process, initiated by the
formation of chloronium intermediate 121a upon the addition of Cl2 to the electron-rich
enaminone group. Chlorine is electrochemically generated on the anode from the oxida-
tion of NaCl. The tethered phenolic moiety opens the chloronium ion by intramolecular
formation of a new C-O bond, affording α-chloro emiaminal ether 121b. Elimination of
Me2NH2Cl produces the final chromone. Additionally, in such a process, protons were
reduced on the cathode (Scheme 30). The scope was restricted to eight examples, but in the
same paper, they also applied the reaction to the synthesis of bromo- and iodochromones.
The presented method was also scaled up, although a dramatic drop in the yield was
already observed on a two-millimole scale.
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As the last example, Morrill et al. published a method for the oxidative Z-selective
C(sp2)–H chlorination of tertiary acrylamides 122, providing access to a broad range of syn-
thetically useful Z-β-chloroacrylamides 123 in good yields, Scheme 31 [48]. They optimized
a reaction based on MgCl2 as both the chloride source and electrolyte in MeCN:AcOH (7:1)
using galvanostatic conditions (i = 10 mA), a graphite anode and a platinum cathode at
25 ◦C for 2 h under N2. More than 20 products were isolated in good to excellent yields
(average yield 73%). They observed that several substituents could be incorporated into the
C(2)-aromatic unit, including electron-donating, electron-withdrawing and halogen sub-
stituents. Additionally, the introduction of sterically demanding groups into the acrylamide
starting materials 122 did not negatively impact upon product 123 formation (Scheme 23).
The reaction should initiate with anodic chloride oxidation to form a chlorine radical,
which regioselectively adds to the electron-deficient acrylamide 122 to furnish the tertiary
C-centered radical 124a. One possibility is then to have a parallel paired electrolysis, with
124a being intercepted by a chlorine radical (path A) to form the dichlorinated intermediate
124b. The final loss of HCl should give acrylamide 122. Alternatively, in a sequential
paired electrolysis, radical 124a could be further oxidized to form carbocation 124b, with
subsequent deprotonation providing access to the observed product 123, or it could be
intercepted by Cl− to form dichlorinated compound 124c, which could also generate 123 in
such a hypothesis via hydrochloric acid loss. In all cases, hydrogen gas should be generated
at the cathode.

Reactions 2022, 3, FOR PEER REVIEW 19 
 

and iodochromones. The presented method was also scaled up, although a dramatic drop 
in the yield was already observed on a two-millimole scale. 

 
Scheme 30. Electrochemical C-H chlorination of enaminones 119. 

As the last example, Morrill et al. published a method for the oxidative Z-selective 
C(sp2)–H chlorination of tertiary acrylamides 122, providing access to a broad range of 
synthetically useful Z-β-chloroacrylamides 123 in good yields, Scheme 31 [48]. They 
optimized a reaction based on MgCl2 as both the chloride source and electrolyte in 
MeCN:AcOH (7:1) using galvanostatic conditions (i = 10 mA), a graphite anode and a 
platinum cathode at 25 °C for 2 h under N2. More than 20 products were isolated in good 
to excellent yields (average yield 73%). They observed that several substituents could be 
incorporated into the C(2)-aromatic unit, including electron-donating, electron-
withdrawing and halogen substituents. Additionally, the introduction of sterically 
demanding groups into the acrylamide starting materials 122 did not negatively impact 
upon product 123 formation (Scheme 23). The reaction should initiate with anodic 
chloride oxidation to form a chlorine radical, which regioselectively adds to the electron-
deficient acrylamide 122 to furnish the tertiary C-centered radical 124a. One possibility is 
then to have a parallel paired electrolysis, with 124a being intercepted by a chlorine radical 
(path A) to form the dichlorinated intermediate 124b. The final loss of HCl should give 
acrylamide 122. Alternatively, in a sequential paired electrolysis, radical 124a could be 
further oxidized to form carbocation 124b, with subsequent deprotonation providing 
access to the observed product 123, or it could be intercepted by Cl− to form dichlorinated 
compound 124c, which could also generate 123 in such a hypothesis via hydrochloric acid 
loss. In all cases, hydrogen gas should be generated at the cathode. 

ca
th

od
e

an
od

e

ca
th

od
e

an
od

e

 
Scheme 31. Electrochemical oxidative chlorination of acrylamides 122. Scheme 31. Electrochemical oxidative chlorination of acrylamides 122.

To demonstrate product utility, the authors succeeded in a palladium-catalyzed Suzuki
cross-coupling and in amide hydrolysis. In addition to this, to demonstrate scalability, the
batch process was translated to a flow electrochemical setup, employing a syringe pump in
combination with a commercially available Ammonite8 flow electro-reactor.
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4. Conclusions

At this point, we would like to stress, one more time, how profoundly the recent de-
velopments in photo- and electrochemistry are changing the way we synthetize molecules.
Every day, they are disclosing new intriguing retrosynthetic disconnections that can be
helpful for the late-stage, problematic functionalization of complex molecular structures.
Additionally, and maybe more importantly, they are providing us with more sustainable
and safer alternatives to perform “easier” transformations with respect to traditional meth-
ods, at least at a laboratory scale, generating radicals or cations under mild and controlled
reaction conditions. The formation of carbon–chlorine bonds, via direct chlorination, is
a perfect example of this improvement. At the same time, we should point out some
differences between these two techniques, such as the preference for aromatic chlorination
in photocatalysis versus the difunctionalization of alkenes in electrocatalysis. Photoredox
catalysis might present some limitations in the design of the reaction. First, there are plenty
of photocatalysts that can be tested before finding the best one. Even though it can be
helpful to look at redox potentials, these sometimes fail, due to the reaction conditions
being far from the ideal ones used in cyclic voltammetry. Second, most of the visible-light-
promoted aromatic substitutions presented here need NCS or a related reagent, much safer
than Cl2, but less efficient in an atom economy perspective, producing a stoichiometric
amount of side products that must be separated from the main product. Electrochemical
chlorination usually takes advantage of chlorides or hydrochloric acid, which results in
low- to zero-waste processes. Moreover, many of them are successfully scaled up, usually
with the help of flow reactors. A limitation of applying electrocatalysis is the experimental
setup because it requires more specialized devices to control the intensity of the current
or the voltage, and expensive electrodes. This, at the moment, makes it easier for many
research groups to start working on photoredox catalysis, for example, with household
lights or LED strips and irradiating whatever the reaction vessel elected. In conclusion,
photoredox catalysis and electrocatalysis are surely taking a leading role in the preparation
of organochlorine compounds, and it is expected that even more efficient methodologies
will be developed in the near future, potentially capable of overcoming the present issues
with selectivity or scalability, thus making it possible to introduce such techniques to the
chemical industry.
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