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Abstract
Starting from action-angle variables and using a standard asymptotic expansion, we present an
original and coincise derivation of theWaveKinetic equation for a resonant process of the type
«2 2. Despite not beingmore rigorous than others, our procedure has themerit of being

straightforward; it allows for a direct control of the randomphases and randomaction of the initial
wavefield.We show that theWaveKinetic equation can be derived assuming only initial random
phases. The randomaction approximation has to be taken only after theweak nonlinearity and large
box limits are taken. The reason is that the oscillating terms in the evolution equation for the action
contain, as an argument, the action-dependent nonlinear corrections which is dropped, using the
large box limit.We also show that a discrete version of theWaveKinetic Equation can be obtained for
theNonlinear Schrödinger equation; this is because the nonlinear frequency correction terms give a
zero contribution and the large box limit is not needed. In our calculationwe do notmake an explicitly
use of theWick selection rule.

The statistical description of a systemof interacting waves is a topic ofmajor relevance for all the fields in physics
characterized bywaves propagating nonlinearly. TheWaveKinetic (WK) equation [1] offers an important tool
for describing those systems in and out of equilibrium; itfinds application inmany different fields such as as
gravity, capillary and internal waves, plasmawaves, Bose–Einstein condensation, elastic plate waves, etc. At the
moment there is no derivation of theWK equation that can be considered as rigorous in amathematical sense.
However, physicists have attempted different roads: two are themain procedures. Thefirst one is the direct
derivation of theWKequation by performing statistical averaging over the equations ofmotion [2–8]; the other
is through the calculation of thefirstmoment of the equation for the probability density function for the
amplitudes and phases [9–12]. Each derivation has its own strengths; at the same time, none of them seems to be
adequately rigorous. In particular, while the first kind of derivation assumes the propagation of chaos to justify
the validity of the equation at positive times, the second tries to go beyond and to prove that independent
uniformphases and independent amplitudes (RPA assumption) of the initialfield are sufficient to preserve the
RPAhypothesis at later times. Though, none of thementioned derivations hasmade an attempt (possible, in
principle) to control rigorously the remainder terms of the small-ò perturbation expansion. The hope is that
these higher order terms give a negligible contribution in the small-ò limit, in analogy towhat has been proved in
the low-density limit for gases (see for example [13]).

Our derivation does not pretend to bemore rigorous than the existing ones; however, according to us, it has
themerit of being straightforward. It is based on a direct expansion of the variables angle and action in powers of
the small parameter in front of the interactionHamiltonian. Becausewe use angle-action variables, we are able
control in a clear way the two different procedures of averaging, i.e., over initial angles and over initial actions. It
turns out that the phase average has to be taken before the action one; a consistent action average procedure can
only be taken after the large box limit: this is because the nonlinear, amplitude dependent, frequency shift is
contained as an argument of oscillating functions that appear in the equation for the amplitudes. Only in the
large box limit, such term can be neglected and the action average can be safely taken.With respect to other
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derivationswhere an auxiliary intermediate time scale is introduced, see [1], in our derivation such time scale
arises naturally from the expansion. It is sufficient to average over angles the evolution equation for the actions to
show that the time scale of the evolution of the action variable scales like 1 2, where ò is the perturbation
parameter; action averaging is not necessary to derive theWaveKinetic equation.

Despite the quite large literature on the subject, we feel that a didactic derivation of the four-wave kinetic
equation is still lacking andwe hope that newcomers in thefieldmay benefit fromour approach.

1. The hamiltonianmodel

Weconsider aHamiltonian systemwith quartic nonlinearity in theHamiltonianwhich allows, in the
thermodynamic limit, for resonances of the type «2 2.

The starting physical space is defined as L = Î L0, d d[ ] . Its dual is the infinite discrete Fourier space
L = p

L
d2* . Some shorthand notation:

å å d dÎ L

D + - -

+ +k

y y k y y y y y

with , Kronecker delta ,

, .

k k k k
i k k k k

1234 , , ,
34
12

,

1 1 12
34

1 2 3 4

1 2 3 4

1 2 3 4
*≔ ≔ ( ̈ )

≔ ( ) ≔

Summations go from-¥ to+¥.
In normal variable ak theHamiltonian takes the following form:

å åw d= +


 a T a a a a
2

, 1
k

1 1
2

1234
1234 1 2 3 4 12

34

1

* *∣ ∣ ( )

where w w= -  0k k is the dispersion relation and  1 is the small nonlinearity parameter. The equation of
motion associatedwith theHamiltonian is the following:

åw d
¶
¶

= + i
a

t
a T a a a , 21

1 1
234

1234 2 3 4 12
34* ( )

that is known inmany fields, for example in surface gravity waves, as the Zakharov equation, [14]. For
=T const1234 and w =k k2( ) , the equation reduces to theNonlinear Schrödinger equation.
Performing the following transformation

q= -a I iexp , 3k k k( ) ( )

theHamiltonian can bewritten in canonical action-angle variables, qI ,k k{ }, as

å åw q d= + D


 I T I I I I
2

cos . 4
1

1 1
1234

1234 1 2 3 4 12
34

12
34( ) ( )

Hamilton’s equations take the form:

å

å

q d

w q d

= - = D

= = + D

q

q

¶
¶

¶
¶









T I I I I

T

2 sin

cos
5

dI

dt

d

dt I

I I I

I

234
1234 1 2 3 4 12

34
12
34

1
234

1234 12
34

12
34

1

1

1

1

2 3 4

1

( )

( )
( )

⎧
⎨
⎪⎪

⎩
⎪⎪

with initial data:

q q= = = =I t I t0 , 0 61 1 1 1( ) ¯ ( ) ¯ ( )

To avoid secular growth in the perturbation expansion described below, the renormalized dispersion
relation is introduced, see [1], [15]:

åwW = + - T I T I2 , 71 1
2

1212 2 1111 1 ( )
⎛
⎝⎜

⎞
⎠⎟

and the diagonal terms are extracted from the sums. As explained in [1], the introduction of the renormalized
dispersion relation is fundamental for the self-consistency of the derivation of theWaveKinetic Equation (see
exercise 6.11 in [1]). If not included in the renormalized dispersion relation, the nonlinear correction to the
frequencywould lead to an unphysical secular growth in the expansion. In standard perturbation theory such
technique is known as the Poincaré-Lindstedtmethod: in addition to expressing the solution itself as an
asymptotic series, one expands the frequency as well and scales the timewith it.
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Taking into acount the expression in (7), theHamilton’s equations take the form:

å

å

q d

q d

= - = ¢ D

= = W + ¢ D

q

q

¶
¶

¶
¶









T I I I I

T

2 sin

cos
8

dI

dt

d

dt I

I I I

I

234
1234 1 2 3 4 12

34
12
34

1
234

1234 12
34

12
34

1

1

1

1

2 3 4

1

( )

( )
( )

⎧
⎨
⎪⎪

⎩
⎪⎪

where the sum å¢234 excludes all cases for which either =k k3 1 and =k k2 4, or =k k4 1 and =k k2 3, or
= = =k k k k2 3 4 1which are known as trivial resonances.

2. The ò-expansion

Weperform the small-ò power expansion

q q q q

= + + +

= + + +

  

  





I t I t I t I t

t t t t 9

k k k k

k k k k

0 1 2 2 3

0 1 2 2 3

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

and plug into (8) to obtain, order by order,

•  0:
Linear evolutionwhere only the fast angle oscillations are at play,

q q p

=

= W


= =

= + Wq

I t I

t

0 const

mod 2
10

dI

dt

d

dt k

k k

k k k

0

0

k

k

0

0

¯

( ) ¯
¯ ¯ ( )

( )

( )

( )

( )

⎪

⎪

⎧
⎨⎪
⎩⎪

⎧
⎨
⎩

Here wW = + å - T I T I2k k k kk kk k kkkk k2 2 2 2
¯ ( ¯ ¯ ), with = = = =I I t I t0 0k k k

0¯ ( ) ( )( ) .While the angles evolve on
the linear time scale, the variations for the actions require a higher order dynamics in ò. Note also that the
linear time scale W1 k

¯ is k dependent; this implies that for example for dispersion relations forwhich W  0k
¯

for k 0 , then the linear time scalemay become extremely large.

•  1:

q d

q d

= å¢ D

= å¢ Dq

T I I I I

T

2 sin

cos
11

dI

dt

d

dt

I I I

I

234 1234 1 2 3 4
0

12
34

12
34

234 1234
0

12
34

12
34

1
1

1
1

2 3 4

1

¯ ¯ ¯ ¯ ( )

( )
( )

( )

¯ ¯ ¯
¯

( )

( )

( )

⎧
⎨⎪

⎩⎪

Integrating in time from0 to t, yields

d

q d

= å¢

= å¢

q q

q q

D - D +DW

DW

D +DW - D

DW

I T I I I I

T

2
12

t

I I I

I

t

1
1

234 1234 1 2 3 4
cos cos

12
34

1
1

234 1234
sin sin

12
34

12
34

12
34

12
34

12
34

2 3 4

1

12
34

12
34

12
34

12
34

¯ ¯ ¯ ¯
( )

( ) ( ¯ ) ( ¯ ¯ )
¯

( ) ¯ ¯ ¯
¯

( ¯ ¯ ) ( ¯ )
¯

⎧
⎨⎪

⎩⎪

•  2:

q

q q d

= å¢ + + + D + DW

+ D D + DW

dI

dt
T I I I I

I

I

I

I

I

I

I

I
t

t

2
1

2
sin

cos 13

1
2

234 1234 1 2 3 4
1

1

1

2
1

2

3
1

3

4
1

4
12
34

12
34

1
12
34

12
34

12
34

12
34

¯ ¯ ¯ ¯
¯ ¯ ¯ ¯ ( ¯ ¯ )

( ¯ ¯ )] ( )

( ) ( ) ( ) ( ) ( )

( )

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

which substituting the expressions in (12) leads, after some algebra and the use of trigonometric identities, to
the compact form

å

s q q s q s q
d d

= å¢ å¢

´
D - D + DW - DW + D - D + DW

DW

=

dI

dt
T T

I
I I I I I I I

t t

2
1

sin sin
, 14

m
m

m

m m m m m m

m
m

1
2

234 567
1

4

1234 567 1 2 3 4 5 6 7

5
67

12
34

5
67

12
34

12
34

5
67

12
34

5
67 12

34
5

67

¯
¯ ¯ ¯ ¯ ¯ ¯ ¯

[ ¯ ¯ ( ¯ ¯ ) ] [ ¯ ¯ ¯ ]
¯

( )

( )

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

where s = + + - -1, 1, 1, 1( ). The evolution equation for qk
2( ) is not needed for the derivation of theWave

Kinetic equation.
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For the evolution of the action variable we have thus obtained:

= + +  
dI

dt

dI

dt

dI

dt
, 15k k k

1
2

2
3( ) ( )

( ) ( )

where the terms on the right hand side are given respectively by (11) and (14).

3. Averaging over initial angles: the discretewave kinetic equation

Wedefine the procedure of averaging over initial phases, qk
¯ , of the observable q q q¼g , , , N1 2(¯ ¯ ¯ ) as:

òq q q q q q q q q q q qá ¼ ñ = ¼ ¼q
p

g P g d d d, , , , , , , , , ... 16N N N N1 2
0

2

1 2 1 2 1 2( ¯ ¯ ¯ ) ( ¯ ¯ ¯ ) ( ¯ ¯ ¯ ) ¯ ¯ ¯ ( )¯

where q q q¼P , , , N1 2(¯ ¯ ¯ ) is the joint probability density function. Assuming that phases are statistically
independent, then q q q q q q¼ =P P P P, , , ... ;N N1 2 1 2(¯ ¯ ¯ ) (¯ ) (¯ ) (¯ ) moreover, phases are uniformly distributed so that
the average is computed as follows:

òq q q
p

q q q q q qá ¼ ñ = ¼q
p

g g d d d, , ,
1

2
, , , ... 17N N N N1 2

0

2

1 2 1 2( ¯ ¯ ¯ )
( )

( ¯ ¯ ¯ ) ¯ ¯ ¯ ( )¯

Weare interested in the following:

q q q= + +  
dI

dt

dI

dt

dI

dt
, 18k k k

1
2

2
3¯ ¯ ¯ ( ) ( )

( ) ( )

Two time scales appear in equation (18); however, as it will be clear soon, the procedure of averaging over the
initial phasesmakes the shortest time scale term vanish:

• ò

å q d q
á ñ

= ¢ Dqd I

dt
T I I I I2 sin 191

1

234
1234 1 2 3 4

0
12
34

12
34¯ ¯ ¯ ¯ ( ) ¯ ( )

( ) ¯ ( )

Using the complex exponential notation, we get:

å q d
á ñ

= ¢ á D ñ DWq
q

d I

dt
T I I I I i i t2 exp exp , 201

1

234
1234 1 2 3 4

0
12
34 0

12
34

12
34¯ ¯ ¯ ¯ [ ¯ ] [ ¯ ] ( )

( ) ¯ ( ) ¯ ( )
⎡
⎣⎢

⎤
⎦⎥I

where I stands for the imaginary part. The r.h.s. is 0 because qá D ñ =qiexp 00
12
34[ ¯ ]( )

¯ :

á ñ
=qd I

dt
0 211

1

( )
( ) ¯

This implies that the action evolution depends, after phase averaging, on higher order contributions.

•  2

Using the complex exponential notation, equation (14) can be rewritten as:

å

s
s q q d d

á ñ
= å¢ å¢

´
DW - - DW

DW
á D - D ñ

q

q

=

d I

dt
T T

I
I I I I I I I

i t i t
i

2
1

exp 1 exp
exp . 22

m
m

m

m m

m

m m m

1
2

234 567
1

4

1234 567 1 2 3 4 5 6 7

5
67

12
34

5
67 5

67
12
34

12
34

5
67

¯
¯ ¯ ¯ ¯ ¯ ¯ ¯

( [ ( ¯ ] ) [ ¯ ) )]
¯

[ ( ¯ ¯ )] ( )

( ) ¯

¯

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

I

In order to showhow the above equation simplifies after the phase averaging procedure, we consider the r.h.s
form=1:

q d d

å¢ å¢

´
DW - - DW

DW
á D ñq

T T I I I I I I

i t i t
i

2

exp 1 exp
exp . 23

234 567 1234 1567 2 3 4 5 6 7

15
67

12
34

15
67 345

267
12
34

15
67

¯ ¯ ¯ ¯ ¯ ¯

( [ ( ¯ ] ) [ ¯ ) )]
¯

[ ¯ ] ( )¯

⎡
⎣⎢

⎤
⎦
⎥⎥

I

Due to the restrictions in the sums, the only possible values of kj that give a contributionof the above expression
different from0, are the following: =k k5 2, =k k6 3, =k k7 4 and =k k5 2, =k k6 4, =k k7 3. For eachof these
two sets ofwavenumbers thephase average termgives a contributionof 1.The expression above reduces to
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å d¢
DW

DW
T I I I

t
4

sin
24

234
1234
2

2 3 4
12
34

12
34 12

34¯ ¯ ¯ ( ¯ )
¯

( )

Asimilar contribution,with appropriate sign and indices, canbederived form=2, 3, 4.Thefinal evolution
equation for á ñqIk

2( ) ¯ reads

å d
á ñ

= + - -
DW

DW
qd I

dt
T I I I I

I I I I

t
4

1 1 1 1 sin
251

2

234
1234
2

1 2 3 4
1 2 3 4

12
34

12
34 12

34¯ ¯ ¯ ¯
¯ ¯ ¯ ¯

( ¯ )
¯

( )
( ) ¯ ⎛

⎝⎜
⎞
⎠⎟

Note that there is noneed touse the reduced sumå¢ symbol, because the extra terms in the standard sumgive a
zero contribution (exact cancellationsdue to the two ‘+’ signs and two ‘−’ signs in the term inbrackets).

Inserting equation (25) into equation (18), gives

å d
á ñ

= + - -
DW

DW
q 

d I

dt
T I I I I

I I I I

t
4

1 1 1 1 sin
261 2

234
1234
2

1 2 3 4
1 2 3 4

12
34

12
34 12

34¯ ¯ ¯ ¯
¯ ¯ ¯ ¯

( ¯ )
¯

( )¯ ⎛
⎝⎜

⎞
⎠⎟

If we define the nonlinear time t =  t2 , then the equation reads

åt
t

d
á ñ

= + - -
DW

DW
q d I

d
T I I I I

I I I I
4

1 1 1 1 sin
. 271

234
1234
2

1 2 3 4
1 2 3 4

12
34 2

12
34 12

34¯ ¯ ¯ ¯
¯ ¯ ¯ ¯

( ¯ )
¯

( )¯ ⎛
⎝⎜

⎞
⎠⎟

If ¢ ¢Tkk kk = const andå Ik k is conserved (this property is enjoyed for instance by theNonlinear Schrödinger
equation), then the nonlinear frequency shift contribution is identically zero and, in the limit of  0,
equation (27) becomes

åt
p d w d

á ñ
= + - - Dqd I

d
T I I I I

I I I I
4

1 1 1 1
, 281

234
1234
2

1 2 3 4
1 2 3 4

12
34

12
34¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ( ) ( )¯ ⎛
⎝⎜

⎞
⎠⎟

wherewe have used the property that

w t
w

pd w
D
D

= D





lim

sin
. 29

0

12
34 2

12
34 12

34( ) ( ) ( )

Remarks

• The d wD 12
34( ) above is dimensionally aDirac delta, coming from the limit relationship (29). This is not

rigorous and in principle even notmeaningful, being the argument of the δnot a continuous function.
Though, one can argue that the values taken by wD 12

34 can become extremely dense around wD = 012
34 , which

can be thought of as the summation tending to an integral.

• The time scale for the evolution of the action is 1 2.

• For the validity of the expansion, such time scale should always bemuch larger than the linear time scale given
by w1 k for all values of k.

• In the r.h.s. only the initial actions are included.

• The highest order contribution to the evolution of Ik at order  2 from the angle dynamics comes from qk
1( ). No

contribution from qk
2( ) enters.

• No assumptions on the statistics of initial actions have beenmade.

• Equation (28) ismeaningful only if the dispersion relation allows for connected exact resonances on a regular
discrete grid.

4. The thermodynamic limit: the standardwave kinetic equation

The physical space over whichwe haveworked is defined as L = Î L0, d[ ] . In the thermodynamic limit
one is interested in looking at the limit  ¥L . As this limit is taken, the spacing between Fouriermodes

pD =k L2 becomes smaller and smaller in such away that wave number space becomes dense: Î k d. In this
limit a resonantmanifold, that could be empty in the case of regular discrete grid,may appear. Therefore, the
starting point for the derivation should be equation (27), where theDiracDelta function over frequencies has
not been introduced yet. The thermodynamic limit (D k 0 or  ¥L ) is taken using the following rules:
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• Wedefine the action density as:

=
D

k t
I

k
I I , , 30k

k
d

( ) ≔ ( )

where k tI ,( ) is a continuous function of Î k d

• Sums become integrals as follows:

òå 
Dk

dk
1

31
k

d
( )

• TheKroneckerDelta d K( ) becomes aDiracDelta d D( )

d d Dk 32K d D ( )( ) ( )

Introducing the above substitutions in (27), we get:

òt
t

d
á ñ

= + - -
DW

DW
q d

d
dk dk dk T

I
4 I I I I

1

I

1

I

1

I

1

I

sin
, 331

2 3 4 1234
2

1 2 3 4
1 2 3 4

12
34 2

12
34 12

34¯ ¯ ¯ ¯
¯ ¯ ¯ ¯

( ¯ )
¯

( )¯ ⎛
⎝⎜

⎞
⎠⎟

wherewe need to take the limit forD k 0 of

å

å

w t

w

w t
w

+ D - D

+ D - D
=

D 

  

 

k T k T

k T k T
lim

sin 2 I I

2 I I

sin
34

k

k
d

k kk kk
d

kkkk k

k
d

k kk kk
d

kkkk k

k

k0

2
2

2

2
2 2 2

2 2 2( )
( ¯ ¯ )

¯ ¯
( ) ( )

⎡⎣ ⎤⎦

The last equality is valid only if we assume that

D
=

D 





k
lim 0 35
k

d

0
0

( )

4.1. Theweakly nonlinear limit
By taking the small amplitude limit  0, satisfying equation (35), one thus gets

òt
p d w d

á ñ
= + - - Dqd

d
dk dk dk T

I
4 I I I I

1

I

1

I

1

I

1

I
, 361

2 3 4 1234
2

1 2 3 4
1 2 3 4

12
34

12
34¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ( ) ( )¯ ⎛
⎝⎜

⎞
⎠⎟

4.2. Actions as stochastic variables
Wenow assume that Ik is a stochastic variable whose expectation value takenwith respect to the distribution of
the initial actions is given by

= á ñqn k t, I ; 37k ,I( ) ( )¯ ¯

the equation above defines the spectral action density n k t,( ) ormore simply the action spectrum.We assume
that the initial actions labeled by different wave numbers are statistically independent, so that

á ñ = á ñ á ñ á ñ = ¹ ¹n n n i j kI I I I I I , , 38i j k i j k i j kI I I I¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ( )¯ ¯ ¯ ¯

where = = = á ñn n k t, 0 Ik k I¯ ( ) ¯ ¯; therefore, the equation for the spectrumbecomes

òt
p d w d= + - - D

dn

d
dk dk dk T n n n n

n n n n
4

1 1 1 1
, 391

2 3 4 1234
2

1 2 3 4
1 2 3 4

12
34

12
34¯ ¯ ¯ ¯

¯ ¯ ¯ ¯
( ) ( )

⎛
⎝⎜

⎞
⎠⎟

Again, on the right hand side of the equation only initial data for nk are included. Thus, strictly speaking its
validity is at time t=0. A usual, but somehowunjustified, further step consists in substituting in the right hand
side the spectral action density nkwith = =n n t 0k k¯ ( ) to get:

òt
p d w d= + - - D

dn

d
dk dk dk T n n n n

n n n n
4

1 1 1 1
, 401

2 3 4 1234
2

1 2 3 4
1 2 3 4

12
34

12
34( ) ( )

⎛
⎝⎜

⎞
⎠⎟

This is the celebratedWaveKinetic equation. The substitution of = =n n t 0k k¯ ( )with nk(t) could be
justified if randomphases and amplitudes would persist during the evolution up to time scale of validity of the
equation.
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As a last remark, we note that the statistical assumptions needed to obtain equation (40) ultimately amount
to afieldwith random independent uniformly distributed angles and independent actions (RPA). Regarding the
relation to the assumption of (quasi)Gaussianity commonly used in earlier derivations of theWaveKinetic
Equation, as discussed in [11], wemention that all Gaussian random fields are RandomPhase andAmplitude;
conversely, for any sequence of RandomPhase andAmplitude fields, the spatial field converges in distribution to
aGaussian fieldwith zeromean and spectrum n(k) as  ¥L .

5. Conclusions

TheWaveKinetic equation is an important tool in physics; the field of research is very active both froma
theoretical and experimental point of view. Establishing the validity of the Kinetic Equation in reproducing the
statistical behaviour of a systemof randomwaves is a topic of paramount importance. Therefore, a rigorous
derivation of the equationwould be of great benefit for the community. In this spirit, we have presented a new
formal derivation of the equation based onwave-action variables. Our objective has been tomake a coincise and
self-consistent derivation, without loosing rigour.We have clarified that a kinetic equation for deterministic
actions can be derived by using only the randomness of the initial phases.Moreover, a discrete formof the
kinetic equation for deterministic actions is also derived. In general the equation contains the sinc function and
only for the specific case of theNLS equation, in the limit of small ò, the standardDirac δwill appear in the
equation. Towhat extent such function ismeaningful in the equation it is still to be understood. It is out of the
scope of the present paper to discuss the convergence of the expansion used or the persistence of the statistics of
the initial condition (see [9–12] for a discussion).
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