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Abstract

Starting from action-angle variables and using a standard asymptotic expansion, we present an
original and coincise derivation of the Wave Kinetic equation for a resonant process of the type

2 > 2. Despite not being more rigorous than others, our procedure has the merit of being
straightforward; it allows for a direct control of the random phases and random action of the initial
wave field. We show that the Wave Kinetic equation can be derived assuming only initial random
phases. The random action approximation has to be taken only after the weak nonlinearity and large
box limits are taken. The reason is that the oscillating terms in the evolution equation for the action
contain, as an argument, the action-dependent nonlinear corrections which is dropped, using the
large box limit. We also show that a discrete version of the Wave Kinetic Equation can be obtained for
the Nonlinear Schrodinger equation; this is because the nonlinear frequency correction terms give a
zero contribution and the large box limit is not needed. In our calculation we do not make an explicitly
use of the Wick selection rule.

The statistical description of a system of interacting waves is a topic of major relevance for all the fields in physics
characterized by waves propagating nonlinearly. The Wave Kinetic (WK) equation [ 1] offers an important tool
for describing those systems in and out of equilibrium; it finds application in many different fields such as as
gravity, capillary and internal waves, plasma waves, Bose—Einstein condensation, elastic plate waves, etc. At the
moment there is no derivation of the WK equation that can be considered as rigorous in a mathematical sense.
However, physicists have attempted different roads: two are the main procedures. The first one is the direct
derivation of the WK equation by performing statistical averaging over the equations of motion [2—8]; the other
is through the calculation of the first moment of the equation for the probability density function for the
amplitudes and phases [9—12]. Each derivation has its own strengths; at the same time, none of them seems to be
adequately rigorous. In particular, while the first kind of derivation assumes the propagation of chaos to justify
the validity of the equation at positive times, the second tries to go beyond and to prove that independent
uniform phases and independent amplitudes (RPA assumption) of the initial field are sufficient to preserve the
RPA hypothesis at later times. Though, none of the mentioned derivations has made an attempt (possible, in
principle) to control rigorously the remainder terms of the small-e perturbation expansion. The hope is that
these higher order terms give a negligible contribution in the small-¢ limit, in analogy to what has been proved in
the low-density limit for gases (see for example [13]).

Our derivation does not pretend to be more rigorous than the existing ones; however, according to us, it has
the merit of being straightforward. It is based on a direct expansion of the variables angle and action in powers of
the small parameter in front of the interaction Hamiltonian. Because we use angle-action variables, we are able
control in a clear way the two different procedures of averaging, i.e., over initial angles and over initial actions. It
turns out that the phase average has to be taken before the action one; a consistent action average procedure can
only be taken after the large box limit: this is because the nonlinear, amplitude dependent, frequency shift is
contained as an argument of oscillating functions that appear in the equation for the amplitudes. Only in the
large box limit, such term can be neglected and the action average can be safely taken. With respect to other
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derivations where an auxiliary intermediate time scale is introduced, see [1], in our derivation such time scale
arises naturally from the expansion. It is sufficient to average over angles the evolution equation for the actions to
show that the time scale of the evolution of the action variable scales like 1/ ¢2, where € is the perturbation
parameter; action averaging is not necessary to derive the Wave Kinetic equation.

Despite the quite large literature on the subject, we feel that a didactic derivation of the four-wave kinetic
equation is still lacking and we hope that newcomers in the field may benefit from our approach.

1. The hamiltonian model

We consider a Hamiltonian system with quartic nonlinearity in the Hamiltonian which allows, in the
thermodynamic limit, for resonances of the type 2 « 2.

The starting physical space is definedas A = [0, L]¥ € R?. Its dual is the infinite discrete Fourier space
A= Z%Zd. Some shorthand notation:

Y= > with k€ A 853 1= Ok 1 koks ok, (Kronecker delta),
1254 kukoksks

y=yk), Ay =yt -y -

Summations go from — o0 to +o0.
In normal variable a; the Hamiltonian takes the following form:

€ 34
H=> wlal + = Taa'ayasa.6)s, M
K, 1234

where wy, = w_j > 0isthedispersion relation and € < 1is the small nonlinearity parameter. The equation of
motion associated with the Hamiltonian is the following:

.0 a;

— = wiaq + 62 7;2340;‘13045133) (2)
ot 234

that is known in many fields, for example in surface gravity waves, as the Zakharov equation, [14]. For

Ti234 = const and w(k) = k2, the equation reduces to the Nonlinear Schrédinger equation.

Performing the following transformation

ar = JIx exp(—ify), (3
the Hamiltonian can be written in canonical action-angle variables, {I, 6}, as
€
H=> wh+ > > TiosaJhL I cos(A673) 675 4)
1 1234

Hamilton’s equations take the form:

(Z—I; = —Z—Z = 26> TisaJhL L1 sin(A673) 675

234 )
o, _ oM [
d_tl =5 =W + EZ Tio34 IZI;[I“ cos(AB3) 65
234
with initial data:
ht=0 =1L 6,(t=0) =0 (6)
To avoid secular growth in the perturbation expansion described below, the renormalized dispersion
relation is introduced, see [1], [15]:
O =w + €|2) Tonb — 71111[1), (7)
2

and the diagonal terms are extracted from the sums. As explained in [1], the introduction of the renormalized
dispersion relation is fundamental for the self-consistency of the derivation of the Wave Kinetic Equation (see
exercise 6.11 in [1]). If notincluded in the renormalized dispersion relation, the nonlinear correction to the
frequency would lead to an unphysical secular growth in the expansion. In standard perturbation theory such
technique is known as the Poincaré-Lindstedt method: in addition to expressing the solution itself as an
asymptotic series, one expands the frequency as well and scales the time with it.

2
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Taking into acount the expression in (7), the Hamilton’s equations take the form:

% = 262/71234\/1112[314 sin(A@fg)(ng

00,
234

9 OH / [LELI 344 ¢34
{Trl =5 = O+ 62 Ti234 ZZ £ cos(A6}5) 675

234

®)

where the sum )5, excludes all cases for which either k3 = kjand k, = kg, or ky = kjand k, = ks, or
ky = ks = k4 = k which are known as trivial resonances.

2. The e-expansion

We perform the small-e power expansion

L) =100 + eI() + AP @) + O(e?)
0k (1) = 0L (1) + 0(t) + €20 (1) + O(e?) 9)

and plug into (8) to obtain, order by order,

0.
. e
Linear evolution where only the fast angle oscillations are at play,
dI,gO)

_ 0 =
=0 N {I,E )(t) = Iy = const

d6;” _ Qk 0%0) = 9]( + th mod 27
dt

(10)

Here O = wi + € %24, Tk, I, — T Ip), with I, = L(t = 0) = I,EO) (t = 0). While the angles evolve on
the linear time scale, the variations for the actions require a higher order dynamics in €. Note also that the
linear time scale 1/{) is k dependent; this implies that for example for dispersion relations for which { — 0
for k — 0, then the linear time scale may become extremely large.

* 611

dr® === . 34
—r = 22534 Ti2saJ LB 1L sin(A0© )60y an
dofd LLIL 34
= = 2534 Ton y 121514 cos(A0© ) &7
Integrating in time from 0 to #, yields

1 === cos (A — cos (ABS + AQH ) 34
IV = 2575, Tossy hB L, T 2267,

INe (12)
oD — 5T LLI sin(ABy + AQps 1) — sin (ADS) s34
1 = 2234 12344/ 77 A 12
12
. el
AI® _ [(®» © o oy )
L =25, TosaVALEL| = & 4+ 2 + 2 + = sin (AG) + AQY1)
dt AW L L I
+ AOD Y cos (A + AQS1)]6% (13)

which substituting the expressions in (12) leads, after some algebra and the use of trigonometric identities, to
the compact form

dIl(Z) 4
= 22’2342{%7 Z Ti234 Tinse7

1
dt m=1 \/E
sin[o, AL — ABY + (0, A0 — AU ] + sin[AB) — 6, AL + AQD 1]
AQ67

m5

513005 (14)

where 0 = (41, +1, —1, —1). The evolution equation for 05{2) is not needed for the derivation of the Wave
Kinetic equation.
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For the evolution of the action variable we have thus obtained:

d[(l) dI(Z)
% — k + €2 k

O(ed), 15
dt dt dt + O (15)

where the terms on the right hand side are given respectively by (11) and (14).

3. Averaging over initial angles: the discrete wave kinetic equation

We define the procedure of averaging over initial phases, O, of the observable g (0}, 0,, ..., Oy) as:
_ _ 2m _ _ _ _ _ _
(g0, 05, ..., 00))s = j; POy, 0y, ..., ON)g (0, 0, ..., On)d0,d0, ... dONn (16)

where P(0), 0y, ..., Oy) is the joint probability density function. Assuming that phases are statistically
independent, then P (6, 0,, ..., Ox) = P(6)) P(65)... P(0y); moreover, phases are uniformly distributed so that
the average is computed as follows:

1
em~

_ _ 2w _ _ _ _
(@@ Doy ., D)) = fo g@, B,y ..., On)dBd0 .. dOy (17)

We are interested in the following:

_ drv\ _ dr® \ _
<ﬂ>9 e{—— )0+ 2 —— )0+ O, (18)
dt dt dt

Two time scales appear in equation (18); however, as it will be clear soon, the procedure of averaging over the
initial phases makes the shortest time scale term vanish:

dt 234

(D
dih ) _ 2<2’T1234W/U2I31‘4 sin(A9<°>1324)6f§>9 (19)

Using the complex exponential notation, we get:

d(I") ——— N7 A
% = 20| S Tiasa VR LT, (expliAd® ) 1)5 expliaQ 3y 163 |, (20)
234
where J stands for the imaginary part. The r.h.s. is 0 because ( exp[iAé(o) 1324]>(; =0:
[

This implies that the action evolution depends, after phase averaging, on higher order contributions.
o g2

Using the complex exponential notation, equation (14) can be rewritten as:
d(I®), ~ 4 1 e
M = 23030 ks O Tiosa Tuser——=~ L LI

m=1 \/E

dt

. ~067 A R34
> (eXp[l(UmAQmst]A;_)61)eXp[_lAQIZ)t)] <eXp[1(o’mA95175 _ A91324)]>0613§6?n7_r;| (22)
m5

In order to show how the above equation simplifies after the phase averaging procedure, we consider the r.h.s
form = 1:

. (expli(ADT 1] — Dexp[—iAQ) )]
AQY

<exp[iA93i%7]>9éfééf§]. -

Due to the restrictions in the sums, the only possible values of k; that give a contribution of the above expression
different from 0, are the following: ks = ky, k¢ = ks, k; = kyand ks = ky, kg = k4, ky = k3. For each of these
two sets of wave numbers the phase average term gives a contribution of 1. The expression above reduces to

4
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___sin(AQS )
43 Ths b LI ——2=6, (24)
234 12

A similar contribution, with appropriate sign and indices, can be derived for m = 2, 3, 4. The final evolution
equation for (I*)) reads

d(I1®Y oo (1 1 1 1)sin(AQS) 4

- .. = 42 TipghbBL| =+ — — — — — 7512 (25)

dt 234 L L L L) Ay,

Note that there is no need to use the reduced sum >~ symbol, because the extra terms in the standard sum give a
zero contribution (exact cancellations due to the two ‘4 signs and two ‘—’ signs in the term in brackets).

Inserting equation (25) into equation (18), gives

d (L) o111 1) sin(AQpyt
4y _ 4e2y" T1223411121314(T + == == T)%éﬁ‘ (26)
dt 234 L L L L) AQ;
If we define the nonlinear time 7 = ¢€2¢, then the equation reads
d{L)g ____(1 1 1 1)sin(AQ 7/ 2
dr 234 L L L L A,

If Tigrir = constand Y, I is conserved (this property is enjoyed for instance by the Nonlinear Schrédinger
equation), then the nonlinear frequency shift contribution is identically zero and, in the limitof ¢ — 0,

equation (27) becomes
d{h)p —---(1 1 1 1
W _ gy szamrzraa(f P T)mwf;wf;, @8)
T 234 Il 12 13 14
where we have used the property that
: A 34 2
lim Sm(”—‘gz/f) = 15 (AW, (29)
c—0 AwlZ

Remarks

+ The § (Aw;3) above is dimensionally a Dirac delta, coming from the limit relationship (29). This is not
rigorous and in principle even not meaningful, being the argument of the § not a continuous function.
Though, one can argue that the values taken by Aws;3 can become extremely dense around Aw}; = 0, which
can be thought of as the summation tending to an integral.

+ The time scale for the evolution of the actionis 1 /¢2.

+ For the validity of the expansion, such time scale should always be much larger than the linear time scale given
by 1/wy for all values of k.

+ Inther.h.s. only the initial actions are included.

+ The highest order contribution to the evolution of I at order ¢ from the angle dynamics comes from 6{". No
contribution from {” enters.

+ Noassumptions on the statistics of initial actions have been made.

+ Equation (28) is meaningful only if the dispersion relation allows for connected exact resonances on a regular
discrete grid.

4. The thermodynamic limit: the standard wave kinetic equation

The physical space over which we have worked is defined as A = [0, L] € R¥. In the thermodynamic limit

one is interested in looking at the limit L — oo. As this limit is taken, the spacing between Fourier modes

Ak = 27 /L becomes smaller and smaller in such a way that wave number space becomes dense: k € R?. In this
limit a resonant manifold, that could be empty in the case of regular discrete grid, may appear. Therefore, the
starting point for the derivation should be equation (27), where the Dirac Delta function over frequencies has
not been introduced yet. The thermodynamic limit (Ak — 0 or L — o0) is taken using the following rules:

5
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+ Wedefine the action density as:

I

I = I(k, t) := Akd’

(30)

where I(k, t)isa continuous function of k € R?

+ Sums become integrals as follows:

Z f ok 31)

+ The Kronecker Delta §) becomes a Dirac Delta §(*)
8K — AkdsD (32)
Introducing the above substitutions in (27), we get:

d(L)

T

1 )sin (AQng/Ez)é (33)
— 35— %

1 1
= 4fdkzdk3dk4T1234III2I3I4(I tTTLn A,

1 I2 13 I4

where we need to take the limit for Ak — 0 of

: Sin[(wk + Akde2 ZszkkzkaTz - EAkdﬂkkka)T/Ez] sin (wer/€?) o0
im = 34
Ak=0 (wk + Akde2 Zkz Tkkzkkziz — Akde Tkkkkik) Wk

The last equality is valid only if we assume that

lim — =0 (35)

4.1. The weakly nonlinear limit
By taking the small amplitude limit ¢ — 0, satisfying equation (35), one thus gets

4y

T

—ar [ dkzdk3dk4T12234TJ2LT4(% 11 —)zm 4634, (36)

1 b 5 Iy

4.2. Actions as stochastic variables
We now assume that I is a stochastic variable whose expectation value taken with respect to the distribution of
the initial actions is given by

n(k, t) = (Ia,i; (37)

the equation above defines the spectral action density #n(k, t) or more simply the action spectrum. We assume
that the initial actions labeled by different wave numbers are statistically independent, so that

<T,‘T]‘Tk>f = <T,’>f <T]'>1' <Tk>f = n‘in‘jﬁk, 1 Ij =k, (38)
where 1, = n(k, t = 0) = (I;)1; therefore, the equation for the spectrum becomes
d 1 1
an 47rfdk2dk3dk4 1234n1n2n3n4( b= —)6(A 84, (39)
ar i il i3 l

Again, on the right hand side of the equation only initial data for n; are included. Thus, strictly speaking its
validity is at time t = 0. A usual, but somehow unjustified, further step consists in substituting in the right hand
side the spectral action density n; with 7y = n(+ = 0) to get:

am 4 [kt v, 1234n1n2n3n4( 1,1t 1t 1 )6(A 54, (40)
dr mo m N3 Ny
This is the celebrated Wave Kinetic equation. The substitution of 77y = n;(t = 0) with n(f) could be
justified if random phases and amplitudes would persist during the evolution up to time scale of validity of the
equation.
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As alast remark, we note that the statistical assumptions needed to obtain equation (40) ultimately amount
to a field with random independent uniformly distributed angles and independent actions (RPA). Regarding the
relation to the assumption of (quasi) Gaussianity commonly used in earlier derivations of the Wave Kinetic
Equation, as discussed in [11], we mention that all Gaussian random fields are Random Phase and Amplitude;
conversely, for any sequence of Random Phase and Amplitude fields, the spatial field converges in distribution to
a Gaussian field with zero mean and spectrum n(k)as L — oo.

5. Conclusions

The Wave Kinetic equation is an important tool in physics; the field of research is very active both from a
theoretical and experimental point of view. Establishing the validity of the Kinetic Equation in reproducing the
statistical behaviour of a system of random waves is a topic of paramount importance. Therefore, a rigorous
derivation of the equation would be of great benefit for the community. In this spirit, we have presented a new
formal derivation of the equation based on wave-action variables. Our objective has been to make a coincise and
self-consistent derivation, without loosing rigour. We have clarified that a kinetic equation for deterministic
actions can be derived by using only the randomness of the initial phases. Moreover, a discrete form of the
kinetic equation for deterministic actions is also derived. In general the equation contains the sinc function and
only for the specific case of the NLS equation, in the limit of small ¢, the standard Dirac ¢ will appear in the
equation. To what extent such function is meaningful in the equation it is still to be understood. It is out of the
scope of the present paper to discuss the convergence of the expansion used or the persistence of the statistics of
the initial condition (see [9—12] for a discussion).
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