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MANIFOLDS POLARIZED BY VECTOR BUNDLES.

MARCO ANDREATTA AND CARLA NOVELLI

Abstract. Let X be a complex projective manifold of dimension n and let
E be an ample vector bundle of rank r. Let also τ = τ(X, E) = min{t ∈ R :

KX+tdet E is nef} be the nef value of the pair (X, E). In the paper we classify

the pairs (X, E) such that τ(X, E) ≥ n−2
r

.

1. Introduction.

Let X be a smooth complex projective variety of dimension n and let E be an
ample vector bundle of rank r on X. We assume n ≥ 3, the case of curves and
surfaces being well known. The pair (X, E) is usually called a polarized variety (i.e.
X is a variety with a polarization given by E); the name comes from the case r = 1
and E very ample, i.e. E is a hyperplane in a given embedding of X.

We want to classify polarized varieties, or better find suitable assumptions under
which it is possible to give a classification of the pairs (X, E). For instance a famous
theorem of S. Mori ([13]) says that if E = TX then X is the projective space; and
this is true even more generally when E is just a subsheaf of the tangent bundle
([5]).

For this purpose, in the spirit of Mori theory, one can define the following nu-
merical invariant:

τ = τ(X, E) = min{t ∈ R : KX + tdet E is nef}.

Assume first of all that τ is a positive number; equivalently we are assuming that
X is not minimal in the sense of the Minimal Model Program or of the Mori theory:
i.e. KX is not nef.
τ is called the nef value (or the threshold value) of the pair (X, E) and it has

some very nice features which we recall now (for further details we refer to [11,
Theorem 4.1.1]).

First of all, by the Kawamata’s rationality theorem, τ is a rational number.
Moreover in the Mori-Kleiman cone NE(X) ⊂ N1(X) the divisor KX + τ det E
defines a face F (E) := {C ∈ NE(X) : (KX + τ det E).C = 0} which stays in the

polyhedral part of the cone, NE(X)KX<0, and which is therefore generated by a

finite number of extremal rays Ri = R[Ci] where Ci is a rational curve. Recall that

the length of an extremal ray R ⊂ NE(X)KX<0 is the integer defined as l(R) =min

{−KX .C : [C] ∈ R}. By a theorem of Mori l(R) ≤ n+ 1.
Secondly, by the Kawamata-Shokurov base point free theorem, a high multiple

of the divisor KX + τ det E is spanned by global sections and therefore it defines a
map ϕ : X → Z into a normal projective variety with connected fibers. The map

Key words and phrases. ample vector bundle – extremal rays – adjunction theory; 14J60,
14J40, 14E30.
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2 MARCO ANDREATTA AND CARLA NOVELLI

ϕ is called the nef value morphism (relative to (X, E)). Note that by construction
−KX is ϕ-ample, therefore ϕ is a Fano-Mori contraction (see [4]) and it contracts
all curves in F .

The program is then the following. Find suitable assumption on τ(X, E) under
which it is possible to describe the face F (E) ⊂ N1(X) and (or) the nef value
morphism ϕE : X → Z. Subsequently, with the use of the Minimal Model Program,
classify under this assumption the pairs (X, E).

In this paper we succesfully develope the above program for all τ ≥ n−2
r .

If r = 1 the program has a classical start up, it was carried out in modern time
by A.J. Sommese and T. Fujita and with different generalizations by many others
including the first author; for a complete survey we refer the reader to [6].

If 1 = τ(≥ n−2
r ) the program was developed by many authors in the following

series of papers: [16], [21], [9], [17], [1], [12] and [2].
Building on the above quoted papers, in [14] M. Ohno classified the pairs for

τ ≥ n−1
r and τ ≥ 1. After the paper was written we found a preprint of Ohno, [15],

were he also consider the case n−1
r > τ ≥ n−2

r and τ ≥ 1. Note that in our paper
the assumption τ ≥ 1 is not needed, the proofs are different and in general much
shorter.

2. Notations, preliminaries and a starting point.

We use the standard notation from algebraic geometry. In particular we use the
language of the minimal model program and it is compatible with that of [11] to
which we refer. We just recall the following two facts that we will use in the proofs.
Let, as in the introduction, R ⊂ NE(X)KX<0 be an extremal ray, l(R) its length
and ϕR : X → Z the Fano-Mori contraction which contracts all curves in R. Let
then E = E(ϕ) be the exceptional locus of ϕR (if ϕR is of fiber type then E := X);
let S be an irreducible component of a (non trivial) fiber F .

Proposition 2.1. [19] The following formula holds

dimS + dimE ≥ dimX + l(R)− 1.

Proposition 2.2. [11, Proposition 5.1.6], [1, Proposition 1.4.1] If ϕR is divisorial
(i.e. it is birational with exceptional locus of dimension n− 1) then the exceptional
locus is a prime divisor.

If ϕR is of fiber type (i.e. dimX > dimZ) and dimZ ≤ 2 then it is equidimen-
sional and Z is smooth.

Our starting point will be the following result.

Theorem 2.3. In the above notation let R = Ri for any extremal ray in the face
F (E) and let C ⊂ X be any rational curve such that l(R) = −KX .C and [C] ∈ R.
Then

τ(X, E) ≤ l(R)

r

(
≤ n+ 1

r

)
.

Moreover
1) equality holds if and only if det E .C = r, and if V is a family of rational curves
(i.e. a closed irreducible component V ⊂ Hom(P1, X)) which contains f : P1 →
C ⊂ X then it is unsplit (i.e. its image in Chow is proper).
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2) If equality holds and X is rationally chain connected with respect to V (i.e. for
all x1, x2 ∈ X there exists a chain of rational curves parametrized by morphisms
from V which joins x1 and x2), which is equivalent to assume ρ(X) = 1, then
there exists a (uniquely defined) line bundle L over X such that deg f∗L = 1 and
E ∼= ⊕rL.

Proof. Assume by contradiction that τ(X, E) > l(R)
r . Then

0 = (KX + τ det E).C > KX .C +
l(R)

r
det E .C = KX .C

(
1− det E .C

r

)
.

This implies that det E .C < r which is a contradiction since E is ample.
In the same way one proves that equality holds iff det E .C = r.
The rest of the theorem follows from [5, Proposition 1.2]. �

Remark 2.4. The assumption that the base field is the complex number is used in
the proof of 2). It would be nice to have a proof of it over an arbitrary algebraically
closed field.

Note also that part 2) will be used to reduce the general case to the case r = 1.

3. Classification of (X, E) with τ(E) ≥ n−2
r .

Proposition 3.1. If n+1
r ≤ τ then (X, E) = (Pn,⊕rOPn(1)).

Proof. Now and in the rest of the paper we will let R be any ray in the face
F (E) := {C ∈ NE(X) : (KX + τ det E).C = 0}. By theorem 2.3 we have that
l(R) = n + 1. Then we have, by [7], that X = Pn and, by theorem 2.3, that
E = ⊕rL for a line bundle L over X. Therefore τ(X,L) = n+ 1 and we reduce our
proposition to the known case r = 1. �

Proposition 3.2. Assume n
r ≤ τ < n+1

r and let a := det E .C − r. Then the pair
(X, E) is one of the following.
1) X = Pn, a ≥ 1 and an ≤ r. If r ≤ n then E is either TPn or OPn(2) ⊕
(⊕(r−1)OPn(1)).
2) X = Qn and E = ⊕rOQn(1).
3) X is a scroll over a smooth curve R (i.e. X is the projectivization of a rank
n vector bundle on a smooth curve R, π : P(F ) → R, and E|F = ⊕rOPn−1(1) for
every fiber F of π).

Proof. By theorem 2.3 we have that l(R) ≥ n.
If l(R) = n+ 1 then by [7] we have that X = Pn. Moreover n

r ≤ τ = −KX .C
det E.C =

n+1
r+a <

n+1
r gives the bounds on a.

If r ≤ n then a = 1, r = n and thus τ = 1 and the theorem follows from [17].
If l(R) = n and ρ(X) = 1 by theorem 2.3 we have that E = ⊕rL for a line

bundle L over X such that deg f∗L = 1. Therefore τ(X,L) = n and we reduce our
proposition to the known case r = 1. This gives the case 2) of the proposition.

Let l(R) = n and ρ(X) > 1; by propositions 2.1 and 2.2 the map ϕR : X → Z is
onto a smooth curve. If F is a general fiber the pair (F, E|F ) is (Pn−1,⊕rOPn−1(1))
by proposition 3.1. Using the same argument as in section (3.3) of [9] we see that
this is true for every fiber F . �

Proposition 3.3. Assume n−1
r ≤ τ < n

r and let a := det E .C − r. Then the pair
(X, E) is one of the following.
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a) ρ(X) = 1 and
1) X = Pn, a is a positive integer and n−1

2 a ≤ r < na. In particular if r ≤ n − 1

(for instance if τ ≥ 1) then either a = 1, r ≥ n−1
2 and E = OPn(2)⊕(⊕(r−1)OPn(1))

or a = 2, r = n− 1, τ = 1 and the possible E are described in [18].
2) X is a Fano manifold, −KX .C = n for every minimal (rational) curve, a ≥ 1
and a(n − 1) ≤ r, τ ≤ 1

a . In particular if r ≤ n then X = Qn and E is uniform
with splitting type (2, 1, ..., 1) (and, for r = n− 1, it is described by [18] and [20]).
3) there exists an ample line bundle L over X such that −KX = L⊗(n−1) (i.e. X
is a del Pezzo manifold) and E ∼= L⊕r.
b) ρ(X) > 1 and
4) X is a scroll over a smooth curve R (i.e. X is the projectivization of a rank n
vector bundle on a smooth curve R, π : P(F ) → R), a ≥ 1 and a(n − 1) ≤ r. If
r ≤ (n − 1) then for every fiber F of π the pair (F, E|F ) is as in 1) of proposition
3.2.
5)X is a hyperquadric fibration over a smooth curve R (i.e. X is a section of a
divisor of relative degree 2 in a (n + 1)-dimensional scroll over R) and for every
smooth fiber F the pair (F, E|F ) is as in 2) of proposition 3.2.

6) X is a Pn−2-bundle over a smooth surface S, locally trivial in the complex topol-
ogy, and E|F = ⊕rOPn−2(1) for every fiber F of π (see also the following remark).

Or
7) X is the blow-up of P3 in one point, π : BlxP3 → P3, and E = ⊕r (π∗(OP3(2))−
[π−1(x)]) (this is actually a particular case of 6)).

8) there exist a smooth variety X ′ and a morphism ϕ : X → X ′ expressing X as
blow-up of X ′ at a finite set of points B and an ample vector bundle E ′ on X ′ such
that E ⊗ ([ϕ−1(B)]) = ϕ∗E ′ and KX′ + τ det E ′ is ample.
Moreover E|E = ⊕rOPn−1(1), where E is any irreducible component of the excep-
tional locus of ϕ.
The pair (X ′, E ′) is called the first reduction of (X, E).

Proof. By theorem 2.3 we have that l(R) ≥ n− 1.
If l(R) = n+ 1 then by [7] we have that X = Pn. If a = 0 we can apply theorem

2.3 and E = ⊕rOPn(1) which is a contradiction.

Since r+a = det E .C = l(R)
τ = n+1

τ we have that n−1
2 a ≤ r < na. In particular if

r ≤ n− 1 then a = 1, 2. If a = 1 then r ≥ n−1
2 and E is uniform with splitting type

(2, 1, ..., 1), therefore E = OPn(2)⊕ (⊕(r−1)OPn(1)). If a = 2 then r = n− 1, τ = 1
and the possible E are described in [18].

If l(R) = n and ρ(X) = 1 we can assume again by theorem 2.3 that a ≥ 1.
Moreover r + a = n

τ ≤
nr
n−1 implies a(n − 1) ≤ r, τ ≤ 1

a . If r ≤ n then a = 1 and
therefore −KX .C = n and det E .C = n or det E .C = n+ 1. In the first case τ = 1,
r = n − 1 and we conclude using [18] and [20]. In the second, since n and n + 1
are relatively prime, we can find an ample line bundle H such that H.C = 1 and
therefore such that τ(X,H) = n. We can now apply the known case r = 1.

If l(R) = n − 1 and ρ(X) = 1, then we are in the assumption of theorem 2.3.
Then E ∼= L⊕r for a line bundle L over X such that deg f∗L = 1 and we are in the
case 3) of the proposition.

If l(R) = n and ρ(X) > 1 then, as in the proof of proposition 3.2, it is straight-
forward to see that the map ϕ gives X the structure of a scroll over a smooth curve.
The rest of point 4) follows from proposition 3.2 applied to the pair (F, E|F ).
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Let l(R) = n − 1 and ρ(X) > 1; if ϕR : X → Z is of fiber type then by
propositions 2.1 and 2.2 it is onto either a smooth curve or a smooth surface. If
F is a general fiber the pair (F, E|F ) is (Qn−1,⊕rOQn−1(1)) by proposition 3.2 in

the first case and (Pn−2,⊕rOPn−2(1)) by proposition 3.1 in the second. In the first
case, using the same arguments as in section (3.3) of [9], we see that this is true
for every fiber F and then that ϕR : X → Z is a hyperquadric fibration. Also in
the second case, using this time the argument in 2.2 of [1], one can see that this is
true for every fiber F and then that ϕR : X → Z is a Pn−2-bundle, locally trivial
in the complex topology.

We are therefore left with the case l(R) = n − 1, ρ(X) > 1 and ϕR : X → Z
birational (if the last assumption holds it is usually said that the ray R is not nef).
Theorem 1.1 of [3] says that if ϕR : X → Z then Z is smooth and ϕR is the blow-up
of Z at a point. Moreover, if E denotes the exceptional locus of ϕR, by proposition
3.1 (E, E|E) = (Pn−1,⊕rOPn−1(1)).

Also the same proof as the one of lemma 4.2 in [3] proves that if a ray R of the

face F (E) := {C ∈ NE(X) : (KX + τ det E).C = 0} with τ ≥ n−1
r is non nef then

all rays in the face are non nef with the only exception given by the blow-up of P3

in one point, π : BlxP3 → P3, and E = ⊕r(π∗(OP3(2))− [π−1(x)]).
All this leads to the case 7) and to the last case of the proposition. �

Remark 3.4. In part 2) of the proposition X should be the quadric also if r > n.

Remark 3.5. In part 6) of the proposition X is not necessarly a scroll, as example
2.3 of [1] shows. The example in particular says also that the assumption ρ(X) = 1
is necessary in part 2) of theorem 2.3.

Proposition 3.6. Assume n−2
r ≤ τ <

n−1
r and let a := det E .C − r.

Then either the pair (X, E) is one of the following:
a) ρ(X) = 1 and
1) X = Pn, a is a positive integer and n−2

3 a ≤ r < n−1
2 a. In particular if r ≤ n− 2

(for instance if τ ≥ 1), then a = 1, 2, 3 and E is a decomposable bundle.
2) X is a Fano manifold, −KX .C = n for every minimal rational curve, a is a
positive integer and n−2

2 a ≤ r < (n− 1)a.
3) X is a Fano manifold, −KX .C = n − 1 for every minimal rational curve, a
is a positive integer and (n − 2)a ≤ r. If r ≤ n − 2 (for instance if τ ≥ 1) then
KX + det E = 0.
4) There exists an ample line bundle L over X such that −KX = L⊗(n−2) (i.e. X
is a Mukai manifold) and E ∼= ⊕rL.
b) ρ(X) > 1 and
5) X is a scroll over a smooth curve R, n−2

2 a ≤ r < (n − 1)a and for every fiber
F the pair (F, E|F ) is as in 1) of proposition 3.3. In particular if r ≤ n − 2 (for

instance if τ ≥ 1) then either E|F = OPn−1(2) ⊕ (⊕(r−1)OPn−1(1)) or r = n − 2,
τ = 1 and the possible E|F are described in [18].
6) X is a Fano fibration over a smooth curve R and r ≥ a(n− 2). In particular if
r ≤ n− 2 (for instance if τ ≥ 1) then for the general fiber F the pair (F, EF ) is as
in 2) of proposition 3.3.
7) X is a fibration over a smooth curve R; for the general fiber F we have E|F =
⊕rL, where (n− 2)L = −KF (i.e. F is a del Pezzo manifold).



6 MARCO ANDREATTA AND CARLA NOVELLI

8) X is a Pn−2-fibration over a smooth surface S and r ≥ n − 2. In particular if
r ≤ n − 2 (for instance if τ ≥ 1) then X is a Pn−2-bundle and for every fiber F
either E|F = TPn−2 or E|F = OPn−2(2)⊕ (⊕(r−1)OPn−2(1)).
9) X is a hyperquadric fibration over a smooth surface S and for the general fiber
F the pair (F, E|F ) = (Qn−2,⊕rOQn−2(1)).
10) X is a fibration over a threefold T with at most isolated rational and Gorenstein
singularities and for all fibers F over a smooth point the pair (F, E|F ) = (Pn−3,
⊕rOPn−3(1)).

Or
11) fR is the blow up of a smooth variety either in a point or along a smooth curve
with exceptional locus E. In the first case if r ≤ n − 2 (for instance if τ ≥ 1)
then r = n − 2 and E|E = OPn−1(2) ⊕ (⊕(r−1)OPn−1(1)). In the second case,

(F, E|F ) = (Pn−2,⊕rOPn−2(1)) for all fibers F ⊂ E.
12) fR is a divisorial contraction whose exceptional locus, E, satisfies one of the
following:
i) (E,EE ; E|E) = (Pn−1,OPn−1(−2);⊕rOPn−1(1));

ii) (E,EE ; E|E) = (Qn−1,OQn−1(−1);⊕rOQn−1(1)).

Proof. By theorem 2.3 we have that l(R) ≥ n− 2.
If l(R) = n+ 1 then by [7] we have that X = Pn and the rest is straightforward.
Assume first that ρ(X) = 1.
If l(R) = n then τ = n

r+a and this implies n−2
2 a ≤ r < a(n− 1).

If l(R) = n − 1 then τ = n−1
r+a and this implies (n − 2)a ≤ r and a > 0. If

r ≤ (n− 2) then a = 1, r = n− 2, τ = 1 and therefore KX + det E = 0.
If l(R) = n − 2 then we are in the assumption of theorem 2.3. In particular

E ∼= L⊕r for a line bundle L over X such that deg f∗L = 1 and we are in the case
4) of the proposition.

Assume then that ρ(X) > 1 and let ϕ := ϕR : X → Z be the map associated to
the ray R. Since ρ(X) > 1 then dimZ > 0.

If l(R) = n then, as in the proof of proposition 3.2, it is straightforward to see
that the map ϕ gives X the structure of a scroll over a smooth curve and that the
pair (F, E|F ) is as in 1) of proposition 3.3.

Let l(R) = n − 1 and assume ϕ is of fiber type; then by propositions 2.1 and
2.2 it is onto either a smooth curve or a smooth surface. In the first case if F
is a general fiber the pair (F, E|F ) is as in 2) of proposition 3.3. In the second

case if F is a general fiber then F = Pn−2 and the pair (F, E|F ) is as in 1) of

proposition 3.2. In particular if r ≤ n − 2 then r = n − 2 and E|F = TPn−2 or

OPn−2(2) ⊕ (⊕r−1OPn−2(1)). Using this time the argument in 2.2 of [1], one can
see that this is true for every fiber F and then that ϕR : X → Z is a Pn−2-bundle,
locally trivial in the complex topology.

Let l(R) = n − 2 and assume ϕ is of fiber type; then, by propositions 2.1 and
2.2, ϕ is onto either a smooth curve or a smooth surface or a threefold. If F is a
general fiber the pair (F, E|F ) is a del Pezzo manifold (F,L) with E|F = ⊕rL by 3)

of proposition 3.3 in the first case, and (Qn−2,⊕rOQn−2(1)) by 2) of proposition
3.2 in the second case. If dimZ = 3 then it is well known that Z has rational and
Gorenstein singularities. Moreover in our case they are also isolated: to prove this
take a general hyperplane section S in Z and consider the map ϕ|ϕ−1(S) : ϕ−1(S)→
S. By proposition 1.3 of [1] this map is elementary and therefore, by proposition
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2.2, S is smooth, thus Z has isolated singularities. For the general fiber F the pair
(F, E|F ) is (Pn−3,⊕rOPn−3(1)) by proposition 3.1. As in the proof of [2, Theorem
5.1], the same holds for all fibers F over smooth points.

We are left with the case l(R) = n − 1, n − 2, ρ(X) > 1 and ϕR : X → Z
birational. In the first case Theorem 1.1 of [3] says that Z is smooth and ϕR is the
blow-up of Z at a point. Moreover, if E denotes the exceptional locus of ϕR, by
adjunction det E|E = OPn−1(r + a); in particular, if r ≤ n− 2, then r = n− 2 and

E|E = OPn−1(2)⊕ (⊕(r−1)OPn−1(1)).
In the second case Theorem 5.3 of [3] says that ϕR is divisorial and, if E denotes

the exceptional locus of ϕR: either ϕR(E) is a point, (E,−EE) = (Pn−1,OPn−1(2)),
by adjunction det E|E = OPn−1(r), therefore E|E = ⊕r OPn−1(1) by theorem 2.3; or

ϕR(E) is a point, (E,−EE) = (Qn−1,OQn−1(1)), where Qn−1 is a possibly singular
hyperquadric, by adjunction det E|E = OQn−1(r), therefore E|E = ⊕rOQn−1(1) by
theorem 2.3; or Z is smooth and ϕR is the blow-up along a smooth curve ϕR(E) ⊂
Z, and for all fibers F ⊂ E by adjunction det E|F = OPn−2(r), therefore (F, E|F ) =

(Pn−2,⊕rOPn−2(1)).

Remark 3.7. Assume that KX + τ det E is big (and nef by the definition of τ).
Then all rays in the face F defined by KX + τ det E are not nef. If τ ≥ n−2

r then
they are described in proposition 3.3 7),8) and proposition 3.6 11),12). If moreover
dimX ≥ 4 the exceptional loci of the rays in the face F are disjoint and therefore
the map Φ associated to KX+τ det E contracts them to different points and disjoint
curves. The last statement follows from Theorem 2.4 in [10]. This allows to define
the second reduction of the pair (X, E) in the spirit of section 7. of [6].

�
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