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MANIFOLDS COVERED BY LINES AND EXTREMAL RAYS

CARLA NOVELLI AND GIANLUCA OCCHETTA

Abstract. Let X be a smooth complex projective variety and let H ∈ Pic(X)

be an ample line bundle. Assume that X is covered by rational curves with
degree one with respect to H and with anticanonical degree greater than or

equal to (dimX−1)/2. We prove that there is a covering family of such curves

whose numerical class spans an extremal ray in the cone of curves NE(X).

Introduction

Let X be a smooth complex projective variety which admits a morphism with
connected fibers ϕ : X → Z onto a normal variety Z such that the anticanonical
bundle −KX is ϕ-ample, dimX > dimZ and ρX = ρZ + 1 (i.e. an elementary
extremal contraction of fiber type).
It is well known, by fundamental results of Mori theory, that through every point
of X there is a rational curve contracted by ϕ. The numerical classes of these
curves lie in an extremal ray of the cone NE(X). By taking a covering family of
such curves one obtains a quasi-unsplit family of rational curves, i.e. a family such
that the irreducible components of all the degenerations of curves in the family are
numerically proportional to a curve in the family. It is very natural to ask if the
converse is also true:

Given a covering quasi-unsplit family V of rational curves, is there
an extremal elementary contraction which contracts all curves in
the family or, in other words, does the numerical class of a curve
in the family span an extremal ray of NE(X)?

As proved in [8] (see also [10] and [14]) there is always a rational fibration, defined
on an open set of X, whose general fibers are proper, which contracts a general
curve in V . More precisely, a general fiber is an equivalence class with respect to
the relation induced by the closure V of the family V in the Chow scheme of X
in the following way: two points x and y are equivalent if there exists a connected
chain of cycles in V which joins x and y.

By a careful study of this fibration and of its indeterminacy locus, a partial
answer to this question has been given in [6, Theorem 2]; namely, if the dimension
of a general equivalence class is greater than or equal to the dimension of the
variety minus three then the numerical class of a general curve in the family spans
an extremal ray of NE(X).

Before the results in [6] a special but very natural situation in which the question
arises has been studied in [5]. In that paper manifolds covered by rational curves
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2 CARLA NOVELLI AND GIANLUCA OCCHETTA

of degree one with respect to an ample line bundle H were considered, and it was
proved that a covering family of such curves (we will call them lines, by abuse) of
anticanonical degree greater than or equal to dimX+2

2 spans an extremal ray (see
also [4, Theorem 2.4]).

Recently, in [15, Theorem 7.3], the extremality of a covering family V of lines was
proved under the weaker assumption that the anticanonical degree of such curves,
denoted by abuse of notation by −KX · V , is greater than or equal to dimX+1

2 .

The goal of the present paper is to prove the following

Theorem. Let (X,H) be a polarized manifold with a dominating family of rational
curves V such that H · V = 1. If −KX · V ≥ dimX−1

2 , then [V ] spans an extremal
ray of NE(X).

The main idea is, as in [15], to combine the ideas and tecniques of [5], especially
taking into consideration a suitable adjoint divisor KX + mH and studying its
nefness, with those of [6], in particular regarding the existence of special curves in
the indeterminacy locus of the rational fibration associated to V .

1. Background material

Let X be a smooth projective variety defined over the field of complex numbers.
A contraction ϕ : X → Z is a proper surjective map with connected fibers onto a
normal variety Z.
If the canonical bundle KX is not nef, then the negative part of the cone NE(X) of
effective 1-cycles is locally polyhedral, by the Cone Theorem. By the Contraction
Theorem, to every face in this part of the cone is associated a contraction.
Unless otherwise stated, we will reserve the name extremal face for a face contained
in NE(X) ∩ {a ∈ N1(X) | KX · a < 0}, and we will call extremal contraction the
contraction of such a face.
An extremal contraction associated to an extremal face of dimension one, i.e. to
an extremal ray, is called an elementary contraction; an extremal ray τ is called
numerically effective, and the associated contraction is said to be of fiber type, if
dimZ < dimX; otherwise the ray is called non nef and the contraction is birational.
If the codimension of the exceptional locus of an elementary birational contraction
is equal to one, the ray and the contraction are called divisorial, otherwise they are
called small.
A Cartier divisor which is the pull-back of an ample divisor A on Z is called a
supporting divisor of the contraction ϕ.
If the anticanonical bundle of X is ample, X is called a Fano manifold. For a Fano
manifold, the index, denoted by rX , is defined as the largest natural number r such
that −KX = rH for some (ample) divisor H on X.
Throughout the paper, unless otherwise stated, we will use the word curve to denote
an irreducible curve.

Definition 1.1. A family of rational curves is an irreducible component V ⊂
Ratcurvesn(X) (see [14, Definition 2.11]). Given a rational curve we will call a
family of deformations of that curve any irreducible component of Ratcurvesn(X)
containing the point parametrizing that curve. We will say that V is unsplit if it
is proper. We define Locus(V ) to be the set of points of X through which there
is a curve among those parametrized by V ; we say that V is a covering family if
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Locus(V ) = X and that V is a dominating family if Locus(V ) = X.
We denote by Vx the subscheme of V parametrizing rational curves passing through
x ∈ Locus(V ) and by Locus(Vx) the set of points of X through which there is a
curve among those parametrized by Vx.
By abuse of notation, given a line bundle L ∈ Pic(X), we will denote by L · V the
intersection number L · CV , with CV any curve among those parametrized by V .

Proposition 1.2. ([14, IV.2.6]) Let V be an unsplit family of rational curves on
X. Then

(a) dim Locus(V ) + dim Locus(Vx) ≥ dimX −KX · V − 1;
(b) every irreducible component of Locus(Vx) has dimension ≥ −KX · V − 1.

This last proposition, in case V is the unsplit family of deformations of a rational
curve of minimal anticanonical degree in an extremal face of NE(X), gives the fiber
locus inequality:

Proposition 1.3. ([12, Theorem 0.4], [19, Theorem 1.1]) Let ϕ be a Fano–Mori
contraction of X. Denote by E the exceptional locus of ϕ and by F an irreducible
component of a non-trivial fiber of ϕ. Then

dimE + dimF ≥ dimX + `− 1,

where ` := min{−KX · C | C is a rational curve in F}. If ϕ is the contraction of
an extremal ray τ , then `(τ) := ` is called the length of the ray.

Definition 1.4. We define a Chow family of rational curvesW to be an irreducible
component of Chow(X) parametrizing rational and connected 1-cycles.
We define Locus(W) to be the set of points of X through which there is a cycle
among those parametrized by W; notice that Locus(W) is a closed subset of X
([14, II.2.3]). We say that W is a covering family if Locus(W) = X.

Definition 1.5. If V is a family of rational curves, the closure of the image of V
in Chow(X), denoted by V, is called the Chow family associated to V .

Remark 1.6. If V is proper, i.e. if the family is unsplit, then V corresponds to the
normalization of the associated Chow family V.

Definition 1.7. Let V be the Chow family associated to a family of rational curves
V . We say that V (and also V) is quasi-unsplit if every component of any reducible
cycle in V is numerically proportional to V .

Definition 1.8. Let W be a Chow family of rational curves on X and Z ⊂ X. We
define Locus(W)Z to be the set of points x ∈ X such that there exists a cycle Γ
among those parametrized by W with Γ ∩ Z 6= ∅ and x ∈ Γ.
We define ChLocus(W)Z to be the set of points x ∈ X such that there exists a
chain of cycles among those parametrized by W connecting x and Z. Notice that,
a priori ChLocus(W)Z is a countable union of closed subsets of X.

Notation: If T ⊂ X we will denote by N1(T,X) ⊂ N1(X) the vector subspace
generated by numerical classes of curves in T ; we will denote by NE (T,X) ⊂ NE(X)
the subcone generated by numerical classes of curves in T .
The notation 〈. . . 〉 will denote a linear subspace, while the notation 〈. . . 〉c will
denote a subcone.
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Lemma 1.9. ([14, Proposition IV.3.13.3], [1, Lemma 4.1]) Let T ⊂ X be a closed
subset and let W be a Chow family of rational curves. Then every curve contained
in ChLocus(W)T is numerically equivalent to a linear combination with rational
coefficients of a curve contained in T and irreducible components of cycles among
those parametrized by W which intersect T .

Lemma 1.10. (Cf. [5, Proof of Lemma 1.4.5], [17, Lemma 1]) Let T ⊂ X be a
closed subset and let V be a quasi-unsplit family of rational curves. Then every
curve contained in ChLocus(V)T is numerically equivalent to a linear combination
with rational coefficients

λCT + µCV ,

where CT is a curve in T , CV is a curve among those parametrized by V and λ ≥ 0.

Corollary 1.11. (Cf. [9, Corollary 2.2 and Remark 2.4]) Let Σ be an extremal
face of NE(X) and denote by F a fiber of the contraction associated to Σ. Let V be
a quasi-unsplit family numerically independent from curves whose numerical class
is in Σ. Then

NE (ChLocus(V)F , X) = 〈Σ, [V ]〉c,
i.e. the numerical class in X of a curve in ChLocus(V)F is in the subcone of NE(X)
generated by Σ and [V ].

Lemma 1.12. Let D be an effective divisor on X and L a nef divisor. If (L+D)|D
is nef then L+D is nef.

Proof. Assume that γ is an effective curve on X such that (L + D) · γ < 0. By
the nefness of L we have D · γ < 0, hence γ ⊂ D. But L + D is nef on D, a
contradiction. �

2. Rationally connected fibrations

Let X be a smooth complex projective variety and let W be a covering Chow
family of rational curves.

Definition 2.1. The familyW defines a relation of rational connectedness with re-
spect toW, which we shall call rc(W)-relation for short, in the following way: x and
y are in rc(W)-relation if there exists a chain of cycles among those parametrized
by W which joins x and y.

To the rc(W)-relation we can associate a fibration, at least on an open subset
([7], [14, IV.4.16]); we will call it rc(W)-fibration.

In the notation of [6], by [10, Theorem 5.9] there exists a closed irreducible subset
of Chow(X) such that, denoting by Y its normalization and by Z ⊂ Y × X the
restriction of the universal family, we have a commutative diagram

(2.1.1) Z
e //

p

��

X

q

~~~
~

~
~

~

Y

where p is the projection onto the first factor and e is a birational morphism whose
exceptional locus E does not dominate Y . Moreover, a general fiber of q is irre-
ducible and is a rc(W)-equivalence class.
Let B be the image of E in X; note that dimB ≤ dimX − 2, as X is smooth.



MANIFOLDS COVERED BY LINES AND EXTREMAL RAYS 5

If we consider a (covering) Chow family V, associated to a quasi-unsplit dominat-
ing family V , then by [6, Proposition 1, (ii)] B is the union of all rc(V)-equivalence
classes of dimension greater than dimX − dimY .

Moreover we have the following

Lemma 2.2. Let V be a quasi-unsplit dominating family of rational curves on
a smooth complex projective variety X. Let B be the indeterminacy locus of the
rc(V)-fibration q : X //___ Y , let D be a very ample divisor on q(X \ B) and let

D̂ := q−1D. Then

(1) D̂ · V = 0;

(2) if C 6⊂ B is a curve not numerically proportional to [V ], then D̂ · C > 0;

(3) if D̂ · C > 0 for every curve C ⊂ B not numerically proportional to [V ],
then [V ] spans an extremal ray of NE(X).

Proof. See [6, Proof of Proposition 1]. �

Corollary 2.3. [6, Proposition 3]. Let V be a quasi-unsplit dominating family
of rational curves on a smooth complex projective variety X; denote by B the in-
determinacy locus of the rc(V)-fibration and by fV the dimension of the general
rc(V)-equivalence class.
If [V ] does not span an extremal ray of NE(X), then B is not empty. In particular
there exist rc(V)-equivalence classes of dimension ≥ fV + 1.

We now give a lower bound on the dimension of ChLocus(V)S , depending on
the position of the subvariety S with respect to the indeterminacy locus of the
rc(V)-fibration.

Lemma 2.4. Let V be a quasi-unsplit dominating family of rational curves on a
smooth complex projective variety X; denote by B the indeterminacy locus of the
rc(V)-fibration and by fV the dimension of the general rc(V)-equivalence class.
Let S ⊂ X be an irreducible subvariety such that [V ] 6∈ NE (S,X). Then there
exists an irreducible XS contained in ChLocus(V)S such that

(1) if S 6⊂ B, then dimXS ≥ dimS + fV ;
(2) if S ⊂ B, then dimXS ≥ dimS + fV + 1.

Moreover, XS is not rc(V)-connected.

Proof. We refer to diagram (2.1.1). Given any T ⊂ Z we will set ZT := p−1(p(T )).
Let S′ ⊂ Z be an irreducible component of e−1(S) which dominates S via e.
By our assumptions on NE (S,X) we have that S′ meets any fiber of p|ZS′ in points
so, up to replace ZS′ with S′×p(S′)ZS′ , we can assume that S′ is a section of p|ZS′ .
Let Z ′ be an irreducible component of ZS′ which contains S′. We have

(2.4.1) dimZ ′ ≥ dim p(S′) + fV = dimS′ + fV ≥ dimS + fV .

Moreover, notice that S = e(S′) ⊂ e(Z ′) ⊂ e(ZS′) ⊂ ChLocus(V)S .

Assume that S 6⊂ B. Then Z ′ 6⊂ E, hence the map e|Z′ : Z ′ → X is generically
finite. Therefore, in view of (2.4.1), dim e(Z ′) = dimZ ′ ≥ dimS + fV ; moreover,
since S ⊂ e(Z ′) we have that e(Z ′) is not rc(V)-connected.

Assume now that S ⊂ B. Assertion (2) will follow once we prove that the general
fiber G of e|Z has dimension strictly smaller than the general fiber of e|S′ for at
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least one irreducible component Z of ZS′ which dominates p(S′). In fact, recalling
also (2.4.1), in this case we will have

dim e(Z) = dimZ − dimG > (dimS′ + fV )− (dimS′ − dimS) = fV + dimS.

Claim. Let G be an irreducible component of a fiber of e|ZS′ , let z ∈ G be any
point and let z′ := p−1(p(z)) ∩ S′ be the intersection of the fiber of p containing
z with S′; then there exists an irreducible component F of the fiber F ′ of e|S′

containing z′ such that p(G) ⊆ p(F ).

To prove the claim, recall that, since e(ZG) ⊂ ChLocus(V)e(z), the image via e
of any curve in ZG ∩ S′ – which is irreducible, being a section over p(G) – must be
a point, otherwise it would be a curve contained in S ∩ChLocus(V)e(z), which is a
contradiction, since curves in S are numerically independent from [V ].
Therefore ZG ∩ S′ is contained in a fiber F ′ of e|S′ . To prove the claim we take as
F the irreducible component of F ′ containing ZG ∩ S′.

Let S1 ⊂ S′ be the proper closed subset on which e|S′ is not equidimensional
and let S2 ⊂ S′ be the proper closed subset of points in which the fiber of e|S′ is
not locally irreducible. Recalling that p|S′ is a finite map we see that p (S1 ∪S2) is
a proper closed subset of p(S′).
Let y ∈ p(S′) \ p (S1 ∪ S2) be a general point; in particular there is only one
irreducible component F of the fiber F ′ of e|S′ passing through z′ = p−1(y) ∩ S′
and dimF = dimS′ − dimS.
Notice that dim e(ZF ) > fV , otherwise a one parameter family of fibers of p meeting
F would have the same image in X (Cf. [6, End of proof of Proposition 1], where
e(ZF ) = Locus(Ve(F ))).

This implies that, for an irreducible component ZF of ZF we have dim e(ZF ) > fV .
Taking as Z an irreducible component of ZS′ containing ZF we have that, for every
point z ∈ p−1(y) ∩ Z and any irreducible component G of the fiber of e|Z passing
through z we have p(G) ⊆ p(F ), hence dimG < dimF = dimS′ − dimS; the same
inequality then holds for the general fiber by semicontinuity of the local dimension.
Noticing that S is contained in ChLocuse(Z)(V) the last assertion follows. �

Remark 2.5. Both the bounds in Lemma (2.4) are sharp. An example for the second
one is given by [6, Example 2]: in that example B ' P2×P1; taking as S a fiber of
the projection onto P2 we have equality in (2).

3. Blowing-down

In this section we consider the following situation, which will show up in the
proof of Theorem (4.3):

Lemma 3.1. Let (X,H) be a polarized manifold with a dominating family of ra-
tional curves V such that H · V = 1. Denote by fV the dimension of the general
rc(V)-equivalence class and assume that there exists an extremal face Σ in NE(X)
whose associate contraction σ : X → X ′ is a smooth blow-up along a disjoint union
of subvarieties Ti of dimension ≤ fV such that Ei · V = 0 for every exceptional
divisor Ei and H · li = 1 if li is a line in a fiber of σ. Finally denote by V ′ a family
of deformation of σ(C), with C a general curve parametrized by V . Then

(1) −KX′ · V ′ = −KX · V ;
(2) there exists an ample line bundle H ′ on X ′ such that H ′ · V ′ = 1;
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(3) if C ′ is a curve parametrized by V ′ such that Ti ∩ C ′ 6= ∅, then C ′ ⊂ Ti;
(4) ρX′ > 1;
(5) if [V ′] spans an extremal ray of NE(X ′), then [V ] spans an extremal ray of

NE(X).

Proof. It is enough to prove the statement in case dim Σ = 1, i.e. σ : X → X ′ is
the blow-up of X ′ along a smooth subvariety T associated to the extremal ray Σ.
In fact, if dim Σ > 1, the contraction of Σ factors through elementary contractions,
each one satisfying the assumptions in the statement.

Denote by E the exceptional locus of σ. Since E · V = 0 the first assertion in
the statement follows from the canonical bundle formula for blow-ups.

Moreover, the fact that E · V = 0 also implies that any rc(V)-equivalence class
meeting E is actually contained in E. Therefore, if F is a non-trivial fiber of σ,
then ChLocus(V)F ⊆ E. By Lemma (2.4)

dim ChLocus(V)F ≥ fV + dimF ≥ dimX − 1,

hence E = ChLocus(V)F and dimT = fV ; in particular, applying Corollary (1.11)
we get that NE (E,X) = 〈[V ],Σ〉c.

The line bundle (H+E)|E is nef and it is trivial only on Σ, since (H+E) ·Σ = 0
and (H + E) · V = 1. Then H + E is nef by Lemma (1.12).
Notice also that H + E is trivial only on Σ. Indeed, let γ be an effective curve on
X such that (H +E) · γ = 0. Due to the ampleness of H we have E · γ < 0, hence
γ ⊂ E. This implies that [γ] ∈ Σ. Therefore H + E = σ∗H ′, with H ′ an ample
line bundle on X ′. By the projection formula H ′ · V ′ = 1, hence part (2) in the
statement is proved.

Now, let C ′ be a curve parametrized by V ′ meeting T and assume by contradic-

tion that C ′ is not contained in T ; denote by C̃ ′ its strict transform. Then

1 = H ′ · C ′ = σ∗H ′ · C̃ ′ = (H + E) · C̃ ′ ≥ 2,

which is a contradiction. It follows that every curve parametrized by V ′ which
meets T is contained in it; so we get part (3) in the statement.

As to part (4), assume by contradiction that ρX′ = 1. This implies that X ′

is rc(V ′)-connected, but this is impossible as, in view of part (3), we cannot join
points of T and points outside of T with curves parametrized by V ′.

Finally, to prove part (5) assume that [V ′] spans an extremal ray of X ′ and let
B be the indeterminacy locus of the rc(V)-fibration. We claim that E ∩B = ∅.

Assume by contradiction that this is not the case; then E meets (and hence
contains) an rc(V)-equivalence class G of dimension dimG ≥ fV +1. Take a fiber F
of σ meeting G. Then dimF +dimG > dimE. On the other hand, dim(F ∩G) = 0
as [V ] 6∈ Σ. So we get a contradiction.

Let A be a supporting divisor of the contraction associated to [V ′]. The pull-

back σ∗A defines a two-dimensional face Π of NE(X) containing Σ and [V ]. Let D̂

be as in Lemma (2.2); by the same lemma D̂ · Σ > 0 and D̂ · V = 0.
Assume that Π is not spanned by Σ and [V ]; in this case there exists a class

c ∈ NE(X) belonging to Π such that E · c > 0 and D̂ · c < 0.
Let {Cn} be a sequence of effective one cycles such that the limit of R+[Cn] is R+c;
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by continuity, for some n0 we have E · Cn > 0 and D̂ · Cn < 0 for n ≥ n0, hence
Cn ⊂ B, and E ∩ Cn 6= ∅ for n ≥ n0, contradicting E ∩B = ∅. �

4. Main theorem

First of all we consider polarized manifolds (X,H) with a quasi-unsplit domi-
nating family of rational curves V proving that if, for m large enough, the adjoint
divisor KX + mH defines an extremal face containing [V ], then [V ] spans an ex-
tremal ray of X.

Proposition 4.1. Let (X,H) be a polarized manifold which admits a quasi-unsplit
dominating family of rational curves V ; denote by fV the dimension of a general
rc(V)-equivalence class.
If, for some integer m such that m+ fV ≥ dimX − 3, the divisor KX +mH is nef
and it is trivial on [V ], then [V ] spans an extremal ray of NE(X).

Proof. Assume by contradiction that [V ] does not span an extremal ray in NE(X).
This implies that KX +mH defines an extremal face Σ of dimension at least two,
containing [V ]. By [15, Lemma 7.2] there exists an extremal ray ϑ ∈ Σ whose
exceptional locus is contained in the indeterminacy locus B of the rc(V)-fibration.
Since (KX +mH) · ϑ = 0, the length `(ϑ) is greater than or equal to m.
Let F be a non-trivial fiber of the contraction associated to ϑ; since this contraction
is small, being dimB ≤ dimX − 2, then dimF ≥ m+ 1 by Proposition (1.3).
By part (2) of Lemma (2.4), the dimension of ChLocus(V)F is

dim ChLocus(V)F ≥ dimF + fV + 1.

As the rc(V)-equivalence classes are either contained in B or have empty intersection
with it, ChLocus(V)F ⊂ B. Therefore we get

dimX − 2 ≥ dimB ≥ dim ChLocus(V)F ≥ fV +m+ 2 ≥ dimX − 1,

which is a contradiction. �

As the last preparatory step, we consider the following special case.

Lemma 4.2. Let V be a quasi-unsplit dominating family of rational curves on a
smooth complex projective variety X. Denote by fV the dimension of a general
rc(V)-equivalence class. Assume that there exists an extremal ray ϑ, independent
from [V ], whose associated contraction has a fiber F such that dimF+fV ≥ dimX.
Then dimF + fV = dimX and NE(X) = 〈[V ], ϑ〉c. In particular ρX = 2.

Proof. By part (1) of Lemma (2.4) we have

dimX ≥ dim ChLocus(V)F ≥ fV + dimF,

hence dimF + fV = dimX and ChLocus(V)F = X; so the assertion follows by
Corollary (1.11). �

Theorem 4.3. Let (X,H) be a polarized manifold with a dominating family of
rational curves V such that H · V = 1. If −KX · V ≥ dimX−1

2 , then [V ] spans an
extremal ray of NE(X).

Proof. Let B be the indeterminacy locus of the rc(V)-fibration q : X //___ Y , let

D be a very ample divisor on q(X \ B) and let D̂ := q−1D. Denote by m the
anticanonical degree of V and by fV the dimension of a general rc(V)-equivalence
class. Notice that, since V is a dominating family, we have m ≥ 2.
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By Proposition (1.2) dim Locus(Vx) ≥ −KX ·V −1 = m−1; since a general fiber of
the rc(V)-fibration contains Locus(Vx) for every point x in it, we have fV ≥ m− 1.

If KX +mH is nef, then the assertion follows by Proposition (4.1); therefore we
can assume that KX +mH is not nef.
Let ϑ be an extremal ray such that (KX +mH) ·ϑ < 0 and let ϕϑ be the associated
contraction. Notice that ϑ has length `(ϑ) ≥ m+ 1, hence every non-trivial fiber of
ϕϑ has dimension ≥ m by Proposition (1.3). On the other hand, by Lemma (4.2)
we can confine to assume that all fibers of ϕϑ have dimension ≤ m+ 1.
In particular this implies that, denoted by Cϑ a minimal degree curve whose nu-
merical class belongs to ϑ, we have H ·Cϑ = 1. Indeed, if this were not the case, we
would have `(ϑ) ≥ 2m+1, hence every non-trivial fiber of ϕϑ would have dimension
≥ 2m > m+ 1, by Proposition (1.3) and the fact that m ≥ 2.

If the Picard number of X is one the theorem is clearly true, so we can assume
that ρX ≥ 2. Now we split up the proof in two cases, according to the value of ρX :
first we consider the case ρX = 2 and then the general one.

Case (a) ρX = 2.

The proof is based on different arguments, depending on the dimension of the
fibers of the contraction associated to the extremal ray ϑ.

Case (a1) The contraction ϕϑ admits an (m+ 1)-dimensional fiber F .

ConsiderXF := ChLocus(V)F . We have, by Corollary (1.11), that NE (XF , X) =
〈[V ], ϑ〉c and, by Lemma (2.4), that

dimXF ≥ dimF + fV ≥ (m+ 1) + (m− 1) ≥ dimX − 1.

If XF = X, then the statement is proved. So we can assume that an irreducible
component XF of XF is a divisor and thus that fV = m−1. Notice that XF ·V = 0,
otherwise we would have XF = X.
Consider now the intersection number of XF with curves whose numerical class
belongs to ϑ; since ρX = 2 and XF · V = 0 we cannot have also XF · ϑ = 0.

Let us show that we cannot have XF · ϑ < 0, too.
Assume by contradiction that this is the case. Then Exc(ϑ) ⊂ XF , so ϕϑ is
divisorial by Proposition (1.3). By the same proposition, recalling that we are
assuming that all the fibers of ϕϑ have dimension ≤ m+ 1, every non-trivial fiber
has dimension m+ 1.
Then ϕϑ is the blow-up of a smooth variety X ′ along a smooth center T by [2,
Theorem 4.1 (iii)]. The dimension of the center is

dimT = (n− 1)− (m+ 1) ≤ m− 1 = fV .

We can thus apply part (4) of Lemma (3.1) and we get ρX = ρX′ + 1 > 2, reaching
a contradiction.

Therefore XF · ϑ > 0, hence (XF )|XF
is nef and thus, by Lemma (1.12), XF is

nef. As XF · V = 0 and ρX = 2, XF is the supporting divisor of an elementary
contraction of X whose associated extremal ray is spanned by [V ].

Case (a2) The contraction ϕϑ is equidimensional with m-dimensional fibers.

By Proposition (1.3), ϕϑ is of fiber type and `(ϑ) = m+1. Hence, by [11, Lemma
2.12], X is a projective bundle over a smooth variety Y , i.e. X = PY (E), where
E = (ϕϑ)∗H.
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Notice that Y has Picard number one and is covered by rational curves – the images
of the curves parametrized by V – therefore Y is a Fano manifold.
By the canonical bundle formula for projective bundles we have

KX + (m+ 1)H = ϕ∗ϑ(KY + det E).

In particular, if CV is a curve among those parametrized by V , by the projection
formula we can compute

(KY + det E) · (ϕϑ)∗(CV ) = (KX + (m+ 1)H) · CV = 1.

It follows that (KY +det E)·ϕϑ(CV ) = 1 and that KY +det E is the ample generator
of Pic(Y ). The ampleness of E implies that det E · ϕϑ(CV ) ≥ m + 1; therefore
−KY · ϕϑ(CV ) ≥ m, hence the index rY of Y is greater than or equal to m.

If rY = m, denoted by l a rational curve of minimal degree in Y , then det E · l =
m + 1; moreover, the splitting type of E , which is ample and of rank m + 1, on
rational curves of minimal degree is uniform of type (1, . . . , 1).
We can thus apply [3, Proposition 1.2], so we obtain that X ' Pm × Y . It follows
that the curves of V are contained in the fibers of the first projection and that [V ]
spans an extremal ray.

Therefore we are left with rY ≥ m + 1. Recalling that dimY = dimX −m ≤
m+ 1, by the Kobayashi–Ochiai Theorem ([13]) we get that Y is a projective space
or a hyperquadric.

Assume by contradiction that [V ] does not span an extremal ray of X.
By part (3) of Lemma (2.2) there exists a curve C ⊂ B, whose numerical class is

not proportional to [V ], such that D̂ ·C ≤ 0. Actually, since ρX = 2 and D̂ ·V = 0,

we have D̂ · C < 0.
By part (2) of Lemma (2.4), there exists XC ⊂ ChLocus(V)C which is not rc(V)-
connected such that dimXC ≥ fV + dimC + 1 ≥ m+ 1.

By Lemma (1.10) D̂ has non positive intersection number with every curve in XC

and it is trivial only on curves which are numerically proportional to [V ].

Since D̂ · ϑ > 0, we have that ϕϑ does not contract curves in XC , hence dimY ≥
dimXC ≥ m+ 1 and so dimY = dimXC = m+ 1.
Since XC is not rc(V)-connected, for every point c of XC , the intersection Xc of
the rc(V)-equivalence class containing c with XC has dimension = m. In particular
XC is the union of a one parameter family of rc(V)-connected subvarieties Xc.

We claim that there exists a line l in Y which is not contained in ϕϑ(Xc) for any
c ∈ C. Notice that, since ϕϑ does not contract curves in XC , through a general
point y in Y there is a finite number of such subvarieties.
If Y ' Pm+1, a line joining y with a point outside the union of these subvarieties
has the required property.
Assume now that Y ' Qm+1; for any y ∈ Qm+1 the locus of the lines through y is
a quadric cone Qmy with vertex y. Therefore, if every line through y is contained
in ϕϑ(Xc) for some c ∈ C, then Qmy is an irreducible component of ϕϑ(Xc); since

Xc moves in a one-dimensional family, for the general point y ∈ Qm+1, the general
line through y has the required property.

The splitting type of E on this line is one of the following: (2, 1, . . . , 1) if Y '
Qm+1 and either (3, 1, . . . , 1) or (2, 2, 1, . . . , 1) if Y ' Pm+1. Recalling that m ≥ 2
we have that, among the summands of El there is at least one OP1(1).
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Consider Pl(E|l); its cone of curves is generated by the class of a line in a fiber of
the projection onto l and the class of a minimal section C0. By the discussion above
we have that H · C0 = 1. Moreover, ϕ∗ϑ(KY + det E) · C0 = 1, hence [C0] = [V ]; in

particular D̂ is nef on Pl(E|l).
Consider an irreducible curve in Pl(E|l) ∩XC ; by our choice of l, this curve is not
contained in a rc(V)-equivalence class contained in XC , so it is negative with respect

to D̂, a contradiction. The case ρX = 2 is thus completed.

Case (b) ρX > 2.

Notice that, in view of Corollary (2.3), we can confine to assume that B 6= ∅;
moreover, by part (3) of Lemma (2.2), we can also assume the existence of a curve

C ⊂ B such that [C] is not proportional to [V ] and D̂ · C ≤ 0.

We claim that KX + (m+ 1)H is nef.
Assume by contradiction that KX + (m+ 1)H is not nef. Let τ be a ray such that
(KX + (m+ 1)H) · τ < 0, denote by Cτ a rational curve of minimal anticanonical
degree in τ and by ϕτ the contraction associated to τ .
Notice that τ has length `(τ) ≥ m + 2, hence every non-trivial fiber of ϕτ has
dimension ≥ m+ 1 by Proposition (1.3).
On the other hand ϕτ cannot have fibers of dimension > m + 1, otherwise, by
Lemma (4.2), we would have ρX = 2. Therefore every non-trivial fiber of ϕτ has
dimension m+ 1.
In view of Proposition (1.3), we thus get that ϕτ is of fiber type and that the length
of τ is `(τ) = m + 2; this last fact gives H · Cτ = 1. Let us consider Wτ to be a
minimal degree covering family of curves whose numerical class belongs to τ .
Since B is not empty, there are rc(V)-equivalence classes of dimension ≥ fV +1 ≥ m;
let G be one of these classes. Notice that since ϕτ is equidimensional with (m+ 1)-
dimensional fibers, we have fW = m+ 1. By part (1) of Lemma (2.4) we have

dim ChLocus(Wτ )G ≥ dimG+ fW = 2m+ 1 ≥ dimX,

so by Lemma (1.9) we deduce ρX = 2, a contradiction which proves the nefness of
KX + (m+ 1)H.

Recall now that the extremal ray ϑ which we fixed at the beginning of the proof
has length `(ϑ) ≥ m + 1 and is generated by a curve Cϑ such that H · ϑ = 1,
therefore (KX + (m+ 1)H) · ϑ = 0 and KX + (m+ 1)H is not ample.
Let Σ be the extremal face contracted by KX + (m + 1)H. We now consider
separately two cases, depending on the existence in Σ of a fiber type extremal ray.

Case (b1) There exists a fiber type extremal ray % in Σ.

Let ϕ% be the contraction associated with % and denote by W% a minimal degree
covering family of curves whose numerical class belongs to %.
By part (2) of Lemma (2.4), there exists an irreducible XC ⊂ ChLocus(V)C such
that dimXC ≥ fV + 2.
According to Lemma (1.10), every curve in XC can be written as α[C] + β[V ] with

α ≥ 0; in particular, since D̂ · V = 0 by Lemma (2.2), it follows that D̂ is not

positive on any curve contained in XC . By the same lemma D̂ ·W% > 0, hence
[W%] 6∈ NE (XC , X). Therefore part (1) of Lemma (2.4) gives

dim ChLocus(W%)XC
≥ dimXC + fW%

≥ fV + 2 +m ≥ dimX,
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where fW%
is the dimension of the general rc(W%)-equivalence class.

Therefore, by applying twice Lemma (1.10), we get that the class of every curve in
X can be written as

(4.3.1) λ(α[C] + β[V ]) + µ[W%]

with α, λ ≥ 0 and α[C] + β[V ] ∈ NE (XC , X).
This has some very important consequences: first of all, since we are assuming
ρX > 2, this implies that ρX = 3; in particular [C] is not contained in the plane Π
in N1(X) spanned by [W%] and [V ]. Moreover the intersection of Π with NE(X) is
a face of NE(X).
We have to prove that Π∩NE(X) = 〈[V ], [W%]〉c. If this is not the case, then there

exists a class a such that Π ∩NE(X) = 〈a, [W%]〉c and D̂ · a < 0.
Denote by b ∈ N1(X) a class, not proportional to [V ], lying in the intersection of
∂NE(X) with the plane Π′ = N1(XC , X) and by Π′′ the plane spanned by [W%]
and b.
Formula (4.3.1), traslated in geometric terms, says that NE(X) is contained in the
intersection of half-spaces determined by Π and by Π′′ as in the figure below, which
shows a cross-section of NE(X).

!

!!’

+

+R [W ]++

’’

R [V]+

R b

"R a

R [C]+

Let {Cn} be a sequence of effective one cycles such that the limit of R+[Cn] is R+a;

by continuity, for some n0 we have D̂ ·Cn < 0 for n ≥ n0, hence Cn ⊂ B for n ≥ n0,
and all the above arguments apply to Cn, for n ≥ n0. In particular, defining bn
and Π′′n as above, we get that, for n ≥ n0, NE(X) is contained in the intersection
of half-spaces determined by Π and by Π′′n. Since Π′′n → Π as R+[Cn] → R+a and
ρX = 3 we get a contradiction.

Case (b2) Every ray in Σ is birational.

Let η be any ray in Σ. By Proposition (1.3), for every non-trivial fiber of its
associated contraction ϕη we have dimF ≥ `(η) ≥ m+1. Recalling that, by Lemma
(4.2), we can assume dimF ≤ m + 1, we have dimF = m + 1 = `(η). This also
implies that, if Cη is a minimal degree curve whose numerical class is contained in
η we have H · Cη = 1.
By Proposition (1.3), ϕη is a divisorial contraction, hence, by [2, Theorem 4.1
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(iii)], is the blow-up of a smooth variety along a smooth center T of dimension
(n− 1)− (m+ 1) ≤ m− 1.

Let E be the exceptional divisor of ϕη. By part (2) of Lemma (2.4), there exists
an irreducible XC ⊂ ChLocus(V)C with dimXC ≥ fV + 2.

By Lemma (1.10) D̂ has non positive intersection number with every curve in XC .
If E ∩XC 6= ∅, then there is a fiber F of ϕη meeting XC . Counting dimensions, we

find that dim(F ∩XC) ≥ 1, which is a contradiction as D̂ · η > 0. So E ∩XC = ∅,
whence E · V = 0.
Therefore E contains rc(V)-equivalence classes and dimT ≥ fV , since ϕη is finite-
to-one on rc(V)-equivalence classes. Recalling that fV ≥ m− 1 we derive dimT =
fV = m− 1.

Assume that dim Σ ≥ 2 and let E1, E2 be the exceptional loci of two different
extremal rays η1, η2 in Σ; since the fibers of the contractions ϕη1 and ϕη2 have
dimension m+ 1 and 2(m+ 1) > dimX we have that E1 ∩ E2 = ∅.
Therefore the contraction σ : X → X ′ of the face Σ verifies the assumptions of
Lemma (3.1), hence there exists an ample line bundle H ′ on X ′ and an unsplit
dominating family V ′ on X ′ such that H ′ · V ′ = 1 and −KX′ · V ′ = −KX · V ≥
dimX′−1

2 .
Denote by fV ′ the dimension of the general rc(V ′)-equivalence class. Since a general
fiber of the rc(V ′)-fibration contains Locus(V ′x′), we have fV ′ ≥ dim Locus(V ′x′)−1 ≥
m− 1.
Consider the adjoint divisor KX′ + mH ′; if it is nef, or an extremal ray ϑ′ such
that (KX′ + mH ′) · ϑ′ < 0 has a fiber of dimension ≥ m + 2, then [V ′] spans an
extremal ray by Proposition (4.1) or by Lemma (4.2), so [V ] spans an extremal ray
by Lemma (3.1).

Let us show that the remaining case does not happen.
Assume that there is an extremal ray ϑ′ such that (KX′ +mH ′) · ϑ′ < 0 and every
fiber of the associated contraction has dimension ≤ m + 1. In particular we have
H ′ · ϑ′ = 1, otherwise we would have `(ϑ′) ≥ 2m+ 1, hence every non-trivial fiber
of the associated contraction would have dimension ≥ 2m > m+ 1 by Proposition
(1.3). Moreover, we have (KX′ + (m+ 1)H ′) · ϑ′ ≤ 0, since `(ϑ′) ≥ m+ 1.
On the other hand, recalling that σ∗H ′ = H +

∑
Ei and that σ∗KX′ = KX −∑

(m+ 1)Ei, we have

σ∗(KX′ + (m+ 1)H ′) = KX + (m+ 1)H,

so, by the projection formula, KX′ +(m+1)H ′ is ample on X ′, a contradiction. �

Corollary 4.4. Let (X,H) be a polarized manifold of dimension at most five, with
a dominating family of rational curves V such that H · V = 1. Then [V ] spans an
extremal ray of NE(X).

5. An example

In the paper [5], an application of the results about extremality of families of
lines was a relative version of a theorem proved in [18], which was the first step
towards a conjecture of Mukai for Fano manifolds.
This conjecture states that, for a Fano manifold X, denoted by ρX its Picard
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number and by rX its index, we have

ρX(rX − 1) ≤ dimX.

More precisely, in [18, Theorem B] it was proved that, if rX ≥ dimX
2 + 1, then

ρX = 1 unless X ' PdimX/2 × PdimX/2, while in [5, Theorem 3.1.1] it was proved
that a fiber type contraction ϕ : X → Y supported by KX+mL with m ≥ dimX

2 +1

is elementary, unless X ' PdimX/2 × PdimX/2.
In the last few years some progress has been made towards Mukai conjecture;

in particular it was recently proved in [16, Theorem 3] that it holds for a Fano
manifold with (pseudo)index greater than or equal to dimX

3 + 1.
It is therefore natural to ask if the corresponding relative statement is true, namely,
given a fiber type contraction ϕ : X → Y , corresponding to an extremal face Σ,
supported by KX + mL with m ≥ dimX

3 + 1 is it possible to find a bound on the
dimension of Σ?

The answer to this question is negative, as we will show with an example in
which m = dimX

2 ; it follows that [5, Theorem 3.1.1] cannot be improved.

Example 5.1. Let Z be a smooth variety of dimension k + 2, denote by Y the
product Z × Pk and by p1, p2 the projections onto the factors. Let {zi}i=1,...,t be
points of Z and denote by Fi the fibers of p1 over zi.
Let σ : X → Y be the blow-up of Y along the union of Fi. The canonical bundle of
X is

(5.1.1) KX = σ∗KY + (k + 1)

t∑
i=1

Ei = σ∗(p∗1KZ + p∗2KPk) + (k + 1)

t∑
i=1

Ei;

denoting by H := (p2 ◦ σ)∗OPk(1) and by L′ := H−
∑
Ei, we can rewrite formula

(5.1.1) as

KX + (k + 1)L′ = σ∗(p∗1KZ).

It is easy to check that L′ is (p1 ◦σ)-ample. Let A ∈ Pic(Z) be an ample line bundle
such that KZ + (k+ 1)A is ample; then L := L′ + σ∗(p∗1A) is an ample line bundle
on X; moreover L · l = 1 for a line l in the strict transform of a fiber F of p1 not
contained in the center of σ.
The contraction p1 ◦σ is supported by KX +(k+1)L = KX + dimX

2 L and contracts
a face of dimension t+ 1.

Remark 5.2. The difference between the relative and the absolute case is given
by the existence of minimal horizontal dominating families of rational curves for
proper morphisms defined on a open subset of a Fano manifold (for the definition
and the references see [1, Remark 6.4]). Such families do not exist in general in the
relative case.
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25(5):539–545, 1992.

[9] Elena Chierici and Gianluca Occhetta. The cone of curves of Fano varieties of coindex four.

Internat. J. Math., 17(10):1195–1221, 2006.
[10] Olivier Debarre. Higher-dimensional algebraic geometry. Universitext. Springer-Verlag, New

York, 2001.
[11] Takao Fujita. On polarized manifolds whose adjoint bundles are not semipositive. In Algebraic

geometry, Sendai, 1985, volume 10 of Adv. Stud. Pure Math., pages 167–178. North-Holland,

Amsterdam, 1987.
[12] Paltin Ionescu. Generalized adjunction and applications. Math. Proc. Cambridge Philos. Soc.,

99(3):457–472, 1986.

[13] Shoshichi Kobayashi and Takushiro Ochiai. Characterizations of complex projective spaces
and hyperquadrics. J. Math. Kyoto Univ., 13:31–47, 1973.

[14] János Kollár. Rational curves on algebraic varieties, volume 32 of Ergebnisse der Mathematik

und ihrer Grenzgebiete. Springer-Verlag, Berlin, 1996.
[15] Carla Novelli and Gianluca Occhetta. Projective manifolds containing a large linear subspace

with nef normal bundle. Michigan Mathematical Journal, to appear.

[16] Carla Novelli and Gianluca Occhetta. Rational curves and bounds on the Picard number of
Fano manifolds. Geometriae Dedicata, 147:207-217, 2010.

[17] Gianluca Occhetta. A characterization of products of projective spaces. Canad. Math. Bull.,
49:270–280, 2006.
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