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Connections between the geometry of a

projective variety and of an ample section.

Marco Andreatta, Carla Novelli and Gianluca Occhetta

Abstract

Let X be a smooth complex projective variety and let Z = (s = 0)
be a smooth submanifold which is the zero locus of a section of an ample
vector bundle E of rank r with dim Z = dim X − r.
We show with some examples that in general the Kleiman-Mori cones
NE(Z) and NE(X) are different. We then give a necessary and sufficient
condition for an extremal ray in NE(X) to be also extremal in NE(Z).
We apply this result to the case r = 1 and Z a Fano manifold of high
index; in particular we classify all X with an ample divisor which is a
Mukai manifold of dimension ≥ 4.
In the last section we prove a general result in case Z is a minimal variety
with 0 ≤ κ(Z) < dim Z.

1 Introduction

Let X be a smooth complex projective variety of dimension n and let E be
an ample vector bundle of rank r on X such that there exists a section s ∈
Γ(E) whose zero locus, Z = (s = 0), is a smooth submanifold of the expected
dimension dim Z = dim X − r = n− r.
If dimZ ≥ 3, by Sommese’s version of Weak Lefschetz theorem, the natural
inclusion N1(Z) → N1(X) and the natural restriction map N1(X) → N1(Z)
are isomorphisms, while if dimZ = 2 the map N1(Z) → N1(X) is surjective,
and the map N1(X) → N1(Z) is injective.
Denote by NE(X) ⊂ N1(X) the Kleiman–Mori cone of X, that is the closure
of the cone of effective 1-cycles and assume by simplicity that dim Z ≥ 3 (but
we will consider also the case dim Z = 2); in this case we can view NE(Z) as a
subset of NE(X).
In the papers [2] and [3] we studied the relation between the cones NE(Z) and
NE(X); the present paper adds some new results and some applications. In the
spirit of Mori philosophy this is a first step to compare the geometric structure
of a variety with the one of its ample sections.
In section two we recall an example given in [2] and we present a new one in
which the two cones are different; in both of them E is very ample, and in
the first Z is a Fano variety, so also these conditions are not sufficient to give
NE(Z) = NE(X).
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The problem then is to find any other conditions under which NE(Z) = NE(X),
or under which at least parts of the cones are the same, in particular the parts
of the cone negative with respect to the intersection with the canonical bundles,
KX and KZ , which are known to be polyhedral by Mori theory.
In section three we gather some known results in this direction. In particular
we give a necessary and sufficient condition for an extremal ray of X to be an
extremal ray of Z too.
In section four we restrict to the case r = 1, i.e. E is an ample line bundle; in
this case we prefer even to change notation and therefore we will denote by L
the ample line bundle E .
We study the case in which Z ∈ |L| is a Fano manifold of high index; namely
−KZ = rHZ with HZ ample on Z and r an integer, called the index, such that
r ≥ dim Z

2 . In this set up, if HZ is spanned by global sections, we prove that
NE(Z) = NE(X), apart from the case in which Z ' P1×P3, which gives rise to
one of the example in section two. Then we classify all the pairs (X, L) in which
Z is a Mukai variety (i.e. a Fano manifold of index dim Z − 2) of dimension
≥ 4. This last problem was first studied in [6], here we improve significantly
their classification.
In the last section we study the case in which Z does not have negative extremal
rays, but the canonical bundle of Z is not ample. In this case we prove that
KZ is semiample and X admits a fibration in Fano varieties which extends the
pluricanonical map of Z. If moreover r = 1 the effective cones of the general
fibers of X and Z coincide, so this can be viewed as a relative version of the
results in section three. Finally we apply our results to the case in which Z
is a surface with Kodaira dimension 0 or 1, not necessarily minimal, giving a
different proof of some of the results obtained in [15] and [16].
We use frequently some basic notations and theorems of the so called Mori
theory.
After this paper was written, we found out that some results and examples
similar to the ones in section two and three were recently obtained in [12].

2 Examples

As we said in the introduction, it is not always true that NE(X) = NE(Z).
In [2] and [3] we gave some examples where the inclusion NE(X) ⊃ NE(Z) is
strict.
Let us recall here the example 4.10 in [2], which in turn generalizes an example
of L. Bǎdescu (see also [17, Example 4.2]): consider the sequence

0 −→ ⊕nOP1 −→ G := ⊕n(OP1(a)⊕OP1(s− a)) −→ ⊕nOP1(s) −→ 0

which is exact in view of [4, Remark 1, p.170] and choose a, s in such a way that
0 < a− s < a.
The construction in [11, B.5.6] applies and gives P1 × Pn−1 as the zero set of a
general section of the ample vector bundle E = ⊕nξG on X = P(G).
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Note that E is actually very ample and that for n = 1 it is a line bundle. The
cones are described in the following picture
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In particular there is a ray in common (the one associated to the curve con-
tracted by the projections p1 : Z → P1).
In general the other rays are different, that is the contraction to the second
factor of Z, p2 : Z → Pn−1, cannot be extended to X.
Let Li be the pull back through the projection pi of the hyperplane bundle;
the contraction p2 is supported by KZ + HZ = bL2 (b > 0) and HZ =
2L1 + (n− r + b)L2 is an ample line bundle on Z which is not the restriction of
an ample line bundle on X.

Another example was given in [3, section 4], producing Z = PP2(O(1)⊕O) as
a section of an ample vector bundle on X = Pk × P2 (k ≥ 3).
In this case the ray corresponding to the projection on P2 is common to NE(Z)
and NE(X), while the ray in NE(Z) corresponding to the blow-down on P3

lies in the interior of NE(X).

A third example, suggested by Massimiliano Mella, is the following: let X be
the blow up of the product Pr × P1 at a point x.
The cone of curves of X has three rays: NE(X) =< s, f, e > where s is the
class of the strict trasform of {x} × P1, f is the class of the strict transform of
a line through x in the Pr which contains x and e is the class of a line in the
exceptional divisor.
Let A be a general section of a very ample line bundle. If A has sufficiently high
degree then it does not contain any effective curve whose numerical class is s or
f .
The first assertion is clear, since there is only a curve in the numerical class
of s; to see the second consider the fiber of p : X → P1 which contains the
exceptional divisor. This fiber is reducible and consists of two components,
namely the exceptional divisor, which is Pr, and a P1-bundle over Pr−1.
Any curve in X whose numerical class is f has to be a fiber of this last P1-
bundle. But any section of a sufficiently high degree very ample line bundle
does not contain such curves.
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So NE(A) is a subcone of NE(X) and there is only one ray in common, the
one generated by e.

3 Comparing the cones

We begin with a result which in some cases solves the problem of determining
whether an extremal ray of X is an extremal ray of Z.

Theorem 3.1. If RX = R+[C] is an extremal ray of X such that −(KX +
det E) · C > 0, then there is a curve on Z whose numerical class is [λC].
In particular, if N1(X) = N1(Z) (for instance if dim Z ≥ 3) then an extremal
ray of X is also an extremal ray of Z if and only if it stays in the semi-space
defined by {x ∈ N1(X) : −(KX + det E) · x > 0}.
In particular, if Z is not minimal there exists at least one extremal ray which is
in common between NE(X) and NE(Z).

In the case of ample divisor we have a slightly better result:

Theorem 3.2. Assume that dim Z ≥ 3 and that r = 1, i.e. that Z is a section
of an ample line bundle L. Then the extremal rays of X which stay in the closed
semi-space defined by {x ∈ N1(X) : −(KX + L) · x ≥ 0} are in the boundary of
NE(Z) as well.

Corollary 3.3. Let Z be a section of an ample line bundle L on X. If mKZ =
OZ for some m > 0, then X is Fano, KZ = OZ and NE(X) = NE(Z).

In the proofs we need two technical result which we recall now for the reader’s
convenience.

Proposition 3.4. [24] Let R be an extremal ray on X and let ϕ the associated
contraction. Let E = E(ϕ) be the exceptional locus of ϕ (if ϕ is of fiber type
then E := X) and let S be an irreducible component of a (non trivial) fiber F .
We define the length of the ray to be the positive integer

l = min{−KX · C : C is a rational curve in S}.

The following formula holds

dim S + dim E ≥ dim X + l − 1.

Proposition 3.5. [2, Prop. 2.18]. Let X, E and Z be as in the introduction.
Let Y be a subvariety of X of dimension ≥ r. Then dim Z ∩ Y ≥ dim Y − r.

Proof. of 3.1.
Let RX = R+[C] be an extremal ray of X such that −(KX+det E)·C > 0 and let
ϕ : X → W be the associated contraction; we have that l(RX) ≥ det E ·C +1 ≥
r + 1.
Let S be an irreducible component of a non trivial fiber of ϕ; the theorem will
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follow if we prove that dim Z ∩ S ≥ 1; since in this case there is a curve in RX

which lies in Z.
If ϕ is birational then dimS ≥ l(RX) ≥ r + 1 by the inequality 3.4 and by
3.5 dim Z ∩ S ≥ 1. If ϕ is of fiber type then dim S ≥ l(RX) − 1 ≥ r by
the inequality 3.4. If dim S ≥ r + 1 we conclude again by 3.5. Therefore we
can assume by contradiction that dim S = r, dim Z ∩ S = 0 and thus that
det E · C = r,−KX · C = r + 1. In particular we have −(KX + det E) · C = 1.
By Fujita’s characterization of scrolls, see [10, Lemma 2.12], X is a Pr-bundle
over W ; in particular ρ(X) = ρ(W ) + 1. Since dim Z ∩ F = 0 and E|F =
⊕rOPr (1), Z is isomorphic to W and this is a contradiction with the Lefschetz
theorem.
The condition in the second part of the theorem is clearly necessary.

Proof. of 3.2. We repeat the above proof for an extremal ray of X, RX =
R+[C], such that −(KX + L) · C ≥ 0 and with ϕ : X → W its associated
contraction. If dim F ∩ Z > 0 then the theorem follows as above, thus we can
assume that dim F = 1 and dim F ∩Z = 0 for all irreducible components of non
trivial fibers of ϕ. Thus ϕ is the blow up of a smooth subvariety or ϕ is a conic
bundle by the results in [1]. Moreover, since −(KX +L) ·C ≥ 0, L ·C ≤ −KX ·C
which is 1 in the first case and 1 or 2 in the second. The result in this case
follows from [14, Lemma].

Remark 3.6. The last theorem and corollary should be true also in the case
r > 1. However it seems difficult to prove in the general case the technical
results from [1] and [14] used in the above proof.

Remark 3.7. To decide whether an extremal ray of Z is an extremal ray of X
seems to be more difficult and at the moment we are not able to give a complete
answer. In the following we simply recall two partial results proved in [3] and
[20].

Theorem 3.8. Let RZ = R+[C] be an extremal ray of Z. Then RZ is extremal
also in X if one of the following holds:

a) [3, Theorem 3.2]) There is an ample line bundle H on X and a positive real
number τ such that NE(Z) is contained in the semi-space KX + det E +
τH ≥ 0 and (KX + det E + τH) · C = 0.

b) [20, Proposition 5]) There is a component VX ⊂ Hom(P1, X) which con-
tains C and such that:
1) Locus(VX) = X.
2) VX is proper (i.e. an unsplit family).

4 Adjunction

The pairs (X, L) such that Z ∈ |L| is a Fano manifold of index r ≥ dim Z − 2
were studied by adjunction theory; in particular, the case of projective space
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and quadrics was considered in [5], the del Pezzo varieties were studied in [18]
and the Mukai varieties were the object of the recent paper [6].
The next result we propose is an improvement of [6, Theorem 2.1], obtained
combining the proof of that result with theorem 3.2.

Theorem 4.1. Let Z be a section of an ample line bundle L on X with dim Z ≥
3. Assume that −KZ = qHZ + BZ , where q is a positive integer, HZ is ample
and spanned on Z and B is nef on X (for instance B = OX). Assume also that
KX + (q + 1)L is nef and that k(KX + (q + 1)L) ≥ 2. Then H is ample and X
is Fano. Moreover NE(X) = NE(Z).

Proof. By assumption −qH = KX + L + B and therefore q(L − H) = KX +
(q + 1)L + B.
Our assumptions, together with Kawamata base point freeness, imply that L−H
is semiample and that k(L−H) ≥ 2. Therefore by [21, Theorem 7.65] we have
that H1(X,H − L) = 0.
This vanishing, together with the long exact sequence associated to the sequence

0 → H − L → H → HZ → 0,

gives that H is spanned on Z. Since Z is ample this implies that H is spanned
out of a finite set of points, therefore H is nef, −KX = L + qH + B is and X
is a Fano manifold. Assume now that H is not ample, that is there exists an
extremal ray RX = R+[C] on which H is zero. We consider the contraction
associated to R, ϕ and we conclude as in the proof of 3.2. Note that since
H · C = 0 we have that (L + B) · C = −KX · C and therefore we are in the
assumptions of theorem 3.2.

The next result shows that in some cases we can avoid the assumptions on
KX + (q + 1)L. We recall that if Z is a Fano manifold its index is the largest
natural number r such that −KZ = rHZ for some (ample) Cartier divisor.

Theorem 4.2. Let Z be a Fano variety of dimension ≥ 4 and index r, i.e.
−KZ = rHZ . Assume that HZ is spanned and that Z is a section of an ample
line bundle L on X.
If r ≥ dim Z

2 then X is a Fano variety and NE(X) = NE(Z) unless either
Z = P1 × P3 and X is a projective bundle over P1 or Z = P1 × V , with V a del
Pezzo threefold of Picard number one and X is a del Pezzo fibration over P1.

Proof. If D := KX + (r + 1)L is nef and κ(D) ≥ 2 the result follows from
theorem 4.1.
So let us assume first that D is not nef, i.e. that D · C < 0 for some effective
curve C; in this case there exists an extremal ray R = R+[Γ] such that D ·R < 0.
In particular −(KX + L) ·R = (−D + rL) ·Γ > 0, so that, by theorem 3.2, R is
extremal for NE(Z).
Let ΓZ ⊂ Z be a minimal extremal curve in R; that is a rational curve in R
for which −KZ · ΓZ is minimal. By Mori theory it is known that −KZ · ΓZ ≤
dim Z + 1; moreover equality holds if and only if Z ' Pdim Z , by a recent result
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in [9]. We can assume that the last is not the case (otherwise X ' Pn and the
theorem is obvious) so −KZ · ΓZ ≤ dim Z.
Since D = r(L−H) we have that (L−H) · ΓZ < 0, hence H · ΓZ ≥ 2.
Therefore

2r ≤ rHZ · ΓZ = −KZ · ΓZ ≤ dim Z,

forcing r ≤ n−1
2 .

We are thus left with the case r = n−1
2 ; in this case Z has an extremal ray of

length = dim Z; note also that L · ΓZ = 1, so KZ + (n− 1)LZ is not ample.
By the first step of adjunction theory, see [8] section 7.2, either Z is a quadric
or Z is a projective bundle over a curve, but the first is impossible since r =
n−1

2 6= dim Z.
In the second case Z, being a Fano variety and a projective bundle over a curve
can be only a product P1 × Pn−2 or the blow up of Pn−1 along a codimension
two linear subspace; in the first case we have r = 2, so dim Z = 4, while in the
second we have r = 1 and dim Z = 2 against our assumptions.
The description of X now follows from [2, Proposition 4.9 and Remark 4.11].

We can thus assume that D is nef and that κ(D) ≤ 1.
If κ(D) = 0 we have

−KX ≡ (r + 1)L.

In this case X is a Fano variety and −(KX + L) ≡ rL is ample. We can apply
theorem 3.2 to get NE(X) = NE(Z) and we are done.
If κ(D) = 1 then any extremal ray of Z not contracted by D has fibers of
dimension ≤ 1; this implies that r = 2 and thus that dimZ = 4. By [23, 1.4] Z
is P1 × P3 or P1 × V , with V a del Pezzo threefold with Picard number one.
Let ϕ : X → C be the contraction associated to KX + 3L; first of all note that,
since Z is a Fano variety, then C ' P1; moreover for a general fiber F we have
−KF = 3LF , so that F is a del Pezzo variety and LF = OF (1). In particular
Z ' P1 × P3 cannot be an ample section of such an X.

We are now in the position to give a list of pairs (X,L) as above with Z ∈ |L|
a Mukai variety of dimension dimZ ≥ 4, strengthening the results in [6]; note
that, apart from case 6 (d), all cases are effective.

Theorem 4.3. Let Z be a section of an ample line bundle L on a manifold X
of dimension n. Assume that dim Z ≥ 4 and that Z is a Mukai manifold, i.e.
−KZ = (n− 3)HZ for some ample line bundle HZ on Z.
Then the triple (X,L, H) is one of the following:

1. X is a Mukai manifold, that is −KX = (n− 2)L, with ρ = 1 and L = H.

2. X is a del Pezzo manifold, that is −KX = (n − 1)H, with ρ = 1 and
L = 2H.

3. X = Qn, an hyperquadric in Pn+1, L = OQn(3) and H = OQn(1) .

4. X = Pn, L = OPn(4) and H = OPn(1) .
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5. dim X = 6 and

(a) X = P6, L = OP6(1) and H = OP6(2).

(b) X = P3 × P3 and L = H = O(1, 1), that is Z = P(TP3).

6. dim X = 5 and

(a) X = Q5, an hyperquadric in P6, L = OQ5(1) and H = OQ5(2).

(b) X = P5, L = OP5(2) and H = OP5(2).

(c) X is a projective bundle over P1 and Z = P1 × P3 (see section two;
X is not necessarily Fano and NE(X) 6= NE(Z)).

(d) X is a del Pezzo fibration over P1 and Z = P1 × V , with V a del
Pezzo threefold of Picard number one.

(e) X = P2 × P3 , L = O(1, 2) and H = O(1, 1).

(f) X is a Mukai 5-fold, i.e. −KX = 3L, (with ρ = 2) and H = L.
According to [25] they are:

i. X = P2 ×Q3, L = H = O(1, 1).
ii. X = P(T 3

P ), L = H = O(1, 1).
iii. X = PP3(OP3(1)⊕2 ⊕OP3(2)), L = H = ξ + p∗OP3(1).

Proof. The case ρ := ρ(X) = ρ(Z) = 1 is straightforward since in this case
H is ample on X and we have the equality −KX = (n − 3)H + L (for more
details one can look at the proof of proposition 3.1 in [6]). We can thus assume
ρ := ρ(X) = ρ(Z) > 1.
By the theorems in [22] applied to Z, we have that

n− 3 ≤ dim Z + 2
2

=
n + 1

2

with equality if and only if Z = P3 × P3.
Since the last cannot be an ample section of any projective manifold, by [8,
Corollary 5.2.4], we have that n ≤ 6.
If n = 6 then, by [25] we have the following possibilities for Z:

1. Z = P2 ×Q3.

2. Z = P(T 3
P ), HZ = O(1, 1).

3. Z = PP3(OP3(1)⊕2 ⊕OP3(2)).

Only Z = P(T 3
P ) is an ample divisor in a smooth X. In fact, the first case is

ruled out by [8, Corollary 5.2.4] and the third case is ruled out by [10].
Note that HZ is spanned so we can apply theorem 4.1 which gives that H
is ample. By [2, Theorem 4.1] each contraction on Z = P(T 3

P ) lift to a P3-
bundle on X. It is straightforward to prove now that X = P3 × P3 and that
L = H = O(1, 1).
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Let then n = 5. By [23, 2.6] HZ is spanned unless Z = P1×V1, where V1 is a del
Pezzo threefold of degree one; in this case we repeat the final part of the proof
of theorem 4.2 and we get that X is a del Pezzo fibration over P1 (it cannot be
a projective bundle or a quadric fibration because −KV1 is not spanned).
So we can assume that HZ is spanned and apply theorem 4.2; in particular, if
X is not as in 6.(c) or in 6.(d) then X is a Fano variety and NE(X) = NE(Z).
It follows that the line bundle H which restricts to HZ is ample. Note that,
by inequality 3.4, Z and X cannot have small contractions and note also that
−KX = 2H + L.
Assume that H · C1 6= L · C1; in particular l(R1) ≥ 4. We claim that there are
two fibers F1 and F2 of the contractions of R1 and R2 which have nonempty
intersection. If both the contractions are of fiber type this is clear. Otherwise,
if R1 is a birational contraction, its exceptional locus E1 is an effective divisor,
and has positive intersection with at least one extremal ray (this is a general
fact on Fano manifolds). Since E1 · R1 < 0 we have E1 · R2 > 0 and the claim
is proved.
Let F1 and F2 the two fibers with a point in common; we have dim(F1) +
dim(F2) ≤ 5, dim(F1) ≥ l(R1)− 1 ≥ 3 and dim(F2) ≥ l(R2)− 1 = 2.
Therefore both the contractions are of fiber type and the preceding inequalities
are true for any fiber.
In particular, by [10, Lemma 2.12], ϕ1 is a P3-bundle and ϕ2 is a P2-bundle.
It is straightforward to prove now that X = P2 × P3 and that L = O(1, 2) and
H = O(1, 1) .
Therefore we can assume now that L = H, that is X is a Mukai 5-fold with
ρ = 2 and the result follows again from [25].

Remark 4.4. In case L is assumed to be very ample, the case Z = P1×V , with
V a del Pezzo threefold of Picard number one can be excluded in both theorem
4.2 and theorem 4.3, by [7, Proposition 0.1].

5 Ample sections without extremal rays

Theorem 5.1. Let X, E and Z be as in the introduction. Assume that Z is
minimal and has Kodaira dimension 0 ≤ κ(Z) < dimZ. Then:

1. KX + det E is nef (in particular, by the Base Point Free Theorem, it is
semiample) but not big, i.e. KX + det E is a good supporting divisor of a
Fano-Mori contraction Φ : X −→ Y of fiber type.

2. KZ is semiample and Φ extends the pluricanonical map ϕ|mKZ | for m À 0.

3. The general fiber F of the contraction Φ is a Fano manifold of pseudoindex
≥ r with −KF = det EF and KF |Z∩F = OF |Z∩F ; in particular, if mKZ =
OZ , then X is a Fano manifold with −KX = det E and KZ = OZ .

Proof. Assume by contradiction that KX + det E is not nef. Then there exists
an extremal ray R+[C] ∈ NE(X) such that (KX + det E) · C < 0; then, by
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3.1, there is a curve Γ ⊂ Z such that [Γ] ∈ R+[C]. In particular KZ · Γ =
(KX + det E) · Γ < 0, against the minimality of Z.
On the other hand KX + det E is not ample, otherwise KZ = (KX + det E)|Z
would be ample, and so KX +det E is a good supporting divisor for an extremal
face in NE(X).
By the Kawamata-Shokurov base point free theorem there exists a positive
integer m such that m(KX + det E) is spanned by global sections. Therefore
also m(KX + det E)|Z = mKZ is spanned by global sections.
Let Φ : X −→ Y be the map defined by m(KX + det E) and ϕ : Z −→ Z ′

the map defined by mKZ . Taking m À 0 we can assume that they both have
connected fibers, that Y and Z ′ are normal and that the following diagram is
commutative.

Y

X Z

Z ′
? ?

¾

¾

¡
¡

¡
¡

¡
¡ª

Φ ϕ

i

π

Φ|Z

Since κ(Z) < dim Z, the map ϕ is of fiber type; by the above diagram, Φ|Z is
of fiber type and we claim that Φ itself is of fiber type.
Assume by contradiction that Φ is birational and let E be the exceptional locus.
By 3.4, dim F ≥ r for all non trivial fibers; so, by 3.5, dim F ∩ Z ≥ 0 and
therefore Φ(E) ⊆ Φ|Z(Z).
On the other hand, since Φ|Z is of fiber type, Z is contained in E and thus
Φ|Z(Z) ⊆ Φ(E).
Then Φ(E) = Φ|Z(Z) and dim Φ(E) = dim Φ|Z(Z) < dim Z = n− r.
Since dim Y = n, it is possible to find a subvariety W ′ ⊂ Y such that dimW ′ = r
and W ′ ∩Φ(E) = ∅. But Φ is an isomorphism away from E, so W := Φ−1(W ′)
is a subvariety of X of dimension r such that its intersection with E is empty.
Therefore Z∩W = ∅, but this is a contradiction since dim Z∩W ≥ dim W−r =
0.
Let F ′ be any fiber of Φ; note that dim F ′ ∩ Z ≥ dim X − dim Y − r ≥ 1.
So we can apply Lefschetz theorem to F ′ and EF ′ , obtaining H0(Z ∩ F ′,Z) ∼=
H0(F ′,Z) ∼= Z. Using the Universal Coefficient Theorem we get H0(Z∩F ′) ∼= Z
and so Φ|Z has connected fibers.
Therefore ϕ and Φ|Z are morphisms with connected fibers onto normal varieties
which contract curves in the same ray. This implies that π is an isomorphism.
Let F be the general fiber of Φ. We have that KF = KX |F = −det E|F ; then F
is a Fano manifold of pseudoindex ≥ r. Moreover, if we consider the restriction
of F to Z, we have KF |Z∩F = (KX + det E|F )Z∩F = OF |Z∩F .
In particular, if OZ = mKZ = m(KX + det E)Z , then OX = m(KX + det E)
and thus −KX is ample. So X is a Fano manifold with −KX = det E and
KZ = OZ .
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Remark 5.2. If Z is a minimal variety then it is conjectured that κ(Z) ≥ 0
(see [13] and [19]). The conjecture is true for minimal surfaces or threefolds

If dim Z = 2 we can study the case 0 ≤ κ(Z) < dim Z = 2 without the
assumption of minimality; this was done in [15] and [16], here we give a different
proof. In higher dimensions, even for dimZ = 3, this is much more difficult.

Theorem 5.3. Let X, E and Z be as in the introduction. Assume that r ≥ 2
and that Z is a surface of Kodaira dimension κ(Z) = 0 or an elliptic surface of
Kodaira dimension κ(Z) = 1. Then (X, E) is one of the following:

1. X = PW (F), where F is an ample vector bundle of rank n − 1 over a
smooth surface W with κ(W ) = κ(Z) and E = Φ∗V ⊗ ξ, where ξ is the
tautological line bundle on X, V is a vector bundle of rank n − 2 on W
and Φ : X −→ W is the bundle projection. In this case Z is not minimal
and Φ|Z : Z −→ W is a birational morphism, but not an isomorphism.

2. There exist a birational morphism Φ : X −→ X ′ expressing X as a pro-
jective manifold X ′ blown up at a finite set B of points (possibly empty)
and an ample vector bundle E ′ of rank n− 2 on X ′ such that E = Φ∗E ′ ⊗
[−Φ−1(B)] and KX′ + det E ′ is nef. In this case the triplet (X ′, E ′, Z ′ :=
Φ(Z)) is as in the introduction, with r ≥ 2, and Z ′ is a minimal surface
with κ(Z) = κ(Z ′).

Moreover:
if κ(Z) = 0, then X ′ is a Fano manifold with −KX′ = det E ′ and Z ′ is a
K3 surface dominated by Z via the birational morphism Φ|Z ;
if κ(Z) = 1, then X ′ is endowed with a morphism Φ : X ′ −→ Y onto a
smooth curve Y , whose general fiber F is a projective manifold of dimen-
sion n − 1 satisfying the condition KF + det E ′F = OF ; Φ induces on Z ′

the elliptic fibration.

Proof. If Z is minimal the proof follows easily from 5.1.
Assume therefore that Z is not minimal; each of the extremal rays of Z corre-
sponds to the contraction of a (−1)-curve. Let H be an ample line bundle on
X and let τ be the nefvalue of HZ , i.e. the minimum real number such that
KZ + τHZ is nef. Then KX + det E + τH is nef but not ample and it is zero
exactly on the curves of a face F which is extremal both in Z and in X.
Let Φ : X −→ W be the contraction associated to a ray in F and let ϕ : Z −→ Z ′

the contraction of the (−1)-curve corresponding to the ray. By [3, Prop. 3.8],
Φ can be either birational or of fiber type; moreover in the last case it is an
adjunction theoretic scroll onto W and Φ|Z = ϕ. Since dim W = 2 we can
apply [8, Proposition 14.1.3] which says that Φ is actually a Pn−2-bundle and
we are in the case 1. of the Theorem. Suppose now that Φ is birational. By [3,
Proof of Theorem 1.2] X ′ = Φ(X) is smooth, Φ is the blow-up of a point B on
X ′ and Φ|Z = ϕ. Moreover EF

∼= ⊕rOPr−1(1), where F is a fiber of Φ. Then,
by [3, Lemma 2.9] there exists an ample vector bundle E ′ of rank r = n− 2 on
X ′ such that E ⊗Φ−1(B) = Φ∗E ′ and Z ′ is a section of E ′. If Z ′ is not minimal
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we can thus repeat the above arguments.
We observe that the case of a fiber type contraction on X ′ cannot happen now
and in any further steps and therefore we are in the case 2. of the Theorem.
This claim can be proved exactly as in the last part of the proof of Theorem
(1.4) in [3].

Remark 5.4. Lanteri and Maeda in [16] showed that the elliptic fibration Φ|Z′ :
Z ′ −→ Y has actually no multiple fibers and the genus of the curve Y is g(Y ) =
h1,0(Z).
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