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Abstract— Predicting response to treatment plays a key role
to assist radiologists in hepato-cellular carcinoma (HCC) ther-
apy planning. The most widely used treatment for unresectable
HCC is the trans-arterial chemoembolization (TACE). A com-
plete radiological response after the first TACE is a reliable
predictor of treatment favourable outcome. However, visual
inspection of contrast-enhanced CT scans is time-consuming,
error prone and too operator-dependent. Thus, in this paper
we propose TwinLiverNet: a deep neural network that is able
to predict TACE treatment outcome through learning visual
cue from CT scans. TwinLiverNet, specifically, integrates 3D
convolutions and capsule networks and is designed to process
simultaneously late arterial and delayed phases from contrast-
enhanced CTs. Experimental results carried out on a dataset
consisting of 126 HCC lesions show that TwinLiverNet reaches
an average accuracy of 82% in predicting complete response
to TACE treatment. Furthermore, combining multiple CT
phases (specifically, late arterial and delayed ones) yields a
performance increase of over 12 percent points. Finally, the
introduction of capsule layers into the model avoids the model
to overfit, while enhancing accuracy.

Clinical relevance— TwinLiverNet supports radiologists in vi-
sual inspection of CT scans to assess TACE treatment outcome,
while reducing inter-operator variability.

Index Terms— 3D Convolutions, Liver Cancer

I. INTRODUCTION

Hepatocellular Carcinoma (HCC) is the most common
liver cancer and the fourth responsible for cancer-related
death [1]. HCC early detection can increase the chance
of potentially curative treatment that largely depends on
tumour characteristics. The most widely used treatment for
unresectable HCC is the trans-arterial chemoembolization
(TACE) [2], [3], which is recommended for patients with
BCLC (Barcelona Clinic Liver Cancer) stage B. Although
repeated TACE treatments are often needed, a complete
radiologic response after the first TACE session is a pre-
dictor of a favorable outcome [4]. However, the radiological
examination requires high expertise to inspect visually slice-
by-slice CT scans, making the assessment too dependent
from the operator. In this paper, we propose an automated
tool based on artificial intelligence–techniques for response
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prediction to TACE treatment in HCC cases in order to
improve treatment allocation. Specifically, the core idea is
to build a deep model based on capsule networks [5], [6] for
analyzing contrast-enhanced CT scans at multiple stages (i.e.,
late arterial and delayed phases) and predicting the disease
progression under TACE treatments. To our knowledge,
automated TACE prediction has not been yet proposed and
most of the work on liver cancer has been focused on
automated segmentation mainly using either hand-crafted
features (e.g., intensity thresholding, region growing, and
deformable models) [7], [8], [9], [10] or using deep learned
features [11], [12], [13]. The model we propose in this
paper - TwinLiverNet - is based on 3D convolution kernels
to address the existing drawback. Nevertheless, training 3D
models is not trivial especially with small datasets, as those
in the medical domain, and we tackle the problem of scarce
annotated data by extending the representation capability of
our model through capsule networks [6], [5]. Furthermore,
TwinLiverNet is designed to process simultaneously and to
learn joint features from multiple CT phases, mainly late
arterial and delayed ones.
We test the proposed approach on a dataset consisting of
126 HCC lesions obtaining an average accuracy of 82% in
predicting correctly TACE outcome. We also compare Twin-
LiverNet with a single-phase modality (either late arterial or
delayed), demonstrating that using both phases at the same
time yields to enhanced performance. Ablation studies car-
ried out on the TwinLiverNet, finally, substantiated the made
architectural design. In summary, the main contributions of
our work are:

• We design and propose the first, to our knowledge,
3D deep model, i.e., for automated TACE response
prediction in liver tumor cases using contrast-enhanced
CT scans at different phases;

• We explore a multi-phase approach, TwinLiverNet, as
a variation of the base architecture, to exploit different
CT phases peculiarities leading to enhanced accuracy;

• We extend standard 3D convolutional models through
capsule networks to effectively deal with 3D data and
a limited dataset;

II. RELATED WORK

One of the most investigated tasks in CT data is surely
automated segmentation. The standard approach consists of
an encoder network, for features embedding, and a decoder
network, which produces the segmentation [14]. Although
prediction to response treatment is a fairly different task than
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volume segmentation, encoder networks share many similar-
ities with TwinLiverNet architecture, thus it is the main focus
our attention. The CT liver segmentation has been tackled
both using handcrafted features and with deep learning
based methods. The former category includes thresholding
methods [7], [8], deformable models [9], [10], and machine
learning based methods [15], [16], [17] relying on traditional
algorithms such as support vector machine, random forest
and single hidden layer feedforward network. Deep learn-
ing methods have gained momentum in CT segmentation,
especially since the introduction of U-Net [18]. Indeed, U-
NET has become the backbone model for many following
architectures, including 3D segmentation with fully convo-
lutional networks (FCNs) [19], [20]. Following this trend,
other approaches like Ben-Cohen et al. [21] and Christ
et al. [22] proposed FCN-based liver lesion segmentation
networks. Sun et al. [23] designed a Multi-Channel Fully
Convolutional Network (MC-FCN) to segment liver tumors
from multiphase contrast-enhanced CT images. Recently
Han [24] proposed a U-Net-like 2.5D FCN which takes a
sequence of CT slices and produces the segmentation for
the center one. However, the application of deep/machine
learning for liver analysis, outside the segmentation field, has
been rather limited and mainly using clinical and radiological
information for treatment response prediction and survival
estimation [25], [26], [27]. One recent approach by Christ et
al. [28] has, instead, been proposed for HCC malignancy
prediction: the model consists of a lesion segmentation
stream through a Cascaded FCN (CFCN), then a 3D neural
network, Survival Net, predicts the HCC lesion malignancy.
To our knowledge, our approach is the first one which tackles
the problem of liver tumor response prediction to TACE
treatment using only visual cues learned from CT scans. The
additional integration of capsule networks [6] in our model
is inspired by the very recent trend and related success of
these models for medical image understanding [29] also on
CT data for cancer node classification [30]. For example,
LaLonde et al. [29] proposed a capsule based variant of
U-Net for CT scans segmentation, yielding state of the
art performance. Recently, Mobiny et al. [30] investigated
the use of capsule networks, for automated lung nodule
classification from CT data.

III. METHOD

CT data contains both intra-slice and inter-slices infor-
mation, and approaches that only consider the latter are
incomplete as they explicitly ignore dependency between
slices. To address this problem, we define the base LiverNet
architecture: a deep model that consists of a 3D encoder,
to learn volumetric information, followed by a 2D encoder
to perform (binary) classification (see Fig. 1). Initially, input
data (3D crop around a lesion) flows trough a 3D encoder, to
exploit inter slice volumetric information. Then, the extracted
features are provided to a capsules-based encoder, which
predicts treatment outcome as positive or negative. The
role of capsule layers is to learn shapes and whole/part
relationships from cancer lesions.

Differently from the original CapsNet architecture, Liv-
erNet presents an initial 3D encoder of three convolutional
layers, to process the input volume. The three 3D convolution
layers have respectively 32, 64 and 128, 5x5x5 kernels
applied with a stride of 2 in each dimension and followed by
a ReLU activation function. The features produced by the 3D
encoder is then reshaped, concatenating volumetric features
over the channels, and provided as an input to the primary
capsules. The primary capsules are the lowest layer of the
capsules network. This layer has 32 primary capsules, taking
as input the features learned through by the 3D convolutional
encoder and producing their combinations. The 32 “primary
capsules” are similar to convolutional layer in their nature.
Each capsule applies 128 9×9 convolutional kernels (with
stride 2) to input volume and, therefore, produces 128×3×3
output tensor. Since there are 32 such capsules, the output
volume has a shape of 32×128×3×3. The output of primary
capsules is passed to the output capsules layer, that, given the
binary classification nature of our problem, consists of two
capsules, one for each class. Each capsule takes as input
a 32×128×3×3 tensor, which can be seen as 1152 input
vector. Each of these input vectors has its own weight matrix
that maps 128-dimensional input space to the 32-dimensional
capsule output space. There are 1152 matrices for each
capsule, and also 1152 ci coefficients and 1152 bi coefficients
used in the dynamic routing. Output capsule layer produces
two 32-dimensional vectors vi, one for each output class.
The length of output vector represents the probability of a
specific class, being present in the processed data.
The model prediction is defined as

pred = argmax
i

√∑
j

v2i|j (1)

where i is the output capsule index and j is the element
index of each element in the ith array. In contrast-enhanced
CT, especially for liver cancer analysis, multiple phases of
the injection process are identified, namely, non-enhanced,
late arterial, portal-venous and delayed phase. Each phase
carries out specific information, but the most significant ones,
from a radiological perspective, to characterize tumor lesions
are the late arterial and delayed phases. In order to exploit
this peculiarity, we extend the base LiverNet architecture in
order to use both phases for better prediction. We specifically
design TwinLiverNet(shown in Fig. 2) as a model that
jointly learns features from late arterial and delayed visual
modalities. TwinLiverNet shares the main building blocks
with the base LiverNet, but enables to parallel branches,
each one processing one specific data modality with the 3D
encoder network presented for the one modality counterpart
(i.e., LiverNet). The encoded features for each modality are
then reshaped and go through a ”compression” 2D convolu-
tion layer. The compressed features of the two modalities are
then concatenated and are fed to a capsule-based classifier,
whose architecture is the same as the LiverNet model.
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Fig. 1. A simple representation of the proposed architecture. The 3D encoder process the input volume, which is then reshaped and passed to the
capsule-network.

Fig. 2. The architecture for the proposed TwinLiverNet. Two Twin 3D encoders process the input volumes for the different phases. Each features volume
is then reshaped and ”compressed” by a 2D Conv. The output features are concatenated and passed to the capsule-network.

IV. EXPERIMENTAL RESULTS

A. Dataset

The dataset was provided by the University Radiology
Unit of the A.O.U. Città della Salute e della Scienza di
Torino (Italy). The dataset consists of 97 CT scans from
92 patients diagnosed with HCC. The number of slices for
each scan varies from a minimum of 128 to a maximum of
389. Spatial resolution for each slice is 512 × 512. Imaging
was performed using a CT Optima and a CT Revolution
(GE Healthcare). Each contrast-enhanced CT scan consists of
four phases: Non-Enhanced, Late Arterial, Portal-Venous
and Delayed. We consider only late arterial and delayed
phases according to radiological criteria for HCC diagnosis
and empirical experiments showing limited performance with
the Non-Enhanced and Portal-Venous modalities. From each
CT scan, multiple lesions are annotated and, in total, our
dataset contains 126 HCC lesions that are feed to our
LiverNet models for TACE outcome prediction. The inter-
slice bounding box size vary from a minimum of 8 to a
maximum of 84 slices, while the intra-slice size is between
127 and 139. To uniform data shape, each lesion crop CT

was resized to 140 × 140 × 90.
Lesions’ annotation is provided in the form of both mRE-
CIST (Modified Response Evaluation Criteria in Solid Tu-
mors) classification and lesion bounding box. Annotation was
carried out by two experienced radiologists, who labeled
each lesion through consensus. mRECIST classes are then
grouped into two classes: positive in case of complete
response (CR) to TACE, and negative, in all the other cases
(i.e., PR — partial response —, SD — steady disease —
and PD — progressive diseases), thus posing the outcome
prediction problem as a binary classification task. According
to this grouping, the 126 cases are split into 64 positives
and 62 negatives. As for evaluation, we employ 5-fold cross
validation in order to have, for each fold, 24 lesions (12
positives and 12 negatives). Before lesion cropping, CT scans
are pre-processed to enhance visual quality of the images by
tweaking brigthness, gamma and contrast.

B. Training procedure

We employ data augmentation mechanisms, namely, ran-
dom input rotation, translation and mirroring, to reduce
overfitting issues. Beside the LiverNet models, we test also
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TABLE I
PREDICTION PERFORMANCE OF TESTED MODELS USING 5-FOLD CROSS-VALIDATION. WE REPORT MEAN AND STANDARD DEVIATION OF METRICS

COMPUTED OVER THE 5 VALIDATION FOLDS.

Model Input Phase Sensitivity Specificity Accuracy

Baseline Net Late Arterial 40.0 ± 6.2 46.7 ± 8.5 43.3 ± 6.7

(No augm.) Delayed 31.7 ± 6.2 45.0 ± 8.5 38.3 ± 4.0

Baseline Net Late Arterial 53.3 ± 8.5 60.0 ± 6.2 56.7 ± 2.0

(Data augm.) Delayed 45.0 ± 4.0 48.3 ± 9.7 46.7 ± 3.1

LiverNet Late Arterial 71.7 ± 4.0 76.7 ± 8.1 74.1 ± 3.1

Delayed 63.3 ± 8.5 70.0 ± 8.5 66.7 ± 2.6

TwinLiverNet Late Arterial + 81.7 ± 8.1 83.3 ± 7.4 82.5 ± 7.2
Delayed

a baseline network based on a sequence of 3D and 2D
convolutional layers. More specifically, the baseline consists
of the LiverNet model without capsule-layers, i.e., the output
of the 3D encoder is flattened and fed to two fully-connected
layers and a softmax layer for classification. For the baseline
we employ binary cross-entropy as loss during training,
while for the LiverNet models, we use the length of the
instantiation vector for each digit capsule in the last layer
and compute the following margin loss, Lk, for each digit
capsule, as follows:

Lc = Tc max(0,m+−||vc||)2+λ(1−Tc)max(0, ||vc||−m−)2
(2)

where Tc = 1 if an output of class c is present, m+ = 0.9
and m− = 0.1 and λ = 0.5. The total loss is thus the sum
of all output capsules’ losses. All the models are trained
from scratch for 200 epochs on a Nvidia Quadro P6000 with
24GB of VRAM. The LiverNet model is trained separately
on the Late Arterial and the Delayed modality, while the
TwinLiverNet on both modalities simulataneously. Batch size
is set to 24 for the baseline, 24 for LiverNet and 16 for
TwinLiverNet. Adam is chosen as optimizer algorithm using
a learning rate of 5 ∗ 10−6 and [0.9, 0.999] as β parameters.
As metrics to test the goodness of the devised models for
TACE outcome prediction, we measure sensitivity, specificity
and accuracy.

C. Results

We conduct few experiments to substantiate our archi-
tectural design. In particular, we perform control study to
verify the effectiveness of a) data augmentation, b) capsule
layers and c) using multiple phases images. Thus, we test our
baseline with and without data augmentation, the LiverNet
model with data augmentation when using only either late
arterial images or delayed images, and the model (Twin-
LiverNet) when using simultaneously both modalities. The
achieved results (mean and standard deviation over the 5
folds) are reported in Table I and show that: 1) using data
augmentation yields to significantly improved results; 2) the
late arterial phase alone is more informative than the delayed

one and, as such, it allows for better prediction, 3) capsule
layers are necessary to correctly predict treatment outcome
with an accuracy gain of about 20 percent points w.r.t. the
baseline, and 4) when using both modalities together in the
TwinLiverNet model, the performance gains is about of 10
percent points yielding a final accuracy in the prediction
of 82.5% (with a sensitivity of 81.7% and a specificity of
83.3%).

V. CONCLUSIONS

Correctly estimating a response to cancer treatment, in
particular hepatocellular carcinoma, plays a central role in
therapy planning, supporting medical staff in the decision
making process. This work proposes the first, to our knowl-
edge, deep learning solutions that attempt to predict the
outcome to TACE treatment by using only visual information
learned from pre-treatment CT scans. We initially intro-
duce a traditional 3D CNN architecture, and then enhance
its representational capabilities through capsule networks.
Capsules are used to enforce spatial morphology learning
for prediction, while coping with limited high-dimensional
training data. The resulting model, LiverNet, is then tested
when using a) single phase data at a time, and b) late arte-
rial and delayed phase images (TwinLiverNet). Performance
analysis, carried out on a dataset of 126 HCC lesions, shows
that capsule layers are necessary to predict correctly TACE
outcome yielding a 82.5% accuracy, significantly higher than
purely convolution-based architectures. The highest perfor-
mance gain is obtained when using both late arterial and
delayed images demonstrating that, correlations between the
two data modalities, allows for a better characterization of
HCC tumor lesions. Furthermore, among the different phases
of contrast-enhanced CT scanning, the late arterial is the
most informative one. In conclusion, these results obtained in
this preliminary work open interesting perspectives on visual
characterization of cancer lesions through deep learning.
Such a characterization may go beyond the only HCC here
presented, but it can applied to a variety of other cancers,
such as genomics profiling of lung cancers [31].
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