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Abstract: In this paper, we propose a method for constructing spline surfaces interpolating a B-spline
curve network, allowing the presence of free parameters, in order to model the interpolating surface.
We provide a constructive algorithm for its generation in the case of biquadratic tensor product
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1. Introduction

When modeling free form shapes, e.g., ship hull forms, it could be more convenient
to generate smooth parametric surfaces, interpolating a curve network, instead of using
control points. This approach has been studied in the literature from different view points
and with different methods, such as blending-function methods [1-6], smooth regularly
parametrized piecewise polynomial surfaces [7] or subdivision schemes [8,9].

Tensor product B-spline surfaces, despite their limits, due to the parametric domain
rectangular topology, can be a good tool in CAGD since they are quite simple to use and
not too tightly constrained for the object shape in some cases (see e.g., [10,11] (Chapter 10)).
Possible unwanted oscillations can be produced by their high coordinate degree, but they
can be successfully avoided by smooth parametric surfaces on triangulations, having a
lower total degree [12-14].

In this paper, we compare biquadratic tensor product B-spline surfaces and bivariate B-
spline surfaces on criss-cross triangulations in order to detect advantages and disadvantages
of both constructions. We investigate the degree two because it is the first degree that
guarantees continuity C! and it is computationally simpler with respect to higher degrees.
We note that in [10] (Chapter 10) a method based on Gordon surfaces is proposed to
construct a tensor product B-spline surface interpolating a curve network. In this case,
it is necessary to define three surfaces belonging to different spline spaces to be merged
together by the knot refinement algorithm, while the method proposed here is directly
based on the knot vectors of the given B-spline curves.

Starting from a so called minimal configuration [15], where a C! quadratic B-spline
curve network is interpolated by a quadratic B-spline surface, whose knots match the curve
network knots, we consider a more general approach by introducing some free parameters
that provide some degree of freedom in the surface shape and that are obtained by letting
some surface knots not satisfying such a match. This means that some surface knots are
not network knots. In this regard, we investigate some properties of the obtained surfaces,
both biquadratic and quadratic.

The paper is organized as follows.

The B-spline curve network and its compatibility conditions are introduced in Section 2,
while the B-spline surface and its existence conditions are presented in Section 3 with an
algorithm for its construction.

In Section 4, we present some numerical and graphical results.
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2. The Network of B-Spline Curves

Let us denote by {P]-(r) 7;02, r=20,...,R+1and {Q,(S) mi2 s =0,...,S+1, Pj(r)/

QES) € R3, two given sets of control points, defining the C! quadratic B-spline curves
n+2
C(v)=Y PUBj(v]V), r=0,...,R+1, veledCR,
j=0 1
m+2 @
Ds(u) = ¥ QWBulU), s=0,...,5+1, wuclabCR,
i=0

withm > Rand n > S, respectively. As in [10] (Chapter 10) and in [15], here we suggest
the following compatibility conditions to be satisfied by (1):

C1. all the curves D;(u) are defined on
U={a=ujo=u1=uy<u < <y <Upyp1 = Uyt = Uys3 = b}
and all the curves C,(v) are defined on
V=Ac=0v7=01=09<v1 < <0y <VUpi1 = 0Upsp = Upy3 =d}.

The quadratic B-spline functions B;(u|U) and B;(v|V), involved in (1) have supports
[ui—2,ui1] and [vj_2, ;1] respectively [16,17]. We also consider the so called Greville

abscissae, given by
G — U1+ u;

,1=0,..., 2
i > 1 m—+
and vi_1+v
i—1 i
t-:y, =0,..., 2,
i > ] n-+

to define (s;,vs), pre-image of QES) for all s, and (uy, t]-), pre-image of P].(r) for all r
(Figure 1);
C2. there exist parameters

Ug = Ujy < ujy <0 < Ujp <Up , =Uppl

and
‘UOIU]‘O<U]'1 <"'<‘U]‘S <vjs+1 = Unpt1
such that
Ls :C,(vjs) = Ds(u;,), r=0,...,R+1, s=0,...,5+1. )

Condition C2. is always satisfied by at least a curve network, even if it is supposed
to be given. This can be proven following the same logical scheme given in [15]. Indeed,
defining the following quantities:

hr+1 / hy—
Oyl =7—"7—, 0p = ——,
il hr + hr+1 ! hr—l + hr (3)
s+1 / ksfl
Ts+1 = =

T s =,
ks + ks+1 s ks—l + ks

for0 < r <m+2and 0 < s < n+2, with h, = Uy — Uy 1, ky, = vy —v,_1 and

h_1 = k.1 = hyso = kypyp = 0 (setting to zero a possible 8 in (3)), since from [18]
(Chapter X) and [19] (Section 1.5)

By, (u;, |U) = 0i, 1, B 1 (i, |U) = 0] 4,
/

Bjs (0]5|V) = FL-js+1’ B]s+1(v]s|v) = T]5+1’
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and thanks to the local support property of the B-splines, condition C2. can be written as
G P+t (P =0 aQ 40l 1QF,, r=1..,R s=1,..5
Instead, on the boundary of the domain, we obtain

0 0
(Ti,+1Q( )+ ‘Ti/y+1Q§,4)r1 = P(r) s=0,r=1,...,R

Q<S+1)+ HQSH — p s=S+1,r=1,...,R

i+ ir+1 n+2’

TjSHPj(S)+T+1PS+1 Qo , r=0,s=1,...,S8

+1 R+1
GBS D S, R4 s =1
and

QO — p®, QO _ pk+D

0 QOS+1 pO o5+ _ p(R:1)

- n+2’ m+2 n+2

7

Therefore, taking into account that m > R, n > S, it is always possible to construct a
curve network satisfying condition C2, because the number of its control points N; = (n +
3)(R+2)+ (m+3)(S+2) is greater than the number of constraints N; = (R +2)(S + 2).
Moreover, we remark that the case of minimal configuration is given when R = m and

S=n.
v v
), P,
n+. n
Un4+3 = Un42 = Un+1 == ® L g & ® L g Un43 = On42 = On+1 f-- @ @ @ *——@
] ] | \ AN s T\
| | | \ SN I’l \ N FARN /
[ | A N T \ LN,
N\ (AR
: : : ¢ VY X Y >
[ ] . [ ] \ [ ] ® AN S | BANETANN
Co i SONGNONS N
’ N , NP A1, \
Lt | \
R R N [ e\_____;/\__,*_\ _____ /_/E\____/_/ \___:7
[ | AN Pt A N
I I I AN AV , N N
o . 1 | ® 1 @ 5 1 | X @ > X e
(s) (s) () | (s) (s) OIS\ I N LN (s)
T S - SR PR B R G U R AR RN G
s F-- *—-o-—o *——eo s == @Ok e
: : : N ’ : \\/I: \\\ ’ N . : AN //
[ ] I [ ] p() 1 [ ] ® X Ph X e PR [ ]
1 1 2 1 . N 1// e N 72 N [ N
[ | NN, ] 1/
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Figure 1. Examples of a parametric domain () with pre-images of the curve network and its control
points (e). In (a) a rectangular partition R, is shown, in (b) a criss-cross triangulation Ty;.

3. Construction of the Interpolating C! B-Spline Surface

Let us consider two possible subdivisions of the parametric domain Q = [a,b] X [c,d]:
a rectangular partition R, (Figure 1a), based on the knots {U x V} and a criss-cross
triangulation T}, (Figure 1b), obtained by drawing the two diagonals in each rectangle
of Ryn-

Here, we consider the two spline spaces it is possible to define on such partitions:
S;Q(Rmn) of all C! biquadratic tensor product splines, being a bivariate polynomial of
coordinate degree 2 in each rectangle of R, and S% (Twn) of all c! quadratic splines, being
a bivariate polynomial of total degree 2 in each triangle of T},,,. The first space has a basis de-
fined by the set of (m + 3)(n + 3) B-splines {B; j(u,v) = B;(u|U) - Bj(v|V), i=0,..., m+2,
j=0,...,n+ 2}, while the second one is generated by the set of (1 + 3)(n + 3) B-splines
{Bi,]-(u, v), i=0,...,m+2, j =0,...,n + 2} with octagonal support (Figure 2) [16,17,20-22],
being its dimension given by (m +3)(n +3) — 1.
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U]'+l —_

Uj_p Uj_q Uj Uir1

Figure 2. Octagonal support of the bivariate C! quadratic B-spline.

Let By = {Bi,]-(u,v), i=0,...,m+2,j=0,...,n+2} be one of the two sets of span-
ning functions above mentioned. Then the C! B-spline parametric surface, interpolating
the network (1), can be written as follows:

m+2n+2
S(u,v) =Y ) CiB;j(u,0), (u,0)e. 4)

i=0 j=0

If B;; € S%:%(Rmn), then S is a tensor product surface, while, if B; ; € S}(Run), then S is
a triangulated surface.

To obtain such a surface, it is enough to compute its control points C;; € R3,
i=0,...,m+2,j=0,...,n+2, having pre-images (si,tj) € O and a way to do it is
to consider the network as a set of isoparametric curves of S:

S(uj,,v) = Cr(v), r=0,...,R+1, (5)

S(u,vjs):Ds(u), s=0,...,5+1. (6)

In the next theorem, the isoparametric conditions (5) and (6) are translated into new
conditions on the {C; ;}'s.

Theorem 1. The curve network (1) is a set of isoparametric curves of S if, and only if, the following
conditions are satisfied:

041Gy + 011Gy =P, r=1, R j=1,..,n+1, @)
T41Cij + TG = QF, s=1,...,5, i=1,...,m+1, )
Co=0Q", i=0,...,m+2, ©)
Cina=Q" ™, i=0,...,m+2, (10)
Coj=P", j=0,...,n+2, (11)
Cuta) = P].(R“), i=0,...,n+2, (12)

for all control points {C; ;} in (4).
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Proof. Since the B-splines in B,,, have local support, Bi/j(u,x, v) =0ifi <a, i>a+1, any
j. Therefore, from (4) it results

m+2 n+2 n+2
S(uj,,v) = Y, Y CiiBij(ui,v) =Y (Ci iBi j(ui,v) + Cit1,Bi,41j(ui,0)).  (13)
i=0 j=0 =0

From the Bernstein-Bézier (BB-) coefficients of B; ;(u;,,v), Bi,y1,(u;,,v), Bj(v|V),
r=1,...,R,j=0,...,n+2,[23,24], we get

B;, j(ui,,v) = 0i,11B;(0|V),  Bjy1j(u;,v) = 0] 1B;(o|V). (14)
Then, from (13) and (14), we obtain
n+2
S(ui,,v) = Y (05,41Ci, j + 07, 11Ci,+1,)) B (0] V). (15)
=0

Thus, from (1), (5) and (15), condition (7) holds.
Now, with iy = 0,

m+2n+2 n+2
S(uo, ’0) = Z Z Ci,jBl"]'(Llo, ’0) = Z CO,]'BO,]‘(M(), U) (16)
i=0 j=0 j=0

and By j(uo,v) = B;j(v|V) [23,24], from (1), (5) and (16), we get (11).
Similarly, by setting # = u,,1 in (4), since ig41 = m + 1, (12) follows.
In the same way, from (6), we obtain (8)—(10). O

Remark 1. From Theorem 1, we can immediately get that

Coo = Q(()O) = PSO), Cimnt20 = QW) = P(SRH),
(5+1) _ p(R+1).

S+1 0
CO,n+2 = Q(() ) = P,(H?z/ Cm+2,n+2 = Qm+2 =y
Now, we want to count the number of free parameters, useful to model the surface

S, i.e., the number of control points in the surface definition that can be arbitrarily chosen.
Sincem > Rand n > S, we suppose m = R+kandn = S+ ¢, with k, £ > 0.

Theorem 2. In order to model the surface S, the number of free control points in S is

N — K+¢+k+1 in caseS%é(Rmn)
kO+¢+k in case S%(Tmn)

Proof. The number of free parameters (denoted by N) is given by the number of parame-
ters we have to compute (denoted by N;) minus the number of constraints given by the
interpolation conditions (denoted by Np).

Nj is the dimension of the spline space used for the construction of the surface:

N — (m+3)(n+3) in case S;:;(Rmn)
! (m+3)(n+3)—1 incase S} (Tun)

From Theorem 1, the number of interpolation conditions is R(n + 1) +S(m + 1) +
2(m+3) +2(n + 3), but, taking into account the redundant conditions at the four corners
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of the domain and the compatibility conditions C2. for each inner point (u;,,v},), for
r=1,...,Rands =1,...,5, then the number of interpolation conditions is

N, =R(n+1)+S(m+1)+2(m+3)+2(n+3)—4—RS
=mn+3m+3n+8—kl —k— /(.

Therefore, we obtain

k6 +0+k+1 incase S;:;(Rmn)

1 2 {k£+£+k incaseS%(Tmn)

O

The aim of this section is the construction of the interpolating surface, where the
constrained coefficients depend on the control points {P].(r) 7;01 and {QES) };'j)l of the curve
network. From (7) and (8), we can observe that

(r) (s)
5 O o _4 T
L1, = D ] 4 Lls+1 = s
Ti+1 Tit1 Tiet1 Tt

Therefore, the Ci,j’s that are excluded from (7) and (8), i.e., for

i#ir iy and j # jojspr, with i=1,...,m+1,j=1,...,n+1,r=1,...,R, s=1,...,S (17)

are free parameters. The other parameters can be computed depending on them. Moreover,
we can notice that (see Figure 3)

- the knots in the partitions U and V not associated to a curve of the network are barriers
identifying subdomains in (). In each subdomain, we have a minimal configuration;

- the number of subdomains in Q is equal to (k+ 1) (¢ + 1);

- the control point in the left-down corner of each subdomain is identified as a
free parameter;

- the control point C; ; is always a free parameter.

The following lemma provides the necessary relations for the computations of the
constrained control points.

Lemma 1. If curves (1) are isoparametric curves of the surface (4), then the constrained control
points have the following expression:

Cij = Ty (—yivisrsss 5T

Citr 145 (18)
kss+1 hr 11 At

fori=1,....m+1,j=1,...,n+1 (excluding the free parameters in (17)), with

i—Fy—1 ) ' o
1"1.’], _ 2 (_1)r+1 (hz—hr' +:z—r+1)hz Pj(zfrﬂx)
r=1 i—ri—r+1 (19)

(—1)itr M J ’%’1 (1) (Kj—s + kj—st1)kj QU—P)
hy 1 o kj—skj—s+1 147y

and 28:1 - = 0, where (see Figure 3)

- Ty is the index of the last barrier before the control point C; ; in the direction U, i.e., 7o, < i <
Fy+1/

- 5 is the index of the last barrier before the control point C; j in the direction V, i.e., 35 < j <
S6+1/

- « is the number of barriers in the direction U before the control point Cl-,]-;
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- Bis the number of barriers in the direction V before the control point C; ;.

S e | S N
-5 S
& &
& &
aQ Q 2}0 _______
N 3
S S
$ S
I
gy M
Q
- e - - - - - - -
& &
&)
o >
%§ 0?9
Q > Q
[y N (—\/ _______
(SR
(. S“ o———@ ~ -~~~ -~~~
N U Uq Un U3 Uy Us
U_1 ur, U,
u_n

Figure 3. Example of domain for Lemma 1.

Proof. Let us consider a domain, as in Figure 3, and the first subdomain, where minimal

configuration is present. From (8), we have 7,1 1C;; + T;HCZ-,S“ = QES), s =1,...,5,
i=1,...,7. Fori =1, applying it repeatedly, we can write (see Figure 4)

j—1 Q] $) s—1 T =14
— +1 okl +1 jos+1
Ci=Y S —]I2 (—1en T2 (20)
s=1 j—s+1 k=1 ] k+1 s=1 "j—s+1

wherej=1,...,5; and]—[?,1 -=1.
Then, from (7) it holds ¢;11C; j + ¢, r+1Cr+1,]‘ = Pj(r) forr=1,...,7q,j=1,...,51and
similarly, for a general j such that j < 57 we have

= 1 Pj(i = Ti—k+1 1c Ti—r+1
i— i—r
Cij= 2 (=" H + (=1 ,]1—[ (21)
r=1 o r+1 k= 1 —k+1 e r+1

withi =1,...,7;. Then, substituting (20) in (21) we have:

i =1 Tj—s+1 izl g +1
_ iy . . _
Ci,j:Fi,j+(—1)Z+]C1,1| | 7 | | ; , i=1,...,71,j=1,...,5,
s=1 "j—s+1 r=1 Tir+1

with
i—1 (=) 4 -1 (j=s) s—1
T = (_1)r+l P] H Ui k1 z+1 H Oi—r+1 Z s+l Q 1—[ Tj—k+1
i = o! ) .
r=1 —r+1 k=1 Y; k+1 z r+1 s=1 j—s+1 k=1 ] k+1
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Now, we follow the same scheme in the second subdomain. So, from (8) 7,1C;; +

TS’HCLSJA = Ql(s), s=1,...,5,i=71+1,...,7, we are able to obtain

Flg el
— i+j+F J—s i—r+1
Cij =Tij+ (=) Cr i [T [T 5

j—s+1  r=1 i—r+1
fori =7, +1,...,7p;1ej=1,...,5 with
i—Fy—1 (i-r=1) ,_4 -
r+1_J i—k+1
S D s—
r=1 i—r+1 k=1 "i—k+1

i—Fy—1 _ j—1 QE]*S) s=1 1.
it 741 Oi—r+1 1 ~Fy+1 —k+1
+ (_1)z+r~,+ | | i—r E :(_1)s+ = v T]/ )
j—s+1 k=1 Gj—k+1

In the third subdomain, from (8), we obtain

]501

—1
] s+1 Oi—r41
Cij=Tij+ (=1)"%C 50 [] . H =
s=1  “j—s+1r=1 Tirt1

fOI‘iZ1,...,7_’1,j:§5+1,...,§5+1,With

i—1 pli") 4
_ 41" ] Oi—k+1
= LTS
r=1 i—r+1 k= 1 —k+1
i~1 1—55—1 (j=s=1) s—1 1.
i+55+1 Ti—r+1 s+1 91 J k+1
e D S
r=1"i-r+l s=1 j—s+1 k=1 j*k+1

Lastly, in the fourth subdomain, from (8), we are able to obtain

j—51-1

Tj—s+1 T
JR— L. i+j4+71+5 - i—r+
Cij=Tij+(-1) FHNFS1Cr 41541 I - I o

s=1 “j—s+1 r=1 “i—r+l

fori:1"’1—1—1,...,1"’2,]':§1—|—1,...,§2,with

i—F -1 ) j(i‘r‘l) =
_ r+ 1—k+
= ¥ (T2
r=1 —r+1 k=1 Yi—k+1
i—f1—1 j—51—-1 Q]Sl s—1 1.

i+71+1 Oi—r41 1 =1+F ] k+1

+(_1)z+r1+ H 0-1/ r Z ( )s+ — 1 .

r=1 "i-r+l s=1 j—s+1 k=1 ] —k+1

Generalizing, taking into account the definitions (3), and since

o h Tk
o h T ke

we obtain (18). O
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Sp(u,v) =

Sr(”/ U) -

Sep(u,v) =

( (i-1)
Y P Y e @ Y P °
Cri |G, G’ Cy

o Cip
Q)"
Cin

Figure 4. Example of path reconstruction in the first subdomain to get C; ; starting from Cy ;.

For the special case of minimal configuration, the expression is simpler and we get
lemma 3.1 of [15].
Thus, the surface S can be written as follows.

Theorem 3. Let the B-spline curve network (1) satisfy the compatibility conditions C1. and C2.
Then the surface (4) with isoparametric curves (1) is:

S(u,v) = Sp(u,0) + Sr(u,v) + Sgp(u,v), (22)

where

n+2 m+1
3 (PVBo(1,0) + P Byuanj(1,0)) + 3 (QBio(w,0) + Q" Biia(u,0)),
j=0 i=1

m+1n+1

Y. ) Ti;Bij(u,0),
excluding the free parameters in (17)

Ci47,,1455 (Bl+?7,1+§5 (u,0)
in each subdomain of type [uz. , uz, ] X [0s;, Vs, ]

o ks .
+ Z (_1)z+]+m+5(57] hz Bi,j(ulv)>

i, j involved in the considered subdomain k§5+1 h‘?W'H

with T'; ; defined in (19).

Proof. The expression (22) follows directly from Theorem 1 and Lemma 1. O

Concerning the behaviour of the C; ; generation process, given in (18), we can state
the following theorem related to the round-off error growth, showing that such a growth
is linear.

Theorem 4. If the sequence of partitions {U x V'} of Q) is A-quasi uniform, i.e., there exists a
constant A > 1 such that 0 < max; ;{h;, k;}/ min; ;{h;, k;} < A, then the round-off error growth
is linear.
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We omit the proof of the above theorem because it can be obtained by following the
same reasoning given in Theorem 3.3 of [15]. If the sequence of partitions {U x V} is
uniform, i.e., A = 1, then Theorem 4 holds.

Remark 2. Although the surface S can be written as in Theorem 3, both for the case S;:;(Rmn)
and for the case S} (Tyun), we can note that in the case S3(Tyun) the number of free parameters is one

less than in the case S;:;(Rmn), since in S} (Tyun) the B; i's are linearly dependent, the dependence
relationship being [22,25]:

m+1n+1 o
Z Z(_l>l+]hiiji,j(ur ZJ) =0. (23)
i=1 j=1

It is possible to write one of the free parameters in (22) depending on the others. In the special
case of minimal configuration, we recall that (see [15]) this fact leads to the uniqueness of the
interpolating surface S. Moreover, if in (22) we consider all equal free parameters, we can use the
dependence relationship (23) to obtain a unique surface interpolating the curve network also in the
case of non minimal configuration.

4. Numerical Results
In this section we present several applications. We propose comparisons between
surfaces interpolating the curve network both in S%’;(Rmn) and S%(Tmn). Moreover, we

highlight, with an example, the behaviour of interpolating surfaces in S} (T, ) as pointed
out in Remark 2.

4.1. Test 1

In this first example, we show a curve network to be interpolated (Figure 5) and
compare tensor product and triangulated surfaces (Figure 6). Here, we consider two
subdomains of the parametric domain (), being the barrier at knot v;. As remarked in
Section 1, the higher degree of tensor product appears in the higher oscillations.

Figure 5. A curve network withm =R =3, n=4, S =3.
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Figure 6. (a) Tensor product and (b) triangulated surfaces with U = {0,0,0,1,2,3,4,4,4},
VvV ={0,0,0,1,2,3,4,5,55} and the two free control points C;; = (1,1,1) and C;3 = (3,6,7),
interpolating the curve network in Figure 5.

4.2. Test 2

Here again, we compare tensor product and triangulated surfaces in three different
cases (Figures 7-9), for given curve networks.

(a) (b)
Figure 7. (a) Tensor product and (b) triangulated surfaces with R = 3, S =6, m =5, n = 11,
u = {000,1+56,6,6}, V = {0001+ 11,12,12,12}, being the barriers at knots

Uy, Uy, 3,04, Vs, Vg, V19- The network control points are taken from Test 1 of [26].
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(a) (b)

Figure 8. (a) Tensor product and (b) triangulated surfaces with R = m =8, S =4, n =5,
u=1{0001+89299}V=1{0001-=5,6,6,6}, being the barrier at knot v3. The network control
points are taken from Test 3 of [26].

Figure 9. (a) Tensor product and (b) triangulated surfaces with R = m = 3, S = 3, n = 4,
u=1{0,001,223444}V=1{0001,2734,5,55}, being the barrier at knot v3.

4.3. Test 3

In the following example, we show what was noticed in Remark 2: in the case of
all equal free control points, we obtain again the uniqueness of the triangulated surface
(Figures 10b and 11b), described in [15] for a minimal configuration, while under the same
hypothesis tensor product surfaces change their shape (Figures 10a and 11a).

IS

(a) (b)
Figure 10. (a) Tensor product and (b) triangulated surfaces with U = V = {0,0,0, %, %, 1,1,1} and
the two free control points C1; = C13 = (1,0,3), being the barrier at knots v,.
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(a) (b)
Figure 11. (a) Tensor product and (b) triangulated surfaces with U = V = {0,0, 0,1 30 3, 1,1,1} and
the two free control points C17 = C; 3 = (5,5,5), being the barrier at knots v,.
4.4. Test 4

Regarding the choice of the free parameters, it is possible to choose them such that
the surface is “smooth”, i.e., the energy of a thin plate described by the surface is mini-
mal, e.g., see [27]. Since in a generic subdomain [”77' ur, 1] X [v5;,0s,,,] there is one free
parameter, we can extend the method proposed in [15] (Section 4.2) and we can consider
the following approximation

ch=/%ﬁl/%HKﬁmwmwz+uswuhwf+%8wwwDﬂ¢M%

of the thin plate energy, with

2 2
Suu(u ,U) a S(u U) SM'U( ) — a S(u’v) S‘(}Zi(u ,U) — a S(ulv)
’ ou? oudv ' ’ ov2
Then the free parameter C; +7,,145, can be chosen by minimizing ® with respect to it.
. d@ _ .
By setting Crorrrs, = 0, we obtain
Cl +77,1+§(5
h k fur 7+1 fv 55+1 Suu+8uu)S}A}l;+2(8uv+8uv)s}w+(va+8vv)5};z] (24)
= —M147, K145
! Jur Y et (S22 S+ (ST

Such a point is the one minimizing ©. The integrals in (24) can be exactly evaluated
by a composite tensor-product Gauss-Legendre quadrature formula with 3 x 3 nodes, in
the case S;:;(Rmn), and a composite Gaussian cubature on triangular domains (see [28]),
implemented by the Matlab function triquad [29], in the case S%(Tmn).

An example of the above choice of free parameters is proposed in Figure 12, where, on
the left, it is immediately clear its effect on the tensor product surface with respect to the
corresponding one in Figure 13.

We note that, in this example, the surfaces in Figures 12b and 13b are the same, being
a case of minimal configuration.
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Figure 12. (a) Tensor product and (b) triangulated surfaces with U = {0,0,0, %, %, %, %,1,1,1},
vV =1{0,0,0,%1,3,3,2,1,1,1} and free control point Cy ; & (0.1,8.33 - 1072, -2.43 - 10~%), obtained
by the minimization process (24).

05 05.

s 05

®)

vV =4{0,0,0, %, %, %, %, %, 1,1,1} and free control point C; 1 = (1,1,1).

4.5. Test 5

In this example, we compare the methods proposed here with another one that pro-
duces a Gordon-type C! biquadratic B-spline surface, [10] (Chapter 10).

In such a method, the surface is written as the Boolean sum of two skinned surfaces,
interpolating the curves C,(v) and Ds(u) given in (1), respectively, and one tensor product
surface interpolating the points I,5, given in (2) (for details of the construction see [10]
(Chapter 10)). In order to obtain a standard B-spline representation of the resulting surface,
it is necessary to make the three surfaces compatible in the B-spline sense (defined on the
same knot vectors) by applying the knot refinement algorithm [10].

Given the curve network of Figure 14a, withm = n =R =S =2, U =V =
{0,0,0, %, %, 1,1,1}, we construct the three surfaces interpolating the network: in Figure 14b,
the biquadratic Gordon-type B-spline surface; in Figure 15a, the biquadratic tensor product
surface; and in Figure 15b, the quadratic triangulated surface. The free control point for the
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tensor product surface is determined by the minimization process (24) and we use it also
for the triangulated one.

The shape of the three surfaces is comparable from the graphical point of view, but we
note that the Gordon-type surface is not defined on the rectangular partition defined by the
curve network knot vectors, due to the knot refinement.

(b)

Figure 14. (a) The curve network withm = n = R = S = 2 and (b) the Gordon-type surface

interpolating it.

(b)

Figure 15. (a) Tensor product and (b) triangulated surfaces interpolating the curve network in

Figure 14a.

5. Conclusions

In this paper, we generalize the method proposed in [15] for the definition of a B-spline
surface interpolating a B-spline curve network by the introduction of free parameters.
The cases of biquadratic tensor product and quadratic triangulated surfaces are studied,
compared and confirmed by graphical examples. In order to obtain more flexibility in
the shape modeling of such surfaces, the possible introduction of double knots in their
definition is an interesting topic that we intend to address in a forthcoming paper.
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