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Applying Bayesian Networks to Reduce Fuel
Consumption in Public Transportation

Federico Delussu, Faisal Imran, Rosa Meo and Michela Pellegrino
Dipartimento di Informatica, Università di Torino, Italy

Abstract—In this work we analyse data collected from sensors
installed on some vehicles of the local public transportation
system in a European city. Our analysis is conducted by means
of generation and application of Bayesian networks to describe
the dependence relationships between variables and to predict
the target variable of fuel consumption. We experimented with
different algorithms that explore the search space of the possible
alternatives guided by heuristics. We compare them with the
results obtained with the technology of High Performance Com-
puting, that allowed us to do an exhaustive search and find the
optimal solution from the viewpoint of the likelihood evaluation
measure. We solve the model evaluation and selection problem
by application of an alternative evaluation measure: Granger
causality. In addition we compared the predictive ability of the
target by the obtained networks. Finally, we conducted "what-
if" analysis under the form of intervention and counterfactual
analysis and show which decisions policy makers and the service
owners should afford to reduce costs and pollution.

I. INTRODUCTION

In [1], Judea Pearl effectively summarizes the multiple
facets and benefits we can obtain analysing data by con-
structing Bayesian networks (BN): (1) we obtain models that
graphically are able to describe immediately the relationships
between the variables; (2) can be applied to do feature selec-
tion (because we can omit the variables that are not connected
to a target), can be applied to prediction of a target (by
regression by means of the variables connected in the network
to a target or by a Bayesian probabilistic model) and finally
can be used to conduct reasoning by "what-if" analysis and
counterfactual analysis, with the goal of improving the target
in the future intervening on the model.

We follow these suggestions by analysing the dataset col-
lected by a set of sensors installed on-board on the buses of
the public transportation system of a big city in Europe, with
the goal of reducing fuel consumption, air pollution and costs
of the service.

The collected variables from a period of 6 consecutive
months are the following: time reference, vehicle identi-
fier, travelled Distance, altitude (Height), air-conditioning
on (Aircond), seconds with accelerator pedal pressed
(Traction), velocity, mass of the bus and people. By inter-
vention on some of the variables we can try to reduce fuel
consumption but first we need to discover on which of the
variables the target (fuel) depends upon. We try to solve this
by discoverying BN on collected data.

II. BAYESIAN NETWORK BY HEURISTIC AND
EXHAUSTIVE EXPLORATION OF THE SEARCH SPACE OF

THE HYPOTHESIS

In a linear Gaussian BN [2] the distribution of a variable
(node) conditioning on its parents is a normal random variable
such that the conditioning effect of each parent is modeled by
an additive linear term in the mean.

Some of the collected continuous variables violate the
assumptions of Gaussianity, especially Dist, Height,
Aircond and Traction. To circumvent this issue we can
convert the continuous variables into discrete ones, modeled
as multinomial data and represented as contingency tables.
For the discretisation we employ the Information-Preserving
Discretisation algorithm [3].
Learning the structure of a BN is a complex task because
the number of possible DAGs grows super exponentially
as the number of nodes increases. Only a small fraction
of its elements can be investigated in a reasonable time.
Therefore, most of the structure learning algorithms deliver a
sub-optimal solution by applying an heuristics (like Bayesian
Information Criterion (BIC) [4]) and a greedy algorithm like
Hill-climbing.
In the current project we take advantage of an parallel
computing to find the optimal structure by means of a
brute force algorithm. Each possible DAG is assigned a
goodness-of-fit "network score" (BIC). The brute force
algorithm returns the BN having the maximum score since
larger values means better fit.

We learn the first two causal models under the assumption of
Gaussianity from the training dataset including Fuelperkm,
Dist, Height, Aircond, Traction, Mass and V el. One is
delivered by the brute force algorithm mentioned above and
the other one is built through the Hill-Climbing algorithm
initializing the network with an empty structure. Both of
them evaluate the goodness of fit using the BIC score. Other
three causal models are learnt from binarized data, including
the same seven variables as above. The first one is obtained
through the brute force algorithm with BIC score. The other
ones are delivered by the Hill-Climbing algorithm using dif-
ferent scores, such as BIC and K2 [4].

In order to compare the quality of the different models,
we evaluate their predictive performances. For each network
we averaged the 10-folds Cross Validation error over the
predictions corresponding to each node, as reported in the table



below. In other words, each entry in the table is computed asP7
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according the model M and M is one of the five networks
defined above. For each feature, the prediction is based on
its parents according the specified model M , then we can
exploit each network structure for fitting both a Gaussian and
a Multinomial model, whether it was learnt from continuous
or discrete variables.

As regards the regression with continuous variables, we used
the Mean Squared Error MSE =
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n in order to measure the error
for each fold, where n is the number of instances in the
training dataset.

MSE (cont) RMSE (cont) Misclassification Rate (discr)
disc_ bf_bic 7645.70 57.00 0.18
disc_ hc_bic 45992.80 104.80 0.19
disc_ hc_k2 39325.40 98.60 0.24
cont_ bf_bic 6224.10 52.70 0.14
cont_ hc_bic 46182.90 105.40 0.19

TABLE I: Each row name specifies the data used to learn
the network structure (discrete or continuous variables), the
structure learning algorithm (Brute Force or Hill-Climbing)
and the network score (BIC or K2)). Each column name
specifies the error measure and the type of data used for
prediction (discrete or continuous).

As regards the classification with binary variables, we used
the misclassification rate = count of misclassifications

n in
order to measure the error for each fold. As we can see, the
two networks provided by the brute force algorithm account
for the lowest predictive errors.

III. MODEL EVALUATION BY GRANGER CAUSALITY

We perform model evaluation of the Bayes Networks by
means of the statistical concept of Granger Causality which
applies to the time series domain. In fact the analysed data
set D can be arranged as a set of multivariate time series;
each time-series Dvd is defined as a time-ordered collection
of records of vehicle v in the working day d.
Given two stationary time series A and B we perform a
Granger Causality Test in order to assess whether A has
a predictive power in forecasting B. We compare the two
models:

(AR) Bt =�0 + �1Bt�1 + ...+ �qBt�q + ✏t (1)
(V AR) Bt =�0 + �1Bt�1 + ...+ �qBt�q

+ ↵1At�1 + ...+ ↵qAt�q + ✏t (2)

The first equation (AR) is a univariate autoregression model
of order q over B lagged values (with coefficients �i and a
noise error term ✏t), the second equation (VAR) is a vector
autoregression model of order q with the lagged values of A

(with coefficients ↵j). The Granger Causality test is an F-test
on the null hypothesis: H0 := {↵j = 0; j = 1, .., q} [5].
Each time series involved in the Granger Test must satisfy

the stationarity condition, in our work we evaluate it with
Augmented Dickey-Fuller test (ADF) [6] and apply iteratively
first-differencing over the time-series until the stationarity con-
dition is satisfied. Given the multivariate time series Dvd we
conduct a series of Granger tests over all possible ordered pairs
of variables in S and aggregate the results for all pairs into a
matrix Gvd. We define the Granger matrix G as the average of
the Gvd matrices computed over the set of multivariate time
series. Thus the entry G[i, j] is the success rate of the Granger
test between Si and Sj over the multivariate time series data
set.
We perform a model evaluation over the different Bayes
Networks computed so far. We compute a Granger matrix
for each type of data set. Given a Bayes Network B we
define its corresponding adjacency matrix as A

B we compute
the euclidean distance of the Granger matrix G from A

B as
dist(G,A

B) =
qP7

i,j=1(Gij �A
B
ij)

2.
The following table displays the distance dist(G,A

B) for each
considered BN:

TABLE II: dist(G,A
B) : each B is identified by: Data

(columns), Score (rows), Algorithm (displayed within the
entries; BF = Brute Force, HC = Hill Climbing )

dist(G,AB) Data
Score discrete continuous
BIC BF: 3.11 BF: 3.39

HC: 3.30 HC: 3.43
K2 HC: 3.05

dist(AB
, G) is used as a mean of comparison over the

BNs, as distance decreases we have an higher compatibility
between the causal relationships found by Granger tests and
the edges of the BN. We observe that, considering the networks
computed with the BIC score, the networks computed with the
Brute Force algorithm have a lower distance with respect to
those computed with the Hill Climbing algorithm: this result
upholds the efficiency of the proposed BF algorithm.

IV. APPLICATION OF THE DISCOVERED KNOWLEDGE

Let us consider the Gaussian BN learnt from the original
continuous variables through the brute force algorithm. As
explained in [7], since the model is linear, we have to regress
the target Y on X and on all of the covariates satisfying the
so called back-door criterion from X to Y . The coefficient of
X is the desired causal effect.

TABLE III: Causal effect on Fuelperkm for Gaussian BN
adjustment set C.E. structural parameters

Dist { Vel Traction } 0.081 0.096
Height { Vel Dist } 4.581 5.239

Vel {} 16.42 12.271
Traction {} -0.516 -1.531
Aircond { Vel Traction } 0.352 0.361

Concerning the Gaussian BN, the table above shows that
each parent of Fuelperkm has a causal effect that is sim-
ilar to the structural parameters of the linear regression



Fuelperkm ⇠ Dist+Height+V el+Traction+Aircond+
const) (coeffs in last column). The causal effect of Traction
on Fuelperkm is negative: the reason is that traction time
increases with distance (corr(Dist, T raction) = 0.929) and
a long travel is likely to be covered mainly on straight roads
with steady speed and reduced brakes usage. Moreover, V el

accounts for the strongest casual effect on Fuelperkm.
Conclusion: we can say that we were able to confirm the main
causal relationships between fuel, traction and velocity, both
in discretised and continuous data.
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