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A B S T R A C T   

Deriving burn severity from multispectral satellite data is a widely adopted approach to infer the degree of 
environmental change caused by fire. Burn severity maps obtained by thresholding bi-temporal indices based on 
pre- and post-fire Normalized Burn Ratio (NBR) can vary substantially depending on temporal constraints such as 
matched acquisition and optimal seasonal timing. Satisfying temporal requirements is crucial to effectively 
disentangle fire and non-fire induced spectral changes and can be particularly challenging when only a few 
cloud-free images are available. Our study focuses on 10 wildfires that occurred in mountainous areas of the 
Piedmont Region (Italy) during autumn 2017 following a severe and prolonged drought period. Our objectives 
were to: (i) generate reflectance composites using Sentinel-2 imagery that were optimised for seasonal timing by 
embedding spatial patterns of long-term land surface phenology (LSP); (ii) produce and validate burn severity 
maps based on the modelled relationship between bi-temporal indices and field data; (iii) compare burn severity 
maps obtained using either a pair of cloud-free Sentinel-2 images, i.e. paired images, or reflectance composites. 
We proposed a pixel-based compositing algorithm coupling the weighted geometric median and thematic spatial 
information, e.g. long-term LSP metrics derived from the MODIS Collection 6 Land Cover Dynamics Product, to 
rank all the clear observations available in the growing season. Composite Burn Index data and bi-temporal 
indices exhibited a strong nonlinear relationship (R2 > 0.85) using paired images or reflectance composites. 
Burn severity maps attained overall classification accuracy ranging from 76.9% to 83.7% (Kappa between 0.61 
and 0.72) and the Relative differenced NBR (RdNBR) achieved the best results compared to other bi-temporal 
indices (differenced NBR and Relativized Burn Ratio). Improvements in overall classification accuracy offered 
by the calibration of bi-temporal indices with the dNBR offset were limited to burn severity maps derived from 
paired images. Reflectance composites provided the highest overall classification accuracy and differences with 
paired images were significant using uncalibrated bi-temporal indices (4.4% to 5.2%) while they decreased 
(2.8% to 3.2%) when we calibrated bi-temporal indices derived from paired images. The extent of the high 
severity category increased by ~19% in burn severity maps derived from reflectance composites (uncalibrated 
RdNBR) compared to those from paired images (calibrated RdNBR). The reduced contrast between healthy and 
burnt conditions associated with suboptimal seasonal timing caused an underestimation of burnt areas. By 
embedding spatial patterns of long-term LSP metrics, our approach provided consistent reflectance composites 
targeted at a specific phenological stage and minimising non-fire induced inter-annual changes. Being inde-
pendent from the multispectral dataset employed, the proposed pixel-based compositing approach offers new 
opportunities for operational change detection applications in geographic areas characterised by persistent cloud 
cover.   

1. Introduction 

Fire is one of the major natural disturbance agents in European 
Alpine forests (Bebi et al., 2017; Kulakowski et al., 2016). Current fire 

regimes in the European Alps exhibit significant heterogeneity in terms 
of fire frequency, spatial extent and seasonality, according to the vari-
ability in climatic, environmental and anthropogenic drivers (Bebi et al., 
2017; Conedera et al., 2018; Wastl et al., 2013; Zumbrunnen et al., 
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2011). Recent and projected increases in temperatures and drought 
conditions associated with climate change (Gobiet et al., 2014; Gobiet 
and Kotlarski, 2020; Gudmundsson and Seneviratne, 2016) are crucial 
factors for future shifts of fire regimes in the European Alps (Bedia et al., 
2014; Cane et al., 2013; Schumacher and Bugmann, 2006), substantially 
increasing the probability of large wildfires occurrence (Barbero et al., 
2019). Recently, the severe and prolonged drought conditions associ-
ated with heat waves that occurred during the summer of 2017 in 
several parts of south-central Europe (Rita et al., 2020) led to an 
anomalous fire season in many regions of France, Italy, Portugal and 
Spain (Turco et al., 2018). 

Severity is one of the main factors influencing ecosystem responses, 
so its assessment is crucial to effectively guide post-fire management 
strategies aimed at promoting forest regeneration and the recovery of 
ecosystem services (Leverkus et al., 2018). From an ecological 
perspective, severity is defined as the magnitude of environmental 
change caused by fire (Key and Benson, 2006; Lentile et al., 2006). The 
term burn severity is commonly used in remote sensing applications 
(Keeley, 2009), and its differences with fire severity are related to the 
assessment period (Cansler and McKenzie, 2012; Lentile et al., 2006; 
Veraverbeke et al., 2010a). Fire severity commonly refers to an initial 
assessment of those effects directly related to combustion, such as fuel 
consumption and tree mortality measured immediately after the fire. On 
the contrary, burn severity refers to an extended assessment of severity, 
usually performed during the first growing season following the fire. 
This implicates that burn severity combines fire effects and the initial 
ecosystem response, including delayed mortality and survivorship (Key, 
2006). 

Mapping burn severity with medium-resolution satellite imagery, e. 
g. Landsat data, acquired in the pre- and post-fire growing seasons, is 
typically performed through bi-temporal indices based on the Normal-
ized Burn Ratio (NBR) (García and Caselles, 1991), such as the differ-
enced Normalized Burn Ratio (dNBR, Key and Benson, 2006), the 
Relative dNBR (RdNBR, Miller and Thode, 2007) and the Relativized 
Burn Ratio (RBR, Parks et al., 2014). Ecologically meaningful burn 
severity maps can be produced by classifying bi-temporal indices using 
thresholds derived from parametric models incorporating field measures 
of burn severity (Key and Benson, 2006; Kolden et al., 2015). Commonly 
adopted field data comprehend the Composite Burn Index (CBI) (Cansler 
and McKenzie, 2012; Key and Benson, 2006) and its modifications, i.e. 
GeoCBI (De Santis and Chuvieco, 2009) and weighted CBI (Soverel et al., 
2010), percentage change in tree canopy cover and tree basal area 
(Miller et al., 2009). 

Given the influence of image selection on bi-temporal indices (Chen 
et al., 2020; Veraverbeke et al., 2010a), pre- and post-fire image pairs 
employed for computing bi-temporal indices should meet temporal re-
quirements relative to matched acquisition and optimal seasonal timing 
(Key, 2006; Veraverbeke et al., 2010a). Image pairs with similar 
acquisition timing throughout the year enhance spectral matching be-
tween pre- and post-fire conditions, enabling to disentangle between 
spectral changes induced by fire and external factors (Eidenshink et al., 
2007; Key, 2006; Miller and Thode, 2007; Veraverbeke et al., 2010b). 
Plant phenology, solar elevation angle, illumination variations due to 
topography, and moisture content of both soil and vegetation are among 
the most important external factors causing inter- and intra-annual 
changes in the spectral response of the land surface (Key, 2006; Key 
and Benson, 2006; Veraverbeke et al., 2010b; Verbyla et al., 2008). 
Several approaches are useful to limit the influence of such non-fire 
induced changes. For example, specific topographic correction tech-
niques can effectively reduce pre- and post-fire differences in reflectance 
values arising from illumination effects associated with rugged terrains 
(Veraverbeke et al., 2010b). Inter-annual variations in plant phenology 
and moisture content can be mitigated by performing a calibration based 
on dNBR values retrieved from the unburnt area surrounding the fire 
perimeter (Key, 2006; Meddens et al., 2016; Miller and Thode, 2007; 
Parks et al., 2014) and in the same forest type (Furniss et al., 2020; 

Picotte et al., 2020). The dNBR offset, usually computed as the average 
from the unburnt area and subtracted from the entire scene, should 
ideally be close to zero in the case of image pairs with matched spectral 
conditions (Key, 2006). This approach proved to be effective in 
improving the relationship between bi-temporal indices and CBI (Med-
dens et al., 2016; Parks et al., 2018). Nevertheless, extracting the dNBR 
offset can be a subjective process (Picotte et al., 2020) and depends on 
the spatial configuration of the landscape mosaic (Parks et al., 2018). In 
particular, the selection of an appropriate set of pixels requires the 
presence of similar forest types near the burnt area, and a single value 
could be suboptimal to calibrate inter-annual differences in multiple 
forest types or within burnt areas with a broad altitudinal gradient. 

Optimal seasonal timing refers to the timing of image acquisition 
that maximises the contrast between healthy and burnt vegetation (Chen 
et al., 2020; Eidenshink et al., 2007; Key and Benson, 2006; Veraverbeke 
et al., 2010a). In temperate ecosystems, the optimal seasonal timing 
typically spans from early-to-middle growing season dates as the vege-
tation reaches its maximal photosynthetic activity (Eidenshink et al., 
2007; Key, 2006; Key and Benson, 2006; Picotte et al., 2020). In burnt 
areas spanning a wide elevation range, the optimal seasonal timing can 
vary considerably, thus requiring multiple images to be processed (Key, 
2006). Moreover, complex landscape mosaics such as those of the 
Mediterranean Basin exhibit a high degree of local variations in 
phenology associated with different land covers (Veraverbeke et al., 
2010a). 

The selection of appropriate image pairs poses challenges for the 
operational assessment of burn severity with bi-temporal indices, e.g. 
when large areas or a high number of fires are considered (Parks et al., 
2018; Whitman et al., 2020). Specifically, the amount of time required 
by expert operators (Parks et al., 2018), the lack of standardised pro-
cedures (Chen et al., 2020), and the availability of cloud-free images 
(French et al., 2008), especially during the first post-fire growing season 
(Key and Benson, 2006), constrain the usage of bi-temporal indices. 
Recent approaches to overcome the limitations above have been 
developed (Parks et al., 2018; Whitman et al., 2020). They rely on pixel- 
based mean compositing algorithms that exploit all the Landsat images 
available in the pre- and post-fire growing season. While producing 
spatially consistent results, the mean compositing method requires an 
effective removal of invalid pixels, i.e. those contaminated by clouds, 
cloud shadows or snow (Vancutsem et al., 2007). As accurately identi-
fying cloud and cloud shadows in Landsat and Sentinel-2 imagery is an 
active research topic (Tarrio et al., 2020; Wei et al., 2020), compositing 
methods that minimise the importance of odd values would be prefer-
able. Compositing algorithms based on multidimensional medians such 
as the medoid (Flood, 2013) and the geometric median (Roberts et al., 
2017) can produce consistent pixel-based reflectance composites when 
the proportion of invalid values is less than half of the observations. The 
medoid approach belongs to the best pixel selection strategy group 
(sensu Griffiths et al., 2019), while the geometric median generates 
synthetic reflectance values, i.e. not actually sensed. The amount of 
available data considerably influences the quality of reflectance com-
posites produced with the medoid (Roberts et al., 2017; Van Doninck 
and Tuomisto, 2017). However, the geometric median can produce 
spatially coherent reflectance values even when clear observations are 
scarce (Roberts et al., 2017). These methods have been successfully 
employed to produce image composites of Landsat imagery (Flood, 
2013; Kennedy et al., 2018; Roberts et al., 2017; Van Doninck and 
Tuomisto, 2017). 

A widely adopted best pixel selection strategy is parametric scoring, 
which involves assigning a possibly weighted sum of scores obtained 
from the evaluation of several parameters to each clear observation 
available within the compositing period for a given pixel location 
(Frantz et al., 2017; Griffiths et al., 2013; White et al., 2014). The 
acquisition Day-Of-Year (DOY) and year, the distance to clouds and 
cloud shadows, the sensor and the amount of atmospheric haze are 
among the most used parameters. While target DOYs are often 
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determined in a static fashion for producing reflectance composites over 
large areas (Griffiths et al., 2019, 2014; White et al., 2014), spatially 
explicit land surface phenology (LSP) metrics can serve to dynamically 
adjust scoring functions relative to the acquisition DOY for attaining 
phenological coherence (Frantz et al., 2017). Reflectance composites 
optimised for representing land surface at a specific phenological stage 
encompass climatic variations induced by both latitudinal and elevation 
gradients that can otherwise generate spectral inconsistencies when 
analysing vegetation dynamics over time (Frantz et al., 2017). 

In the Western Italian Alps (Piedmont Region), several large wild-
fires simultaneously occurred in the second half of October 2017, 
outside of the fire season that typically spans from winter to early spring. 
They were favoured by exceptional summer drought conditions that 
lasted into the autumn associated with strong gusts of foehn wind (Arpa 
Piemonte, 2017; Bo et al., 2020). These events burnt nearly 10,000 ha of 
forests, woodlands, shrublands and pastures and heavily affected the air 
quality of the surrounding urban areas (Bo et al., 2020). In response to 
these events, a post-fire management plan has been developed by the 
regional forest managers in cooperation with other stakeholders 
(Regione Piemonte, 2019), using burn severity maps produced by the 
University of Torino. Burn severity maps provided crucial information to 
identify areas that required prompt post-fire interventions. In fact, fire 
impaired the protective function of montane forests (e.g. Brang et al., 
2006), i.e. protection against soil erosion, rockfall and avalanches, 
particularly in high severity patches. 

Our general hypothesis is that phenologically coherent reflectance 
composites can increase both effectiveness and operational usage of bi- 
temporal indices for mapping burn severity. In particular, we expect that 
targeting surface reflectance in early to intermediate stages of the 
growing season can enhance the discrimination capability of bi- 
temporal burn severity indices, e.g. between fire and non-fire induced 
spectral changes. In this study, we aimed at achieving the following 
objectives: (i) to generate pre- and post-fire reflectance composites 
optimised for burn severity mapping with Sentinel-2 imagery by 
embedding spatial patterns of long-term LSP metrics; (ii) to produce and 
validate burn severity maps based on the modelled relationship between 
bi-temporal indices and CBI data; (iii) to compare burn severity maps 
obtained by using either Sentinel-2 image pairs or reflectance 
composites. 

2. Materials and methods 

2.1. Study area 

Our study focuses on 10 burnt areas (Fig. 1, Table 1) whose perim-
eters were mapped by the Carabinieri Command for Forest Protection 
through field surveys. We retrieved the start and end dates of each fire 
(Table 1) from the Visible Infrared Imaging Radiometer Suite (VIIRS) 
375 m standard Active Fire product (Schroeder et al., 2014) distributed 
by NASA’s Fire Information for Resource Management System (FIRMS). 
The extent of burnt areas ranged from 55 to 3974 ha, resulting in a total 
area of 9740 ha, of which forests covered 7202 ha, according to the 
Dominant Leaf Type map produced in 2015 (European Environmental 
Agency, 2018a). Burnt areas were mostly covered by montane and 
submontane broadleaved and coniferous forests. In particular, forests 
dominated by broadleaved species covered 4995 ha, and among tree 
species, sweet chestnut (Castanea sativa M.), European beech (Fagus 
sylvatica L.) and downy oak (Quercus pubescens W.) were the most 
abundant. The dominant coniferous tree species were European larch 
(Larix decidua M.), and Scots pine (Pinus sylvestris L.), covering 2207 ha 
of the total burnt area. 

2.2. General overview 

We performed the analyses in two steps: fire severity (Section 2.5) 
and burn severity mapping (Section 2.6), as highlighted in Fig. 2. Fire 

severity maps allowed us to develop the sampling design to collect CBI 
data in the burnt areas (Section 2.4). We employed LSP metrics during 
the selection of pre- and post-fire images, hereafter referred to as paired 
images, and to produce reflectance composites (Fig. 2). 

2.3. Satellite data and preprocessing 

We conducted the analyses using data acquired by the MultiSpectral 
Instrument (MSI) onboard Sentinel-2A (S2A) and Sentinel-2B (S2B) 
satellites. Specifically, we downloaded Sentinel-2 images containing 
Top-Of-Atmosphere (TOA) reflectance values processed according to 
Level-1C for the UTM-based Military Grid Reference System (MGRS) 
tiles 32TLQ and 32TLR. We preprocessed Sentinel-2 images employed 
for mapping fire severity (Section 2.5) and burn severity (Section 2.6) 
using different tools, depending on their availability when we performed 
the analyses. We mapped fire severity using Bottom-Of-Atmosphere 
(BOA) reflectance products obtained with the Sen2Cor 2.4.0 processor 
(Louis et al., 2016). We removed pixels contaminated by clouds, cloud 
shadows and snow by applying masks generated using the Function of 
mask (Fmask) version 4.0 software (Qiu et al., 2019). We mapped burn 
severity using BOA reflectance products derived with the Framework for 
Operational Radiometric Correction for Environmental monitoring 
(FORCE) software (version 3.6.5, available at https://github.com/da 
vidfrantz/force) (Frantz, 2019). In particular, the FORCE Level 2 Pro-
cessing System performed the following operations: (i) detection of 
clouds, cloud shadows and snow using a modified version of the Func-
tion of mask (Fmask) algorithm (Frantz et al., 2018); (ii) sub-pixel co- 
registration (Rufin et al., 2020); (iii) atmospheric correction (Frantz 
et al., 2016); (iv) topographic correction (Kobayashi and Sanga-Ngoie, 
2008); (v) computation of Nadir BRDF (Bidirectional Reflectance Dis-
tribution Function)-Adjusted Reflectance (NBAR) (Roy et al., 2017a, 
2017b). Sub-pixel co-registration, topographic correction and NBAR 
values were fundamental requirements for temporal and spatial con-
sistency in a multi-temporal analysis setting (Frantz et al., 2016; Roy 
et al., 2017a; Rufin et al., 2020). As Sentinel-2 bands at 20 m spatial 
resolution, i.e. band 5 (B5), band 6 (B6), band 7 (B7), band 8A (B8A), 
band 11 (B11) and band 12 (B12), were processed by FORCE at 10 m by 
dividing each pixel into four sub-pixels, we resampled BOA reflectance 
values to the original 20 m grid using the cubic convolution method. For 
the Quality Assurance Information (QAI) masks resampling, we applied 
a conservative approach based on the “presence” rule proposed by 

Fig. 1. Geographic distribution of the burnt areas, sorted using their extent in 
decreasing order, from the largest to the smallest. Forest cover in the back-
ground corresponds to the Dominant Leaf Type map (reference year 2015, 20 m 
spatial resolution, European Environmental Agency, 2018a). 
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Table 1 
Information regarding fire, landform, climate and forest cover properties of the burnt areas. For spatial data we report the average ± standard deviation. Column 
abbreviations are as follows: Ba = Burnt area; Ex = Extent; Sd = Start date; Ed = End date; El = Elevation; Te = Mean annual temperature; Pr = Mean annual 
precipitation; Br = Broadleaved tree cover; Co = Coniferous tree cover; Nf = Non-forest cover; Dt = Dominant tree species. Tree species abbreviations are: Eb =
European beech; Sc = Sweet chestnut; Do = Downy oak; Mb = Mixed broadleaves; El = European larch; Sp = Scots pine.  

Ba Ex (ha) Sd (yyyy-mm-dd) Ed (yyyy-mm-dd) El (m a.s.l.) Te (◦C) Pr (mm) Br (%) Co (%) Nf (%) Dt 

1 3974 2017-10-22 2017-10-30 1422 ± 488 6.1 ± 2.9 731 ± 104 37.1 26.7 36.2 Eb; Sp 
2 1818 2017-10-18 2017-10-31 853 ± 242 9.7 ± 1.4 786 ± 65 94.1 5.1 0.8 Sc; Eb 
3 1570 2017-10-23 2017-10-30 1190 ± 340 7.4 ± 1.9 729 ± 63 61.8 21.3 16.9 Sc; Mb 
4 666 2017-10-23 2017-10-30 1716 ± 246 4.6 ± 1.4 796 ± 68 15.1 58.6 26.3 El; Mb 
5 624 2017-10-25 2017-10-28 1487 ± 325 5.5 ± 1.9 868 ± 99 32.7 2.2 65 Mb; Sc 
6 378 2017-10-24 2017-10-29 1790 ± 212 4.6 ± 1.2 667 ± 31 22.3 42.8 34.9 El; Mb 
7 271 2017-10-23 2017-10-26 691 ± 142 10.4 ± 1 689 ± 39 79.9 16.3 3.8 Sc; Mb 
8 220 2017-10-28 2017-10-30 1423 ± 197 6.8 ± 1.2 803 ± 45 72.3 3 24.7 Do; Eb 
9 164 2017-10-22 2017-10-25 1489 ± 173 6 ± 1.3 730 ± 31 15.5 60.6 23.9 Sp; El 
10 55 2017-10-23 2017-10-25 911 ± 67 9.2 ± 0.5 705 ± 19 92.6 3.2 4.2 Sc; Eb  

Fig. 2. Flowchart of the analyses performed in the current study, grouped into fire severity and burn severity mapping steps.  
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Claverie et al. (2018): for each bit, in the case one of the four 10 m pixels 
within each original 20 m was equal to one, all four pixels were set to 
one. Additional processing operations included spatial subsetting based 
on buffers around wildfire perimeters and invalid pixels masking, i.e. 
those covered by clouds, cloud shadows, snow and saturated pixels using 
the relevant bits in the QAI mask. We processed raster data using the R 
(R Core Team, 2021) package “raster” (Hijmans, 2020). 

2.4. Field data 

We employed the Composite Burn Index (CBI) protocol (Key and 
Benson, 2006) to classify and validate bi-temporal indices derived for 
burn severity mapping (Section 2.6). CBI scores rely on ocular estima-
tions of different factors grouped into five vertical strata: three in the 
understory and two in the overstory vegetation (Key and Benson, 2006). 
The final CBI score assigned to each plot assumed values in the interval 
[0, 3], where zero corresponded to an unaltered condition and three to 
the maximum degree of fire induced changes. The CBI sampling design 
was based on fire severity maps (Section 2.5) and forest types. In 
particular, a stratified random scheme for plot selection allowed us to 
collect CBI data covering the whole range of its values within the 
dominant tree species. We located 20 m circular CBI plots at a minimum 
distance of 60 m from each other and at the centre of 3 × 3 windows of 
20 m pixels characterised by a low variability in dNBR (Key and Benson, 
2006). We placed centroids of CBI plots close to those of Sentinel-2 
pixels using a survey-grade Trimble R2 GNSS antenna with sub-meter 
geolocation accuracy and performed differential correction of these lo-
cations. We assigned CBI scores with the supervision of the same person 
in order to minimise the variability introduced by different evaluators 
(Miller et al., 2009). We surveyed a total of 251 CBI plots from June to 
September 2018, distributed among the burnt areas as reported in 
Table S3. We classified CBI values into three severity categories: un-
changed to low (CBI ≤ 1.25), moderate (CBI > 1.25 and ≤ 2.25) and 
high (CBI > 2.25) as proposed in other studies (Miller et al., 2009; 
Soverel et al., 2010). The distribution of CBI plots among severity cat-
egories was as follows: 51% in the unchanged to low, 33.5% in the 
moderate, and 15.5% in the high. In some areas, we were able to survey 
only a limited number of plots, i.e. less than 10, due to steep slopes and 
the lack of hiking trails for safely reaching the burned patches. 

2.5. Fire severity 

We mapped fire severity patterns using Sentinel-2 data acquired 
between September and November 2017 (Table S1). We computed pre- 
and post-fire NBR (Eq. (1)) using the near infrared (NIR) narrow band 
(MSI B8A) and the second shortwave infrared (SWIR) band (MSI B12) to 
derive dNBR (Table 2). We calibrated dNBR by subtracting the dNBR 
offset, which was the average dNBR of unburnt pixels close to each fire 
perimeter, located within a 200 m outer buffer. We employed a rela-
tively narrow buffer to minimise differences between burnt and unburnt 
vegetation characteristics, as suggested by Parks et al. (2018). Further-
more, inside this region, we selected only pixels mainly covered by tree 
canopies, e.g. more than two-thirds, to limit the influence of pheno-
logical mismatches caused by other vegetation types. In particular, we 
performed the selection according to the Tree Cover Density map 

produced by the Copernicus Land Monitoring Service in 2015 at 20 m 
spatial resolution (European Environmental Agency, 2018b). We finally 
classified dNBR using thresholds proposed by Key and Benson (2006). 

NBR =
(NIR − SWIR)
(NIR + SWIR)

(1)  

2.6. Burn severity 

We mapped burn severity using bi-temporal indices based on NBR 
(dNBR, RdNBR, RBR) (Table 2) and performed the calibration through 
the dNBR offset. We employed either paired images acquired during the 
growing seasons of 2017 and 2018 (Table S2) or reflectance composites 
generated using all the clear observations available in these periods. 
Specifically, we defined a compositing period spanning from 20 May to 
10 September as this date range falls within the growing season in the 
burnt areas. The phenology-based weight used in the compositing al-
gorithm (Section 2.7.1.) generally assumed minimum values, e.g. 0.01, 
at the start and end dates of this period. 

For each burnt area, we obtained paired images by selecting pre- and 
post-fire images that were cloud-free, i.e. with a percentage of valid 
pixels ≥ 95, and with matched acquisition dates, i.e. closest DOY as 
possible. If multiple paired images were available, we chose those closer 
to the long-term peak of the growing season, computed as described in 
Section 2.7.1. 

2.7. Sentinel-2 reflectance composites 

We produced reflectance composites using all the MSI bands ac-
quired at 20 m spatial resolution and the weighted geometric median, 
also known as the Fermat-Weber location problem (Brimberg, 1995; 
Cohen et al., 2016; Vardi and Zhang, 2000). The weighted geometric 
median is an estimator of centrality for multivariate data based on the 
weighted sum of Euclidean distances to all the observations rather than 
on their sum, as in the case of the geometric median (Chaudhuri, 1996). 
It is effective for the generation of noise-reduced, cloud-free reflectance 
composites (Roberts et al., 2019). 

At the pixel level, we considered a n × p matrix containing n repeated 
observations in rows and reflectance values relative to p spectral bands 
in columns. We assigned a weight to each observation based on a specific 
weighting system. This procedure, iterated over all the pixels forming 
the image, can be formally expressed as follows. Given n observations yi 
∈ ℝp with associated weights wi ∈ ℝ>0, i = 1,…,n, the weighted geo-
metric median is the vector mn ∈ ℝp that minimises the weighted sum of 
Euclidean distances from the n observations: 

mn = argminy∈ℝp

∑n

i=1
wi ‖ yi − y ‖, (2)  

where ‖∙‖ denotes the Euclidean norm. If all the weights are equal, i.e. 
wi = 1/n, mn becomes the geometric median (Chaouch and Goga, 2012; 
Chaudhuri, 1996; Small, 1990). When observations are not collinear, e. 
g. they lie in two or more dimensions, the (weighted) geometric median 
always exists and is unique (Milasevic and Ducharme, 1987). The 
robustness properties of the weighted geometric median differ from 
those of the geometric median (Nevalainen et al., 2007), which is un-
affected by outlying values if their proportion remains under the 
breakdown point corresponding to half of the observations (Lopuhaa 
and Rousseeuw, 1991; Oja, 2013). In particular, the robustness of the 
estimator is influenced mostly by the weights assigned to invalid ob-
servations, e.g. contaminated by clouds, as it depends on the smallest set 
of observations whose weights sum up to at least half of all weights 
(Nevalainen et al., 2007). If only two clear observations are available, 
the weighted geometric median corresponds to the observation with the 
highest weight, providing no resistance to potential invalid values. As 
mountainous areas are characterised by frequent cloud and snow cover, 

Table 2 
Bi-temporal indices employed for mapping fire severity (dNBR) and burn 
severity (dNBR, RdNBR, RBR).  

Index Formula Reference 

dNBR (NBRpre− fire − NBRpost− fire) × 1000 Key and Benson, 2006 
RdNBR dNBR

⃒
⃒NBRpre− fire

⃒
⃒0.5   

Miller and Thode, 2007 

RBR  dNBR
NBRpre− fire + 1.001  

Parks et al., 2014  
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the number of clear observations during certain growing seasons can be 
equal to two, so an adaptive time window for selecting more clear ob-
servations can mitigate data scarcity. During the compositing process, 
the width of the time window iteratively widened up to 20 days for each 
side until the number of clear observations for a given pixel location 
reached a minimum of three. We computed the weighted geometric 
median using Weiszfeld’s iterative algorithm (Vardi and Zhang, 2000; 
Weiszfeld, 1937) implemented in the R (R Core Team, 2021) package 
“Gmedian” (Cardot, 2020), which uses efficient linear algebra libraries 
based on C++ programming language. 

2.7.1. Weighting system 
Our pixel-based weighting system prioritised clear observations ac-

quired during the greenup phase of the growing season and close to the 
date of peak while it penalised those lying nearby clouds or cloud 
shadows. Hence, the total weight wi of the i-th observation was the sum 
of a phenology-based weight (wp) with a distance-based weight (wd), and 
each of them assumed values in the interval [0, 1]. We computed wp 
through long-term land surface phenology (LSP) metrics representing 
the DOY at which transitions between phenological phases typically 
occur at a given location. Long-term LSP metrics allowed us to overcome 
two major limitations related to annual data. First, post-fire LSP metrics 
likely deviated from pre-fire ones due to changes in vegetation cover. 
Second, persistent snow and cloud cover occurring in mountainous areas 
during certain years prevent the computation of wp on a yearly basis. We 
derived long-term LSP metrics from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) Collection 6 Land Cover Dynamics Product 
(MCD12Q2) (Friedl et al., 2019). The MCD12Q2 product is available at 
500 m spatial resolution from 2001 until 2017 and it is based on the 2- 
band Enhanced Vegetation Index (EVI2). Specifically, we computed the 
pixel-wise geometric median throughout the 17-year time series of 
Maturity (p1), Peak (p2) and Senescence (p3) metrics. These correspond 
to the dates when EVI2 first crosses 90% of its amplitude, reaches its 
amplitude and last crosses 90% of its amplitude, respectively. The 
robustness of the geometric median limited the influence of ephemeral 
changes for the considered time interval induced by land-use/land-cover 
or annual climate anomalies. We discarded pixels flagged as poor quality 
retrievals in the “QA_Detailed” layer of the MCD12Q2 product to limit 
the proportion of contaminated data. To cope with the different spatial 
resolutions of the MCD12Q2 product and Sentinel-2 data, we first 
resampled LSP metrics to 20 m using the nearest neighbour method, i.e. 
we divided MODIS pixels into sub-pixels matching the grid and resolu-
tion of Sentinel-2 data. We then applied a Gaussian filter with a kernel 
having sigma equal to 250 m and a width corresponding to one kilo-
metre to eliminate the edges of the 500 m pixels while retaining the 
effects of local climate variability associated with topography on LSP 
metrics. Following Frantz et al. (2017), we derived wp for a given pixel 
location by adapting an asymmetrical Gaussian curve to each triplet of 

LSP metrics (p1, p2 and p3) (Fig. 3). This procedure involved first 
computing the parameters σl and σr that determine the width of the 
curve at each tail: 

σl =
(p2 − p1)

2
,

σr =
(p3 − p2)

2
. (3) 

We then computed wp by evaluating the Gaussian function at the 
DOY corresponding to the acquisition date of the i-th observation 
(parameter Di in Eq. (4)): 

wp =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

exp

(

− c
(
(Di − p2)

σl

)2
)

,Di < p2,

exp

(

− c
(
(Di − p2)

σr

)2
)

,Di ≥ p2.

(4) 

The parameter c in Eq. (4) further controlled the width of the 
Gaussian curve and we set it to 0.2 such that wp is equal to 0.45 at p1 and 
p3 (Fig. 3). 

The distance-based weight, wd, was aimed at reducing the influence 
of potential invalid reflectance values lying close to detected clouds or 
cloud shadows. Moreover, it limited patchiness in reflectance compos-
ites caused by the edges resulting from the removal of invalid pixels in 
Sentinel-2 images. This was particularly relevant when a low number of 
clear observations was available for a given pixel location. We computed 
wd through a sigmoid function previously employed as a scoring func-
tion for evaluating the distance to clouds in several best pixel selection 
algorithms (Frantz et al., 2017; Griffiths et al., 2019, 2013): 

wd =
1

(

1 + exp
(

− 10
EDmax

(

EDi −
EDmax

2

))), (5)  

where EDmax is the maximum Euclidean distance to invalid pixels at 
which wd can assume values lower than one and EDi is the Euclidean 
distance of the i-th observation (Fig. 4). Our experiments showed that a 
distance of 200 m, equivalent to 10 Sentinel-2 pixels, was adequate to 
effectively reduce patchiness. 

Finally, we normalised the weights, w1,…,wn, computed for all the 
observations available at each pixel location using the softmax function, 
employed with the weighted geometric median by Roberts et al. (2019) 
and defined as: 

wi =
exp(wi)

∑n

j=1
exp
(
wj
), i = 1, ..., n. (6) 

The softmax transformation converts each component of a vector of 

Fig. 3. Example of the asymmetrical Gaussian curve used to compute the 
phenology-based weight (wp). Long-term LSP metrics p1, p2 and p3 correspond 
to Day-Of-Year (DOY) 166, 184 and 212, respectively. DOYs in the x-axis 
correspond to the beginning of each month in a non-leap year. 

Fig. 4. The sigmoid curve used to compute the distance-based weight (wd). The 
red dashed line indicates the optimal Euclidean distance (ED) to clouds and 
cloud shadows used in this study. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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real numbers into values comprised in the interval [0, 1] that sum to one 
(Bishop, 2006). Therefore, all the transformed weights can be inter-
preted as probabilities proportional to the exponentials of the unnor-
malised weights. This transformation increased the contrast in 
importance between the best and worst observation. 

2.8. Evaluation of long-term LSP metrics and radiometric consistency of 
reflectance composites 

Elevation emerged as a critical driver in mountainous areas con-
trolling long-term LSP metrics derived either from MODIS (Hwang et al., 
2011; Xie et al., 2017) or Landsat (Elmore et al., 2012) data. Hence we 
evaluated spatial patterns of our long-term LSP metrics within the burnt 
areas through a correlation analysis with elevation using the Pearson 
correlation coefficient. We obtained elevation data at 20 m spatial res-
olution by averaging values of the digital terrain model available for the 
Piedmont Region at 5 m spatial resolution. 

We assessed radiometric consistency in time of reflectance compos-
ites by evaluating the symmetrical linear relationship between pre- and 
post-fire values at each MSI 20 m band and the derived NBR values using 
the reduced major axis (RMA) regression method (Roy et al., 2016; 
Smith, 2009). The RMA regression is adopted when both dependent and 
independent variables contain measurement errors, as in the case of 
surface reflectance values from satellite imagery. The similarity between 
the symmetrical linear relationship obtained with NBR values computed 
either with paired images or reflectance composites allowed us to assess 
whether the weighted geometric median preserved the spectral re-
lationships between the MSI bands B8A and B12. We performed these 
evaluations on a set of one million pixels randomly selected outside the 
fire perimeters within a maximum distance of three kilometres. We 
quantified differences between pre- and post-fire reflectance and NBR 
values using the root mean square error (RMSE). We assessed the sig-
nificance of the linear relationships through the p-value associated with 
the F-test performed with ordinary least squares (OLS) fits, using pre-fire 
values as the independent variable and post-fire values as the dependent 
variable. 

2.9. Classification and validation of burn severity maps 

Following the nonlinear regression models proposed by different 
authors (Miller et al., 2009; Miller and Thode, 2007; Parks et al., 2014), 
we predicted thresholds of each bi-temporal index that discriminated 
between field severity categories (unchanged to low, moderate and 
high) through the inversion of the following equation: 

y = a + b × exp(CBI × c), (7)  

where y corresponds to values of either dNBR, RdNBR or RBR. 
CBI plots for some burnt areas were either limited in the total amount 

or the range of values, so we used all the plots (n = 251) to build a 
combined regression model for each bi-temporal index. We note that 
vegetation characteristics varied among plots due to the presence of 
stands dominated by either conifers or broadleaves. We assessed the 
predictive performance of the regression models by averaging values of 
the coefficient of determination (R2) and RMSE obtained from 5-fold 
cross-validation repeated 1000 times. We sampled values of the three 
bi-temporal indices at each CBI plot location without employing any 
data interpolation method, e.g. bilinear interpolation (Cansler and 
McKenzie, 2012; Parks et al., 2014), as this approach did not improve 
the predictive performance of the regression models. 

Using CBI values as reference, we built an error matrix by pooling 
reference and classification data of all the burnt areas. We then 
computed classification accuracy (producer’s, user’s and overall accu-
racy) and Cohen’s Kappa statistic. Lastly, we performed the exact 
McNemar test implemented in the R package “exact2x2” (Fay, 2010) to 

evaluate whether differences in overall classification accuracy between 
burn severity maps produced using paired images or reflectance com-
posites were statistically significant. 

3. Results 

3.1. Reflectance composites 

The number of pre- and post-fire clear observations available at the 
pixel level within the compositing period (20 May – 10 September) 
varied considerably inside each burnt area, between burnt areas and 
according to the acquisition year (Fig. 5). Clear observations available at 
the majority of pixel locations were more than three in the pre- and post- 
fire compositing period while cloud-free images were fewer than three 
for some burnt areas (Fig. S1). Sentinel-2 data was generally more 
abundant in 2018 than 2017. The overlapping zone between tiles 32TLR 
and 32TLQ greatly increased the number of clear observations at burnt 
area 7. 

Spatial patterns of the long-term Maturity (p1) and Peak (p2) were 
strongly and positively correlated with local variations of elevation, as 
highlighted by the Pearson correlation coefficient that varied across the 
burnt areas from 0.79 to 0.97 for p1 and from 0.66 to 0.95 for p2 
(Table S4). Conversely, the association between long-term senescence 
(p3) and elevation was generally lower compared to p1 and p2 and varied 
considerably according to the burnt area (Table S4). 

Reflectance composites exhibited radiometric consistency in space as 
values between neighbouring pixels were similar, though they were 
computed using a different number of observations (Fig. 6). Radiometric 
consistency in time was highlighted by similar reflectance values be-
tween pre- and post-fire unburnt pixels (Figs. 6, 7). The RMA regression 
lines between pairs of unburned synthetic reflectance values were close 
to the 1:1 line for all the MSI bands acquired at 20 m and R2 values 
associated with the OLS fit were moderate to high (0.69–0.84). RMSE 
ranged from 0.014 (B5) to 0.045 (B7) and the OLS regression was always 
highly significant (p < 0.001) (Fig. 7). Synthetic reflectance for MSI 
bands in the SWIR wavelengths (B11 and B12) was higher in 2017 (x- 
axis) than in 2018 (y-axis), as highlighted by the slope of the RMA 
regression line (Fig. 7e–f). 

The weighted geometric median preserved the spectral relationships 
across MSI bands, as displayed by pre- and post-fire NBR values of un-
burnt pixels (Fig. 8b) and synthetic reflectance values of burnt pixels 
(Fig. 9). In particular, the RMA linear regression between pre- and post- 
fire NBR derived from reflectance composites was very similar to that 
obtained with paired images (Fig. 8). Pre-fire synthetic reflectance 
values for MSI bands B6, B7 and B8A were generally higher than most of 
those assumed by clear observations (Fig. 9). 

3.2. Regression models 

The average R2 from the repeated 5-fold cross-validation procedure 
highlighted a slightly higher predictive performance of nonlinear 
regression models built with bi-temporal indices derived from reflec-
tance composites than those computed with paired images (Table 3). 
However, differences in R2 were limited (≤ 0.008) for all bi-temporal 
indices. Considering the same bi-temporal index, the average RMSE 
was always higher for reflectance composites compared to paired im-
ages (Table 3). The calibration of bi-temporal indices with the dNBR 
offset provided a minor increase in the predictive performance of the 
regression models (Table 3). Regression models built using the complete 
set of CBI plots and uncalibrated bi-temporal indices are displayed in 
Fig. 10. Predicted thresholds of bi-temporal indices discriminating be-
tween burn severity categories were higher using reflectance composites 
compared to paired images (Table S5). 

D. Morresi et al.                                                                                                                                                                                                                                 



Remote Sensing of Environment 269 (2022) 112800

8

3.3. Burn severity maps 

Burn severity maps achieved overall accuracies ranging from 76.9% 
to 83.7% (Kappa between 0.61 and 0.72) and these were consistently 
higher for reflectance composites compared to paired images (Table 4). 
Paired images performed better with calibrated bi-temporal indices and 
among them, RdNBR provided the highest overall classification accu-
racy (80.5%, Kappa 0.67). Conversely, reflectance composites attained 
the highest overall classification accuracy (83.7%, Kappa 0.72) with 
uncalibrated RdNBR (Table 4). Among burn severity categories, the 
moderate one achieved the lowest user’s and producer’s accuracy. 

The calibration of bi-temporal indices through the dNBR offset 
improved the overall accuracy of burn severity maps derived from 
paired images by 2% (RdNBR and dNBR) and 1.6% (RBR). On the 
contrary, the calibration of bi-temporal indices derived from reflectance 
composites reduced the overall accuracy by 1.2% (dNBR) and 2% 
(RdNBR and RBR). Notably, changes in producer’s and user’s accuracy 
induced by calibration were mostly limited to the unchanged to low and 
moderate categories. 

Burn severity maps obtained from uncalibrated bi-temporal indices 
highlighted significant differences in overall classification accuracy (p <
0.05) between paired images and reflectance composites (Table 5), 
particularly for the RdNBR (p < 0.01). Differences in overall classifica-
tion accuracy of burn severity maps from calibrated bi-temporal indices 
produced using paired images or reflectance composites were not sta-
tistically significant (Table 5). 

We compared burn severity maps obtained with calibrated RdNBR 
from paired images and uncalibrated RdNBR from reflectance compos-
ites. Visual inspection of the spatial patterns of burn severity patches 
revealed good agreement between maps obtained using the two ap-
proaches above (Fig. 11), though differences in the extent of burn 
severity categories were noticeable (Fig. 12). To account for missing 
pixels in burn severity maps derived from paired images (Fig. 11a), we 
removed these pixels also in maps obtained with reflectance composites. 
In some areas, the extent of the moderate and high burn severity cate-
gories was greater in maps derived from paired images compared to 
those obtained with reflectance composites by a total of 198.6 ha (6.3%) 
and 47.5 ha (11.4%), respectively. Conversely, where the extent of the 
moderate and high severity categories was lower in maps obtained with 
paired images than in those produced with reflectance composites, dif-
ferences amounted to 290.9 ha (− 9.2%) and 125.6 ha (− 30.1%). 
Overall, the extent of the moderate and high severity categories was 
lower in burn severity maps obtained with paired images compared to 
those derived with reflectance composites by 93.2 ha (− 2.9%) and 78.1 
ha (− 18.7%), respectively. 

4. Discussion 

4.1. Reflectance composites 

The 5-days revisit time offered by the Sentinel-2 mission since both 
S2A and S2B satellites have been in orbit, provided a considerable 
amount of clear observations within the compositing period, i.e. more 
than 10 observations for many pixel locations. The lower number of 
clear observations available in the 2017 growing season compared to 
that of 2018 (Fig. 5, Fig. S1) was caused by the availability of S2B images 
only since July 2017, after the completion of the ramp-up phase (Sud-
manns et al., 2019). 

Relying on long-term LSP metrics, our weighting system ignores 
inter-annual differences in plant phenology arising from different 
amounts of precipitation over the years, as in the case of the severe 
summer drought in 2017 (Rita et al., 2020). Divergent plant phenology 
between years has the potential to generate non-fire induced spectral 
changes (Veraverbeke et al., 2010a; Verbyla et al., 2008). Reflectance 
composites showed greater overall stability of NBR values across the 
growing seasons of 2017 and 2018 in unburnt pixels compared to paired 
images (Fig. 8). This suggests a limited impact of non-fire induced inter- 
annual variations on NBR values derived from reflectance composites. 
However, non-fire induced inter-annual differences in synthetic spectral 
values were noticeable in the SWIR wavelengths (MSI B11 and B12) and 
limited in the NIR narrow band (MSI B8A) (Fig. 7d–f). The slope of the 
RMA fit lower than one in B11 and B12 is likely associated with low 
moisture conditions in plants and substrates during the pre-fire growing 
season of 2017 as a consequence of the severe drought. Pre-fire moisture 
content has been identified as the most critical variable for improving 
regression models between dNBR and CBI data (Soverel et al., 2011), 
suggesting its relevance in determining non-fire induced inter-annual 
changes at the spectral level. 

Linear and positive correlation between spatial patterns of long-term 
LSP metrics relative to the greenup phase of the growing season and 
patterns of topography (Table S4) has been observed in mountainous 
landscapes. This is associated with the influence of elevation on tem-
perature and snow cover, which are both dominant factors controlling 
spring onset at high altitudes (Elmore et al., 2012; Hwang et al., 2011; 
Xie et al., 2017). Limiting the influence of ephemeral land-cover changes 
and climate anomalies on the phenology-based weight improved the 
suitability of our weighting system for producing consistent reflectance 
composites throughout the years. Moreover, the coarse spatial scale at 
which long-term LSP metrics are implemented in the weighting system 
prevented the presence of artefacts in reflectance composites due to 
spatial discontinuities in LSP metrics associated with transitions be-
tween different land covers. 

Spatial heterogeneity associated with the number of clear 

Fig. 5. Boxplots of Sentinel-2 clear observations available at each pixel location in the pre- and post-fire compositing period of 2017 and 2018, respectively. The 
dashed line indicates the level corresponding to three observations. Numbers in the x-axis refer to each burnt area, as indicated in Table 1. 
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observations had a negligible influence on the radiometric consistency 
in space of reflectance composites (Fig. 6). The weighted geometric 
median produced synthetic reflectance values that were statistically 
representative of the compositing period and preserved spectral re-
lationships across bands (Roberts et al., 2019). Because of the two 
properties above, the (weighted) geometric median is defined as a 
central and global indicator of the data distribution (Chaouch and Goga, 
2012). Hence, synthetic reflectance values obtained with the weighted 
geometric median are suitable for the computation of spectral indices 
(Roberts et al., 2019, 2017). 

For missed invalid pixels that can occur using detection algorithms 
for clouds and cloud shadows currently available for Sentinel-2 imagery 
(Tarrio et al., 2020), the robustness of the weighted geometric median is 

considerably superior to that of the weighted mean (Roberts et al., 
2019). 

4.2. Burn severity mapping 

When mapping burn severity is the primary aim, the exploitation of 
the weighted geometric median integrating long-term LSP metrics offers 
a threefold improvement over the usage of paired images. First, it pro-
vides reflectance data for the whole burnt area with no or minimal 
presence of outlying values. Second, it generates reflectance values 
representative of the optimal seasonal timing at every pixel location. 
Third, spectral matching between pre- and post-fire conditions is pro-
moted by the weighting system anchored to fixed DOYs corresponding 

Fig. 6. False colour RGB image of burnt area 1 from a combination of MSI bands (R = B12, G = B8A, B = B5) obtained using post-fire reflectance composite (a). False 
colour RGB image subsets of pre-fire (b) and post-fire (c) reflectance composites are located as indicated by the extent in panel (a). Panels (d) and (e) show the 
number of clear observations used to produce pre- and post-fire reflectance composites, respectively. The white line represents the official fire perimeter. 
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to the long-term LSP metrics. 
Reflectance composites marginally increased the predictive perfor-

mance of nonlinear regression models compared to paired images 
(Table 3). Results obtained with NBR mean composites were either 
similar (Parks et al., 2018) or opposite (Whitman et al., 2020) to ours. 
The exponential growth function correctly approximated the nonlinear 
asymptotic relationship between CBI and bi-temporal indices (Lentile 
et al., 2009) since values of these latter are not constrained to complete 
vegetation mortality (Miller et al., 2009). Mixing CBI plots dominated by 
either coniferous or broadleaved species did not prevent nonlinear 
regression models from achieving high predictive performance (R2 >

0.85). Moreover, the extensive preprocessing of Sentinel-2 images and 
the thoroughly collected CBI data likely enhanced the relationship be-
tween CBI data and bi-temporal indices. 

The overall classification accuracy of burn severity maps derived 
from paired images was higher (approximately 6–7% differences) 
compared to similar studies using Landsat (Parks et al., 2018) or 
Sentinel-2 imagery (Mallinis et al., 2017). Reflectance composites out-
performed NBR mean composites derived from Landsat imagery (Parks 
et al., 2018), increasing the overall accuracy of burn severity maps by 
between 8–10% depending on the bi-temporal index. User’s and pro-
ducer’s accuracies of the high burn severity category (> 95%) provided 
by uncalibrated RdNBR derived from reflectance composites were 

comparable to results obtained with the random forest classifier for the 
crown consumption class in fire severity maps (Collins et al., 2018; 
Gibson et al., 2020). Improvements in the overall classification accuracy 
offered by reflectance composites over paired images were maximal and 
statistically significant for uncalibrated bi-temporal indices (Table 5). 
Similarly, Parks et al. (2018) obtained significant improvements in the 
overall classification accuracy using uncalibrated RdNBR derived from 
NBR mean composites compared to paired images. 

Our burn severity maps discriminated the moderate severity with a 
relatively low accuracy compared to the other categories (Table 4). 
Similar results have previously been reported when inferring burn 
severity from remotely sensed multispectral data (Miller et al., 2009; 
Soverel et al., 2010). In non-stand replacing fires, the assessment of 
mixed fire effects mostly impacting the understory vegetation through 
multispectral data is challenging as healthy and relatively dense tree 
canopy cover can mask fire effects (De Santis and Chuvieco, 2007). 
Recently, Yin et al. (2020) integrated tree canopy cover information in 
the parameterisation and backward inversion of a radiative transfer 
model to limit the underestimation of the moderate and high burn 
severity. 

The calibration of bi-temporal indices with the dNBR offset reduced 
the classification accuracy of burn severity maps derived from reflec-
tance composites (Table 4). In fact, the radiometric consistency in time 

Fig. 7. Band-wise scatter plots between pre-fire (x-axis) and post-fire (y-axis) reflectance composites. Values were randomly sampled outside fire perimeters (n =
1,000,000). The black dashed line represents the 1:1 line, and the solid red line corresponds to the RMA regression line. The coefficient of determination (R2) and p- 
value are derived from the OLS regression. Synthetic reflectance values of each MSI band acquired at 20 m are displayed: (a) B5, (b) B6, (c) B7, (d) B8A, (e) B11, (f) 
B12. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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between pre- and post-fire reflectance composites likely limited the 
utility of the dNBR offset. Drawbacks of using the dNBR offset are 
related to the selection of an appropriate set of unburnt pixels, as they 
should be representative of the pre-fire vegetation in the burnt area 
(Parks et al., 2018; Picotte et al., 2020). Therefore, deriving the dNBR 
offset for large burnt areas characterised by a heterogeneous pre-fire 
vegetation can be subjective and prone to error. Our compositing 
method can improve the operational usage of bi-temporal indices by 
eliminating the need for further calibration. 

The increase in the accuracy of burn severity maps provided by 
reflectance composites over paired images appeared to be related to 
higher thresholds of bi-temporal indices discriminating between burn 
severity categories (Table S5). In fact, a large range of values within each 

burn severity category favoured the discrimination capability of bi- 
temporal indices (Lentile et al., 2009). The priority given to observa-
tions close to the long-term peak of phenology enhanced the spectral 
contrast between healthy (pre-fire) and burnt vegetation, e.g. in the NIR 
region (Fig. 9). A steady decrease in canopy greenness has been observed 
in deciduous forests during the greendown phase and has been imple-
mented when modelling phenological transitions in forests using optical 
remote sensing data (Elmore et al., 2012; Klosterman et al., 2014; 
Melaas et al., 2013). In particular, the decline of reflectance in the near- 
infrared wavelengths throughout the summer months in deciduous 
forests (Jenkins et al., 2007) likely affects the temporal pattern of NBR 
mostly during the pre-fire growing season. Conversely, during the first 
post-fire growing season, the detection of fire induced changes can be 
heavily influenced by regeneration processes, particularly in quickly 
recovering ecosystems such as those of the Mediterranean basin (Vera-
verbeke et al., 2010a). In our burnt areas, the recovery of the herbaceous 
layer in wood-pastures and the abundant sprouting from stumps in 
broadleaved forests increasingly reduced the spectral contrast between 
pre- and post-fire conditions over time. 

The optimisation of the seasonal timing in reflectance composites 
also increased the overall extent of the moderate and high burn severity 
categories (Fig. 12). An underestimation of burn severity likely occurred 
when using paired images acquired during late summer (Fig. S1) due to 

Fig. 8. Scatter plots of pre-fire (x-axis) and post-fire (y-axis) NBR values randomly sampled outside the fire perimeters (n = 1,000,000). NBR was computed using 
either (a) paired images or (b) reflectance composites. The dashed black line is the 1:1 line, while the solid red line represents the RMA regression line. The co-
efficient of determination (R2) and p-value are derived from the OLS regression. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 9. Pre-fire (green) and post-fire (red) surface reflectance values of three 
pixels in the burnt area 2 for each of the MSI bands acquired at 20 m (B5, B6, 
B7, B8A, B11, B12). Each pixel was located within a different burn severity 
category: (a) unchanged to low, (b) moderate, and (c) high. Light green and 
light red lines represent pre- and post-fire reflectance values of Sentinel-2 im-
ages acquired from 20 May to 10 September, whereas synthetic reflectance 
values are displayed in dark colours. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 

Table 3 
Average values of the coefficient of determination (R2) and RMSE obtained from 
a repeated 5-fold cross-validation. We built regression models between bi- 
temporal indices (dNBR, RdNBR and RBR) computed using either paired im-
ages or reflectance composites and CBI. We either calibrated or not bi-temporal 
indices through the dNBR offset.  

Bi- 
temporal 
index 

Measure Paired images Reflectance composites 

Uncalibrated Calibrated Uncalibrated Calibrated 

dNBR 
R2 

0.865 0.869 0.871 0.873 
RdNBR 0.874 0.878 0.880 0.882 
RBR 0.872 0.877 0.878 0.879 
dNBR 

RMSE 
94.8 93.2 99.3 98.7 

RdNBR 112.5 110.6 116.8 116.3 
RBR 55.3 54.4 57.6 57.3  
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Fig. 10. Nonlinear regression models built using CBI field-data (x-axis, n = 251) and uncalibrated bi-temporal indices (y-axis) derived either from paired images (a- 
c) or reflectance composites (d-f). 

Table 4 
Accuracy of burn severity maps obtained using different bi-temporal indices (either uncalibrated or calibrated with the dNBR offset) derived from paired images or 
reflectance composites. User’s Accuracy (UA), Producer’s Accuracy (PA) and Overall Accuracy (OA) are expressed as percentages. Cohen’s Kappa (K) ranges from − 1 
to 1.  

Bi-temporal index Burn severity category Paired images Reflectance composites 

UA PA OA K UA PA OA K 

Uncalibrated 

dNBR 
Unchanged to low 80.1 85.6 

76.9 0.61 
82.1 90.2 

81.7 0.69 Moderate 64.3 57.7 73.5 64.1 
High 87.5 85.4 94.7 87.8 

RdNBR 
Unchanged to low 80.9 86.4 

78.5 0.64 
81.8 91.7 

83.7 0.72 Moderate 67.1 60.3 79.4 64.1 
High 90 87.8 97.5 95.1 

RBR 
Unchanged to low 80.9 86.4 

78.1 0.63 
81.8 91.7 

82.5 0.7 Moderate 66.2 60.3 75.8 64.1 
High 89.7 85.4 97.3 87.8 

Calibrated 

dNBR 
Unchanged to low 81.1 87.9 

78.9 0.64 
80.8 89.4 

80.5 0.67 Moderate 68.1 60.3 71.6 61.5 
High 89.7 85.4 94.7 87.8 

RdNBR 
Unchanged to low 81.9 89.4 

80.5 0.67 
80.3 89.4 

81.7 0.69 Moderate 71.6 61.5 75 61.5 
High 90 87.8 97.5 95.1 

RBR 
Unchanged to low 81.8 88.6 

79.7 0.65 
79.7 89.4 

80.5 0.67 Moderate 69.6 61.5 72.3 60.3 
High 89.7 85.4 97.4 90.2  
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the weak contrast between pre- and post-fire spectral conditions, as 
observed by other authors (Chen et al., 2020; Key, 2006; Veraverbeke 
et al., 2010a). On the contrary, the slight decrease in the extent of the 
moderate and high burn severity, e.g. in burnt area 2 and 3, when using 
reflectance composites was probably caused by higher thresholds of bi- 
temporal indices than those derived from paired images (Table S5). 

Further investigation is needed to determine the applicability of our 
approach in certain fire-prone ecosystems where fire severity is of pri-
mary interest due to rapid vegetation regrowth (Parker et al., 2015; 
Picotte and Robertson, 2011; Veraverbeke et al., 2010a). As fire severity 
is assessed within a few weeks following the fire (Key, 2006), reflectance 
composites should be produced using a relatively short compositing 
period which would benefit from multispectral data with a high 

temporal resolution. In this sense, the Harmonized Landsat Sentinel-2 
(HLS) dataset (Claverie et al., 2018) provides medium-resolution mul-
tispectral data with a relatively high temporal resolution (up to 2–3 
days). 

Though remote sensing indices are widely used for mapping burn 
severity (Morgan et al., 2014), they typically make use of only two or 
three spectral bands, e.g. NBR, Normalized Difference Vegetation Index 
(NDVI) and Enhanced Vegetation Index (EVI). Other methods based on 
optical remote sensing data make use of all the spectral bands available 
and proved to be effective in burn severity estimation (Morgan et al., 
2014; Yin et al., 2020). Machine learning classifiers, e.g. random forest 
(Collins et al., 2018; Gibson et al., 2020), radiative transfer models (Yin 
et al., 2020) and spectral mixture analysis (Quintano et al., 2017) are 
among those approaches that could benefit from exploiting the full 
spectral information provided by reflectance composites. 

5. Conclusions 

In this study, we presented a compositing approach that offers the 
possibility to overcome some of the major limitations hindering burn 
severity mapping through bi-temporal indices derived from multispec-
tral data. We highlighted that temporal constraints in the selection of 
appropriate paired images can significantly affect burn severity maps. 
Our approach provides new opportunities for operational burn severity 
mapping in areas characterised by persistent cloud cover, such as 
mountainous landscapes. Moreover, phenologically coherent 

Table 5 
Results from the exact McNemar test relative to differences in overall classifi-
cation accuracy of burn severity maps derived from paired images or reflectance 
composites. P-value and 95% confidence interval (CI) refer to the significance 
and magnitude of difference in overall classification accuracy, respectively.  

Bi-temporal index p 95% CI 

Uncalibrated 
dNBR 0.023 1.141–9.232 
RdNBR 0.007 1.386–17.361 
RBR 0.027 1.120–11.169 

Calibrated 
dNBR 0.503 0.564–4.230 
RdNBR 0.629 0.491–4.422 
RBR 0.814 0.444–3.645  

Fig. 11. Burn severity maps of area 1 (a, c) and area 2 (b, d) obtained with calibrated RdNBR computed using paired images (a, b) or uncalibrated RdNBR from 
reflectance composites (c, d). The black line indicates the official fire perimeters. 
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reflectance composites provide a standardised approach for mapping 
burn severity and avoid further processing to mitigate spectral mis-
matches. Among the advantages the proposed compositing algorithm 
provides, there is also its transferability to other optical sensors and 
multi-sensor data, such as surface reflectance provided by the HLS 
dataset (Claverie et al., 2018). In the context of forest ecology and forest 
disturbances mapping, several change detection techniques and classi-
fication algorithms could benefit from the use of phenologically 
coherent reflectance composites, thus being of broad interest to forest 
managers and researchers. 
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