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Scale of plume clustering in large-Prandtl-number convection
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Clustering of plumes in turbulent Rayleigh-Bénard convection has been numerically observed in low-Prandtl-
number fluids. In this framework, turbulent plumes undergo a phase-separation process leading to large-scale
clusters and circulations, sometimes called plume superstructures and reminiscent of solar granulation and
supergranulation. On the other hand, the possible presence of large-scale plume aggregates has not been explored
in the case of large values of the Prandtl number, Pr, relevant to geological settings such as convection in planetary
interiors. Here we address this problem and numerically explore the behavior of plume ensembles in turbulent
convection at very high Prandtl number values, including the case Pr — oo. The results indicate the presence of
plume clustering, albeit at smaller scale, also for large Pr number fluids, suggesting interesting consequences for

mantle convection processes.
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I. INTRODUCTION

Natural convection in fluids develops whenever an un-
stable density stratification is perturbed [1-3]. Two central
parameters of fluid convection are the Rayleigh number, Ra,
measuring the strength of buoyancy forces with respect to
viscosity and thermal diffusion, and the Prandtl number, Pr,
measuring the ratio of kinematic viscosity to thermal diffusiv-
ity. In turbulent convection, at values of Ra > 1, the dynamics
is characterized by the presence of intense plumes carrying
heat upwards. In the simple case of fluid convection bounded
above and below by two rigid horizontal plates kept at dif-
ferent temperature (with the lower plate at higher temperature
than the upper), hot rising plumes detach from the boundary
layer close to the lower plate and cold plumes descend from
the upper boundary layer. In both cases, heat is transported
upwards.

In past years, it was shown that at small and moderate
values of the Prandtl number, turbulent plumes undergo a
phase-separation process leading to distinct clusters of hot and
cold plumes [4-8]. Associated with plume clustering is the
birth of plume networks and fluid circulations at scales much
larger than the horizontal size of the plumes [9]. Such behav-
ior is, at least conceptually, reminiscent of the granulation and
supergranulation observed in solar convection [10,11].

On the other hand, different natural convective settings,
such as convection in a planetary mantle, are characterized
by very large values of the Prandtl number, Pr — oo. In such
cases, it is not clear whether a plume clustering process,
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associated with large-scale circulations, is still present. To ex-
plore this problem, here we focus on a simplified, conceptual
setting and numerically study the effects generated by a very
large Prandtl number on the convection dynamics of a Newto-
nian Navier-Stokes fluid in the Boussinesq approximation. In
this way, we eliminate other effects associated, for example,
to phase transitions, complex rheology, and non-Newtonian
behavior, and focus purely on the Prandtl number dependence
of large-scale convective structures. The results of the analysis
for values of Ra between 10° and 108, as detailed below,
indicate that plume clustering and the associated large-scale
circulations persist also at large values of the Prandtl number.
The scale of the plume clusters, however, decreases with in-
creasing Prandtl number and it stabilizes at a value close to
the layer depth for Pr — oo.

II. MODEL AND METHODS

The model equations adopted here describe incompressible
fluid dynamics in the Boussinesq approximation [3,12]. We
assume a fluid layer bounded above and below by two rigid
horizontal plates kept at constant temperature, with the lower
plate warmer than the upper. The dynamics is described by the
equations for momentum, energy, and mass conservation that,
in nondimensional form, are written as:

d
a_ltl +@-Viu= —Vp+PrRaT2+PrV2u, (D
oT 2
V.u=0, (3)
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FIG. 1. Vertical (left) and horizontal (right) sections of the tem-
perature field in the statistically stationary regime at ¢t = 0.067,.
From top to bottom: Pr = 1, 10, 10?, 3 x 102, 103 and Pr — oo. All
cases are for Ra = 107. Horizontal sections are taken at the midplane
z = 0.5 and vertical sections are taken aty = 7.

where x = (x, y, z), with z pointing upwards, u = (u, v, w) is
the three-dimensional velocity, and 7' (x, ¢) is the temperature
field. The above equations were nondimensionalized using
the scales provided by the fluid layer thickness, D, the dif-
fusive time, t, = D? /k where k is the thermal diffusivity,
and the imposed temperature difference between the plates,
AT. The velocity is scaled by «/D. The Prandtl number is

Pr = v/k where v is the kinematic viscosity and the Rayleigh

gBATD?

number is Ra = *=--— where g is the acceleration of gravity
K
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FIG. 2. (a) Energy spectra as a function of the horizontal radial
wave number k, averaged along z and in the time interval ¢ € [0.05 —
0.06]z,, for different values of Pr. A peak at the largest scale is visible
up to Pr = 10?; for larger values of Pr the peak moves to higher val-
ues of k and it reaches a scale comparable to the depth of the domain
for Pr — oo. (b) Energy spectra for Pr — oo, with different spatial
resolutions and aspect ratio. The spectra show that increasing the
resolution does not modify the shape of the spectrum, simply adding
low-energy modes at high wave number. Analogously, doubling the
aspect ratio does not modify the rest of the spectrum, simply adding
a lower-energy mode at the lowest wave number (purple, solid line).
(c) Energy spectra for Pr = 107 for aspect ratio . = 27 respectively
in the time intervals [0.05-0.06]z, (blue, solid crossed) and [0.29—
0.30]7, (orange, dotted), and for aspect ratio L = 4 in the interval
[0.05-0.06]7, (yellow, dashed). The spectra show that the system has
reached a statistically stationary state and confirm that increasing the
aspect ratio does not change the behavior. (d) Coherence spectra as
a function of the horizontal radial wave number for different values
of Pr, with Ra = 107 and L = 27. Coherence spectra are averaged in
the interval ¢ € [0.05 — 0.06]7, and along z. The peak progressively
moves to smaller spatial scales for Pr > 3 x 102,
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and B is the coefficient of thermal expansion of the fluid. In
this work, fixed temperature and no slip velocity boundary
conditions are adopted at the top and bottom, while periodic
boundary conditions are assumed in the horizontal directions.

In the limit for Pr — o0, assuming a finite value of Ra, the
equations become the following:

Vp—RaTi — Vu=0, “4)

aT )

o T VT =V, (5)
V.u=0. (6)

In this configuration, the velocity field is determined by the
temperature and pressure fields, since acceleration is ne-
glected together with the nonlinear inertial term. A nonlinear
advection term is still present in the heat equation. In the fol-
lowing, we consider values of the Rayleigh number between
Ra =10’ and Ra = 10® and explore values of the Prandtl
number Pr > 1, with special attention to the case Pr — oo.
To numerically solve Egs. (1)—(3) for a finite value of the Pr
number, we use the code already employed in Refs. [5,9]. For
the Pr — oo case, a nontrivial problem of setting additional
boundary conditions arises [ 13]. The additional boundary con-
ditions on pseudopressure were implemented following the
influence matrix method [14]. The numerical code is pseu-
dospectral in the horizontal (with 4/5 dealiasing) and adopts
a nonuniform finite difference grid in the vertical. The code is

(a)

open source and available on GitHub [15]. Most simulations
are run on a squared-basin domain with aspect ratio L =
L,/D = L,/D = 2m, using 129 grid points in the vertical and
192 points in the horizontal. Cases with a larger horizontal
domain (L = 4s) or with higher resolution are considered to
answer specific questions, as discussed below.

As in Ref. [5], the kinetic energy spectrum E (k) is ob-
tained as a function of the horizontal radial wave number
k = [k? +ky2, integrating over the horizontal wave-number

angle. Estimates of the plume cluster size are provided by

the scale at which the kinetic energy spectrum is maximum,
Ay = 21 /ky, and by the integral scale A;(¢) = %,
already defined in Parodi et al. [5].

Recently, in Ref. [7] it was shown that estimates of clus-
tering based only on the analysis of the energy spectra can
be insufficient, suggesting the additional use of the spec-
tral coherence between the vertical velocity and temperature
fields, y7 (k) = %, calculated from the one-side
cospectrum ®r ,, (k) where w is the vertical component of
velocity. Plume clustering is then marked by a low-k peak in

the coherence spectrum.

III. RESULTS

Figure 1 shows the vertical (left) and horizontal (right)
sections of the temperature field at r = 0.067, for Pr = 1, 10,
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FIG. 3. Energy spectra as a function of the horizontal radial wave number and z for different values of Pr at Ra = 107 and L = 2. Panels
(a) to (f) report results for Pr = 1, 10, 102, 3 x 107, 10 and Pr — oo respectively. Spectra are averaged in the interval ¢ € [0.05 — 0.06]z,.
While for small Pr a peak at the lower k is evident, for all z, the peak progressively moves to higher k (smaller spatial scales) for Pr > 3 x 102,
indicating the presence of plume clusters with reduced size with respect to the lower-Pr cases.
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10%, 3 x 10%, 10* and Pr — oo, with Ra = 107. Horizontal
sections are taken at the midplane z = 0.5. As expected, the
late-time dynamics for Pr = 1 visually reveals the presence of
large-scale plume clusters. On the other hand, similar clusters,
albeit of smaller size, appear also at larger values of the
Prandtl number.

To quantitatively identify possible plume clusters we turn
to energy and coherence spectra [5,7]. Figure 2 shows the
energy spectra for different values of Pr, averaged over time
and along the vertical. In Fig. 2(a), the spectrum for Pr = 1
at t = 0.067, shows a maximum at the lowest wave number,
consistent with Ref. [5]. The same peak is observed for Pr =
10 and Pr = 102, while the cases Pr = 3 x 10%, Pr = 103, and
Pr — oo show a pile-up of kinetic energy at a slightly larger
wave number, indicating that the plume clusters have smaller
size. Figure 2(d), at the bottom, shows that also the coherence
spectrum is strongly peaked at k = 1 for Pr = 1, Pr = 10, and

0.04

0.02

-0.04
0.04

0.02

0.04

0.02

-0.04

FIG. 4. [(a) and (b)] Midplane sections of the temperature field
for Pr — oo, Ra = 107 at t = 0.067,, with resolution respectively
512 x 512 x 193 and 1024 x 1024 x 193 grid points. (c) Midplane
section of the temperature field for Pr — oo,Ra = 108 at¢ = 0.067,,
with resolution 512 x 512 x 193 grid points.

Pr = 100, while the coherence peak moves to a slightly larger
wave number for larger values of Pr.

The energy spectra for individual horizontal layers (i.e., as
a function of z) are shown in Fig. 3 for different values of the
Pr number and Ra = 107. A peak at the lower k is evident
for low Pr number while, for Pr > 3 x 102, the peak moves
to higher k values at all z levels, confirming the presence of a
plume cluster structure with smaller size, coherently through-
out the domain.

The shapes of the spectra do not change by increasing
spatial resolution at fixed aspect ratio, simply opening up
new modes in the high-k domain, as illustrated in Fig. 3(b)
of Fig. 2 for the case Pr — co. Higher resolutions, on the
other hand, allow us to better depict the small-scale structure
of the convective flows, as shown in the two upper panels of
Fig. 4. In particular, the ascending and descending ridges that
connect the plumes acquire a thinner and more continuous
nature at high resolution.

We also run the simulations in larger domains with L =
47, shown in Figs. 2(b) and 2(c) for Pr — oo and Pr = 102,
respectively, to verify whether the cluster scale could depend
on the domain size. In all cases, the results do not change. For
a larger domain, the effect is simply to add a lower energy
mode in the spectrum at low k (k = 0.5). A visual illustration
of this behavior is provided by the two temperature sections
shown in Fig. 5. We also run the simulations for much longer
times, up to t = 0.37, [shown in Fig. 2(c) for the case Pr =
10?], to verify whether a statistically stationary state has been

FIG. 5. Midplane sections of the temperature field for Pr = 100
(a) and Pr — oo (b) for Ra = 107 at t = 0.067,, with resolution
384 x 384 x 129 grid points and aspect ratio 4. In the top panel,
the size of the plume clusters is approximately 27. In the bottom
panel, the size of cluster is of the order of the domain depth. In both
cases, the size of the plume aggregates is independent of the aspect
ratio if the latter is larger than 2.
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reached. In all cases, no further changes in the spectra were
observed.

The spatial scale at which the energy spectrum is max-
imum, Xy, and the integral scale A; provide a quantitative
measure of the size of the large-scale clusters [5,7]. Figure 6
shows the temporal evolution of these scales for different val-
ues of the Prandtl number. For Pr = 1, A, reaches the domain
scale and the integral scale A; grows with time, as observed in
Ref. [5]. The same happens up to Pr = 10%, while a different
behavior is present for Pr = 3 x 10%, Pr = 103, and Pr — oc.
In such cases, the maximum and integral spectral scales fur-
ther confirm that at large values of the Prandtl number the
plume aggregates have smaller size. The average horizontal
size of the plumes, as obtained by a plume census algorithm
such as that described in Ref. [5], does not grow with time and
the number of plumes is statistically stationary, confirming
that, also at large Pr, plume clustering is not associated with
plume merging.

Figure 7(a) reports the values of Ay, (red, diamonds) and
A; (blue, crosses) at + = 0.067, for the different values of
the Prandtl number explored in this work and for Ra = 107.
For Pr > 100, the clustering scales become smaller than 27,
converging to about one (the depth of the convecting layer) for
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FIG. 6. Temporal evolution of the scale at which the energy
spectrum is maximum, Ay (a) and of the integral scale A; (b), for
Pr=1, Pr= 10, Pr=10?, Pr =3 x 10, Pr = 10?, and Pr — oo.
For all cases, Ra = 107. Time is in unit of the diffusive time 7,. In
the lower panel, also the average size of the individual plumes is
plotted, showing that it does not change with time after the initial
formation phase. In the upper panel, in order to avoid overlapping,
data are shifted with respect to the Pr = 107 case, as indicated in the
legend.

Pr — oo. For the case Ra = 107, the reduction of the plume
cluster scale takes place between Pr = 102 and Pr = 3 x 102,
while it happens at lower Pr values for Ra = 10, as reported
in Ref. [6].

The lower panel of Fig. 7 shows the cluster scales, for the
case Pr — oo, for different values of the Rayleigh number
from Ra = 10° to Ra = 10%. An example of the temperature
field for Ra = 10® is shown in the lower panel of Fig. 4. The
results reveals only a weakly increasing trend of the cluster
scale with the value of the Rayleigh number.

IV. DISCUSSION AND CONCLUSIONS

Plume clustering is an important process in turbulent
Rayleigh-Bénard convection [4,5]. At the values of the
Rayleigh number explored in past works, convective plumes
undergo a phase-separation process, creating large ensembles
of hot and cold plumes that generate large-scale structures
and circulation cells at scales much larger than the plume
size. Such circulation cells are reminiscent of the large-scale
wind discussed in early studies of convection [16-18]. For
Ra = 107 and values of the Prandtl number around one (that
is, when the diffusive and viscous times are approximately
equal), the plume clusters have a wavelength of about 27 [9].
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FIG. 7. (a) Maximum energy scale, A, (red, diamonds) and max-
imum value of the integral scale A, (blue, crosses) as a function of
the Prandtl number for Ra = 107. (b) Maximum energy scale, Ay
(red, diamonds) and maximum value of the integral scale A; (blue,
crosses) as a function of the Rayleigh number for Pr — oo. Each
value is obtained from a mean over the interval ¢ € [0.05 — 0.06]z,.
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More recently, the dependence of plume clustering on
the value of the Prandtl number was explored [6], finding
indications of a weakening of plume clustering at values of
the Prandtl number larger than 1. Here, we addressed the
high-Pr regime and numerically explored a range of values
from Pr = 1 to Pr — oo for Ra = 107. The case for Pr — oo
was explored also for values of the Rayleigh number in the
range [10° — 10%]. Our results indicate the persistence of the
plume clustering process for any value of the Prandtl number,
albeit with a cluster scale decreasing to about the depth of the
convecting layer for Pr — oo.

In the present approach, we took the limit for large Prandtl
number while keeping the Rayleigh number constant, a choice
that makes the flow less turbulent. Indeed, the simulations
show a much smoother circulation at large Pr. Coherent small-
scale plumes are always present, but they move around more
slowly for increasing values of the Prandtl number. On the
other hand, the kinetic energy continues to move to larger
scales, so that both plume clusters and large-scale circulations
are formed. This process is reminiscent of the weakly nonlin-
ear conditions studied in Ref. [18], where large-scale winds
were shown to form also in a low-mode truncation of the fluid
dynamical equations.

In past works, different interpretations have been provided
to explain the phenomenon of plume clustering [5,9], although
a complete understanding of this phenomenon is still lacking.
One interpretation refers to the ascending and descending
plumes action against the boundaries. At low Pr numbers,

the horizontal velocity divergence generated by the hot (cold)
plumes splashing on the boundary is thought to push the roots
of the cold (hot) plumes away, forcing them to become closer
to each other and leading to the formation of aggregates,
in a process reminiscent of phase separation. The efficiency
of this process presumably depends also on the thickness of
the viscous boundary layer. At higher values of the Prandtl
number, such thickness becomes larger, potentially reducing
the splashing effects of the impinging plumes and leading to
a smaller scale of the plume aggregates. Further analysis is
clearly needed to understand the process of plume clustering
in general, besides its Pr-number dependence.

Our findings can bear interesting consequences on natural
convective systems with large values of the Prandtl number.
For example, provided these results may inform on the much
more complex case of mantle convection, one could infer
that plume clustering and large-scale circulations should be
present in planetary interiors, possibly favoring organization
of the convection on scales much larger than the size of the
individual plumes.
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