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a b s t r a c t

Neural network pruning allows for impressive theoretical reduction of models sizes and complexity.
However it usually offers little practical benefits as it is most often limited to just zeroing out weights,
without actually removing the pruned parameters. This precludes from the actual advantages provided
by sparsification methods. We propose Simplify, a PyTorch compatible library for achieving effective
model simplification. Simplified models benefit of both a smaller memory footprint and a lower
inference time, making their deployment to embedded or mobile devices much more efficient.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Motivation and significance

Over the last few years, neural network pruning (i.e. the reduc-
ion of the size and complexity of a model through the removal
f a set of parameters) has been the subject of extensive research
n the scientific community [1–8].

Modern pruning techniques allow for impressive theoreti-
al reduction in both memory requirements and inference time
or state-of-the-art neural network architectures. However, most
rocedures are limited to only identifying which portion of the
eights can be set to zero, offering little to no practical ad-
antages when the model is deployed to resource-constrained
evices such as mobile phones or embedded systems. While most
f the pruning-related works report some form of theoretical
peedup, either in terms of Floating Point Operations (FLOPs)

∗ Correspondence to: Dipartimento di Informatica, Corso Svizzera 185,
0049, Torino

E-mail addresses: andrea.bragagnolo@unito.it (Andrea Bragagnolo),
arlo.barbano@unito.it (Carlo Alberto Barbano).

or inference speed [9], this does not always reflect the actual
achievable performance gain and it is usually overestimated.

To solve this issue, we propose Simplify,1 a PyTorch [10] com-
patible simplification library that, allows to obtain an actually
smaller model in which the pruned neurons are removed and do
not weight on the size and inference time of the network. This
technique can be used to correctly evaluate the actual impact of
a pruning procedure when applied to a given network architec-
ture. Moreover, Simplify allows to apply the simplification process
even at training time, in conjunction with pruning techniques,
thus reducing the required time for pruning and fine-tuning
neural networks. A high level representation of the pruning and
simplification pipeline is given in Fig. 1

In the related literature it is possible to encounter two class
of pruning procedures: unstructured and structured. Unstructured
pruning approaches remove single parameters from the network,
independently from one another [11–16]. When employing this

1 https://github.com/EIDOSlab/simplify.
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Fig. 1. Overview of the simplification procedure: (a) dense network (b) pruned network (dotted lines represent pruned neurons and connections) (c) simplified
network in which the pruned neurons are actually removed from the architecture.

kind of techniques, one can obtain a high degree of sparsity,
but the pruning of entire neurons is not guaranteed. Structured
approaches, on the other hand, focus on the removal of whole
neurons, leading to the imposition of some kind of structure
over the pruned topology [7,17,18]. Since our proposed library
removes the pruned neurons from the network, we will focus on
models pruned using structured techniques.

Various accelerators, both hardware and software, for sparse
neural networks have been proposed [19–22]. The main
downside of this kind of solutions is the requirement for spe-
cific hardware or software, that can be hardly applied to stan-
dard consumer devices. Furthermore, they are designed to apply
inference-time acceleration using the zero-filled model instead
of building an optimized structure, thus precluding the ability to
train a pruned neural network.

Simplify solves these issues by extracting the remaining struc-
ture from a pruned model, and removing all the zeroed-out
neurons from the network. This allows to obtain a model that
can be saved, shared and used without any special hardware
or software. While, at a first glance, this may seem a straight-
forward procedure, the removal of zeroed neurons poses some
hidden challenges like the presence of bias in said neurons or
some constraints in the output’s dimensions due to skip or resid-
ual connections. Even though the interest of the deep learning
community on the matter seems to be quite strong,2 very few
approaches and libraries for simplifying pruned models have
been proposed.3 Moreover, they are usually limited to simpler
architectures such as VGG [23], and their usage is restricted to
the deployment of an already pruned model. On the other hand,
with Simplify, we provide a way to:

(1) Optimize more complex network architectures (e.g. ResNet
[24], DenseNet [25] and so on), and, in general, custom
architectures, without constraints given by the connectivity
patterns (i.e. residual connections);

(2) Optimize models during training: this allows to obtain
speed-ups in the time required for training a model and
reduce the memory occupation, when applied together
with an iterative pruning technique.

2. Software description

The Simplify library leverages on the main PyTorch packages
and is composed of three main modules that, even if designed

2 Some examples can be found at: https://github.com/pytorch/pytorch/
ssues/47915, https://github.com/pytorch/pytorch/issues/43552, https://github.com/
ytorch/pytorch/issues/36214, https://github.com/pytorch/pytorch/issues/32928,
ttps://discuss.pytorch.org/t/pruning-doesnt-affect-speed-nor-memory-for-resnet-
01/75814, https://discuss.pytorch.org/t/discussion-of-practical-speedup-for-pruning/
5212, https://discuss.pytorch.org/t/save-pruned-model-after-pruning/103212.
3 Some experimental implementations of simplification procedures: https:

//github.com/jacobgil/pytorch-pruning, https://github.com/microsoft/nni.

to function in a predefined order, can be used independently
based on the user requirements. We now provide a brief overview
of each module functionalities and purpose. A more detailed
explanation of the maths involved in each module is provided in
the Appendix.

Fuse First, we have the fuse module. Here we perform a non-
mandatory optimization of the model by merging, in a single
Convolutional layer, pairs of consecutive Convolutional and Batch
Normalization layers. This process is known as Batch Normaliza-
tion fusion or folding. This step can be ignored if the presence
of Batch Normalization layers in the network is required, i.e. for
further training of the simplified model. This step is not needed
to define the simplified model, but provides inference-time and
memory usage advantages, especially when deploying a trained
model to production, thanks to an optimization of the model
architecture.

Propagate The second module is called propagate. With this
module we solve the problem of non-zero bias in zeroed neurons
mentioned in Section 1. It is possible that some pruned neuron
retain non-zero bias; in such situation it would be impossible to
remove the neuron without losing the bias contribution. To solve
this problem, in the propagate module, we essentially treat such
neurons as a constant signal that can then be absorbed by the
next layer, making the zeroed neuron removable.

Remove Lastly, with the remove module we perform the ac-
tual simplification of the model, removing the zeroed-out neu-
rons. Here we make sure that the output and input dimensions
of adjacent layers correspond, while also taking into account
architecture constraints such as the presence of skip connections.

3. Illustrative examples

In this section we provide an usage overview for Simplify.
We also illustrate the results obtained for the two different use
cases discussed in Section 1, namely optimization for model
deployment and optimization during training. Please note that
our experiments were performed on different image classifica-
tion networks, made available by the Torchvision library.4 Such
models are defined for the ImageNet [26] dataset and therefore
expect an input of size B×3×224×224, where B represents the
batch size.

Optimization for deployment This is the most common use
case. Here, the simplification procedure is applied on an already
trained model, on which a pruning criterion has been previously
applied. In most cases, a one-line call to the simplify method is
sufficient: the library performs all the three steps autonomously,
and takes care of different architectural patterns such as residual
connections. Below, we provide a sample code snippet.

4 https://pytorch.org/vision/stable/models.html#classification.
2
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Fig. 2. Simplification during training: (a) Allocated GPU memory for a forward/backward pass of different pruned models (b) Total time for a forward and a
ackward pass of different pruned models.

able 1
nference time for different dense, pruned and simplified torchvision models.

Architecture Inference time (ms)

Dense Pruned Simplified

AlexNet [27] 7.58 ± 0.29 7.55 ± 0.28 2.95 ± 0.02
DenseNet-121 [25] 36.41 ± 4.88 34.31 ± 3.85 21.87 ± 1.45
GoogLeNet [28] 15.44 ± 3.19 13.68 ± 0.09 10.31 ± 0.82
InceptionV3 [29] 25.29 ± 7.31 21.68 ± 2.90 13.22 ± 2.23
MNASNet [30] 17.66 ± 0.57 13.64 ± 0.13 11.59 ± 0.07
MobileNetV3 [31] 13.74 ± 0.67 12.18 ± 0.46 11.95 ± 0.21
ResNet-50 [24] 24.39 ± 4.48 26.19 ± 5.84 18.21 ± 1.98
ResNeXt-101 [32] 76.11 ± 15.79 77.35 ± 20.04 65.68 ± 16.41
ShuffleNetV2 [33] 18.07 ± 2.23 14.32 ± 0.21 13.06 ± 0.08
SqueezeNet [34] 4.50 ± 0.06 4.39 ± 0.05 4.09 ± 0.50
VGG-19 [23] 40.41 ± 12.13 38.56 ± 10.72 12.39 ± 0.19
WideResNet-101 [35] 79.40 ± 25.57 82.86 ± 22.47 60.16 ± 10.77

1 # Load a pruned model checkpoint
2 model = torch . load ( . . )
3

4 # Apply s imp l i f i c a t i o n .
5 model . eval ( )
6 s impl i fy (model , torch . zeros (1 , 3 , 224 , 224) )

As show in the code snippet, the simplify function takes as
argument the model to be simplified and a tensor representing
a input image, filled with zeros, with batch size of 1 (in this
case we are working with models build for ImageNet therefore
is of size 1 × 3 × 224 × 224). Is important to note that the
model has to be set to evaluation mode before the simplification
procedure, so that the automatic update of parameters (such as
for Batch Normalization) is disabled. The simplification of the
model happens in-place.

Table 1 shows the inference times (in milliseconds) of different
Torchvision models. In this table we compare the inference speed
of the dense models (i.e. models that have not been pruned),
the resulting pruned architectures (random, structured pruning
with 50% probability) and the simplified model obtained with our
proposed library. The benchmarks are run on a Intel(R) Core(TM)
i9-9900K CPU, with a batch size of 1 in order to simulate a one-
shot inference of a deployed model. The results are averaged
across 1000 different runs for each architecture. It is easy to see
that, thanks to Simplify, the resulting model is actually faster and

able to leverage on the applied pruning while remaining a fully-
fledged PyTorch network. We can see that, for most network
families, Simplify allows for a decrease in the actual inference
time. It is important to point out that for some architectures,
like MobileNet or SqueezeNet, the library may not lead to great
speed-up as they are already very optimized.

Optimization for training Most modern network architec-
tures employ Batch Normalization as a way to improve general-
ization. To avoid losing the Batch Normalization contribution, we
provide the ability to avoid the fusion step, so that these layers
are retained. To further improve training time, it is possible to
enable a training mode for simplify, which helps in decreasing
inference time. More details are provided in Appendix C.1. Below,
we provide a sample code snippet.

1 for step in range ( epochs ) :
2 model . t ra in ( )
3 model = . . . # t ra in model and apply pruning
4

5 # Apply s imp l i f i c a t i o n
6 model . eval ( )
7 s impl i fy (model ,
8 torch . zeros (1 , 3 , 224 , 224) ,
9 fuse_bn=False ,

10 t ra in ing=True )

Fig. 2(a) shows the reduction in allocated GPU memory for
different pruning ratios. While an overhead is introduced at low
pruning percentages (due to the steps described in Appendix B
and Appendix B.3), a reduction in the required memory for per-
forming an optimization step is achieved when pruning a suffi-
cient amount of neurons. In Fig. 2(b) we show the decrease in
time required by the forward and backward pass of a network
training loop. Appendix D shows the plots for each architecture
separately. The benchmarks are run on a NVIDIA RTX 2080Ti GPU,
with a Intel(R) Core(TM) i9-9960X CPU, using a batch size of 64.

4. Impact

Current state-of-the-art pruning research base their results on
theoretical estimation of the models improvement. They offer
poor practical benefits due to the lack of removal of pruned neu-
rons that still weight on the model computation, especially when
deployed to resource constrained devices like mobile phones.
3
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implify provides out of the box functionalities to translate the
mpressive theoretical results of pruning procedure to an actual
hrinking of the neural network model, reducing both memory
equirements and inference time. It allows for a more precise
valuation of pruning procedures, enabling systematic compar-
son within scientific research, and helps during deployment,
llowing for the full exploitation of the pruned network without
he need for ad hoc hardware platforms. In such regard the
roposed library was used in different research works [7,36,37]
o evaluate the advantages of structured pruning procedures.

. Conclusions

We propose the PyTorch compatible library Simplify, with the
im of providing a simple-to-use set of procedures to remove
eroed neurons from a neural network architecture. The proposed
ibrary solves different issues in the creation of simplified models,
uch as the propagation of the bias of pruned neurons and the
hape constraint of skip connections.
The proposed library is composed of three modules that, while

esigned to work together, can be used independently from one
nother according to the required functionality for a specific
etting.
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ppendix A. Batch normalization fusion

A vast amount of modern neural networks use Batch Nor-
alization (from here on out BatchNorm) as a way to improve
eneralization. Given an input x, we can define the output of
atchNorm as:

= γ
x − µ

√
σ 2 + ϵ

+ β (1)

where γ and β represent, respectively, the weights and bias of
the layer and are learned using standard backpropagation proce-
dures; µ and σ 2 represent the mean and variance computed over
a batch. During training this layer keeps running estimates of its
computed mean and variance, which are then used for normal-
ization during evaluation. Let us denote this approximations as µ̂

and σ̂ 2. Notice that each parameter is defined for each channel of
the input feature map; we will denote them as γc , βc , µ̂c and σ̂ 2

c
for a given channel c .

Once a neural network is trained to completion, all the param-
eters of its layer can be considered frozen i.e. no longer update
from further training. Also in standard network architectures, is
possible to identify pairs of Convolutional and BatchNorm layers
whose output is of the same size. In such conditions is possible
to reduce the network complexity by fusing this two layers them
into a single one. Note that this operation is only applicable if
there is no non-linearity between the two layers.

Let us consider a generic Batch Normalization’s output

y = γc
x − µ̂

√ + β (2)

this can be rewritten as

y =
γ

√
σ̂ 2 + ϵ

x −
γ

√
σ̂ 2 + ϵ

µ̂ + β (3)

since this BatchNorm layer is preceded by a Convolutional layer,
xc can be defined as

x = W · z + b (4)

where zc is the input of the Convolutional layer, W are its weights
and b its bias.

We can now express the BatchNorm output as a function of
the Convolutional layer, substituting Eq. (4) in Eq. (3).

y =
γ

√
σ̂ 2 + ϵ

(W · z + b) −
γ

√
σ̂ 2 + ϵ

µ̂ + β (5)

Leveraging on Eq. (5), we can finally fuse the Convolutional
and the BatchNorm layer in a single Convolutional layer whose
weights and bias are defined as

Wfuse = γ
W

√
σ̂ 2 + ϵ

(6)

bfuse = γ
b − µ̂

√
σ̂ 2 + ϵ

+ β (7)

and the output y is therefore

y = Wfuse · z + bfuse (8)

Appendix B. Bias propagation

This step is necessary if biases are presents in the model’s hid-
den layers, or are introduced by the fusion of batch normalization
layers. Neurons with zeroed-out channels might have non-zero
bias, and so they will fire a constant output value. Hence, a
neuron cannot immediately be removed if the corresponding
bias is nonzero. These values, however, can be propagated and
accumulated into the biases of the next layer. This operation can
be repeated until all of the biases have been propagated to the
last layer of the network. After a bias has been propagated, it can
then be set to zero in the original neuron, which in turn allows
the removal of the whole weight channel.

B.1. Linear layers

We denote as L1 = ⟨A, a⟩ and L2 = ⟨B, b⟩ two sequential linear
layers. A and a denote the weight matrix and bias vector of L1, of
size N ×M and N respectively. B and b denote the weight matrix
and bias vector of L2 of size T × N and T respectively. We also
denote as f the activation function (e.g. ReLU). A forward pass for
L1 consists in:

y = f (xAT
+ a) (9)

(where x represents an input vector of size M) and for L2:

z = yBT
+ b (10)

Focusing on Eq. (9), we can visualize the vector–matrix prod-
uct:

y =

⎡⎢⎢⎣
x0
x1
. . .

xM

⎤⎥⎥⎦
T

·

⎡⎢⎢⎢⎢⎣
A0,0 . . . AN,0

A0,1 . . . AN,1

...
. . .

...

A0,M . . . AN,M

⎤⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎣
a0
a1
...

aN

⎤⎥⎥⎥⎥⎦
T

=

⎡⎢⎢⎢⎢⎣
xAT

0 + a0
xAT

1 + a1
...

xAT
N + aN

⎤⎥⎥⎥⎥⎦
T

We now suppose that some output channel of A has been
σ̂ 2 + ϵ zeored-out following the application of some pruning criterion,

4
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.g. every entry in A1 is zero. The multiplication becomes:

=

⎡⎢⎢⎣
x0
x1
. . .

xM

⎤⎥⎥⎦
T

·

⎡⎢⎢⎢⎢⎣
A0,0 0 . . . AN,0

A0,1 0 . . . AN,1

...
...

. . .
...

A0,M 0 . . . AN,M

⎤⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎣
a0
a1
...

aN

⎤⎥⎥⎥⎥⎦
T

=

⎡⎢⎢⎢⎢⎣
xAT

0 + a0
a1
...

xAT
N + aN

⎤⎥⎥⎥⎥⎦
T

We now focus on the forward pass of L2. As example, we
nalyze what happens with the first neuron B0. If we rewrite
q. (10) focusing on B0 we obtain:

0 = f (xAT
0 + a0)B0,0 + f (a1)B0,1 +· · ·+ f (xAT

N + aN )B0,N + b0 (11)

We now focus on the forward pass of L2. As example, we
nalyze what happens with the first neuron B0. If we rewrite
q. (10) focusing on B0 we obtain:

0 = f (xAT
0 + a0)B0,0 + f (a1)B0,1 +· · ·+ f (xAT

N + aN )B0,N + b0 (12)

The term f (a1)B0,1 is a constant which can be accumulated
into b0. The same reasoning can be extended to all neurons in L2,
by adding f (a1) multiplied with the respective incoming weight
to the neuron bias. The new set of biases b̂ for the layer can be
written as:

b =

⎡⎢⎢⎢⎢⎣
b0 + f (a1)B0,1

b1 + f (a1)B1,1

...

bT + f (a1)BT ,1

⎤⎥⎥⎥⎥⎦
T

and the original bias a1 can be set to zero in L1, resulting in
a = [a0, 0, a1, . . . , aN ]. This procedure can be applied when
multiple neurons are pruned in L1 and the general rule to obtain
the updated biases b̂ is as follows:

b =

⎡⎢⎢⎢⎢⎣
b0 +

∑
i f (ai)B0,i

b1 +
∑

i f (ai)B1,i

...

bT +
∑

i f (ai)BT ,i

⎤⎥⎥⎥⎥⎦
T

where i represents the indices of zeroed channels in L1. After the
bias propagation procedure, the layers L1 and L2 can be replaced
by L̂1 = ⟨A, â⟩ and L̂2 = ⟨B, b̂⟩ respectively.

B.2. Convolutional layers

A similar reasoning can be applied for convolutional layers.
However, the propagation process needs to take into account
whether the convolution employs zero-padding on the input
tensor or not.

For the sake of simplicity, using the same notation of Ap-
pendix B.1, let us consider two sequential convolutional layers
L1 = ⟨A, a⟩ and L2 = ⟨B, b⟩. We also assume that L1 has one input
channel and two output channels (A has shape 2 × 1 × H1 × W1
and a is a vector of length 2), while L2 has two input channels
and one output channels (B has shape 1 × 2 × H2 × W2, and b is
a vector of length 1).

The forward pass for L1 is:

y =

([
x ∗ A0

x ∗ A1

]
+

[
a0
a1

])T

=

([
F 0

F 1

]
+

[
a0
a1

])T

=

[
F 0

+ a0
F 1

+ a1

]T

where ∗ represents the convolution operation and x is a properly
sized input. In this context, the addition operation + between the
resulting feature map F i

= x∗A and the corresponding bias value

ai will perform a shape expansion of ai to match the feature map
shape, for example:

F i
+ ai =

⎡⎢⎢⎣
F i
0,0 . . . F i

0,Hout

...
. . .

...

F i
Wout ,0 . . . F i

Wout ,Hout

⎤⎥⎥⎦ +

⎡⎢⎢⎣
ai . . . ai
...

. . .
...

ai . . . ai

⎤⎥⎥⎦
We now assume that the second channel A1 of L1 has been

zeroed out after the application of some pruning criterion, hence
if we consider F 1

+ a1 we obtain:

F 1
+ a1 =

⎡⎢⎢⎣
0 . . . 0
...

. . .
...

0 . . . 0

⎤⎥⎥⎦ +

⎡⎢⎢⎣
a1 . . . a1
...

. . .
...

a1 . . . a1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
a1 . . . a1
...

. . .
...

a1 . . . a1

⎤⎥⎥⎦
Thus, y becomes:[

F 0
+ a0
a1

]T

where . denotes that the element shape has been expanded.
We now analyze what happens with L2. For the sake of sim-

plicity, we assume that Wout = Hout = 3, that W2 = H2 = 2 and
that every value of B is equal to 1. We also consider a stride value
of 1 for L2.

Convolution without padding (or ‘‘same’’ padding): This
is the simpler case, and it is similar to the linear layers (Ap-
pendix B.1). The forward pass of L2 can be expressed as follows:

z = f (F 0
+ a0) ∗ B0,0 + f (a1) ∗ B0,1 + b0 (13)

The factor f (a1)∗B0,1 is constant and can be accumulated into
b0. Visualizing it, we obtain:

b̂0 =

⎡⎣f (a1) f (a1) f (a1)
f (a1) f (a1) f (a1)
f (a1) f (a1) f (a1)

⎤⎦ ∗

[
1 1
1 1

]
+ b0

=

[
4f (a1) 4f (a1)
4f (a1) 4f (a1)

]
+ b0

(14)

In this case, the updated bias can be converted as a scalar
replacing the original value b0: given that the resulting matrix
is constant, we can directly factor out 4f (a1) and set a1 to 0 in L1,
obtaining a new bias b̂0 = 4f (a1) + b0 which will be used from
now on in L2.5

The same reasoning can be extended to the case of multiple
neurons in the convolution layer and multiple pruned channel in
the preceding layer: each bias value will be updated according to
the rule in Eq. (14). The general rule to obtain the new bias vector
b̂ can be expressed as follows:

b̂ =

⎡⎢⎢⎢⎢⎣
b0 +

∑
i f (ai) ∗ B0,i

b1 +
∑

i f (ai) ∗ B1,i

...

bCout +
∑

i f (ai) ∗ BCout ,i

⎤⎥⎥⎥⎥⎦ (15)

where i represents the indices of the zeroed output channels in
L1.

Convolution with zero-padding If the convolution applies
zero-padding to the input values, then the bias cannot be accu-
mulated into a scalar, as the resulting matrix will not be constant.

5 Notice that this can be applied for every choice of values for B. Of course
the resulting bias factor will change accordingly.
i

5
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T
1

b̂

w

ˆ

o show this, we rewrite Eq. (14) applying a zero-padding of size
along each dimension of the input tensor:

0 =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0 0
0 a′ a′ a′ 0
0 a′ a′ a′ 0
0 a′ a′ a′ 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ ∗

[
1 1
1 1

]
+ b0

=

⎡⎢⎢⎣
a′ 2a′ 2a′ a′

2a′ 4a′ 4a′ 2a′

2a′ 4a′ 4a′ 2a′

a′ 2a′ 2a′ a′

⎤⎥⎥⎦ + b0

(16)

here a′
= f (a1) for brevity.

In this case, the new bias value need to be maintained in a
matrix form, i.e.:

b0 =

⎡⎢⎢⎣
a′

+ b0 2a′
+ b0 2a′

+ b0 a′
+ b0

2a′
+ b0 4a′

+ b0 4a′
+ b0 2a′

+ b0
2a′

+ b0 4a′
+ b0 4a′

+ b0 2a′
+ b0

a′
+ b0 2a′

+ b0 2a′
+ b0 a′

+ b0

⎤⎥⎥⎦
To obtain the updated biases in case of multiple neurons and

multiple channels, the same rule of Eq. (15) can be applied,
keeping in mind that in this case it will result into a tensor of
shape Cout × Hout × Wout instead of a vector. This introduces a
constraint on the feature map size, hence the model can only
ever be used at a fixed input size. However, given that the whole
simplification procedure is executed on an already trained model,
before deploying to production, it should not represent a major
issue.

B.3. Residual connections

While the above process works fine for simple feed-forward
models, special care must be taken to handle residual connec-
tions. As an example, let us consider the case of two linear layers
L1 = ⟨A, a⟩ and L2 = ⟨C, c⟩, whose outputs y and t are summed
together in a residual connection, followed by another layer L3 =

⟨B, b⟩:

y + t =

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣

xAT
0 + a0

0 + a1
...

0 + aN−1

xAT
N + aN

⎤⎥⎥⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎢⎢⎣

0 + c0
x̂CT

1 + c1
...

0 + cN−1

x̂CT
N + cN

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠

T

(17)

where 0 denotes that a channel was pruned. The residual (sum)
operation introduces a new constraint: only biases corresponding
to matching pruned channels in L1 and L2 can be propagated to
the next layer. To see why, we can rewrite Eq. (17) as Eq. (12)
and obtain:

z0 =f (xAT
0 + a0 + c0)B0,0 + f (a1 + x̂CT

1 + c1)B0,1 + · · ·+

+ f (aN−1 + cN−1)B0,N−1+

+ f (xAT
N + aN + x̂CT

N + cN )B0,N + b0

(18)

It is clear that even if multiple channels are pruned from L1
and L2, only the factor f (aN−1 + cN−1)B0,N−1 becomes a constant.
In this case, we opt not to propagate any bias and employ an
expansion scheme (Appendix C.1) to achieve a speed-up in the

Appendix C. Channels removal

Once the biases have been propagated and removed from
the hidden layers, the weight matrices corresponding to zeroed
channels can actually be removed. The process, which we call
simplification, is actually quite simple. For each layer L, we denote
with W L the corresponding weight tensor, with shape N × I ×

W × H for convolutional layers and N × I for linear layers. The
simplification consists of two steps:

1. Remove all the input channels corresponding to zeroed
channels in the previous layer (none if it is the input layer):

Ŵ L
=

[
W L

0,i,W
L
1,i, . . . ,W

L
N,i

]
(19)

where i is the indices of the remaining output channels in
W L−1. The resulting weight tensor will be of shape N × Is ×
W ×H for convolutional layers and N × Is for linear layers,
where Is ≤ I is the number of remaining output channels
in the previous layer L − 1.

2. Remove all the output channels corresponding to zeroed
neurons:

W̃ L
=

[
Ŵ L

j

]
∀j∈J

(20)

where J is the set of indices corresponding to the remaining
output channels. The resulting tensor will be of shape
Ns × Is × W × H for convolutional layers and Ns × Is for
linear layers, where Ns ≤ N is the number of remaining
(non-zero) output channels of L.

C.1. Residual connections

Residual or skip connections introduce a constraint on the
output size of a layer. A residual connection consists in the sum
of the output of two layers L1 and L2. As an example, we assume
L1 and L2 to be convolutional layers, with their respective output
Z1 and Z2 being of size C1 ×H ×W and C2 ×H ×W (ignoring the
batch size). To be able to compute Z1 + Z2, C1 must be equal to
C2. However, after the simplification step, it is possible that the
output sizes differ, depending on whether some output channels
in L1 and/or L2 were removed.

Many works that propose a solution to channel removal, face
some issues when applied to residual connections. For example
He et al. [3] or Kruglov [5] apply some kind of approximation
and need to resort to finetuning to recover the lost performance.
Others, like Hu et al. [4], instead, just ignore residual networks,
without proposing any solution.

To address this issue, we perform an expansion operation
on the output tensors. Assuming the original size (before the
simplification) was C , then Z1 and Z2 are expanded to the original
number of channels before performing the addition. The process
is illustrated in Fig. 3. After the expansion step, we sum the layers
biases (which were not propagated as explained in Appendix B.3).

While it is true that the expansion operations introduce a
computational overhead in the model inference, the speedups
achieved by the simplified convolutions compensate for it when
using the model for inference. However, given that the time
required by the indexing operations employed in the expansion
scheme is actually dependent on the given batch size, we opt not
to adopt this scheme when using Simplify in training mode. In this
convolution operations anyways. case, we do not remove any output channel in the weight tensor.

6
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c

A

Fig. 3. Pruned weight matrices: a dotted line indicates a zeroed channel (a) simplified weight matrices (b) expanded weight matrices: black slices mean that the
hannel is a zero matrix (c).

ppendix D. Additional results
7



Andrea Bragagnolo and Carlo Alberto Barbano SoftwareX 17 (2022) 100907
8



Andrea Bragagnolo and Carlo Alberto Barbano SoftwareX 17 (2022) 100907
9



Andrea Bragagnolo and Carlo Alberto Barbano SoftwareX 17 (2022) 100907
10



Andrea Bragagnolo and Carlo Alberto Barbano SoftwareX 17 (2022) 100907

R
eferences

[1] Gale T, Elsen E, Hooker S. The state of sparsity in deep neural networks.
2019, arXiv preprint arXiv:1902.09574.

[2] He Y, Liu P, Wang Z, Hu Z, Yang Y. Filter pruning via geometric median
for deep convolutional neural networks acceleration. In: 2019 IEEE/CVF
conference on computer vision and pattern recognition. 2019, p. 4335–44.
http://dx.doi.org/10.1109/CVPR.2019.00447.

[3] He Y, Zhang X, Sun J. Channel pruning for accelerating very deep neural
networks. In: 2017 IEEE international conference on computer vision. 2017,
p. 1398–406. http://dx.doi.org/10.1109/ICCV.2017.155.

[4] Hu H, Peng R, Tai Y-W, Tang C-K. Network trimming: A data-driven
neuron pruning approach towards efficient deep architectures. 2016, arXiv
preprint arXiv:1607.03250.

[5] Kruglov A. Channel-wise pruning of neural networks with tapering
resource constraint. 2018, arXiv preprint arXiv:1812.07060.

[6] Tang Y, Wang Y, Xu Y, Tao D, Xu C, Xu C, et al. SCOP: Scientific
control for reliable neural network pruning. Adv Neural Inf Process Syst
2020;2020-December.

[7] Tartaglione E, Bragagnolo A, Odierna F, Fiandrotti A, Grangetto M. SeReNe:
Sensitivity-based regularization of neurons for structured sparsity in neural
networks. IEEE Trans Neural Netw Learn Syst 2021;1–14. http://dx.doi.org/
10.1109/TNNLS.2021.3084527.

[8] Wang Y, Zhang X, Xie L, Zhou J, Su H, Zhang B, et al. Pruning from scratch.
In: AAAI. 2020, p. 12273–80. http://dx.doi.org/10.1609/aaai.v34i07.6910.

[9] Blalock D, Gonzalez Ortiz JJ, Frankle J, Guttag J. What is the
state of neural network pruning? In: Dhillon I, Papailiopoulos D,
Sze V, editors. Proceedings of machine learning and systems, Vol.
2. 2020, p. 129–46, URL https://proceedings.mlsys.org/paper/2020/file/
d2ddea18f00665ce8623e36bd4e3c7c5-Paper.pdf.

[10] Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. PyTorch:
An imperative style, high-performance deep learning library. In: NeurIPS.
2019.

[11] Frankle J, Carbin M. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In: International conference on learning representations.
2019, URL https://openreview.net/forum?id=rJl-b3RcF7.

[12] Han S, Pool J, Tran J, Dally W. Learning both weights and connections
for efficient neural network. In: Cortes C, Lawrence N, Lee D, Sugiyama M,
Garnett R, editors. Advances in neural information processing systems, Vol.
28. Curran Associates, Inc.; 2015, URL https://proceedings.neurips.cc/paper/
2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf.

[13] Liu Z, Sun M, Zhou T, Huang G, Darrell T. Rethinking the value of network
pruning. In: International conference on learning representations. 2019,
URL https://openreview.net/forum?id=rJlnB3C5Ym.

[14] Molchanov D, Ashukha A, Vetrov D. Variational dropout sparsifies deep
neural networks. In: Precup D, Teh YW, editors. Proceedings of the
34th international conference on machine learning. Proceedings of ma-
chine learning research, vol. 70, PMLR; 2017, p. 2498–507, URL https:
//proceedings.mlr.press/v70/molchanov17a.html.

[15] Tartaglione E, Lepsøy S, Fiandrotti A, Francini G. Learning sparse neural
networks via sensitivity-driven regularization. In: Proceedings of the 32nd
international conference on neural information processing systems. 2018.
p. 3882–92.

[16] Ullrich K, Meeds E, Welling M. Soft weight-sharing for neural network
compression. In: ICLR (Poster). OpenReview.net; 2017.

[17] Louizos C, Welling M, Kingma DP. Learning sparse neural networks through
L_0 regularization. In: International conference on learning representations.
2018, URL https://openreview.net/forum?id=H1Y8hhg0b.

[18] Wen W, Wu C, Wang Y, Chen Y, Li H. Learning structured sparsity in deep
neural networks. In: Advances in neural information processing Systems.
2016, p. 2074–82.

[19] Lu L, Xie J, Huang R, Zhang J, Lin W, Liang Y. An efficient hardware
accelerator for sparse convolutional neural networks on FPGAs. In: 2019
IEEE 27th annual international symposium on field-programmable cus-
tom computing machines. IEEE; 2019, p. 17–25. http://dx.doi.org/10.1109/
FCCM.2019.00013.

[20] PyTorch. Pytorch sparse tensor. 2021, URL https://pytorch.org/docs/stable/
sparse.html.

[21] Zhou X, Du Z, Zhang S, Zhang L, Lan H, Liu S, et al. Addressing sparsity in
deep neural networks. IEEE Trans Comput-Aided Des Integr Circuits Syst
2019;38(10):1858–71. http://dx.doi.org/10.1109/TCAD.2018.2864289.

[22] Zhu C, Huang K, Yang S, Zhu Z, Zhang H, Shen H. An efficient hardware
accelerator for structured sparse convolutional neural networks on FPGAs.
IEEE Trans Very Large Scale Integr (VLSI) Syst 2020;28(9):1953–65. http:
//dx.doi.org/10.1109/TVLSI.2020.3002779.

[23] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale
image recognition. In: ICLR 2015 : International conference on learning
representations 2015. 2015.

[24] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition.
In: 2016 IEEE conference on computer vision and pattern recognition.
2016, p. 770–8. http://dx.doi.org/10.1109/CVPR.2016.90.

[25] Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected
convolutional networks. In: 2017 IEEE conference on computer vision and
pattern recognition. 2017, p. 2261–9. http://dx.doi.org/10.1109/CVPR.2017.
243.

[26] Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al.
Imagenet large scale visual recognition challenge. Int J Comput Vis
2015;115(3):211–52. http://dx.doi.org/10.1007/s11263-015-0816-y.

[27] Krizhevsky A. One weird trick for parallelizing convolutional neural
networks. 2014, arXiv preprint arXiv:1404.5997.

[28] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going
deeper with convolutions. In: 2015 IEEE conference on computer vision
and pattern recognition. 2015, p. 1–9. http://dx.doi.org/10.1109/CVPR.2015.
7298594.

[29] Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the
inception architecture for computer vision. In: 2016 IEEE conference on
computer vision and pattern recognition. 2016, p. 2818–26. http://dx.doi.
org/10.1109/CVPR.2016.308.

[30] Tan M, Chen B, Pang R, Vasudevan V, Sandler M, Howard A, et al. Mnasnet:
Platform-aware neural architecture search for mobile. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition. 2019,
p. 2820–8. http://dx.doi.org/10.1109/CVPR.2019.00293.

[31] Howard A, Sandler M, Chen B, Wang W, Chen L-C, Tan M, et al. Searching
for MobileNetV3. In: 2019 IEEE/CVF international conference on computer
vision. 2019, p. 1314–24. http://dx.doi.org/10.1109/ICCV.2019.00140.

[32] Xie S, Girshick R, Dollár P, Tu Z, He K. Aggregated residual transformations
for deep neural networks. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2017, p. 1492–500. http://dx.doi.
org/10.1109/CVPR.2017.634.

[33] Ma N, Zhang X, Zheng H-T, Sun J. Shufflenet V2: Practical guidelines for
efficient CNN architecture design. In: Ferrari V, Hebert M, Sminchisescu C,
Weiss Y, editors. Computer vision – ECCV 2018. Cham: Springer Interna-
tional Publishing; 2018, p. 122–38. http://dx.doi.org/10.1007/978-3-030-
01264-9_8.

[34] Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K.
SqueezeNet: AlexNet-Level accuracy with 50x fewer parameters and < 0.5
MB model size. 2016, arXiv preprint arXiv:1602.07360.

[35] Zagoruyko S, Komodakis N. Wide residual networks. In: Wilson RC,
Hancock ER, Smith WAP, editors. Proceedings of the British machine vision
conference. BMVA Press; 2016, p. 87.1–87.12. http://dx.doi.org/10.5244/C.
30.87.

[36] Bragagnolo A, Tartaglione E, Fiandrotti A, Grangetto M. On the role
of structured pruning for neural network compression. In: 2021 IEEE
International conference on image processing. 2021, p. 3527–31. http:
//dx.doi.org/10.1109/ICIP42928.2021.9506708.

[37] Tartaglione E, Nuzzarello G, Bragagnolo A, Grangetto M. Structured sparsity
on embedded devices.
11

http://arxiv.org/abs/1902.09574
http://dx.doi.org/10.1109/CVPR.2019.00447
http://dx.doi.org/10.1109/ICCV.2017.155
http://arxiv.org/abs/1607.03250
http://arxiv.org/abs/1812.07060
http://refhub.elsevier.com/S2352-7110(21)00157-6/sb6
http://refhub.elsevier.com/S2352-7110(21)00157-6/sb6
http://refhub.elsevier.com/S2352-7110(21)00157-6/sb6
http://dx.doi.org/10.1109/TNNLS.2021.3084527
http://dx.doi.org/10.1109/TNNLS.2021.3084527
http://dx.doi.org/10.1609/aaai.v34i07.6910
https://proceedings.mlsys.org/paper/2020/file/d2ddea18f00665ce8623e36bd4e3c7c5-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/d2ddea18f00665ce8623e36bd4e3c7c5-Paper.pdf
https://openreview.net/forum?id=rJl-b3RcF7
https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://openreview.net/forum?id=rJlnB3C5Ym
https://proceedings.mlr.press/v70/molchanov17a.html
https://proceedings.mlr.press/v70/molchanov17a.html
http://refhub.elsevier.com/S2352-7110(21)00157-6/sb16
http://refhub.elsevier.com/S2352-7110(21)00157-6/sb16
https://openreview.net/forum?id=H1Y8hhg0b
http://refhub.elsevier.com/S2352-7110(21)00157-6/sb18
http://refhub.elsevier.com/S2352-7110(21)00157-6/sb18
http://refhub.elsevier.com/S2352-7110(21)00157-6/sb18
http://dx.doi.org/10.1109/FCCM.2019.00013
http://dx.doi.org/10.1109/FCCM.2019.00013
https://pytorch.org/docs/stable/sparse.html
https://pytorch.org/docs/stable/sparse.html
http://dx.doi.org/10.1109/TCAD.2018.2864289
http://dx.doi.org/10.1109/TVLSI.2020.3002779
http://dx.doi.org/10.1109/TVLSI.2020.3002779
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/1404.5997
http://dx.doi.org/10.1109/CVPR.2015.7298594
http://dx.doi.org/10.1109/CVPR.2015.7298594
http://dx.doi.org/10.1109/CVPR.2016.308
http://dx.doi.org/10.1109/CVPR.2016.308
http://dx.doi.org/10.1109/CVPR.2019.00293
http://dx.doi.org/10.1109/ICCV.2019.00140
http://dx.doi.org/10.1109/CVPR.2017.634
http://dx.doi.org/10.1109/CVPR.2017.634
http://dx.doi.org/10.1007/978-3-030-01264-9_8
http://dx.doi.org/10.1007/978-3-030-01264-9_8
http://arxiv.org/abs/1602.07360
http://dx.doi.org/10.5244/C.30.87
http://dx.doi.org/10.5244/C.30.87
http://dx.doi.org/10.1109/ICIP42928.2021.9506708
http://dx.doi.org/10.1109/ICIP42928.2021.9506708

	Simplify: A Python library for optimizing pruned neural networks
	Motivation and significance
	Software description
	Illustrative examples
	Impact
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix A. Batch Normalization fusion
	Appendix B. Bias propagation
	Linear layers
	Convolutional layers
	Residual connections

	Appendix C. Channels removal
	Residual connections

	Appendix D. Additional results
	References


