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Abstract Over the past decades, several scholars have formalised Minsky’s profound insight that in-
creasing financial fragility accompanies periods of economic stability. It must be noted, however, that
a deep assessment of the role of expectations formation with heterogeneous agents has been provided
only by those contributions focusing on stock-market prices. Macroeconomic models dealing with debt
dynamics, on the other hand, have not yet presented such an account. It is our purpose to fill this gap
in the literature by formalising switches between different heuristics in a small-scale evolutionary agent-
based model where solvency aspects matter. Our system generates time-series that reproduce important
empirical stylised facts such as fat-tails and asymmetric skewness. We show how changes in risk per-
ception are amplified in an asymmetric way by the right-skewed solvency constraint, leading to output
fluctuations compatible with the possibility of crashes. Moreover, while the destabilising role of extrap-
olative behaviour is part of conventional wisdom, we discuss under which conditions fundamentalists, the
existence of resource constraints, and the time horizon of the economic unit may also lead to instability.

Keywords Financial instability · Real-financial interactions · Heterogeneous expectations · Evolution-
ary dynamics · Minsky

JEL classification G01 · C61 · D84

1 Introduction

The deep global recession triggered by the subprime mortgage crisis has renewed the interest for the
study of the role of financial actors and institutions in generating economic fluctuations. Ten years
or so after the collapse of Lehman Brothers, Minsky’s (1975, 1982) profound insight that increasing
financial fragility accompanies periods of economic stability is more alive than ever. Even though the so-
called Financial Instability Hypothesis (FIH) has just recently regained momentum among mainstream
economists and the financial press, several scholars have formalised over the past decades different parts
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2 1 INTRODUCTION

of his theory. Seminal articles include Taylor and O’Connell (1985), Foley (1987) and Delli Gatti et al.
(1993), the latter demonstrating the possibility of the emergence of persistent, bounded, and irregular
fluctuations. Subsequent studies have introduced considerations on stock-flow consistence, the interaction
between trend and cycle over time, different sources of behavioural heterogeneity, as well as the role of
fiscal and monetary policy.

In a recent survey of the literature, Nikolaidi and Stockhammer (2017), differentiated between two
major strands of research within the FIH, namely, contributions concerned with the dynamics of debt
and those interested in stock-market prices. We notice that while scholars in the second group have
presented a deep assessment of the role of expectations formation with heterogeneous agents, Minsky
debt models have not yet provided such an account. The main purpose of this article is to fill such a
gap by formalising discrete-choice switching between different heuristics in a small-scale evolutionary
agent-based model where solvency matters.

The hypothesis regarding the process of formation and revision of expectations was central to Keynes,
Schumpeter and Minsky reasoning. Recalling a metaphor used by Descartes in his Discourse on the
Method, Sordi and Vercelli (2012, hereafter SV) compared the behaviour of economic agents to the one
of an explorer that has to cross a forest of unknown size. It is rational for her/him to proceed in a straight
direction to minimise the risk of getting lost. However, s/he has to take into account that food reserves
are limited so that such strategy will only be pursued up to a well-defined threshold. At that point, a
rational explorer will go back following the same path in reverse because s/he does not know how far the
border is. This simple metaphor captures something crucial that typically happens in financial behaviour.
By differentiating between liquidity and solvency dimensions, SV showed how a simple mechanism of
heterogeneous expectations might generate persistent, bounded, and irregular fluctuations in financial
markets.

Our contribution concerns two main modifications that we bring to this original framework. The most
relevant is to provide an explicit account of the relationship between real and financial variables. This
is done by introducing aggregate demand into the model, which responds to an inter-temporal solvency
constraint and influences variations in the proportions of the types of agents. The second modification
derives from the observation that shifts of the margin of safety are not purely exogenous but also respond
to aggregate demand. These last two features are the main channels through which prolonged periods
of tranquillity induce agents to take riskier financial practices.

Investigations based on our deterministic model reveal that the interaction between the real and the
financial sides of the economy may lead to instability. We illustrate how decisions of economic units
(banks, firms, and households) are heavily affected by their current and expected financial conditions.
The parameter capturing the response of the margin of safety to output is one of the main sources of
endogenous fluctuations. Irregular oscillations also arise for sufficiently weak resource constraints, low
response of expectations to discrepancies in the liquidity index, and a low time horizon of the relevant
unit. While the destabilising role of extrapolative behaviour is part of conventional wisdom, we discuss
under which conditions regressive expectations can also lead to instability.

Furthermore, given the empirical evidence highlighting that the within-country time-series distribu-
tion of output is persistently fatter than the Gaussian one (e.g. Fagiolo et al., 2008; Ascari et al., 2015;
Naimzada and Pireddu, 2015), simulations of a stochastic version of our model demonstrate that it is
capable of reproducing such stylised fact. We show that even if the system is hit by purely Gaussian
uncorrelated shocks, fat-tail distributed time-series arise via the endogenous transmission mechanisms
embodied in the model. To obtain high kurtosis and skewed distributions the model has to be nonlinear.
We demonstrate that even in the absence of a stochastic component, the system is still compatible with
complex dynamics.

In terms of policy implications, three results not so obvious (or common) in the literature on the FIH
are worth stressing. First, the time horizon of the economic unit seems to be more important than the
interest rate as a source of endogenous instability. Second, fundamentalists are not always good for the
economy. If their speed of reaction is too strong, there is an increase in volatility resulting from the lags
involved in the interaction between real and financial variables. Last but not least, fiscal policy might be
a useful instrument for reducing instability if it manages to either avoid dramatic reductions or increases
in aggregate demand. Such approach could reduce the complexity of the instruments to be designed and
should be further investigated in future research.
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The remaining of the article is organised as follows. Section 2 presents an overview of the related
literature. Section 3 develops a simple liquidity-solvency model allowing for the interaction between
real and financial sides of the economy. Section 4 introduces heterogeneous expectations differentiating
between chartism and fundamentalism behaviour. In Section 5, the system is submitted to normally
distributed stochastic shocks. Numerical simulations permit us to go deeper into the mechanisms that
generate endogenous fluctuations. Section 6 brings some final considerations.

2 An overview of the related literature

Given the richness of approaches assessing the intrinsic instability of the capitalist financial system,
any attempt to present a comprehensive survey inevitably runs the risk of not making justice to some
authors. The purpose of this Section is to provide a brief overview of recent developments in the FIH
literature and how they relate to our contribution. As pointed out in the Introduction, Nikolaidi and
Stockhammer (2017) differentiated between contributions dealing with the dynamics of debt and those
related to stock-market prices. In what follows, we shall loosely follow a similar scheme.

For instance, keeping debt at the centre of the analysis, different studies have explored the interaction
between real and financial sectors using a stock-flow consistent approach (e.g. Nikolaidi, 2014; Ryoo,
2016; Daffermos, 2018). Other scholars have introduced a financial sector into Goodwin’s growth-cycle
model, obtaining a macrodynamic system in which growth and fluctuations are indissolubly fused (see,
for example, Keen, 1995; Grasselli and Costa Lima, 2012; Sordi and Vercelli, 2014). This strand of the
literature has provided a successful differentiation between firms and household debt in a growth-cycle
framework with equally important developments in terms of economic policy (Asada et al., 2011; Costa
Lima et al., 2014; Giraud and Grasselli, 2019).

The capacity of the deterministic version of our model to generate endogenous bounded fluctuations
is perhaps the main attribute it shares with these studies. On the other hand, a major difference is
related to the nature of agents’ heterogeneity. While in their case there is only a broad reference to
workers, capitalists and financiers, our formalisation highlights a mechanism that might be applied to
economic units in general, from households to firms and banks. Depending on economic conditions, they
may behave either as a fundamentalist or as a trend-extrapolator. It has been demonstrated that such
a classification accounts for almost the totality of different possible strategies of interacting speculators
(see Aoki and Yoshikawa, 2006).

In fact, the literature on bounded rational heterogeneous agents has successfully shown that trading
activity of interacting speculators can account for a large part of the dynamics of financial markets
(see Day and Huang, 1990; Chiarella, 1992). Different sources of behavioural heterogeneity have been
identified, ranging from optimistic and pessimistic expectations to disposition effects, overconfidence,
etc. (for a review on recent developments, see Lux, 2009; Hommes, 2013; Dawid et al., 2019). They
provide the basis for a rich representation of the interconnections between real and financial markets
with a clear interest in more complex dynamics.

One of the first steps in this direction was given by Westerhoff (2012). In his model, nonlinear
interactions between aggregated demand, chartists, and fundamentalists result in complex “bull & bear”
dynamics. Even though this literature not always explicitly mentions Minsky, there is a clear favourable
attitude towards the FIH. Endogenous switches between different heuristics have been formalised by
Naimzada and Pireddu (2015), Cavalli et al. (2018), and Flaschel et al. (2018), among others. Most of
the time, they rely on Lux (1995) or Brock and Hommes (1997) description of agents behaviour under
bounded rationality. The model presented here makes use of the discrete-choice switching mechanism
developed by the latter, which has been widely applied in the literature on evolutionary economics.
Nonetheless, we innovate by bringing into the discussion the role of expectations when differentiating
liquidity and solvency dimensions.

The contributions revisited so far have adopted a macroeconomic perspective of the problem. A
seminal microeconomic formalisation of Minsky was first presented by Chiarella and Di Guilmi (2011).
Building on Taylor and O’Connell (1985), their financial fragility model was expressed in terms of a micro-
level composed of heterogeneous firms in which variations in the proportion of the types of operators
were governed by a stochastic law. Their article started a fruitful research line that has not neglected the
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incorporation of stock-flow considerations (e.g. Caiani et al., 2016; Di Guilmi and Carvalho, 2017; Meijers
et al., 2019). Similar efforts include Farmer (2013) and Bhattacharya et al. (2015) that have combined
some Minskyan insights and the basic Dynamic Stochastic General Equilibrium (DSGE) model.

In contrast with these last examples, we allow the composition of the population to vary endogenously
in response to current macroeconomic conditions. It is assumed that when the economy is facing a “boom”
or a period of tranquillity, units are more likely to decide to extrapolate the trend. On the contrary,
during “bad” times, agents go back to the perceived economic fundamentals, which are themselves
endogenous to the state of affairs. We believe this crucial step is not only in line with the spirit of the
FIH but also finds empirical support in the literature (see Bordalo et al., 2018; Böck and Zörner, 2019).
The deterministic version of our system reveals how the interaction between real and financial sides
of the economy may lead to instability. Stochastic shocks are not necessary for obtaining endogenous
fluctuations. Still, simulations of a stochastic version of our model allow us to reproduce well-known
stylised facts such as fat-tail distributed time-series.

3 Financial instability and extrapolative expectations

Greater uncertainty reduces the prospects of recognising the right situation to select a certain action, as
well as the likelihood of not recognising the wrong situation for selecting it. As a result, behavioural rules
become more restrictive, further constraining action to less sophisticated patterns, easier to recognise
and “predict”. Paradoxically, “uncertainty becomes the basic source of predictable behaviour” (Heiner,
1983, p. 570). Bounded rational agents stick to behavioural rules that are the more rigid the higher the
degree of uncertainty.

Different sources of behavioural heterogeneity have been identified over the past decades such as
optimistic and pessimistic expectations, disposition effects, and overconfidence, among others. Still, Aoki
and Yoshikawa (2006) have not too long ago demonstrated that a simple differentiation between regressive
expectations (or fundamentalism) and trend-extrapolation (or chartism) basically accounts for almost
the totality of different possible strategies of interacting speculators. For the purposes of this paper,
both heuristics are related to how economic units respond to changes in liquidity, understood as the
difference between financial inflows and outflows. In light of recent advances in complex dynamics and
in behavioural economics, it is our aim to study the interaction between the real and financial sides of
the economy making explicit reference to expectations formation under the FIH.

This Section is divided into two main parts. First, we revisit the basic structure of the simplest
case presented in SV. It corresponds to a purely financial model in which agents are homogeneous and
form expectations extrapolating liquidity trends. Taking that system as a starting point, we proceed
by introducing the real sector, which is going to crucially depend on the role of aggregate demand.
Investment and consumption decisions are supposed to be a function of the financial solvency of the
economic unit, which in turn depends on expectations about financial inflows and outflows. The real
sector is going to feed back into the financial sector through the desired solvency safety margin. A formal
assessment of the role of heterogeneous expectations is postponed to the next Section.

3.1 Modelling liquidity and solvency interactions

In a modern economy, economic units make decisions focusing on the interaction between current and
inter-temporal financial constraints. Both dimensions have a crucial role in shaping their behaviour.
Current financial conditions may be approximated by a liquidity index (f) which is given by the difference
between financial inflows and outflows. On the other hand, the solvency of an economic unit (f∗) is
defined as the sum of the expected liquidity over a given time horizon (T ), discounted by the nominal
interest rate (r):

f∗t+1 =

T∑
s=0

Et [ft+1+s]

(1 + r)
s (1)
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where Et [·] represents the conditional expectation operator. This expression may be seen as a generali-
sation of the concept of capital marginal efficiency introduced by Keynes in the General Theory (SV, p.
553).

Minsky (1982) stressed that a situation of financial stability may be destabilising. Empirical evidence
showing that a sequence of high returns triggers agents to overestimate the probability of high returns
in the future, while bad returns yield lower forecasts of future returns, has been recently provided
by Böck and Zörner (2019). During periods of tranquillity, the expectations of the economic unit are
systematically validated by the market, leading to a progressive reduction of the perception of risk
associated with forecasting mistakes. The simplest way to take account of this is to assume that units
extrapolate liquidity trends, such that:

Et [ft+1] = ft + ρ
(
ft − f̄

)
(2)

with ρ > 0 indicating the speed of reaction of expectations to discrepancies between the liquidity index
and its reference level in periods of tranquillity (f̄).

This last variable should be understood as liquidity expectations under robust financial conditions.
If in the beginning of a “tranquil period” the unit expects that its liquidity conditions will remain more
or less unchanged in the near future, then Et[ft+s] = f̄ . Substituting this last expression into Eq. (1),
we have:

f∗t+1 =

T∑
s=0

f̄

(1 + r)
s (3)

It is easy to see that:

f∗t+1 =
f̄

a
(4)

where

a =
r (1 + r)

T

(1 + r)
T+1 − 1

≤ 1

The solvency index is going to be constant, increasing on the time-horizon of the firm or household, and
decreasing on r. Notice that the model is compatible with zero or even negative interest rates. This last
case will be further discussed when calibrating the system.

Manipulating algebraically Eqs. (1)-(4), we obtain the dynamic equation for changes in solvency:

f∗t+1 = βft + (1− aβ) f∗t (5)

where

β = (1 + ρ)

[
(1 + r)

T+1 − (1 + ρ)
T+1

(1 + r)
T

(r − ρ)

]
> 0 (6)

Parameter β captures the response of solvency to liquidity when all agents are chartists. It increases in ρ
and T while decreases in r. This means that solvency is going to be more sensitive to liquidity conditions
in an economy populated by long-memory agents. Indeed, given that they form expectations by simply
projecting past trends, an increase in T implies that previous changes in financial inflows have more
persistent effects. Conversely, interest rates discount expectations, thus leading to a lower β.

To determine the motion of current financial conditions, the metaphor of the (ir)rational explorer
in the (financial) jungle turns out to be particularly illuminating (SV, p. 546). For a limited amount
of food and water supplies, someone crossing a forest of unknown size and dimension will proceed in a
straight direction to minimise the risk of getting lost only until a well-defined threshold. After reaching
this safety point, the explorer needs to follow the same path in reverse because s/he does not know how
far the border is.

Analogously, each economic unit, in order to deal with the risk of bankruptcy, chooses a minimum
value of its net worth sufficiently higher than zero beneath which it does not want to go. We refer to this
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subjective threshold as a desired solvency safety margin (µ). Given that higher risk implies a higher rate
of return, firms and households are willing to increase their financial exposure as long as their financial
structure is such that f∗ > µ. However, after the safety threshold is reached, f∗ ≤ µ, their focus changes
to the struggle of securing their own financial survival. In mathematical terms:

ft+1 = ft − α (f∗t − µt) (7)

with α > 0 representing the speed of reaction to discrepancies between the solvency index and the safety
margin. SV assumed µ to be exogenous to the economic system:

µt = µ0 > 0, ∀t

In this way, they arrived to a two-dimension dynamic system formed by Eqs. (5) and (7) which provides
a useful structure to study the role of expectations within the core of the FIH.

It must be noted, however, that this model is purely financial. There is no explicit account of the
relationship between real and financial variables. Moreover, the margin of safety is supposed to be
constant and exogenously determined. We shall relax both assumptions by introducing a parsimonious
specification of the real sector.

3.2 Introducing the real sector

In order to go one step forward, we extend the model by introducing a nonlinear mechanism for income
variations that takes into account the existence of resource constraints. In a closed economy without
government, aggregate demand (Z) is divided between consumption (C) and investment (I). They are
both assumed to be a function of the solvency index and of the level of output:

Zt = C (f∗t , Yt) + I (f∗t , Yt)

= Z0 − ψf∗t + φYt (8)

where Z0 > 0 corresponds to autonomous expenditure, while −ψ = δC/δf∗ + δI/δf∗ and φ = δC/δY +
δC/δI are marginal propensity parameters.

Private expenditure increases with national income since consumption depends on current income
and investment decisions include an induced component. This means that φ > 0. To leave aside the
complications of dealing with the problem of Harrodian instability, we further impose φ < 1. While it is
more difficult to overlook such an element in a growth model, we leave the issue open for future research.1

On the other hand, an increase in solvency is associate with a lower level of demand. By definition, f∗

depends on the sum of expected financial inflows over outflows. A high solvency index indicates that
economic units are spending less than what they could, given their inter-temporal financial constraint.
“Hyper-solvent” units clearly have space for increasing their expenditures and refusing to do so has
negative implications in the current level of economic activity, i.e. ψ > 0.

This last relationship is supposed to capture indirectly the wealth effect on consumption and the
so-called cash-flow effect on investment (see, for example, Fazzari et al., 2008 and Westerhoff, 2012).
The former states that households’ spending accompanies changes in perceived wealth, while the latter
suggests cash-flow raises the amount of investment that firms can undertake without incurring the costs
associated with debt or new share issues. By depicting the correspondence between aggregate demand
and the solvency constraint, we are able to tackle both. For instance, as long as f∗ is greater than
the margin of safety, economic units respond by increasing their financial exposure, i.e. reducing their
liquidity. A reduction in f brings about an increase in expenditures and consequently, as f∗ falls, leads
to higher demand.

Excess demand (E) corresponds to the difference between expenditures and output:

Et = Zt − Yt (9)

1 A formalisation that distinguishes between consumption and investment expenditure assuming that the latter is de-
termined by the flexible accelerator principle can be found in Sordi and Dávila-Fernández (2020). They showed how a
strong investment accelerator might be a crucial force generating fluctuations that, on the one hand, are transmitted and
amplified by chartists and, on the other hand, are contained by fundamentalists.



3.2 Introducing the real sector 7

while firms adjusts output with a one-period production lag:

Yt+1 = Yt + g (Et) (10)

The properties of the function g (·) describe how changes in production depend on E. As in standard
macroeconomic models, we require δg/δE > 0 and g (0) = 0 such that in equilibrium there is no excess
demand.

In addition, one should take into account the fact that production is subject to resource constraints.
Output cannot increase too strongly in the upswing phase of the business cycle because at some point the
economy would face input shortages and rationing of orders. This includes increases in labour costs as we
approach low unemployment rates. There are also limits to how much output can fall. The existence of
an autonomous consumption component, for example, partially explains the existence of such floor. One
could also notice that machines, once made, cannot be unmade, so that capital destruction is limited to
attrition from wear, time, and innovations. To consider those elements, we suppose:

g (Et) = b2

(
b1 + b2

b1 exp [−Et] + b2
− 1

)
(11)

= g(f∗t , Yt) gf∗ < 0, gY < 0

where b1 and b2 are positive parameters determining output’s floor and ceiling, respectively.2 The sign
of the partial derivatives gf∗ and gY immediately follows from the properties of aggregate demand
previously discussed.

Moreover, we allow the desired solvency safety margin µ to change depending on the phase of the
business cycle. In an environment with strong asymmetric information, traders necessarily have to rely on
what can be observed in the market to take decisions concerning their actions. Keeping in mind Minsky’s
principle that stability is destabilising, we divide the solvency safety threshold into two components, one
capturing structural conditions of the economic unit (µ0) while the other capturing those related to
business cycle fluctuations:

µt = µ0 − µ̄g (f∗t , Yt) (12)

such that a high µ̄ > 0 reflects an economy in which the financial side strongly responds to changes
in output. During good times, households and firms increase their financial exposure because their
confidence in their own financial structure is affected by the generalised optimism that usually follows
periods of economic prosperity. A path of improving news leads an agent to focus on good future outcomes
and neglect bad ones. The opposite situation happens during bad times. Deteriorating news lead agents
to neglect good ones causing excessive pessimism (for empirical support, see Bordalo et al., 2018; Böck
and Zörner, 2019). In this way, the chosen minimum value of net worth beneath which the economic
unit does not want to go decreases as the real-side of the economy improves.

Making use of Eqs. (8)-(11) and substituting Eq. (12) into (7), we allow for the interaction between
real and financial sides of the economy. The three-dimensional dynamic system reads:

ft+1 = ft − α
[
f∗t − µ0 + µ̄b2

(
b1 + b2

b1 exp [−Z0 + ψf∗t + (1− φ)Yt] + b2
− 1

)]
f∗t+1 = max {βft + (1− aβ) f∗t , 0}

Yt+1 = Yt + b2

(
b1 + b2

b1 exp [−Z0 + ψf∗t + (1− φ)Yt] + b2
− 1

)
(13)

where we impose f∗t ≥ 0 ∀t to take into account that highly financially distressed units are virtually
insolvent and either go to bankruptcy or need to be bailed-out.

Hence, we can state and prove the following Proposition regarding the existence and uniqueness of
an internal equilibrium.

2 Allen’s (1967, pp. 374-383) well-known macroeconomic manual proposed a sigmoid shape smooth function that intro-
duces such constraints into the nonlinear accelerator of investment in a rather elegant way (see also Sordi, 1988). This
formulation has recently become quite popular among those studying real and financial market interactions (e.g. Naimzada
and Pireddu, 2015; Cavalli et al., 2018). Our specification of g(·) follows closely these studies. As indicated by one of the
reviewers, b1 and b2 not only affect the upper and lower limits of the sigmoid function but also impact on its slope at the
origin. The steepness of g(0) increases or decreases with the ratio of the (vertical) change between the two parameters.
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Proposition 1 The dynamic system (13) has a unique equilibrium point (fE , f∗E , Y E) that satisfies

fE = aµ0

f∗E = µ0 (14)

Y E =
Z0 − ψµ0

1− φ
where an economic meaningful equilibrium output requires that Z0 > ψµ0.

Proof See Mathematical Appendix.

In steady-state, liquidity and solvency indexes are the same as those obtained by SV. The main
innovation comes from the introduction of the real sector. Higher autonomous demand and a lower
sensitivity of expenditures to the level of output lead to higher equilibrium values of Y through traditional
Keynesian reasoning. Output also depends on the part of the so-called margin of safety that in its turn
depends on structural conditions of the economy. Higher values of µ0 are related to lower levels of
production, reflecting the empirical regularity that higher risk implies higher returns.

Regarding the stability properties of the fixed point, we can state and prove the following Proposition:

Proposition 2 The equilibrium point (fE , f∗E , Y E) is locally asymptotically stable in the region of
the parameter space defined as:

(4− 2aβ + αβ) (2 + ḡY ) + 2αβµ̄ḡf∗ > 0 (15)

and

− α2β2ḡ2f∗ µ̄2 +
(
aαβ2 − 2α2β2 − 2α2β2ḡY − αβḡY + 2aαβ2ḡY

)
ḡf∗ µ̄

+ (a− α)
(
αβ2 − aβ2ḡY + 2αβ2ḡY + ḡ2Y − aβ2ḡ2Y + αβ2ḡ2Y

)
> 0 (16)

where ḡY and ḡf∗ are the partial derivatives of g(·) at the equilibrium point. Moreover, if a change
in one of the parameters determines the violation of the first condition while the second is satisfied, a
Flip bifurcation occurs. On the contrary, if the second condition is violated while the first is satisfied, a
Neimark-Sacker bifurcation occurs.

Proof See Mathematical Appendix.

These are necessary conditions for the existence of the associated bifurcations (see Lines et al., 2019).
Still, their economic intuition is not straightforward. Before proceeding, it is worth spending some time
studying at least one particular case. Suppose that the interest rate and the time horizon of the unit are
such that the ratio between liquidity and solvency indexes at equilibrium (a) equalises the response of
liquidity to solvency deviations from the margin of safety (α). In this case, current liquidity conditions
and its reference level during periods of tranquillity move approximately in the same proportion.3 This
means that the financial side of the economy is in a permanent state of unrest, allowing us to assess the
stability properties of the system once the real sector is considered. We can state and prove the following
Proposition:

Proposition 3 When a = α, the equilibrium point (fE , f∗E , Y E) is locally asymptotically stable
provided that:

(4− αβ) (2 + ḡY ) + 2αβµ̄ḡf∗ > 0 (17)

and

αβ (1 + ḡf∗ µ̄) + αβ + ḡY > 0 (18)

If a change in one of the parameters determines the violation of condition (17) while (18) is satisfied, a
Flip bifurcation occurs. The opposite case is associated with a Neimark-Sacker bifurcation.

3 The reader might also notice that in SV this condition was responsible for generating periodic or quasi-periodic
dynamics. Indeed, if we take the real side of the economy as given, it follows that a = α implies ∂fE/∂f∗E = ∂ft+1/∂f∗t .
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Proof See Mathematical Appendix.

Given that ḡf∗ < 0, conditions (17) and (18) indicate that the response of liquidity to real outcomes
might be critical for the dynamic properties of the system. Indeed, high values of µ̄, α, and β, increase
the likelihood that the dynamic behaviour of the model may drastically change from a qualitative point
of view. Going back to the general case, we rely on numerical evidence to show that such bifurcations
happen and to present an economic interpretation of the dynamics we obtain. Parameter values were
chosen to provide results economically meaningful. Although this selection has an illustrative purpose
only, similar qualitative results are observed for wider ranges. Our reference values are:

α = 0.5, ρ = 0.3, r = 0.05, T = 1, Z0 = 20.15

µ0 = 0.1, µ̄ = 1, φ = 0.7995, ψ = 1, b1 = b2 = 2.5

Following our previous discussion, a crucial parameter capturing the interaction between markets is
µ̄. Fig. 1 reports the respective 1D bifurcation diagram. As we increase the interconnection between real
and financial sides, the unique equilibrium point loses stability and a Neimark-Sacker bifurcation takes
place. However, an equilibrium set may still exist because an attracting invariant closed curve co-exists
with the unstable fixed point. The resulting orbits are sequences of points whose motion around the
curve is either periodic or quasi-periodic. Indeed, the Maximum Lyapunov Exponent (MLE) alternates
between values slightly above and below zero.4 Our story follows closely Minsky’s insight that during
the boom phase of the business cycle, economic units become less careful in their financial decisions
increasing their risk exposure. This leads to higher volatility in both markets.

We proceed by investigating the interplay of such effect with variations in the interest rate, the
financial time horizon, and the response of liquidity to solvency deviations from the margin of safety. Fig.
2(a)-(c) presents different 2D bifurcation diagrams providing a qualitative representation of the stability
region in the parameter space. Regions in red correspond to a combination that leads to convergence to
the fixed point. Coloured in grey, we have regions of non-convergence, representing either chaotic areas
or high frequency periodic cycles.

Overall, the system seems to depict a small response to changes in the interest rate. As long as µ̄ is
low enough, varying r does not change qualitatively the behaviour of the model even below the so-called
zero-lower bound. Dieci et al. (2018) found similar results in their study of the interaction between stock,
bond and housing markets. Given that we do not allow the interest rate to directly influence aggregate
demand, it only plays a marginal role through β. This last variable makes an important bridge between
solvency and liquidity conditions. However, it relies more on expectations and on the time horizon of
the economic unit, explaining the apparent insensitivity to r.

Also a µ̄ sufficiently close to zero combined with low values of T and α stabilises the system. This is
basically because the transmission channels from output to liquidity and from liquidity to solvency are
blocked. On the other hand, a sufficiently high time horizon of the unit and a strong response of liquidity
to solvency are enough to bring about endogenous fluctuations, even under low values of µ̄. In this case,
instability comes strictly from the financial market. Households and firms’ solvency conditions depend
on expectations about long-term financial flows. However, for a high T , there is an increasing projection
of current states into the future because agents were supposed to be trend-extrapolators. As a result,
instability rises. We also identified regions with cycles of periodicity five (in pink) and six (in orange).
There is no straightforward economic meaning for them besides the fact that, for those parameters, the
system generates endogenous cycles.

Finally, it is possible to assess the relevance of resource constraints, as in Eq. (11), for the dynamics
of our model. Fig. 2(d) shows that either a sufficiently low b1 or b2 is enough for the equilibrium point to
be stable. The asymmetric nature of this last effect is not obvious. It indicates that policies that avoid
dramatic reductions in aggregate demand alone might have an important role in stabilising both the
financial and real sides of the economy. Avoiding high peaks in output has a similar effect by limiting
overconfidence in financial markets.

4 A positive MLE is usually taken as an indication that the system is chaotic. It can be estimated numerically either
by evaluating the Jacobian matrix at any point along a generated orbit or by using a finite differencing method along the
orbit. In this article, we follow the second approach embodied in the algorithm of Diks et al. (2008).
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Fig. 1: Bifurcation diagrams with respect to µ̄ for liquidity, solvency, output, and the correspondent
Lyapunov exponent.

4 Heterogeneous agents and financial instability

Bounded rational agents rely on simple behavioural heuristics but their aggregation at the micro level
“may generate sophisticated structure at the macro level” (Hommes, 2006, p. 1109). It must be noted,
however, that the model developed in Section 3 assumed that agents are homogeneous. The interplay
between different groups of agents is a necessary step to explain crucial stylised facts that characterise
economic and financial time-series, such as high kurtosis, skewed distributions and crashes. To introduce
some degree of heterogeneity, we extend the dynamic system (13) by differentiating between extrapolative
(Ee

t [·]) and regressive (Er
t [·]) liquidity expectations formation:

Ee
t [ft+1] = ft + ρe

(
ft − f̄

)
(19)

Er
t [ft+1] = ft − ρr

(
ft − f̄

)
(20)

where ρe, ρr > 0 stand as the response of trend-extrapolators (or chartists) and those with regressive
expectations (or fundamentalists), respectively, to deviation of liquidity from the tranquillity reference
value.
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Fig. 2: 2D bifurcation diagrams in the (µ̄, r), (µ̄, T ), (µ̄, α), and (b1, b2) space.

Making use of Eqs. (19) and (20), aggregate expectations are given by the weighted sum between the
two groups:

Et [ft+1] = wtE
e
t [ft+1] + (1− wt)E

r
t [ft+1]

= (1 + ρert )
(
ft − f̄

)
+ f̄ (21)

with

ρert = wtρ
e + (1− wt) (−ρr) (22)

and w ∈ [0, 1] standing for the share of chartists in the population.
In discrete-choice models, changing proportions are driven by quantities representing attractiveness

indexes, or performance indexes. For the purposes of this paper, we assume that agents look at indicators
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that reflect the performance of the real side of the economy. Agents can choose between extrapolating
the trend or returning to the fundamentals. Following Brock and Hommes (1997) and Naimzada and
Pireddu (2015), the composition of the population is given by:

wt =
exp [γxet ]

exp [γxet ] + exp [γxrt ]
(23)

where xe and xr represent the “mood-state” of chartists and fundamentalists.5

When the economy is facing a “boom” or periods of tranquillity, a unit is more likely to decide to
extrapolate the trend. On the other hand, during a recession, agents become more risk averse and willing
to converge to f̄ . Hence, suppose xe and xr are such that:

xet = g (f∗t , Yt) (24)

xrt = −g (f∗t , Yt) (25)

For g(·) > 0, we have that w ∈ (0.5, 1] and chartists prevail, while for g(·) < 0, it follows that w ∈ [0, 0.5)
and fundamentalists become the majority group. In steady state, g(f∗E , Y E) = 0 and there is an equal
distribution between the two heuristics.

Once we take into account heterogeneity, Eq. (6) can be rewritten as:

βt =
(1 + ρert )

[
(1 + r)

T+1 − (1 + ρert )
T+1

]
(1 + r)

T
(r − ρert )

(26)

where, combining Eqs. (20)-(23), we have:

ρert =
ρe exp [γg (f∗t , Yt)]

2 − ρr

1 + exp [γg (f∗t , Yt)]
2

so that β is a function of both f∗ and Y .
It follows that the modified dynamic system thus becomes:

ft+1 = ft − α
[
f∗t − µ0 + µ̄b2

(
b1 + b2

b1 exp [−Z0 + ψf∗t + (1− φ)Yt] + b2
− 1

)]
f∗t+1 = max {β(f∗t , Yt)ft + [1− aβ(f∗t , Yt)] f

∗
t , 0}

Yt+1 = Yt + b2

(
b1 + b2

b1 exp [−Z0 + ψf∗t + (1− φ)Yt] + b2
− 1

)
(27)

Hence, we can state and prove the following Proposition regarding the existence and uniqueness of
an internal equilibrium as well as the local stability properties of the fixed point.

Proposition 4 The dynamic system (27) has the same unique equilibrium point (fE, f∗E, Y E) that
satisfies (14). It is locally asymptotically stable provided that conditions (15) and (16) hold. If a change
in one of the parameters determines the violation of the first condition, a Flip bifurcation occurs. On the
other hand, a violation of the second condition is associated with a Neimark-Sacker bifurcation.

Proof See Mathematical Appendix.

The reader may observe that the stability conditions in Proposition 4 are the same as those enunci-
ated in Proposition 2. Even though this surely indicates that both systems are equivalent (as to their
linearisation near the steady state), it does not imply that the introduction of a regressive component
has no effects on the dynamic properties of the model. The crucial difference lies in the nature of β. In
Section 3, it was a given parameter, while here β changes over time depending on the composition of
agents in the economy, as we can clearly see in Eq. (26).

5 Notice that the description of endogenous switches between attitudes by the so-called Brock-Hommes discrete choice
approach is closely related to the exponential functions in the transition probabilities of Lux (1995). For a recent review
of the literature see Franke and Westerhoff (2017).
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Fig. 3: Bifurcation diagrams with respect to ρe for liquidity, solvency, output, and the correspondent
Lyapunov exponent when µ̄ = 0.25.

Once more, we rely on numerical simulations to verify if bifurcations occur and to further investigate
the dynamic properties of the system. Our reference values are the same presented in Section 3, except
for the adoption of the following extra calibration parameters:

ρe = 0.75, ρr = 0.5, γ = 2

Several studies on real-financial market interactions have suggested that chartists play a destabilising
role in the economy. In our model, the crucial parameter is ρe, which indicates the reactivity of trend-
extrapolators’ expectations to liquidity deviations. Fig. 3 shows the respective 1D bifurcation diagram.
For a sufficiently small response of expectations, a Neimark-Sacker bifurcation occurs and the stable
fixed point loses its stability. A MLE oscillating between values slightly above and below zero indicates
switches between periodic and aperiodic dynamics.

Very large values of ρe, on the other hand, lead to a degenerate Flip bifurcation. A stable period-2
cycle arises as the new limit set. Notice, however, that this is not the case of a classical period doubling,
such as those observed in smooth maps. By continuously varying the bifurcation parameter, the period-2
cycle loses its stability through a second bifurcation, and so on, resulting in a cascade of bifurcations. Such
a scenario typically leads to a parameter interval characterised by the emergence of chaotic trajectories,
which is confirmed by a strictly positive MLE.

The reason for this behaviour is that when the reactivity of agents that extrapolate the trend is low,
aggregate expectations strongly rely on regressive strategies. Given the lags involved in the interplay
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between real and financial variables, a too strong convergence to the fundamentals actually increases
the volatility of the system. This is particularly true when ρe < ρr so that in steady-state ρer < 0. At
the other extreme, when ρe becomes sufficiently large, changes in aggregate expectations increasingly
rely on chartists. In this case, the equilibrium loses stability due to an overreaction of expectations that
amplifies the deviation between f and f̄ . For intermediary values of ρe, a region of stability emerges.

We now investigate simultaneous changes in chartists and fundamentalists’ response for different
values of the margin of solvency (µ̄) and of the speed of reaction (α). Looking at Fig. 4(a), we can
observe what happens in a scenario characterised by a low interconnection between markets and by a
low response of liquidity to solvency, i.e. µ̄ = 0.25 and α = 0.05. As in the previous section, regions
in red correspond to a combination of parameters that leads to convergence to the fixed point while
those coloured in grey stand for regions of non-convergence, representing areas of either chaotic or high
frequency periodic cycles. The novelties are the blue and black regions: the first one points to the presence
of a cycle of period two, while the second indicates divergence. When ρe is low, a chaotic behaviour may
be observed. As it increases, however, the system first converges to equilibrium and later on a cycle of
periodicity two arises.

By increasing the value of α, we move to Fig. 4(b). The blue area becomes very thin while regions
characterised by non-convergence and chaos prevail. Panel (c) shows what happens when α is low but
the interaction between the real and the financial side is stronger (µ̄ = 1). It immediately stands out
that this circumstance is equal to the previous one. We conclude that a strong interconnection between
markets or between solvency and liquidity are equivalent for the stability of the system. Finally, when
both µ̄ and α are large, the system experiences high frequency cycles and a chaotic behaviour, as we can
see in Fig. 4(d).

The view that the economy can be influenced permanently by the extent to which it has changed in
the past is highly intuitive. Commonly referred to in social sciences as path dependency, it highlights
that economic outcomes are historically contingent. Fig. 5(a)-(b) plots two different trajectories of our
time-series for almost identical initial conditions. On the right, we can see the share of chartists and
fundamentalists in the economy. After ten interactions, they start to diverge and follow a chaotic pattern,
as already confirmed by our Lyapunov exponents. Such a result highlights the uniqueness of economic
trajectories and that initial conditions matter. Panel (c) depicts the relation between w and the other
main elements of the model. This allow us to further identify a second representation of path dependence
in the form of coexistence of chaotic attractors.

Boom and bust dynamics strongly depend on the inter-temporal financial constraint. During good
times, as Y goes up, there is a reduction of risk perception that reduces µ and increases the share of
chartists in the economy. In this context, economic units operate in such a way that f∗ = 0 and the
solvency constraint is binding. As this process goes on, the liquidity position of the firm or household
improves followed by an increase in ρer and, consequently, in β. Therefore, at a certain point, f∗ becomes
positive, which means aggregate demand and liquidity fall, frustrating expectations. Agents run to the
fundamentals drastically reducing ρer and β. When the solvency constraint binds again, the economy
starts to recover and the cycle restarts.

5 Introducing stochastic shocks

The last step of our analysis consists in understanding if our model is able to replicate, under a suitable
parametric set-up, some qualitative features of real and financial time-series. To do so, we introduce
a stochastic component to each dynamic equation that captures unexpected or unpredictable events
that affect an economy. Such factors are unexplained by our model but still may influence economic
trajectories. Thus, we have the following map:
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Fig. 4: 2D bifurcation diagrams in the (ρe, ρr) space when (a) µ̄ = 0.25 and α = 0.05; (b) µ̄ = 0.25 and
α = 0.5; (c) µ̄ = 1 and α = 0.05; (d) µ̄ = 1 and α = 0.5.

ft+1 = ft − α
[
f∗t − µ0 + µ̄b2

(
b1 + b2

b1 exp [−Z0 + ψf∗t + (1− φ)Yt] + b2
− 1

)]
+ ξf,t

f∗t+1 = max {β(f∗t , Yt)ft + [1− aβ(f∗t , Yt)] f
∗
t + ξf∗,t, 0}

Yt+1 = Yt + b2

(
b1 + b2

b1 exp [−Z0 + ψf∗t + (1− φ)Yt] + b2
− 1

)
+ ξY,t (28)

where

ξf,t v N(µf , σ
2
f ) ξf∗,t v N(µf∗ , σ2

f∗) ξY,t v N(µY , σ
2
Y )
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Fig. 5: Sensitivity to initial conditions for (f0, f
∗
0 , Y0)=(0.07, 0.11, 100.1), in red, and for

(f0, f
∗
0 , Y0)=(0.07, 0.1101, 100.1), in blue, when µ̄ = 0.25, α = 0.5, ρe = 0.75, and ρr = 0.75.
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Fig. 6: Mean, Std., kurtosis, and skewness of the time-series. Average measures and statistics of 2000
Monte Carlo simulations (length 10000 iterations each).

Table 1: Statistical properties of the time-series in Fig. 6.

Variable Mean Std. Kurtosis Skewness

f 0.0056 0.0186 4.2999 -0.5034

f∗ 0.1039 0.2079 14.1938 2.8412

Y 99.9910 0.5070 4.2316 -0.7169

Stochastic shocks are i.i.d. and independent from each other. The mean and variances are set as:

µf = µf∗ = µY = 0

σ2
f = σ2

f∗ = 0.01 σ2
Y = 0.2

We performed 2000 runs of Monte Carlo simulations, each one made up of 1000 iterations. It is well-
known that GDP and asset prices often do not follow a normal distribution but suffer from the presence
of fat-tails and asymmetric skewness, being highly volatile. For this reason, we are interested in showing
that, even if the system is hit by purely Gaussian uncorrelated shocks, fat-tail distributed time-series
arise via the endogenous transmission mechanisms embodied in the model. Fig. 6 and Table 1 display
this result for our relevant variables. The top-left panel shows the distribution of our simulated Y (in
red) versus the theoretical normal one (in blue). Our model is able to reproduce both the presence of
fat-tails and of left-skewness.6

It is important to understand the mechanism behind these last results. Fat-tails require that the
underlying model is sufficiently nonlinear in order to amplify the stochastic component in such a way
that extreme events are more likely to happen. Clearly, our system satisfies this condition. On the other
hand, left-skewness in GDP series results from the interactions between the inter-temporal financial
constraint and Y . Because financially distressed units are virtually insolvent and either go to bankruptcy
or need to be bailed-out, at a macro level, it follows that f∗ is strongly right-skewed. Given Eq. (8), this
translates into left-skewed output.

Our analysis in the previous Sections has revealed the following important insight: the time horizon
of the economic unit is an important source of instability in a capitalist economy. To show that this is
also the case once we take into account the interplay between different groups of agents, Fig. 7 reports
the time-series of liquidity, solvency, and output for T = 0.5 and T = 3. As we increase T , two interesting
results appear. First, there is a reduction in volatility because regressive expectations are anchored in
the fundamentals. Second, economic units operate in such a way that the solvency constraint binds most
of the time. Consequently, f∗ becomes increasingly right-skewed leading to left-skewed output. In other
words, GDP fluctuates less but crashes are also more likely to occur.

6 Magnitudes obtained are close to those reported in several empirical studies. For instance, Fagiolo et al. (2008) using
monthly and quarterly data for a sample of OECD countries found that the rate of growth of output exhibited asymmetric
skewness and a kurtosis varying between 3.5 and 9.5. For the United States, they obtained a skewness of -0.08 and a kurtosis
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Fig. 7: Stochastic trajectories for (a) T = 0.5 and (b) T = 3. Average measures and statistics of 2000
Monte Carlo simulations (length 10000 iterations each).

Table 2: Mean, Std., kurtosis and skewness for individual stochastic shocks.

Shock Values Mean Std. Kurtosis Skewness

ξf f 0.0065 0.0177 3.1273 0.0137

- f∗ 0.892 0.1939 10.328 2.4565

- Y 100.0102 0.3328 4.6079 -1.0821

Shock Values Mean Std. Kurtosis Skewness

- f 0.0121 0.0036 1.1769 -0.0090

ξf∗ f∗ 0.1001 0.1017 1.0718 0.0529

- Y 99.9999 0.0754 1.1635 -0.0344

Shock Values Mean Std. Kurtosis Skewness

- f 0.0116 0.004 1.9811 0.0916

- f∗ 0.1005 0.107 1.8138 0.3866

ξY Y 99.9959 0.3461 2.933 -0.1223

A question that remains to be answered concerns which specific shock is responsible for the main
dynamics we obtained. To provide an answer, we followed a three-step procedure. First, we repeated our
Monte Carlo simulations adding a noise component only to the first difference equation. As a second
step, a stochastic shock was introduced only to the second equation. Finally, a noise term was added
to output. Table 2 shows that output series depict high kurtosis and left-skewness only under liquidity
shocks. Introducing ξf∗ or ξY actually leads to low kurtosis and neglectful effects in terms of asymmetric
skewness.

Combining two stochastic components confirms our previous insight that unexpected events regarding
the liquidity index are the main driving force behind economic crashes. As reported in Table 3, ξf∗ and
ξY alone result in GDP series normally distributed. However, the introduction of the pairs ξf and ξf∗

or ξf and ξY is enough to recover trajectories with properties similar to those of Fig. 6.
Random disturbances ξf may be deemed to affect either the response of liquidity to solvency devia-

tions from the margin of safety (α) or the margin of safety itself (µ). Notice, however, that an error term
in α should interact with f∗ and Y . By construction, this is not our case. It follows that the stochastic
component must be acting through µ. Hence, we can rewrite Eq. (12) as:

µt = µ0 + µ̄g(f∗, Y ) +
ξf
α

(29)

of 4.2 (see also Ascari et al., 2015). Naimzada and Pireddu (2015), on the other hand, reported that the output-gap in the
US has a skewness of 3.6.
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Table 3: Mean, Std., kurtosis and skewness for different combinations of stochastic shocks.

Shock Values Mean Std. Kurtosis Skewness

ξf f 0.0053 0.0184 4.3705 -0.3373

- f∗ 0.0913 0.196 17.95 2.9862

ξY Y 100.0156 0.4651 4.163 -0.5371

Shock Values Mean Std. Kurtosis Skewness

- f 0.0117 0.004 1.9592 0.0829

ξf∗ f∗ 0.1005 0.1079 1.7341 0.381

ξY Y 99.99 0.344 3.01 -0.1767

Shock Values Mean Std. Kurtosis Skewness

ξf f 0.0064 0.0182 3.2854 -0.0698

ξf∗ f∗ 0.1 0.1954 9.8445 2.4687

- Y 100.006 0.3357 4.6644 -1.0631

Such a specification has a clear cut economic interpretation. It is well known that new information
might change the risk perception of households and firms. We have provided a robust mechanism that
explains how such shocks are transmitted and transformed in the economy. In our model and numerical
simulations, µ is one of the main sources of endogenous fluctuations and establishes a crucial link between
real and financial markets through f . This seems to be confirmed by the interaction between stochastic
and deterministic forces. We conclude that shocks in the margin of safety of the (ir)rational explorer are
amplified in an asymmetric way by the right-skewed solvency constraint, leading to output fluctuations
compatible with the possibility of crashes.

6 Final considerations

Minsky insisted that there is an inherent and fundamental instability in our sort of economy involving
financial relations and the behaviour of agents during euphoric periods. He argued that processes that
generate financial fragility are endogenous to the system and go in hand with periods of economic
stability. While the so-called FIH have just recently regained momentum with the deep global recession,
a large number of scholars has formalised over the past decades different parts of this theory. It must
be noted, however, that only those contributions focusing in stock-market price dynamics have provided
an assessment of the role of expectation formation with heterogeneous agents. Macroeconomic models
dealing with debt dynamics have failed short in presenting such an account. Therefore, this article filled
a gap in the literature by formalising switches between different heuristics in a small-scale evolutionary
agent-based model where solvency aspects matter.

Building on Sordi and Vercelli (2012), we studied the interaction between current and inter-temporal
financial constraints with the real economy, differentiating between chartist and fundamentalist agents.
Though the destabilising role of extrapolative behaviour is part of conventional wisdom, the determinis-
tic version of our model showed the conditions under which regressive expectations and the existence of
resource constraints can also lead to instability. Simulations of a stochastic version of the system demon-
strate that it is capable of generating time-series that reproduce important empirical stylised facts such
as negative skewness and fat-tails. We revealed that a random disturbance on liquidity conditions might
be a crucial element driving such results. In the absence of a stochastic component, the model was still
shown to present sensitivity to initial conditions.

In terms of policy implications, three results are worth stressing because they are not so obvious
in the literature on the FIH. First, the time horizon of the economic unit seems to be more important
than the interest rate as a source of endogenous instability, which plays only a minor role. Households
and firms’ solvency conditions depend on expectations about long-term financial flows. For long time-
horizons, there is a projection of current states into the future proportional to the share of chartists in the
economy. The presence of fundamentalists combined with a binding solvency-constraint reduces output
volatility but makes crashes more likely to occur as agents are prone to become trend-extrapolators
during good times. This means policy makers need to understand what is behind changes in the time
horizon and how regulation can be designed to avoid instability through this variable.
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Second, fundamentalists are not always good for the economy. If their speed of reaction is too strong,
there is an increase in volatility given the lags involved in the interaction between real and financial
variables. On the other hand, a balanced combination of extrapolative and regressive expectations is
stabilising. Hence, is not a matter of controlling the size of one or another group, but to guarantee a
regulatory framework that allows smooth adjustments in expectations.

Last but not least, fiscal policy might be a useful instrument for reducing instability if it manages
to avoid dramatic reductions or increases in aggregate demand. Such contracyclical Keynesian policy is
not a novelty in itself. However, our exercise indicates that either a sufficiently high floor or a low ceiling
is enough for the equilibrium point to be stable. There is no need to tackle both at the same time. This
means that policy makers could concentrate in guaranteeing just one of them. Such approach should
certainly reduce the complexity of the instruments to be designed and should be further investigated
in future research. Minsky’s insights help us to understand the key financial developments of recent
decades. This article sheds some light on the complex relationship between real and financial markets
putting another “brick” in the FIH “wall”.

A Mathematical Appendix

A.1 Proof of Proposition 1

In steady-state ft+1=ft, f∗t+1=f∗t , and Yt+1=Yt. Hence, the dynamic system (13) reads:

0 = α (f∗t − µ0)

ft = af∗t

0 = g (f∗t , Yt)

It follows that there is a unique equilibrium point (fE , f∗E , Y E) defined and given by:

fE = aµ0

f∗E = µ0

Y E =
Z0 − ψµ0

1− φ

A.2 Proof of Propositions 2 and 3

The Jacobian matrix that corresponds to our dynamic system (13) is such that:

J =

 1 −α
(
1 + µ̄ḡf∗

)
−αµ̄ḡY

β 1− aβ 0
0 ḡf∗ 1 + ḡY


where

gf∗
∣∣
(fE ,f∗E ,Y E) = ḡf∗ =

−b2 (b1 + b2)ψb1 exp
(
−Z0 + ψf̄∗ + (1− φ) Ȳ

)[
b1 exp

(
−Z0 + ψf̄∗ + (1− φ) Ȳ

)
+ b2

]2
= −

ψb1b2

b1 + b2
< 0

gY |(fE ,f∗E ,Y E) = ḡY =
−b2 (b1 + b2) (1− φ) b1 exp

(
−Z0 + ψf̄∗ + (1− φ) Ȳ

)[
b1 exp

(
−Z0 + ψf̄∗ + (1− φ) Ȳ

)
+ b2

]2
= −

(1− φ) b1b2

b1 + b2
< 0

are the partial derivatives of g(·) with respect to f∗ and Y at the equilibrium point.
The elements of the Jacobian are such that:

j11 =
∂ft+1

∂ft
= 1 > 0, j12 =

∂ft+1

∂f∗t
= −α

(
1 + µ̄ḡf∗

)
R 0, j13 =

∂ft+1

∂Yt
= −αµ̄ḡY > 0

j21 =
∂f∗t+1

∂ft
= β > 0, j22 =

∂f∗t+1

∂f∗t
= 1− aβ R 0, j23 =

∂f∗t+1

∂Yt
= 0

j31 =
∂Yt+1

∂ft
= 0, j32 =

∂Yt+1

∂f∗t
= ḡf∗ < 0, j33 =

∂Yt+1

∂Yt
= 1 + ḡY R 0



A.2 Proof of Propositions 2 and 3 21

so that the characteristic equation can be written as:

λ3 + C1λ
2 + C2λ+ C3 = 0

where

C1 = −trJ = −1− 1 + aβ − 1− ḡY
= −3 + aβ − ḡY

C2 =

∣∣∣∣ 1− aβ 0
ḡf∗ 1 + ḡY

∣∣∣∣+

∣∣∣∣ 1 −αµ̄ḡY0 1 + ḡY

∣∣∣∣+

∣∣∣∣ 1 −α
(
1 + µ̄ḡf∗

)
β 1− aβ

∣∣∣∣
= (1− aβ) (1 + ḡY ) + 1 + ḡY + 1− aβ + αβ

(
1 + µ̄ḡf∗

)
= 2 + (1− aβ) (1 + ḡY ) + ḡY − aβ + αβ

(
1 + µ̄ḡf∗

)
C3 = − det J = −

∣∣∣∣∣∣
1 −α

(
1 + µ̄ḡf∗

)
−αµ̄ḡY

β 1− aβ 0
0 ḡf∗ 1 + ḡY

∣∣∣∣∣∣
= −

∣∣∣∣ 1− aβ 0
ḡf∗ 1 + ḡY

∣∣∣∣+ β

∣∣∣∣−α (1 + µ̄ḡf∗
)
−αµ̄ḡY

ḡf∗ 1 + ḡY

∣∣∣∣
= − (1− aβ) (1 + ḡY ) + β

[
−α

(
1 + µ̄ḡf∗

)
(1 + ḡY ) + αµ̄ḡY ḡf∗

]
= − (1− aβ) (1 + ḡY )− αβ

(
1 + µ̄ḡf∗

)
(1 + ḡY ) + αβµ̄ḡY ḡf∗

= − (1− aβ) (1 + ḡY )− αβ (1 + ḡY )− αβµ̄ḡf∗ (1 + ḡY ) + αβµ̄ḡY ḡf∗

= − (1− aβ + αβ) (1 + ḡY )− αβµ̄ḡf∗ − αβµ̄ḡf∗ ḡY + αβµ̄ḡY ḡf∗

= − (1− aβ + αβ) (1 + ḡY )− αβµ̄ḡf∗

The necessary and sufficient conditions for the local stability of a given equilibrium point require that all eigenvalues
of the Jacobian matrix, determined as roots of the characteristic equation, are less than unity in modulus:

1 + C1 + C2 + C3 > 0 (I)

1− C1 + C2 − C3 > 0 (II)

1− C2 + C1C3 − C2
3 > 0 (III)

3− C2 > 0 (IV)

Through direct computation we find that:

1 + C1 + C2 + C3 (I)

= 1− 3 + aβ − ḡY + 2 + (1− aβ) (1 + ḡY ) + ḡY − aβ + αβ
(
1 + µ̄ḡf∗

)
− (1− aβ + αβ) (1 + ḡY )− αβµ̄ḡf∗

= (1− aβ) (1 + ḡY ) + αβ
(
1 + µ̄ḡf∗

)
− (1− aβ + αβ) (1 + ḡY )− αβµ̄ḡf∗

= (1− aβ − 1 + aβ − αβ) (1 + ḡY ) + αβ + αβµ̄ḡf∗ − αβµ̄ḡf∗

= −αβ (1 + ḡY ) + αβ

= −αβḡY =
αβ (1− φ) b1b2

b1 + b2
> 0, which is always satisfied.

1− C1 + C2 − C3 (II)

= 1 + 3− aβ + ḡY + 2 + (1− aβ) (1 + ḡY ) + ḡY − aβ + αβ
(
1 + µ̄ḡf∗

)
+ (1− aβ + αβ) (1 + ḡY ) + αβµ̄ḡf∗

= 6− 2aβ + 2ḡY + (1− aβ) (1 + ḡY ) + αβ
(
1 + µ̄ḡf∗

)
+ (1− aβ + αβ) (1 + ḡY ) + αβµ̄ḡf∗

= 6− 2aβ + 2ḡY + 2− 2aβ + αβ + 2ḡY − 2aβḡY + αβḡY + αβ + 2αβµ̄ḡf∗

= 8− 4aβ + 4ḡY + 2αβ − 2aβḡY + αβḡY + 2αβµ̄ḡf∗

= 2 (2− aβ) (2 + ḡY ) + αβ
(
2 + ḡY + 2µ̄ḡf∗

)
= (4− 2aβ + αβ) (2 + ḡY ) + 2αβµ̄ḡf∗ R 0
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1− C2 + C1C3 − C2
3 (III)

= 1− 2− (1− aβ) (1 + ḡY )− ḡY + aβ − αβ
(
1 + µ̄ḡf∗

)
− (−3 + aβ − ḡY )

[
(1− aβ + αβ) (1 + ḡY ) + αβµ̄ḡf∗

]
−
[
(1− aβ + αβ) (1 + ḡY ) + αβµ̄ḡf∗

]2
= − (1 + ḡY )− (1− aβ) (1 + ḡY ) + aβ − αβ

(
1 + µ̄ḡf∗

)
−
[
(1− aβ + αβ) (1 + ḡY ) + αβµ̄ḡf∗

] [
−3 + aβ − ḡY + (1− aβ + αβ) (1 + ḡY ) + αβµ̄ḡf∗

]
= − (2− aβ) (1 + ḡY ) + aβ − αβ

(
1 + µ̄ḡf∗

)
−
[
(1− aβ + αβ) (1 + ḡY ) + αβµ̄ḡf∗

] [
−3 + aβ − ḡY + 1 + ḡY − aβ (1 + ḡY ) + αβ (1 + ḡY ) + αβµ̄ḡf∗

]
=
(
−2 + aβ + 2− 2aβ + 2αβ + aβḡY − a2β2ḡY + aαβ2ḡY − αβ + aαβ2 − α2β2

−αβḡY + aαβ2ḡY − α2β2ḡY − α2β2µ̄ḡf∗ − αβµ̄ḡf∗ + aαβ2µ̄ḡf∗ − α2β2µ̄ḡf∗
)

(1 + ḡY )

+ aβ − αβ + αβµ̄ḡf∗ + aαβ2µ̄ḡY ḡf∗ − α2β2µ̄2ḡ2f∗

= (−aβ + aβ) + (αβ − αβ) + aαβ2 − α2β2 + (aβḡY − aβḡY ) + (αβḡY − αβḡY )

− a2β2ḡY +
(
2aαβ2ḡY + aαβ2ḡY

)
−
(
α2β2ḡY + α2β2ḡY

)
− 2α2β2µ̄ḡf∗ +

(
αβµ̄ḡf∗ − αβµ̄ḡf∗

)
+ aαβ2µ̄ḡf∗

+ aβḡ2Y − αβḡ
2
Y − a

2β2ḡ2Y + 2aαβ2ḡ2Y − α
2β2ḡ2Y − α

2β2µ̄2ḡ2f∗

− 2α2β2µ̄ḡY ḡf∗ − αβµ̄ḡY ḡf∗ +
(
aαβ2µ̄ḡY ḡf∗ + aαβ2µ̄ḡY ḡf∗

)
= (a− α)αβ2 − (a− α) aβ2ḡY + 2 (a− α)αβ2ḡY + (a− α) ḡ2Y

− 2α2β2µ̄ḡf∗ + aαβ2µ̄ḡf∗ − (a− α) aβ2ḡ2Y

+ (a− α)αβ2ḡ2Y − α
2β2µ̄2ḡ2f∗ − 2α2β2µ̄ḡY ḡf∗ − αβµ̄ḡY ḡf∗ + 2aαβ2µ̄ḡY ḡf∗

= −α2β2ḡ2f∗ µ̄2 +
(
aαβ2 − 2α2β2 − 2α2β2ḡY − αβḡY + 2aαβ2ḡY

)
ḡf∗ µ̄

+ (a− α)
(
αβ2 − aβ2ḡY + 2αβ2ḡY + ḡ2Y − aβ

2ḡ2Y + αβ2ḡ2Y
)
R 0

and finally

3− C2 (IV)

= 3− 2− (1− aβ) (1 + ḡY )− ḡY + aβ − αβ
(
1 + µ̄ḡf∗

)
= 1− 1 + aβ − ḡY + aβḡY − ḡY + aβ − αβ − αβµ̄ḡf∗

= 2aβ − 2ḡY + aβḡY − αβ − αβḡf∗ µ̄ R 0

Therefore, the system is locally stable as long as:

(4− 2aβ + αβ) (2 + ḡY ) + 2αβµ̄ḡf∗ > 0

and

− α2β2ḡ2f∗ µ̄2 +
(
aαβ2 − 2α2β2 − 2α2β2ḡY − αβḡY + 2aαβ2ḡY

)
ḡf∗ µ̄

+ (a− α)
(
αβ2 − aβ2ḡY + 2αβ2ḡY + ḡ2Y − aβ

2ḡ2Y + αβ2ḡ2Y
)
> 0

A separate violation of condition 1−C1 +C2−C3, while the other conditions hold, is associated with a Flip bifurcation
(see Lines et al., 2019). Therefore, at:

(4− 2aβ + αβ) (2 + ḡY ) + 2αβµ̄ḡf∗ = 0

the fixed point loses stability and a stable period-2 cycle may arise as the new limit set.
On the other hand, a separate violation of condition 1 − C2 + C1C3 − C2

3 leads the modulus of a pair of complex
conjugate eigenvalues to cross the unit circle. As the bifurcation parameter is varied beyond the critical value, the stable
fixed point of the system loses its stability:

− α2β2ḡ2f∗ µ̄2 +
(
aαβ2 − 2α2β2 − 2α2β2ḡY − αβḡY + 2aαβ2ḡY

)
ḡf∗ µ̄

+ (a− α)
(
αβ2 − aβ2ḡY + 2αβ2ḡY + ḡ2Y − aβ

2ḡ2Y + αβ2ḡ2Y
)

= 0

in which case we have a Neimark-Sacker bifurcation.
Setting a = α, it immediately follows that the equilibrium point is locally stable iff:

(4− αβ+) (2 + ḡY ) + 2αβµ̄ḡf∗ > 0

and

αβ
(
1 + ḡf∗ µ̄

)
+ αβ + ḡY > 0

Consequently, if a change in one of the parameters determines the violation of the first condition while the second is
satisfied, a Flip bifurcation occurs. The opposite case is associated with a Neimark-Sacker bifurcation.
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A.3 Proof of Proposition 4

To prove Proposition 3 it is enough to notice that in steady-state g(·) = 0. It follows that the Jacobian matrices of the
dynamic systems (13) and (27) are equivalent. Hence, the local stability analysis repeats the steps performed when proving
Proposition 2.
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