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Featured Application: Embedding of extra information, like a signature or a Message Authenti-
cation Code, in printable string encodings, for example, QR codes.

Abstract: Printable string encodings are widely used in several applications that cannot deal with
binary data, the most known example being the mail system. In this paper, we investigate the
potential of some of the proposed encodings to hide and carry extra information. We describe a
framework for reversibly embedding data in printable string encodings, like Base45. The method
leverages the characteristic of some encodings that are not surjective by using illegal configurations
to embed one bit of information. With the assumption of uniformly distributed binary input data,
an estimation of the expected payload can be computed easily. Results are reported for Base45 and
Base85 encodings.

Keywords: data hiding; watermarking; authentication; integrity protection; printable encoding;
binary-to-text conversion

1. Introduction

Data hiding is a family of techniques aimed at embedding information into digital
objects for various application contexts. Digital watermarking, for copyright protection or
authentication, and steganography, for covert communication or information storage, are
typical applications of data embedding and hiding (see [1–4]).

Many algorithms have been devised for watermarking in different kinds of objects like
images [5], audio [6], video [7], neural networks [8] and text data [9]. These algorithms can
be classified according to various properties and characteristics; one of the most important
properties is reversibility, i.e., the possibility to obtain the original object after the extraction
of the embedded data.

On the other hand, printable string encoding of binary data is a well-known and
widely used technique to cope with systems designed to manage only bytes representing
printable characters: in other terms, printable string encoding is an encapsulation method
to process, in a transparent manner, any possible bit string by systems able to run only
printable strings (for example, some mail servers).

Even though printable string encodings and watermarking are widely used techniques
in several applications, to the best of our knowledge there are no attempts to combine these
techniques for data hiding. The main questions we try to answer are:

(a) Can we hide information in string encodings?
(b) How much information can we embed in such string encodings?
(c) Can we make it reversible?

In this paper, we present a framework defining data and procedures for embed-
ding and retrieving a bit string, which will be called a watermark, from a printable char-
acter string built using a binary-to-higher-base representation, like Base45 [10] and/or
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Base85 [11,12]. The embedding-retrieving process is reversible. Indeed, the original print-
able character string is restored after the watermark extraction.

The paper is structured as follows: firstly, a brief notation and terminology subsection
is presented, then some related works on the topic of printable encodings are briefly
discussed. Section 3 introduces the proposed framework for reversible data embedding
and the results of its application are shown in Section 4. The last section draws some
conclusions and proposes some future works.

Notation

In this subsection the notation and terminology used throughout the paper is presented.
Small italic letters denote scalar values, e.g., a, b, p.
Boldface italic capital letters denote sets, e.g., T, C. The cardinality of a set T is denoted

as card(T).
An alphabet is denoted with Greek capital letters (e.g., Ψ).
The terms symbol and character are applied interchangeably trying to use the most

meaningful in the sentence context.
A word composed from symbols of an alphabet Ψ is called a sequence. A sequence of n

symbols from the alphabet Ψ = {0, 1} is called binary string.
Capital letters (e.g., B, S, W) denote sequences of symbols from an alphabet.
Greek letters represent functions, e.g., β, ϕ.
Specific characters or strings (sequences) of characters are enclosed inside single

quotes, e.g., ‘D’ or ‘string<My Header>!’.
The floor operation is denoted as r, with r ∈ R, and returns the largest integer not

greater than r.

2. Related Works

To define the possible applications of the proposed framework to an encoding method,
it is useful to recall some of the binary-to-text mappings presently available and used in
computer systems.

Base64 was introduced many years ago and standardized in 1992: it encodes 3 bytes
(24 bits) with 4 printable characters each encoding 6 of the 24 bits. The characters are
thus chosen from a set of 26 = 64 symbols, namely the 26 letters of the English alphabet,
uppercase and lowercase, the 10 decimal digits and 2 special characters that may differ
among the various standardized applications. The most recent definition of the Base64
encoding may be found in [13]: in that RFC also the Base32 and Base16 representations
are specified. Base32 encodes groups of 5 bytes (40 bits) in 8 printable characters each
representing 5 bits: thus, 32 possible characters are needed (the 26 uppercase letters of the
English alphabet and the digits from 2 to 7). For Base64 and Base32 the character ‘=’ is used
for padding the encoded string when the number of input bytes is not a multiple of 3 or
5, respectively. Base16 is simply the hexadecimal representation of the input bytes using
the decimal digits and the uppercase letters from ‘A’ to ‘F’ (some implementations may
differ from [13] and allow the use of lowercase letters from ‘a’ to ‘f’); by construction this
encoding does not need any padding.

Base45 is defined in the work in progress [10] and is developed for encoding data
as text in QR codes. The symbols it uses are the 10 decimal digits, the 26 letters of the
English alphabet, the space and the other 8 special characters. The encoding takes pairs
of bytes and converts the number in Base45 using 3 digits (in a little-endian way, i.e., the
leftmost character is the least significant); in case of a binary string having odd length then
the last byte is converted in 2 base 45 digits. It is interesting to note that not all 3 digit
numbers in base 45 can be converted in a binary number having at maximum 16 bits: in
fact, from the sequence ‘GGW’ (representing 216 = 65, 536) to the sequence ‘:::’ more than
16 bits are needed to write the corresponding number in binary format; these sequences are
considered unacceptable by the standard and accordingly rejected.
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Base85, also called Ascii85 in [11], encodes 4 bytes using 5 characters from an alphabet
of 85 symbols (a subset of the ASCII characters, from the code 33, ‘!’, to the code 117, ‘u’).
An exception is made for the binary value 0 which, instead of being encoded as ‘!!!!!’, is
encoded as ‘z’. The version of this coding presented in [11] uses a delimiter (namely ‘~>’) to
mark the ending of the character sequence. Moreover, to cope with binary strings having a
length that is not a multiple of 4, a particular padding method in encoding and decoding is
used. During decoding, a ‘z’ character in a 5-character sequence is an error. Also, as in the
analogous case of Base45, a 5-character sequence decoding to a value greater than or equal
to 232 is regarded as an error and not accepted. The base 85 is also used in an encoding of
IPv6 addresses [12].

Encodings using Base91 are presented in [14,15]. In [14], the authors propose an
encoding that splits the input binary string into 13-bit words and encodes the resulting
binary numbers in pairs of characters using an alphabet of 91 symbols (the printable ASCII
characters from ‘!’ to ‘~’ excluding ‘-’, ‘=’ and ‘.’). To cope with bit strings having a length
not being a multiple of 13, 12 pairs are reserved to encode how many unused bits are
present in the last 13-bit word: this encoding leaves 912 − 213 − 12 = 77 unused Base91
pairs. The encoding used in the source code in [15] makes use of all the 912 character pairs;
in fact, 13 bits are encoded with 2 Base91 characters unless the value to be encoded is less
than 89: in that case 14 bits are encoded adding as a significant bit one more bit from the
binary string to encode. This implies the use of 213 + 89 = 912. pairs of Base91 characters
saturating all the possible configurations.

Base58 is an encoding introduced for the Bitcoin cryptocurrency (as referred to in [16])
by S. Nakamoto and described in the work in progress [17]. The objective of this encoding
is to represent meaningful data types of the protocol in a human readable format that
would not allow any ambiguities when written, thus, starting from the Base64 alphabet,
the special characters ‘+’ and ‘/’ are taken out (to avoid ambiguities in URLs or file system
paths [17]) along with ‘0′ (zero), ‘O’ (uppercase o), ‘I’ (uppercase i), ‘l’ (lowercase L) for
possible ambiguities when reading or writing data by humans. Thus, the Base58 alphabet
described in [17] totals the following 58 symbols: the 9 digits from ‘1′ to ‘9′, the 24 uppercase
letters of the English alphabet (i.e., without ‘I’ and ‘O’) and the 25 lowercase letters of the
English alphabet (i.e., without ‘l’). The data represented as a byte string is interpreted
as a sequence of symbols (bytes) in base 256 which is transformed in Base58 with a base
conversion algorithm: to avoid the loss of the leading zeros (if present, e.g., ‘00A23′) in the
encoding, a string of ‘1′ symbols represents how many null bytes compose the prefix of the
byte string. As a side note, some applications developed a Base56 encoding where also the
characters ‘1′ (one) and ‘o’ (lowercase O) are removed from the Base58 alphabet.

The Base62 encoding uses as symbols the 10 decimal digits and the 26 letters from
the English alphabet both uppercase and lowercase. In [18], the author presents UTF-62, a
transformation for ISO 10646 (the Universal coded character set, UCS). When a character
code is contained into 2 bytes (UCS-2) it is represented with 3 Base62 symbols (the leftmost
one having its Most Significant Bit, MSB, valued 0); instead, for encoding UCS-4 characters
(31 bits) 6 Base62 symbols are used (the leftmost one having its Most Significant Bits
valued 1000). In [19] a data stream is encoded examining groups of 6 bits at a time using
Base62 characters. The first 60 binary configurations (namely from 000000 to 111011) are
mapped directly to the Base62 alphabet in the corresponding character position. The 5 bit
configuration 11110 is represented with the second to last Base62 character whilst the 11111
configuration is encoded with the last Base62 character: in both cases the sixth bit becomes
the first bit of the next group. Note that this encoding operates one Base62 character at a
time thus all the Base62 characters sequences are possible while in [18] even keeping the
MSBs according to the proposed representation (0 for UCS-2 and 1000 for UCS-4):

• when using UCS-2 encoding the possible Base62 sequences are 32× 622 = 123,008 to
represent 216 = 65,536 different binary strings, and

• for UCS-4 the possible sequences are 4 × 625 = 3,664,531,328 to represent 231 =
2,147,483,648 different binary strings.
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This fact leads to a redundancy in the resulting representation allowing extra bits (e.g.,
data like a watermark) to be stored without impacting on the reversibility of the method:
this data hiding capacity is summarized for the main encodings discussed so far in the
column Available configurations of Table 1.

Table 1. Summary of the main encodings’ capacity.

Base No. of Encoded
Binary Strings

No. of Representable
Binary Strings

Available
Configurations

Base16 [13] 28 28 0
Base32 [13] 240 240 0
Base45 [10] 216 453 25,589
Base62 [18] 216 32× 622 57,472
Base62 [18] 231 4× 625 1,517,047,680
Base62 [19] 26 62 0
Base64 [13] 224 224 0

Base85 [11,12] 232 855 142,085,829
Base91 [14] 213 + 12 912 77
Base91 [15] 213 + 89 912 0

3. The Proposed Framework

Suppose one wants to represent binary strings of fixed length n with sequences of fixed
length s using the a symbols from an alphabet Ψ (for example, the 45 printable symbols of
the Base45 system [10]). Then, the following constraint must be satisfied:

2n ≤ as. (1)

The passive redundancy (i.e., the number of sequences of s symbols from Ψ not
representing any binary string of length n) of this encoding according to [20] is:

r = as − 2n. (2)

Note that in the rest of the paper we will assume that the binary strings of length n
have all the same probability as is the case for compressed and/or encrypted data.

Thus, the exceeding r sequences that do not represent one of 2n binary strings may
be used to embed extra data bits in the flow of symbols from Ψ: these bits may carry, for
example, a watermark, a signature, a message authentication code, a cyclic redundancy
check, or any extra information an application may need.

Let us consider a generic sequence of s symbols from the alphabet Ψ, and define the
following sets:

• T, the set of all possible sequences of s symbols, having cardinality as;
• C, the subset of T containing the sequences used to encode the 2n binary strings

(obviously having cardinality 2n): the mapping is defined with a bijective function β;
• E, the subset of T containing the exceeding r sequences that are not used to represent

the binary strings.

The sets C and E constitute a partition of T. To exploit the redundancy in this coding
the set C is further partitioned into two subsets:

• E′, a subset of cardinality r containing the sequences put in one-to-one correspondence
with the sequences in E by a bijective mapping function ϕ;

• N′, the subset of the remaining sequences in C having no corresponding sequence in E.

In the present work every sequence in C is put in relation with at most one sequence
in E. Moreover, we assume that the encoding is frugal in the sense that card(C) is not lower
than card(E). The extension to a mapping allowing for more than one sequence in E to be
associated to some sequence in C is left as a further development, as it will be discussed in
the conclusions.
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The structure and the relationship among these sets is shown in Figure 1.

Figure 1. Relationship among the sets composed by the sequences of s symbols from the alphabet Ψ.

When encoding an n bits binary string B mapped through β to an s symbols (belonging
to Ψ) sequence S, if S ∈ E′ it is possible to embed one extra bit b of information saving S
(for b = 0) or ϕ(S) (for b = 1) depending on the bit value (if S /∈ E′, i.e., S ∈ N′, no bit can
be embedded).

The decoding can be performed by reversing the previous operations: if the sequence
S ∈ N′ then the original binary sequence is restored with β−1(S), if S ∈ E′ then a 0 valued
bit is extracted and the original binary sequence is restored with β−1(S), otherwise S ∈ E, a
1 valued bit is extracted and the original binary sequence is restored with β−1(ϕ−1(S)

)
.

The pseudo-code description of the encoding and decoding algorithms are presented
in the following Algorithms 1 and 2.

Algorithm 1: Pseudo-code of the encoding algorithm

ENCODING ALGORITHM

INPUT: set of binary strings to be encoded, C = N′ ∪ E′, E, β, ϕ, is a binary string of
bits to be embedded.

WHILE there are binary strings to be encoded select next one and call it B
S = β(B);
IF S ∈ E′ THEN

Get next bit b from W ;
IF b = 1 THEN S = ϕ(S);

OUTPUT S;

Algorithm 2: Pseudo-code of the decoding algorithm

DECODING ALGORITHM

INPUT: set of sequences to be decoded, C = N′ ∪ E′, E, β, ϕ.
W = {};
WHILE there are sequences to be decoded select next one and call it S

IF S ∈ E THEN

W = concat(W, 1);
S = ϕ−1(S);

ELSE IF S ∈ E′ THEN W = concat(W, 0);
B = β−1(S);
OUTPUT B;

OUTPUT W;

By assuming a uniform distribution for the input binary strings, an average payload of

p =
as − 2n

2n =
as

2n − 1 (3)
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bits per binary string (bpbs) may be embedded in the output sequence. The corresponding
payload per byte (bit per byte, bpb) can be computed as:

q =
8p
n

. (4)

The payload referred to the output symbols (bit per symbol, bps) is:

o =
p
s

. (5)

For example, Base45 as defined in [10] encodes n = 16 bits in s = 3 symbols (with
a = 45) thus p = 0.390457 bpbs, q = 0.195229 bpb, o = 0.130152 bps. In case of Base85,
n = 32, s = 5, a = 85 leading to p = 0.033082 bpbs, q = 0.008270 bpb, o = 0.006616 bps.

For Base64 encoding [13] all the output sequences are used to encode the input
binary strings thus it is not possible to apply the proposed method for data embedding
(as = 644 = 224, 2n = 224, p = q = o = 0).

4. Experimental Results

In this section, we report on experimental results by applying the proposed framework
to Base45 and Base85 encodings: as previously said, the set E′ is built with ϕ assuming a
uniform distribution of the 2n binary strings. This choice was made because it is general and
makes no assumptions on the possible distribution of the binary strings: we will discuss
the possibility to increase the payload with ϕ mapping on the set of the most probable
sequences in C for specific domain contexts, like encodings of TIFF or JPEG images.

Anyway, we tested three different mappings called Map 1, Map 2 and Map 3. When
Map 1 is used the set E′ consists of the sequences mapped to the as − 2n binary strings
counting from {0}n with an increment of b2n/(as − 2n)c. Map 2 maps the sequences in
E′ to the first as − 2n binary strings while Map 3 puts in correspondence E′ with the last
as − 2n binary strings.

Tables 2–4 report the averaged results from embeddings using Base45 and Base85
encodings into a set of 500 colour images of size 768× 576 in JPEG, TIFF and PNG formats,
respectively. The first column reports the string encoding, the second and third columns
report the average payload in bpb and in bps, respectively. The fourth column reports the
used mapping, while the fifth column reports when the experimental average payload is
greater (+, ++) or less (−, −−) than the expected one. As it can be seen from the values
shown in columns 2 and 3, the results are in line with the expected theoretical values (p
and q) computed in the previous section.

Table 2. Results of the Base45 and Base85 encodings applied to 500 JPEG colour images (average
image size 109 KB).

Base
Average (±std dev)

Payload per Input Byte
[bpb]

Average (±std dev)
Payload per Output

Symbol [bps]
Map

Comparison
with Expected

Payload

Base45 0.19905± 0.00415 0.13270± 0.00277 1 +
Base45 0.19820± 0.00397 0.13213± 0.00265 2 +
Base45 0.19208± 0.00371 0.12805± 0.00247 3 −
Base85 0.00838± 0.00029 0.00670± 0.00024 1 +
Base85 0.00915± 0.00080 0.00732± 0.00064 2 ++
Base85 0.00733± 0.00067 0.00586± 0.00054 3 -
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Table 3. Results of the Base45 and Base85 encodings applied to 500 TIFF colour images (average
image size 1297.4 KB).

Base
Average (±std dev)

Payload per Input Byte
[bpb]

Average (±std dev)
Payload per Output

Symbol [bps]
Map

Comparison
with Expected

Payload

Base45 0.22824± 0.02025 0.15216± 0.01350 1 ++
Base45 0.25218± 0.08942 0.16812± 0.05961 2 ++
Base45 0.11456± 0.06031 0.07638± 0.04021 3 −
Base85 0.00844± 0.00099 0.00675± 0.00082 1 +
Base85 0.01287± 0.01747 0.01031± 0.01402 2 ++
Base85 0.00660± 0.01039 0.00528± 0.00831 3 −−

Table 4. Results of the Base45 and Base85 encodings applied to 500 PNG colour images (average
image size 1017.8 KB).

Base
Average (±std dev)

Payload per Input Byte
[bpb]

Average (±std dev)
Payload per Output

Symbol [bps]
Map

Comparison
with Expected

Payload

Base45 0.19754± 0.00337 0.13169± 0.00224 1 +
Base45 0.19779± 0.00539 0.13186± 0.00359 2 +
Base45 0.19090± 0.00313 0.12727± 0.00209 3 −
Base85 0.00834± 0.00038 0.00667± 0.00031 1 +
Base85 0.00687± 0.00579 0.00550± 0.00469 2 −−
Base85 0.00812± 0.00360 0.00650± 0.00297 3 -

In almost all cases, Map 1 and Map 2 mappings result in a higher average payload
than the expected one for image files. It should be pointed out that for Base85, Map 2
mapping behaves quite differently for TIFF compared to PNG image formats: in the former
case, the average payload is much greater (∼ 1.55 times) than the expected one, while in
the latter is much smaller (0.84 times).

Similar results for compressed files (in .zip, .bz2, .gz and .tgz formats) of various sizes
are reported in Tables 5–8. By contrast with the image case, it seems that the best mapping
depends on the compressed file format: for .zip and .bz2 file format, Map 1 and Map 2 give
better payload than expected, while for .gz file format Map 3 is the best.

Table 5. Results of the Base45 and Base85 encodings applied to 75 compressed files (format .zip).

Base
Average (±std dev)

Payload per Input Byte
[bpb]

Average (±std dev)
Payload per Output

Symbol [bps]
Map

Comparison
with Expected

Payload

Base45 0.19630± 0.01242 0.13087± 0.00828 1 +
Base45 0.19785± 0.01709 0.13190± 0.01139 2 +
Base45 0.19191± 0.01683 0.12794± 0.01122 3 −
Base85 0.00871± 0.00150 0.00697± 0.00123 1 +
Base85 0.01066± 0.00734 0.00855± 0.00593 2 ++
Base85 0.00858± 0.00189 0.00687± 0.00150 3 +
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Table 6. Results of the Base45 and Base85 encodings applied to 109 compressed files (format .bz2).

Base
Average (±std dev)

Payload per Input Byte
[bpb]

Average (±std dev)
Payload per Output

Symbol [bps]
Map

Comparison
with Expected

Payload

Base45 0.20293± 0.01094 0.13528± 0.00729 1 ++
Base45 0.20224± 0.01068 0.13482± 0.00712 2 ++
Base45 0.18910± 0.01059 0.12606± 0.00706 3 −
Base85 0.00917± 0.00180 0.00734± 0.00146 1 +
Base85 0.01040± 0.00285 0.00833± 0.00230 2 ++
Base85 0.00781± 0.00139 0.00625± 0.00111 3 −

Table 7. Results of the Base45 and Base85 encodings applied to 28 compressed files (format .gz).

Base
Average (±std dev)

Payload per Input Byte
[bpb]

Average (±std dev)
Payload per Output

Symbol [bps]
Map

Comparison
with Expected

Payload

Base45 0.19213± 0.00248 0.12809± 0.00165 1 −
Base45 0.19203± 0.00285 0.12802± 0.00190 2 −
Base45 0.19857± 0.00284 0.13238± 0.00189 3 +
Base85 0.00818± 0.00011 0.00654± 0.00009 1 −
Base85 0.00787± 0.00042 0.00629± 0.00033 2 −
Base85 0.00897± 0.00073 0.00718± 0.00058 3 +

Table 8. Results of the Base45 and Base85 encodings applied to 112 compressed files (formats: .zip,
.bz2, .gz).

Base
Average (±std dev)

Payload per Input Byte
[bpb]

Average (±std dev)
Payload per Output

Symbol [bps]
Map

Comparison
with Expected

Payload

Base45 0.19574± 0.01060 0.13049± 0.00707 1 =
Base45 0.19669± 0.01436 0.13113± 0.00957 2 +
Base45 0.19334± 0.01420 0.12890± 0.00947 3 −
Base85 0.00855± 0.00125 0.00685± 0.00103 1 +
Base85 0.00985± 0.00612 0.00789± 0.00495 2 +
Base85 0.00863± 0.00160 0.00691± 0.00128 3 +

We also performed an evaluation for the embedding into Base45 encoded files (for
Base85 encoded files we did not perform such a test, because the statistics required a very
large number of data and a histogram for 232 entries). By using a mapping ϕ onto the set of
the most probable sequences in C for the set of 500 JPEG images, the resulting payload is
0.262 bpb, that is significantly larger than with the uniform distribution. Analogously, an
optimized mapping for a set of 212 compressed files resulted in a payload of 0.2038 bpb.
In this case, it is much closer to the theorical payload (0.1952 bpb) for uniform input data
distribution. Obviously, the function ϕ specifying the mapping onto the most probable
sequences in C needs to be shared between encoder and decoder.

Possible Applications

Several possible applications of the presented data hiding framework can be envisaged.
Here, we describe a commercial application. Let us suppose we have a set of different kinds
of objects, each one described by a multimedia record: for example, the products sold in
a shop may be described by their name, producer, weight/capacity, price and, possibly,
a small icon. These data can be compressed, e.g., in zip format, and encoded, through
Base45, in a sequence of symbols represented by a QR (Quick Response) code that can be
printed on or near the object (like the shelf where the object is displayed). To avoid forging
of QR codes, the zip compressed data can be signed with ECDSA [21,22] and the signature
embedded in the Base45 sequence using the proposed framework (Figure 2).
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Figure 2. The data flow for the Quick Response (QR) code generation.

We performed some tests showing the possibility to embed an ECDSA signature of 448
bits (computed from a key of length 224 bits) into a compressed Base45 encoded string. In
case the compressed string is not long enough for storing the signature, padding bytes are
added to complete the signature embedding (the padding bytes are binary strings mapped
by β to the set E′ to maximize the payload). To correctly restore the original compressed
string two bytes containing its length are prefixed before Base45 encoding.

Thus, the QR code may be read (for example, with a smartphone app), the signature
and the compressed data extracted from the Base45 encoding, and finally the signature
can be verified: if the signature is correct the compressed data are decompressed and the
original record is shown to the user to give her the information on the tagged object.

Another application of the proposed method is the embedding of extra data into
Base85 encoded files: metadata, signatures, integrity protection data are examples of
information that can use the extra space obtained with the proposed framework.

5. Conclusions

In this paper we presented a framework to exploit the intrinsic redundancy present
in some binary-to-printable string encodings with the aim of embedding additional data
into the output stream. We showed that by using the illegal output configurations it is
possible to embed extra information mapping these illegal sequences to some legal ones.
The process is reversible, allowing the original cover data and the embedded bit string to
be recovered. The payload available depends on the ratio between the number of illegal
configurations and the legal ones and on the statistical distribution of the input binary
strings: assuming a uniform distribution, which is reasonable when binary-to-printable
string encodings are employed like compressed or encrypted data, we have shown that the
experimental results are close to the theoretical bounds.

We have applied the proposed framework to two widely used binary-to-printable
string encodings, namely Base45 and Base85, showing the applicability of the method and
its payload capacity. In particular, we have shown how the method may be applied to data
encoded and stored in QR codes.

As a further development we plan to adapt the methodology to distributions of the
binary input strings that are not uniform allowing us:

• to use the most probable input strings for bit embedding; and
• to encode several bits for every input string depending on its probability by mapping

more than one output sequence.
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