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Abstract

Continuous measurements of snow temperature pro�les may be a valuable

tool to investigate occurrence and persistence of thermal conditions promot-

ing strengthening or weakening of the snow structure, with potentially im-

portant consequences on avalanche release. In this paper, automatic mea-

surements of snow temperature pro�les are analysed based on an extensive

dataset (67 site-years) in Aosta Valley, Italy. The aims of this work are: (1)

to highlight issues and uncertainties on the data and show appropriate data

�ltering that may be implemented by similar measurement networks; (2) to

assess the impact of data �ltering on temperature gradient calculation and,

(3) to quantitatively describe the occurrence and duration of strong temper-

ature gradients at the base of the snowpack and close to the snow surface

that may lead to snowpack instability.

Three main sources of uncertainty were identi�ed and corrected: (1) errors

in the data logging; (2) drifts in temperature measurements; (3) a large bias
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in spring measurements due to snow melting and lack of contact between the

sensor and the surrounding snow.

We estimated that strong temperature gradients may account for as much

as 25% of total gradients and the duration of these may be as long as 35

days. The frequency of strong gradients was signi�cantly higher at the snow

surface than at the snowpack base. Hence, it is highlighted the importance

of surface faceted crystals as potential weak layers in alpine snowpacks.

Keywords: data �ltering, snow temperature gradient, depth hoar,

near-surface faceted crystals, snowpack instability, snow/soil interface

1. Introduction1

Temperature distribution in the snowpack is a consequence of the snow-2

atmosphere interactions at the surface and of ground heat �uxes at the lower3

boundary (or base) of the snowpack. Hence, snow temperatures are strictly4

related to the energy balance of the snowpack and are commonly used to cal-5

culate temperature gradients. In turn, temperature gradients are responsible6

for the snow metamorphism which can lead the snowpack towards stability7

or instability conditions. After depositing on the ground, the seasonal snow8

cover continues to change due to di�erences in vapor pressure within the ice9

lattice. It is primarily the temperature gradient, along with the snow struc-10

ture, that drives di�erences in vapor pressure resulting in crystal metamor-11

phism. In particular, the metamorphism is of interest because it can indicate12

strengthening or weakening of the grain structure (Shea et al., 2012).13

Therefore, it is common among the Avalanche Warning Services to period-14

ically measure, beside other physical properties, the snow temperature pro�le15
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in speci�c locations, in order to predict the possible evolution of snowpack16

structure.17

In some cases, snow temperatures are continuously registered from auto-18

matic weather stations (AWS) or are calculated by models, which are able19

to describe the snowpack structure on the basis of only few snow and me-20

teorological data, such as for example air temperature, solar radiation, and21

surface snow temperature (Brun et al., 1989; Morland et al., 1990; Jordan et22

al., 1991; Lehning et al., 1999).23

When using data from manual snow pro�les, the temperature gradient of24

the entire snowpack is calculated considering the snow surface temperature,25

the ground surface temperature and the snow depth. However, surface snow26

temperature varies greatly during the day (Fierz, 2011). Diurnal temperature27

�uctuation within the top portion of the snowpack is the result of the net28

energy balance at the snow surface, which includes di�erent contributions.29

Among them the most relevant are the radiation �uxes: short wave radiation30

�ux and net long wave radiation �ux (Gray and Male, 1981). McClung and31

Sharer (2006) suggested that short wave radiations can penetrate within the32

snowpack to a depth of 10-20 cm. Higher values were reported by Fierz33

(2011) and Ohara and Kavvas (2006): the thickness of what they call active34

layer, where the snow temperature shows diurnal variation, reached about35

50 and 60 cm, respectively. However, the depth of short wave penetration is36

strictly related to the properties of the surface snowpack layers (Bakermans37

et al., 2006).38

Birkeland (1998) reports that the temperature 0.30 m below the surface39

changes little, if at all, on a daily basis, and represents a sort of diurnal40
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average. The temperature di�erence between the cooling and warming snow41

surface and the relatively consistent temperature at 0.30 m below the snow42

surface results in strong temperature gradients in the near-surface layers43

which might lead to the formation of near-surface faceted crystals.44

At the other end of the snowpack, close to the ground surface, kinetic45

metamorphism is promoted by the high vapor pressure, as snow temperatures46

are generally close to 0 ◦C, with the formation of depth hoar (Giddings and47

LaChapelle, 1962; Colbeck, 1983).48

Moreover, within the snowpack, conditions favorable to the growth of49

faceted crystals can be present, especially close to ice crusts (Colbeck and50

Jamieson, 2001; Adams and Brown , 1983). Laboratory experiments by51

Greene et al. (2006) have shown that, under a constant uni-directional strong52

temperature gradient, increased bonding and greater mechanical strength oc-53

cur on the warm side of the ice lense while the cold side stay or become weak.54

Depending on the orientation of the temperature gradient, the weak layer can55

be on the top or on the bottom of the crust.56

Hence, the study of partial gradients, even if measured at relatively coarse57

stratigraphic scale (i.e. 20 cm increments), may give insight on local occur-58

rence of conditions that could promote snowpack instability. Near-surface59

faceted crystals and depth hoar are examples of temperature-gradient meta-60

morphism near the surface or extending down through the base of the snow-61

pack. For example, Birkeland (1998) found that 59% of avalanches released62

on faceted crystals formed near the surface before being subsequently buried.63

Not only the strength of the gradient is important to the formation of weak64

layers, but also its duration plays a key role. In a recent study, Marienthal et65
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al. (2012) found that di�erent avalanche cycles occurred on depth hoar dur-66

ing the 2012 winter in south-west Montana. Schweizer and Jamieson (2001)67

reported that 70% of 186 skier-triggered avalanches were released due to weak68

layers of persistent grain types (i.e. surface hoar, faceted crystals, and depth69

hoar).70

71

Mechanisms and processes a�ecting thermal properties of snow are well72

described in literature (Gray and Male, 1981; Jones et al., 2001; Kaempfer73

et al., 2005; Fierz, 2011) and it is not among the objectives of this paper to74

add new �ndings on this topics. Instead, we analyzed an existing extensive75

dataset (67 site-years) of continuous snow temperature pro�les at 6 sites in76

Aosta Valley, NW-Italy, in order to:77

(1) highlight issues and uncertainties on the data and show appropriate data78

�ltering that may be implemented by similar measurement networks,79

(2) calculate snow temperature gradient and assess the impact of data �lter-80

ing on gradient calculation, and81

(3) quantitatively describe the occurrence and duration of strong tempera-82

ture gradients at the base of the snowpack and close to the snow surface that83

may promote snowpack instability.84

2. Materials and methods85

2.1. Study Area86

Automatic weather stations (AWS) used in this study are located in the87

North-western portion of Aosta Valley (Fig.1, table 1). Aosta Valley surface88

area is 3262 km2, the mean altitude is 2106 m a.s.l., with more than 80%89
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of its territory above 1500 m a.s.l.. Mean annual air temperature (Tair) at90

2000 m a.s.l. ranges from -0.2 to 3.1 ◦C. The climate of the region is strongly91

a�ected by the presence of surrounding high mountains, resulting in a typical92

inner alpine continental climate (Mercalli et al., 2003). Topography in this93

region exerts a major in�uence on several meteorological variables, as for94

example on the precipitation: while on the south-eastern boundary of the95

region the external mountain side receives as much as 2000 mm y −1, about96

70% of the region receives less than 1000 mm y −1 precipitation with minima97

of less than 500 mm in the most inner part (Mercalli et al., 2003).98

Figure 1: Location of the study sites. Dots represent AWS used in this study. The grey

scale in the upper-right panel represents elevation (m ASL).
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Table 1: Main characteristics of the 6 study sites.

Long ( ◦) Lat ( ◦) Elevation (m) Period

Ferrache 7.02 45.86 2290 2001-2009

Saxe 6.98 45.81 2076 1992-2009

Grande Tête 6.91 45.68 2430 1998-2009

Lavancher 7.02 45.80 2842 1992-2009

Plan Praz 6.95 45.76 2044 1999-2009

Orvieille 7.19 45.58 2170 2005-2009

2.2. Data collection99

Aosta Valley's meteorological network consists of 91 AWS. Beside mea-100

suring the classical meteorological parameters (such as precipitation, Tair,101

wind speed and direction), 40 AWS also measure snow depth and six mea-102

sure snow temperatures (Tsnow). In this work we analyzed the data recorded103

by these six AWS (Fig.1, Tab.1). Tsnow was measured at 20 cm increments104

between 0 and 400 cm from the soil surface with a sampling frequency of 4105

hours. The array of the Tsnow sensors is mounted on a white-painted, 4-m-106

height mast, located few meters apart from AWS.107

Each weather station recorded snow depth by means of snow sensors, shielded108

Tair, barometric pressure, wind speed and direction at 30-min intervals. To-109

tal radiation was measured at the same intervals in 5 of the 6 AWS, since110

one of them (Orvieille) was not equipped with the radiometer. Published111

accuracies for the snow depth sensors and the termometers were 1 cm and112

0.2 ◦C, respectively. All instruments have been manufactured and installed113
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by CAE (Bologna, Italy), and operated and maintained by Centro Funzionale114

Regionale, Regione Autonoma Valle d'Aosta.115

2.3. Data processing116

Data quality check is pivotal for automatically-operated, only periodically-117

maintained sensors, such the ones we have analyzed. A �rst quality check118

was done in order to detect data a�ected by wrong acquisition, i.e. erroneous119

data, most commonly a constant series of -30 ◦C readings for a long period.120

This was done by quantitatively evaluating the relationship between Tsnow121

and Tair data. We �rst calculated the di�erence between Tair and Tsnow at122

each level. We then applied a threshold on the di�erence of -20 and +30 ◦C123

respectively and removed all data falling outside that interval. The temper-124

ature thresholds are not physically based but were set arbitrarily after an125

exploratory analysis. Hence, since we cannot a priori exclude that real data126

may have been removed, the temperature gradient analysis was also run on127

the un�ltered dataset, with the same results, indicating that even if real tem-128

perature records may have been removed, these data were probably for the129

snow free period or for heights above the snowpack. Based on that analysis,130

a small number of records (about 3% of the total) was removed.131

One major issue in the dataset was detected in springtime data. When the132

snow melts, the mast (although white painted) conducts much heat and al-133

lows the surrounding snow to melt faster than it would occur under natural134

conditions. This occurrence results in free space around the sensors simi-135

lar to that found around tree stems during snowmelt. In terms of measured136

temperatures, this resulted in positive temperatures at heights that were sup-137

posed to be inside the snowpack. A careful analysis showed that this feature138
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occurred systematically each spring at all sites and across all depths. We139

therefore decided to assume that all positive temperatures occurring within140

the snowpack were indicative of a melting snowpack, and substituted all pos-141

itive temperatures with 0 ◦C values. By this procedure an average across all142

sites of 30% data were replaced. This substantial data �lling was necessary in143

order to get reliable snow temperature pro�les and subsequent temperature144

gradients. In the results section we will show how this correction a�ected the145

computation of temperature gradients.146

A second issue was represented by drifts in the sensors. Thermometers were147

calibrated by the manufacturer before installation, but after that any further148

inter-calibration was not performed or, if performed by manufacturer, it was149

not tracked. To check the inter-comparability of temperatures measured at150

di�erent heights within one site we performed the following analysis. From151

the complete 4-hour time series of a given site we selected snow-free (HS=0152

cm), nighttime (total radiation less than 20 W m −2, Papale et al. (2006))153

data in order to exclude the e�ect of solar radiation. We then further subset154

the data to get a sample of well mixed atmospheric conditions (wind speed155

higher than 0.5 m s −1), i.e. when the air column on the whole 4-m array is156

well mixed and therefore unlikely to show air strati�cation and consequently157

a temperature gradient. For each temperature pro�le we calculated the de-158

viation from the pro�le mean and used a contour plot analysis to show shifts159

in the sensors that could be caused by drifts.160

Fig.2 shows one example of this analysis (about 2000 pro�les from site Grande161

Tête). A consistent departure from the mean temperature pro�le at a given162

height (as at 200 cm in �g.2) may represent a drift in the sensor measure-163
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ment. However, those drifts are not consistent through the whole period,164

probably due to a manufacturer's recalibration of the sensors that was not165

tracked by the operators. To take into account this source of uncertainty we166

applied two di�erent �lters.167

(1) For each 4-hour vertical temperature pro�le we computed the di�erence168

in temperature from each adjacent sensor. If this di�erence was higher than169

10 ◦C (i.e., leading to a temperature gradient of 50 ◦C/m or higher), the170

record was discarded. Discarded data were then gap-�lled by linear inter-171

polation. The 50 ◦C/m threshold was chosen according to published values172

of partial gradients (Hood et al., 2005; Birkeland, 1998). These studies re-173

port near-surface temperature gradients much higher than 50 ◦C/m only very174

close to the snow surface and at very small vertical increments (e.g. 5 cm175

increments). The magnitude of those surface gradient decrease exponentially176

with depth, so that at 15-20 cm from the snow surface values of partial gradi-177

ent exceeding 50 ◦C/m were not reported. Based on these values, and given178

the relatively coarse vertical resolution of our thermistor array we assume179

that values higher than 50 ◦C/m can hardly be measured by our experimen-180

tal setup.181

(2) For each vertical temperature pro�le, we �rst increased the resolution182

from 20 to 0.2 cm, by linearly interpolating (using a cubic spline) between183

points. We then computed a moving average with a 40 cm resolution window184

resulting in smoothed, reconstructed temperature pro�les in the snowpack.185

The drift analysis was then performed on the �ltered datasets, and resulted186

in a general increase in data quality (Fig. 2). In the result section we will187

show how this correction a�ect the computation of temperature gradients in188
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the snowpack.189

190

Figure 2: Contour plot of absolute deviations from the mean temperature pro�le ( ◦C)

showing potential drifts in the sensors for site Grande Tête for PST dataset (a), DA

dataset (b), and MAA dataset (c). To stretch values in the low range, values higher than

5 ◦C were set at 5 ◦C

In summary, the three �ltering steps lead to four di�erent datasets: (1)191

un�ltered data (RAW), (2) data �ltered for positive Tsnow (PST), (3) data192
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�ltered for drifts with the Di�erence Approach (DA), and (4) data �ltered193

for drifts with the Moving Average Approach (MAA).194

195

2.4. Temperature gradient analysis196

The snow temperature gradients ( ◦C/m) were computed as the di�erence197

in temperature between the lower of two adjacent thermistors and the upper198

one divided by the vertical distance (0.20 m). A partial gradient is considered199

within the snowpack when the upper thermometer is covered by at least 10200

cm of snow.201

For some of the analyzes that we will present, among the whole array of par-202

tial gradients in the snowpack, we focused on two remarkable ones: the basal203

gradient (BG, calculated between 0 and 20 cm), and the surface gradient204

(SG, the gradient calculated approximately at the snow surface). The basal205

gradient is of interest to investigate the occurrence of depth hoar, whereas206

the surface gradient for near-surface faceted crystals.207

In order to test the possibility to predict temperature gradients based on208

environmental parameters, we investigated the relationship between BG, SG209

and snow depth, Tair, solar radiation, and wind speed.210

All data have been analyzed using R software for statistical computing (R211

development core team, 2010).212

213

3. Results214

Main characteristics of the study sites for the measurement period are215

reported in table 1, and basic meteorological data are represented in Fig. 3.216
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Tair exhibits a linear decrease with elevation, with Lavancher (2842 m a.s.l.)217

being the coldest site. Average monthly snow depths are consistently higher218

in Saxe and Lavancher. The latter shows furthermore a di�erent timing in219

the seasonal distribution of the snowpack, with delayed snowmelt compared220

to other sites, as a consequence of higher elevation.221

Figure 3: Monthly average air temperatures and snow depths at the six investigated sites.

Error bars represent con�dence intervals.

3.1. Snow temperatures222

The seasonal course of vertical pro�les of Tsnow are shown by means of223

contour plots (Fig.4). The depth of the snowpack a�ects snow temperatures224

during the course of the winter. While episodic cold periods and the resulting225

low air temperatures can lower snow temperature close to the surface (as in226
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the period from January to March in Fig.4, when minimum recorded Tsnow227

were close to -20 ◦C), snow temperature at the snow/soil interface remains228

close to 0 ◦C for the whole winter (Pomeroy and Brun, 2000). Starting from229

the beginning of April, the melting snowpack becomes consistently isother-230

mal.231

232

Figure 4: Seasonal course of mean daily snow temperatures for Saxe in winter 2002-2003.

Dataset: PST.

Fig.4 reports an example of relatively warm and deep snowpack occurring233

in a warm winter. To illustrate the behavior of snow thermal properties in a234

cold and less snowy winter (e.g. 2004-2005), we show the contour plot of the235

site located at highest elevation (Lavancher, Fig.5). A long period of cold air236

temperatures in the period from mid February to mid March results in a cold237
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front in a relatively shallow snowpack that penetrates down to the snow/soil238

interface. Note that at the end of the cold period, the snowpack gradually239

warms from the surface, driven by higher air temperatures, whereas at the240

snow/soil interface temperature remains lower, resulting in a negative surface241

gradient.242

243

Figure 5: Seasonal course of daily snow temperatures for Lavancher in winter 2004-2005.

Dataset: PST.

3.2. Temperature gradients244

Fig. 6 shows an example of seasonal course of hourly partial gradients in245

the snowpack.246

At this site, positive gradients in the snowpack occur throughout winter and247

early spring. Strong positive gradients at the snow surface between February248
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and March coexist with lower positive gradients in the lower portion of the249

snowpack. At the snow surface, the diurnal alternation between positive and250

negative gradients is evident.251

Figure 6: Seasonal course of hourly partial gradients for Plan Praz in winter 2004-2005.

The black solid line depicts snow depth. a) RAW dataset, b) PST dataset.
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Fig. 6b shows data corrected for positive spring temperatures, whereas252

Fig. 6a shows the same data uncorrected. Negative gradients at the base253

of the snowpack in spring are an artifact due to the unrealistic above-zero254

temperatures in the snowpack.255

3.3. Strong temperature gradients in the snowpack: occurrence and duration256

Particularly relevant to snowpack stability are temperature gradients higher257

than 20 ◦C/m. The 4-hour dataset was used to compute the relative number258

of weak (<5 ◦C/m), medium (between 5 and 20 ◦C/m) and strong (>20 ◦C/m)259

gradients. Gradients were taken as absolute values for this analysis, because260

heat �uxes may be responsible for constructive metamorphism both upwards261

and downwards. Fig. 7 reports the frequency histograms for basal gradi-262

ent (BG) and surface gradient (SG), averaged across all sites and separated263

for the three datasets, computed over the entire study period. There is a264

common pattern across all datasets and snowpack portions, with generally265

more than 60% of gradients being classi�ed as weak, and a decreasing oc-266

currence of medium and strong gradients. The frequency of strong gradients267

is signi�cantly higher in SG compared to BG for all datasets. Correspond-268

ingly, the frequency of weak gradients is signi�cantly lower in SG compared269

to BD. Comparing the di�erent datasets, the highest number of strong gra-270

dients was found in the un�ltered dataset (RAW, Fig. 7a). Data �ltered271

for positive Tsnow (PST) feature a higher number of weak gradients and a272

lower number of medium gradients compared to RAW, with no di�erence273

on strong gradients. The e�ect of the di�erence-approach �ltering (DA) was274

very similar to that of PST. The moving-average-approach (MAA) resulted275

in an increase in weak gradients, and in a decrease in both medium and276
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strong gradients compared to RAW data. To give an estimate of the relative277

number of negative and positive temperature gradients, these were computed278

on the DA dataset for surface gradients (the gradients that are expected to279

show the largest number of negative gradients). Averaged across all sites280

positive strong gradients were about 80% of total strong gradients.281
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Figure 7: Relative number of temperature gradients according to classes weak, medium

and strong in two portions of the snowpack (BG, basal gradient; SG, surface gradient),

for the raw data (a, RAW), the data �ltered for positive Tsnow (b, PST), data �ltered for

drifts using the di�erence approach (c, DA), and data �ltered for drifts using the moving

average approach (d, MAA).

Table 2 reports the relative number of strong partial gradients at the282
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base of the snowpack for each site, according to di�erent �lters applied. As283

shown also in Fig. 7 strong gradients decrease from RAW to highly �ltered284

data at all sites, even if strong di�erences exist across sites. This di�erence is285

associated to the di�erent snow patterns of those sites, in particular Ferrache,286

Grande Tête and Orvieille show lower snow depths compared to Lavancher,287

Saxe and Plan Praz. Instead, surface temperature gradients appear to be288

positively related to elevation (cfr. Table 1).289

Table 2: Relative number (%) of strong partial gradients at the base of the snowpack and

at the snow surface for each site according to the di�erent �lters applied.

BG SG

Site RAW PST DA MAA RAW PST DA MAA

Ferrache 16.7 8.5 7.1 0.5 27.9 14.3 13.3 5.9

Saxe 1.5 1.1 1.0 0.1 16.9 10.0 9.6 6.7

Grande Tête 10.9 9.1 7.3 0.4 36.7 27.5 23.5 14.4

Lavancher 7.3 4.5 4.3 0.2 23.8 12.6 11.6 7.0

Plan Praz 2.4 1.7 1.6 0.1 6.0 4.5 4.0 2.4

Orvieille 14.8 13.7 12.6 1.6 26.0 22.1 20.3 10.5

To evaluate the duration of strong gradients in the snowpack, we calcu-290

lated the number of consecutive days with strong gradients, and for each site291

we computed the maximum number of consecutive days with strong gradi-292

ents (Table 3). For this analysis, we used the daily partial gradients (absolute293

values). The maximum number of consecutive days was found at site Grande294

Tête in the RAW dataset, with as much a 154 consecutive days with a tem-295

perature gradient higher than 20 ◦C/m. In general, there is a good agreement296
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between dataset PST and DA, except for Ferrache and Grande Tête. RAW297

data lead to highest number of consecutive days with strong gradients for all298

sites except Ferrache, whereas the MAA �ltering procedure always resulted299

in the lowest number of consecutive days.300

For sites Plan Praz and Orvieille the highest number of consecutive days was301

consistently found at the snow surface for all datasets. The mean duration302

(in days) of a persistent strong gradient (all depths mediated) was fairly con-303

stant across sites and datasets, ranging between 1 and 2.5 days, except for304

site Grande Tête in RAW dataset, which was much higher.305
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Table 3: Average(±SD) and maximum number of consecutive days with mean daily gra-

dient higher than 20 ◦C/m for all sites and all datasets. For maximum, depth and year of

occurrence are also indicated.

Site Dataset N days (mean) N days (max) Depth (max) Year (max)

Ferrache RAW 1.9±0.8 21 40-60 cm 2009

PST 1.9±0.7 23 0-20 cm 2005

DA 1.6±0.5 14 60-80 cm 2009

MAA 1.1±0.3 5 60-80 cm 2009

Saxe RAW 1.6±0.5 12 0-20 cm 1999

PST 1.5±0.5 12 0-20 cm 1999

DA 1.4±0.4 12 0-20 cm 1999

MAA 1.2±0.3 5 100-120 cm 2005

Grande Tête RAW 8.1±14.1 154 80-100 cm 2001

PST 1.9±1.5 21 Surface 2001

DA 1.6±1.0 16 0-20 cm 2006

MAA 2.4±3.0 5 0-20 cm 2006

Lavancher RAW 2.3±1.4 117 40-60 cm 2008

PST 2.0±0.9 35 40-60 cm 2008

DA 2.0±0.7 35 40-60 cm 2008

MAA 1.3±0.6 8 Surface 2007

Plan Praz RAW 1.6±0.6 8 Surface 1999

PST 1.7±0.8 8 Surface 1998

DA 1.7±0.7 8 Surface 1998

MAA 1.4±0.6 5 Surface 2005

Orvieille RAW 1.9±1.4 15 Surface 2005

PST 2.0±1.5 15 Surface 2006

DA 2.0±1.4 15 Surface 2006

MAA 1.1±0.1 2 Surface 2006
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3.4. Relationship between temperature gradients and environmental variables306

We hypothesized a strong relationship between snow depth, Tair and the307

snow temperature gradients. As an example, this relationship is illustrated308

in Fig. 8 for 4-hour partial gradients from the PST dataset. As expected,309

absolute values of partial gradients at the base of the snowpack are higher310

with lower snow depths and gradually get closer to 0 ◦C/m with increasing311

snow depth. The same pattern can be seen at the surface, but with increasing312

scatter, suggesting that other factors exert a major in�uence at the snow313

surface.314
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Figure 8: Scatter plot between hourly partial gradients (positive in black, negative in red),

air temperature and snow depth, for all sites and years, dataset: PST.
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Table 4: Pearson correlation coe�cient between snow temperature gradients (separated

between positive and negative gradients, column 'sign'), snow depth and air temperature

for di�erent datasets (all coe�cients are signi�cant at p<0.001, except those denoted by

*).

Gradient Dataset Sign Snow depth Tair Total radiation Wind speed

BG RAW + -0.33 -0.14 -0.03 -0.09

- 0.25 -0.24 -0.23 0.00*

SG + -0.18 -0.27 0.05 -0.03

- 0.07 -0.15 -0.36 0.05

BG PST + -0.44 -0.30 -0.12 -0.10

- 0.06 -0.08 -0.10 -0.09

SG + -0.19 -0.44 -0.14 -0.03

- 0.06 0.08 -0.16 0.09

BG DA + -0.47 -0.31 -0.13 -0.10

- 0.16 -0.06 -0.12 -0.10

SG + -0.18 -0.45 -0.16 -0.02

- 0.06 0.10 -0.15 0.09

BG MAA + -0.46 -0.34 -0.13 -0.12

- 0.42 -0.16 -0.14 0.03

SG + -0.08 -0.38 -0.03 -0.01*

- -0.01* -0.19 -0.30 0.00*

Table 4 reports the correlation coe�cients between snow temperature gra-315

dients and relevant environmental variables. Higher correlations were found316

between gradients, snow depth and Tair, whereas the relationship between317

gradients, solar radiation and wind speed was weaker. PST and DA �ltering318

improves the correlation between either basal and surface positive tempera-319
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ture gradients, and snow depth and Tair, whereas MAA �ltering results in320

lower correlation between gradients and snow depth, but higher correlation321

with Tair. The relatively weak relationship between partial gradients, snow322

depth and Tair suggests that partial gradients cannot be predicted by means323

of such simple environmental drivers. We performed a multiple regression324

with Tair and snow depth as regressors and partial gradients (positive and325

negative gradients separated) at all depths and found that none of them326

could be properly predicted using any datasets. We furthermore tried to327

include other environmental data (solar radiation, wind speed, air pressure,328

etc.) as regressors when available, but with no substantial improve of the329

model (data not shown). Multiple regression models showed R2 always lower330

than 0.4. The pattern of R2s across di�erent datasets re�ected the pattern331

of correlation coe�cients shown in table 4.332

4. Discussion333

4.1. The e�ect of data �ltering on temperature gradient computation334

An extensive dataset (67 site-years) of continuous measurements of Tsnow335

represents an invaluable tool to evaluate the occurrence and the duration336

of strong temperature gradients at relatively small stratigraphic scale in the337

snowpack. However, we have identi�ed 3 sources of uncertainty on the data338

that must be taken into account to get reliable information. Uncertainties339

include erroneous data, positive Tsnow in spring and drifts in the thermis-340

tors. Erroneous data were removed by evaluating the relationship between341

Tsnow and Tair, and this correction did not a�ect the computation of snow342

temperature gradients. However, thresholds in this analysis were arbitrarily343
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chosen and dataset-speci�c. Therefore, they should be applied with caution344

on other datasets.345

Approximately 30% of positive temperatures in the snowpack were removed346

and substituted by 0 ◦C. This correction resulted in more realistic tempera-347

ture gradients in the snowpack in spring (cfr. Fig. 6). The relative number348

of gradient classes was also a�ected by the �ltering as shown in Fig. 7. The349

second �ltering (DA) was intended to remove large sensors drifts, and showed350

very similar results compared to PST. The MMA �ltering was intended to351

remove small drifts in the vertical temperature pro�le and resulted in a gen-352

eral smoothing of the partial gradients. Consequently, compared to RAW353

and PST datasets, this �ltering produced a higher number of weak gradi-354

ents, and a lower number of medium and strong gradients. The smoothing355

e�ect of �ltering was re�ected also in the computation of consecutive days356

with strong gradients (Table 3), with a decrease in duration towards subse-357

quent �ltering steps. The unrealistic number of maximum consecutive days358

with strong gradients calculated in Lavancher and Grande Tête in the RAW359

dataset is associated to positive Tsnow and the di�erence between un�ltered360

and �ltered data in this analysis demonstrates the usefulness of PST �lter.361

Instead, the small di�erence found between PST and DA �ltering suggests362

that this latter correction only marginally a�ects the gradient calculation,363

even if DA �lter was e�ective in reducing the e�ect of sensor drifts (cfr.364

Fig 2). Since the di�erence between PST and DA �ltering is small, we also365

con�rm our preliminary assumption that gradients higher than 50 ◦C/m can366

hardly be measured by this experimental setup.367

MAA �ltering strongly reduces the occurrence and duration of strong gra-368
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dients, and fails in identifying inter-site di�erences in temperature gradients369

(discussed later). This is because MAA �ltering resulted in an inordinate370

smoothing of temperature vertical pro�les that in turn possibly lead to an371

underestimation of strong temperature gradients.372

In summary, the combination of PST and DA �lters signi�cantly improves373

the dataset and may be applied to similar experimental setup. However, it374

must be noted that the gradient threshold of 50 ◦C/m should likely be in-375

creased in case of gradients measured at depth increments smaller than those376

used in this study (20 cm). In fact, gradients larger than 50 ◦C/m were re-377

ported by previous studies in small portions of the snowpack surface, at 5378

to 10 cm increments (Hood et al., 2005; Birkeland, 1998; Greene et al., 2006).379

380

4.2. Magnitude of snow temperature gradients and variability across sites381

Snowpack instability due to constructive metamorphism is usually asso-382

ciated to strong temperature gradients at the base of the snowpack and the383

formation of depth hoar. However, strong surface gradients may promote384

the formation of near-surface faceted crystals, which, if buried by new snow,385

might also result in potential snowpack instability (Birkeland, 1998; Hood et386

al., 2005). Here we show that the occurrence of strong temperature gradients387

is signi�cantly higher at the snow surface than at the snowpack base (Fig.388

7), highlighting the importance of considering surface snow properties for389

snowpack stability.390

Based on DA dataset we estimated that strong temperature gradients (i.e391

absolute gradients higher than 20 ◦C/m) account for between 1 and 13% of392

total gradients at the base of the snowpack, and for between 4 and 24% at393
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the snow surface. With respect to snowpack stability, the �rst are associated394

to full-depth avalanches, whereas the latter to surface slab avalanches, of-395

ten human-triggered (Schweizer and Jamieson, 2001; Schweizer and Lütschg,396

2001). The mean duration of strong temperature gradients ranged from 1.4397

to 2 days, whereas the maximum duration varied across sites from 8 to 35398

days. These time interval is su�cient for the development of faceted crystals399

that might result in persistent weak layer (Birkeland, 1998). In two out of400

six sites these long-lasting strong temperature gradients occurred at the snow401

surface, whereas in two sites they occurred at the bottom of the snowpack.402

These extreme gradients are not related to a speci�c, particularly cold or403

snow-poor winter.404

Although a strong relationship between snow depth, Tair and snow temper-405

ature gradients was not found, the occurrence and duration of these varied406

across sites, primarily as a function of environmental drivers. The relative407

number of strong partial gradients at the base of the snowpack reported in408

table 2 was higher in Ferrache, Grande Tête and Orvieille, which are also the409

sites characterized by lower snow depths (Fig. 3), and lower in Lavancher410

and Saxe. This pattern can be seen for all datasets, but only for PST the cor-411

relation between the relative number of strong gradients and the mean snow412

depth was signi�cant (r=-0.849, p<0.05). A similar behavior is also appar-413

ent for the duration of strong gradients (Table 3). Surface gradients are less414

correlated with Tair and appear to be instead related to elevation. Eleva-415

tion is in turn related to solar radiation (positively) and to Tair (negatively)416

and may therefore be seen as a number that integrates the two. However,417

no direct relationship was found between occurrence or duration of surface418
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gradients and radiation or Tair.419

Even if in some cases synthesis data such as relative number and maximum420

duration of strong gradients showed a relationship with snow depth, Tair421

and elevation, the lack of such a clear relationship for 4-hourly and daily422

temperature gradients prevented us from modeling the seasonal course of423

temperature gradients based on simple environmental parameters.424

5. Conclusions425

The analysis of a large dataset of snow temperature pro�les (about 3 mil-426

lions temperature records, from 67 site-years) has shown important features427

related to the measurement of snow temperatures and the calculation of tem-428

perature gradient in the snowpack but also highlighted a number of issues429

related to data quality. Data quality check has allowed to: (1) remove about430

3% of the data likely associated with errors in the data logging; (2) identify a431

substantial problem related to melting snow around the sensors during spring432

which leads to positive snow temperatures; in order to solve this problem we433

had to replace about 30% of fake, positive snow temperatures, assuming that434

temperature was 0 ◦C; and (3) identify a procedure based on the analysis of435

snow-free, nighttime temperature pro�les that allowed to identify drifts in436

the sensors, corrected by means of two subsequent �ltering procedures (DA437

and MAA).438

Filtering for (1) did not a�ect the snow gradient computation, whereas �l-439

tering for (2) substantially improved the data quality and the reliability of440

calculated snow temperature gradients. With respect to (3), DA �ltering441

resulted in a small improvement of data, whereas MAA resulted in an inordi-442
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nate smoothing of temperature vertical pro�les that in turn possibly lead to443

an underestimation of strong temperature gradients. Reliable snow temper-444

ature datasets may therefore be obtained by applying a �lter for above zero445

snow temperatures and a threshold for unrealistically high partial gradients.446

This threshold must however be adjusted based on the vertical resolution of447

temperature measurements.448

Based on this extensive dataset, we estimated that strong temperature gra-449

dients may account for as much as 25% of total gradients and the duration450

of these may be as long as 35 days. The frequency of strong gradients is sig-451

ni�cantly higher at the snow surface than at the snowpack base. Therefore452

the formation of near-surface faceted crystals as potential weak layers must453

be taken into account when assessing snow stability in alpine snowpacks.454

6. Acknowledgments455

This research was founded in the framework of the Incarico di collabo-456

razione per l'elaborazione dei dati di temperatura del manto nevoso raccolti457

dalle stazioni nivometeorologiche automatiche gestite dal Centro Funzionale458

della Valle d'Aosta, nell'ambito del P.O. di Cooperazione territoriale euro-459

pea transfrontaliera Italia/Francia (Alpi) 2007/2013 ALCOTRA - Progetto460

RiskNat Gestione in sicurezza dei territori di montagna transfrontalieri.461

462

We are grateful to Dr. Eric Lutz for his thorough review, which substan-463

tially improved the quality of this work.464

465

31

u
Evidenziato

u
Nota
Such extensive dataset (67 site-years) of continuous measurements of Tsnow ,  recorded with the typical thermomethers placed in the classical AWS, represents an invaluable tool to evaluate the occurrence and the duration of strong temperature gradients at relatively small stratigraphic scale in the snowpack and therefore for the identification of weak layer formation periods. In particular, it might be useful to follow the near surface facets evolution.Moreover, these kind of dataset might be useful for testing numerical models for snowpack evolution, such as for example SNTHERM (Jordan, 1991) SNOWPACK (Bartelt and Lehning, 2002; Lehning et al., 2002) and SAFRAN-CROCUS-MEPRA (Brun et al., 1989).

u
Nota
DA AGGIUNGERE IN BIBLIOGRAFIA!!!Bartelt, P.B., Lehning, M., 2002. A physical SNOWPACK model for avalanche warning: Part I. Numerical model. Cold Reg. Sci. Technol. 35, 123-145. Lehning, M., Bartelt, P., Brown, B., Fierz, C., 2002b. A physical SNOWPACK model for the Swiss avalanche warning: Part III. Meteorological forcing, thin layer formation and evaluation. Cold Reg. Sci. Technol. 35, 169-184. Jordan, R. (1991) A One-Dimensional Temperature Model for a Snow Cover:Technical Documentation for SNTHERM.89. U.S. Army Cold Regions Research andEngineering Laboratory, Special Report 91-16.Brun, E., David, P., Sudul, M., Brugnot, G., 1992. A numerical model to simulate snowcover stratigraphy for operational avalanche forecasting. J. Glaciol. 38, 13–22.



References466

Adams, E.E., Brown, R.L., 1983. Metamorphism of dry snow as a result of467

temperature gradient and vapor density di�erences. Ann. Glaciol. 4, 3-9.468

Bakermans L.A., Jamieson J.B., 2006. Measuring near-surface snow temper-469

ature changes over terrain. Proceedings ISSW 2006. International Snow470

Science Workshop,Telluride CO, U.S.A., 1-6 October 2006, 377-386.471

Bartelt P., Lehning M., 2002. A physical SNOWPACK model for Avalanche472

Warning Services. Part I: numerical model, Cold Reg. Sci.Technol. 35, 123-473

145.474

Beniston M., Uhlmann B., Goyettea S., Lopez-Moreno J.L., 2010. Will snow-475

abundant winters still exist in the Swiss Alps in an enhanced greenhouse476

climate? Int. J. Climatol. 31 (9), 1257-1263.477

Birkeland K.W., 1998. Terminology and predominant processes associated478

with the formation of weak layers of near-surface crystals in the mountain479

snowpack. Arctic and Alpine Research, 30(2), 193-199.480

Brun E., Martin E., Simon V., Gendre, C., Coleou, C., 1989. An energy and481

mass model of snowcover suitable for operational avalanche forecasting, J.482

Glaciol. 35, 333-342.483

Colbeck, S.C., 1983. Theory of metamorphism of dry snow. J. Geophys. Res.,484

88(C9), 5475-5482, doi:10.1029/JC088iC09p05475.485

Colbeck, S.C., Jamieson, J.B., 2001. The formation of faceted layer above486

crusts. Cold Reg. Sci.Technol. 33, 247-252.487

32



Fierz C., 2011. Temperature pro�le of snowpack. In: Encyclopedia of Snow,488

Ice and Glaciers (ed. Singh, V.P., Singh, P., and Haritashya, U.K.),489

Springer, Netherlands, 1151-1154.490

Fierz C., Bakermans L.A., Jamieson J.B., Lehning, M., 2008. Modeling short491

wave radiation penetration into snowpack: What can we learn from near-492

surface snow temperatures? Proceedings ISSW 2008. International Snow493

Science Workshop, Whistler, BC, CAN, 21-27 September, 2008, 204-208.494

Giddings, J. C., LaChapelle, E., 1962. The formation rate of depth hoar, J.495

Geophys. Res., 67(6), 2377-2383, doi:10.1029/JZ067i006p02377.496

Gray D. M., Male D.H. (eds.), 1981. Handbook of snow: Principles, processes,497

management and use: Toronto, Ontario, Pergamon Press.498

Greene E.M., Schneebeli M., Elder K., 2006. The microstructual e�ects of499

kinetic growth metamorphism in a layered snow structure. International500

Snow Science Workshop 2006 Proceedings, ISSW 2006, Telluride, Col-501

orado.502

Hood E., Scheler K., Carter P., 2005. Near-surface faceted crystals formation503

and snow stability in a highh-latitude maritime snow climate, Juneau,504

Alaska.505

Jones H.G., Pomeroy J.W., Walker, D. A., and Hoham, R. W. (eds.), 2001.506

Snow Ecology: An Interdisciplinary Examination of Snow-Covered Ecosys-507

tems. Cambridge: Cambridge University Press.508

Jordan R., 1991. A one-dimensional temperature model for a snowcover.509

CRREL Spec. Rep. 91-16.510

33

u
Nota
Arctic, Antarctic, and Alpine Research, 37(3), 316-322.

u
Evidenziato



Kaempfer T.U., Schneebeli M., and Sokratov S.A., 2005. A microstructural511

approach to model heat transfer in snow. Geophysical Research Letters,512

32(21), L21503, doi:10.1029/2005GL023873.513

Lehning M., Bartelt P., Brown R.L., Russi T., Stoeckli U., Zimmerli M.,514

1999. SNOWPACK model calculations for avalanche warning based upon515

a new network of weather and snow stations. Cold Reg. Sci. Technol. 30,516

145- 157.517

Lehning M., Bartelt P., Brown R.L., Fierz C., Satyawali P.K., 2002a. A518

physical SNOWPACK model for the Swiss avalanche warning Services;519

Part II. Snow microstructure. Cold Reg. Sci.Technol. 35(3), 147-167.520

Lehning M., Bartelt P., Brown R.L., Fierz C., 2002b. A physical SNOW-521

PACK model for the Swiss avalanche warning Services; Part III: meteoro-522

logical forcing, thin layer formation and evaluation. Cold Reg. Sci. Technol.523

35(3), 169-184.524

Marienthal A., Hendrikx J., Chabot D., Maleski P., and Birkeland K., 2012.525

Depth hoar, avalanches, and wet slabs: A case study of the historic March,526

2012 wet slab avalanche cycle at Bridger Bowl, Montana. Proceedings of527

the 2012 International Snow Science Workshop, Anchorage, AK.528

McClung D., Schaerer P., 2006. The Avalanche Handbook, The Mountaineers529

Books. 342 pp.530

Mercalli L., Castellano C., Cat Berro D., Di Napoli, G., 2003. Atlante Cli-531

matico della Valle d'Aosta. (Climate Atlas for the Aosta Valley Region)532

(SocietÃ  Meteorologica Subalpina).533

34



Morland L.W., Kelly R.J., Morris E.M., 1990. A mixture theory for a phase-534

changing snowpack. Cold Reg. Sci. Technol. 17, 271- 285.535

Ohara N., Kavvas M.L., 2006. Field observations and numerical model ex-536

periments for the snowmelt process at a ï¬�eld site. Advances in Water537

Resources, 29, 194-211.538

Papale D., Reichstein M., Aubinet M.E., Canfora E., Bernhofer C., Kutsch539

W., Longdoz B., Rambal S., Valentini R., Vesala T., et al.(2006), To-540

wards a standardized processing of Net Ecosystem Exchange measured541

with eddy covariance technique: algorithms and uncertainty estimation,542

Biogeosciences, 3(4), 571-583.543

Pomeroy J.W., Brun E., 2000. Physical properties of snow. In: Snow Ecology,544

Cambridge University Press pp. 378.545

R Development Core Team, 2010. R: A language and environment for statis-546

tical computing. R Foundation for Statistical Computing, Vienna, Austria.547

ISBN 3-900051-07-0, URL http://www.R-project.org/.548

Reusser D.E., Zehe E., 2011. Low-cost monitoring of snow height and ther-549

mal properties with inexpensive temperature sensors. Hydrol. Process. 25,550

1841- 1852.551

Shea C., Jamieson B., Birkeland K.W., 2012. Use of a thermal imager for552

snow pit temperatures. The Cryosphere, 6, 287-299.553

Schweizer J., Jamieson J.B., 2001. Snow cover properties for skier triggering554

of avalanches. Cold Reg. Sci. Technol. 33 (2-3): 207-221.555

35

u
Evidenziato

u
Nota
Aggiungere:Shea, C., Jamieson, B., and Birkeland, K. W., 2011. Use of a thermal imager for snow pit temperatures, The Cryosphere Discuss., 5, 2523-2556, doi:10.5194/tcd-5-2523-2011.



Schweizer J., Lütschg M., 2001. Characteristics of human-triggered556

avalanches. Cold Reg. Sci. Technol. 33 (2-3): 147-162.557

36


