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ABSTRACT
◥

Purpose: Multiple myeloma is a biologically heterogenous
plasma-cell disorder. In this study, we aimed at dissecting the
functional impact on transcriptome of gene mutations, copy-
number abnormalities (CNA), and chromosomal rearrangements
(CR). Moreover, we applied a geno-transcriptomic approach to
identify specific biomarkers for personalized treatments.

Experimental Design: We analyzed 514 newly diagnosed
patients from the IA12 release of the CoMMpass study, accounting
formutations inmultiplemyeloma driver genes, structural variants,
copy-number segments, and raw-transcript counts. We performed
an in silico drug sensitivity screen (DSS), interrogating the Cancer
Dependency Map (DepMap) dataset after anchoring cell lines to
primary tumor samples using the Celligner algorithm.

Results: Immunoglobulin translocations, hyperdiploidy and
chr(1q)gain/amps were associated with the highest number of
deregulated genes. Other CNAs and specific gene mutations had
a lower but very distinct impact affecting specific pathways.

Many recurrent genes showed a hotspot (HS)-specific effect. The
clinical relevance of double-hit multiple myeloma found strong
biological bases in our analysis. Biallelic deletions of tumor
suppressors and chr(1q)-amplifications showed the greatest
impact on gene expression, deregulating pathways related to cell
cycle, proliferation, and expression of immunotherapy targets.
Moreover, our in silico DSS showed that not only t(11;14) but
also chr(1q)gain/amps and CYLD inactivation predicted differ-
ential expression of transcripts of the BCL2 axis and response to
venetoclax.

Conclusions: The multiple myeloma genomic architecture and
transcriptome have a strict connection, led by CNAs and CRs. Gene
mutations impacted especiallywithHS-mutations of oncogenes and
biallelic tumor suppressor gene inactivation. Finally, a comprehen-
sive geno-transcriptomic analysis allows the identification of spe-
cific deregulated pathways and candidate biomarkers for person-
alized treatments in multiple myeloma.

Introduction
Multiple myeloma is a plasma-cell neoplasm driven by recurrent

trisomies- hyperdiploid multiple myeloma (HDMM)- or by immu-
noglobulin gene (IGH) locus rearrangements promoting overexpres-
sion of recurrent oncogenes. Classic PCR and FISH studies, and more
recently next-generation sequencing (NGS) studies have highlighted a
vast array of additionalmutations, copy-number abnormalities (CNA)
and structural variants (SV) which are thought to play a role in disease
evolution and may be acquired in preclinical phases or at relapse after
treatment (1–9).

Such abnormalities are predicted to influence the biological and
clinical behavior of the tumor and yet, despite a clear driver role, only
few carry prognostic value (2, 10–12). Additionally, as the genomic
makeup of multiple myeloma is being comprehensively elucidated by
NGS studies, classification efforts seem to have gained very little by the
additional knowledge brought byNGS and initiating karyotypic events
are still the mainstay of multiple myeloma classification. Indeed, most
additional abnormalities discovered by NGS seem to be randomly
distributedwith fewnotable exceptions (13, 14) and their discovery has
not led to the characterization of additional multiple myeloma cate-
gories so far. If not relevant from the point of view of a genomic
classification then, a question is what their biological role really is, and
whether they can serve as markers of specific transcriptional profiles.

Classically, gene-expression profiling arrays have shown how tran-
scriptome profiling recapitulates the main karyotypic lesions in mul-
tiple myeloma (15–17). Few studies on RNA sequencing (RNA-seq) in
multiple myeloma have been published (7, 14, 18–21). Most of them
have reported that many DNA mutations are actually not expressed,
and how the transcriptomic profile has very few genomic correlates
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aside from hyperdiploidy and IGH translocations. Lagan�a and col-
leagues have shown that RNA-seq from the public CoMMpass data-
base can be mined through a network approach to identify multiple
myeloma groups where annotation of genomic and clinical features
highlights some commonalities (20). However, a systematic and
comprehensive assessment of the functional impact of mutations,
CNAs and SVs at the transcriptomic level is still lacking. This would
have implications for disease pathogenesis and would allow prioriti-
zation of research on genomic abnormalities that have specific con-
sequences on expression. Ideally, those would be the ones with the
highest value as prognostic markers, biomarkers of drug response,
and/or candidate drug targets. Indeed, while for example response to
venetoclax is best predicted by assessing the expression levels of BCL2,
BCL2L1, and MCL1 (22), this is unlikely to become routine clinical
practice. DNA abnormalities that correlate with expression of target
genes are much more easily amenable to clinical-grade diagnostics
through NGS techniques (23–25).

In this article, wemined genomic and transcriptomic data from 514
cases from the CoMMpass dataset to dissect transcriptional effects of
the most recurrent genetic abnormalities. In particular, starting from
the comprehensive DNA exome-wide sequencing information, we
performed a systematic and unbiased assessment of differentially
expressed transcripts correlated to each recurrent gene mutation,
CNA and SV. From here, we identified genetic predictors of specific
differential gene expression levels to get insights into the functional
relevance of recurrent genomic alterations and suggest therapeutic
vulnerabilities.

Materials and Methods
Data

We interrogated 514 newly diagnosed patients enrolled in the
CoMMpass study (IA12 release). The CoMMpass data were generated
as part of the Multiple Myeloma Research Foundation (MMRF)
Personalize Medicine Initiative (https://themmrf.org). We focused on
mutations in multiple myeloma driver genes, SVs, copy number
segments, and raw transcript counts. The CoMMpass trial is a
prospective observational clinical trial (NCT01454297) that comprises
whole genomic and transcriptomic data derived fromnewly diagnosed
patients with multiple myeloma. The tumor samples were collected
from several centers across the United States, Canada and Europe.
Ethics committees or institutional review boards at the study sites
approved the study. All the patients signed a written informed consent
prior to enrollment. The study was conducted under the statement of

the Helsinki declaration. Multiple myeloma samples were collected at
diagnosis at enrollment sites and then shipped to the Translational
Genomics Research Institute (TGen) to be processed and sequenced.
Due to the lack of transcriptomic data from normal plasma cells in the
CoMMpass dataset, all the statistical analyses were performed com-
paring genetic subsets of multiple myeloma samples.

Gene expression analysis
RNA-seq data were processed using the voom/limma pipe-

line (26, 27). Firstly, the dataset of raw-counts was filtered to remove
genes with less than 10 reads in more than 95% of samples. Then, we
performed the trimmed mean of M-values (TMM) normalization to
estimate a scale factor used to decrease technical bias between samples,
resulting from differences in library size (28). Finally, we applied the
voom transformation to convert the raw counts in log2-counts per
million (log2-CPM) and calculated the respective observation-level
weights to be used in differential expression analysis.

To assess the amount of differentially expressed transcripts a linear
model was fitted to the expression data for each genomic feature,
detecting the genes significantly associated with at least one genetic
abnormality. This model evaluates the expression of each gene in each
patient using a design matrix composed of information on genetic
anomalies for each patient. From this, we obtained the coefficients that
measure the gene expression change associated with the presence of
each genetic anomaly. Then, to determine the association between
gene expression and genomic alterations we used the F statistic
obtained by the lmFit function of the R limma package. Finally, we
applied the Benjamini–Hochberg correction for multiple testing. To
evaluate the accuracy of the applied model, we calculated a random
model in which all the values of each covariate (genetic anomaly) were
randomly permuted, breaking all the correlations between the gene
expression level and genotype (29). This model allowed to correct the
subsequent differential expression analysis for the main karyotypic
subtypes and segmental CNAs [hyperdiploidy, t(4;14), t(11;14), t(14;16),
t(14;20) and chr(1q21)gains/amplifications (amp)]. Moreover, this
approach allowed us to identify significant gene associations by calcu-
lating the coefficient of determination (R2), which tells how well the
model fits the data, but also the portion of variance of the dependent
variable (expression of gene in a patient) predicted by the independent
variable (presence of genetic anomaly). This allowed us to measure the
variance explained by the presence/absence of a given genetic alteration
and to evaluate how much this alteration is associated with changes in
expression of the candidate gene.

Hotspot and non-hotspot mutations
Mutational hotspots (HS) are amino acid positions in a protein-

coding gene mutated more frequently than would be expected in the
absence of selection (30), therefore conferring a fitness advantage. For
this analysis, we selected 4 genes from a list of 53 mutations on known
myeloma driver genes (13): KRAS, NRAS, IRF4, and BRAF. Then, we
defined as HS the nonsynonymous mutations as follows: G12, G13,
and Q61 were selected as HS for KRAS and NRAS; K123 for IRF4; and
V600 and D594 codons for BRAF.

Identification of genes with a cumulative effect
Cumulative transcriptomic effect of genes was analyzed in regions

of chr(1q21) amplifications (>3 copies) or biallelic inactivation of
tumor suppressors (mutation of one copy and deletion of the other).
To explore the functional significance of these events, we selected genes
with a cumulative effect, i.e., genes significantly deregulated in biallelic
versus wild-type (WT) [or amp vs. WT for chr(1q21)] and/or biallelic

Translational Relevance

In this article, we studied the close interactions between the
genomic architecture of multiple myeloma and its functional
impact on the transcriptome. This comprehensive analysis
highlighted how copy-number changes and chromosomal rear-
rangements impacted the most on gene expression. However, we
showed the great importance that mutations play in the setting of
hotspot variants and biallelic inactivation of tumor suppressor
genes. Moreover, a widespread geno-transcriptomic analysis was
able to infer the differential gene expression of specific druggable
pathways and to identify biomarkers of sensitivity to novel treat-
ments in multiple myeloma, suggesting this approach could drive
personalized treatment decisions.
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versus mono-allelic statuses [or amp vs. gain for chr(1q21)]. To
perform this analysis, first we selected, for each analysis, the
significant genes from the differential expression analysis contrasts,
then for each selected gene we calculated with a linear regression
their cumulative effect. Finally, we restricted the analysis to the
significant genes (P value < 0.05) deregulated in biallelic (or amp)
versus WT and/or biallelic (or amp) versus mono-allelic (or gain).

Gene ontology analysis
TheGeneOntology (GO) enrichment analysis was performed using

ClusterProfiler R package to search for a biological interpretation of
transcriptome deregulation. This algorithm implements methods to
analyze and visualize functional profiles of genomic coordinates,
genes, and gene clusters (31). The P values were corrected for multiple
testing by using the Benjamini–Hochberg FDR method. In the HS
analysis, we performed the pathway analysis with the genes from
differential expression analysis contrasts (HS vs. WT, HS vs. non-HS,
and non-HS vs. WT); whereas in the biallelic deletions and chr(1q21)
gain/amp analysis, we executed the GO analysis with the cumulative
effect genes. Gene set enrichment analysis (GSEA) was performed
by the R package fgsea using the “t” statistics as ranking factor. The
cancer hallmark list was inferred with a significant adjusted P value
< 0.05 (32).

In silico analysis of drug sensitivity
To assess our findings, we performed an in silico analysis using the

Cancer DependencyMap (DepMap) database and Celligner algorithm
(detailed methods in the Supplementary Data S1; refs. 33–35).

Statistical analysis
The association tests have beenperformedwith two-sidedWilcoxon

rank–sum test. The P values were adjusted using the Benjamini–
Hochberg FDR method (FDR<0.05). All analyses were performed in
R, the language and environment for statistical computing (R Core
Team, 2020).

Results
Genome-wide transcriptome patterns associated with multiple
myeloma driver aberrations

To have an overview of the driver genomic lesions underlying global
transcriptome deregulation in multiple myeloma, we first performed
anunsupervised principal component analysis. Cases segregatedmost-
ly based on their HD versus IGH translocation status (Fig. 1A), in
agreementwithhistorical gene expressionprofilingdata (15, 17, 36, 37).
However, recent genomic efforts have greatly expanded the repertoire
of driver genomic lesions in multiple myeloma, including CNAs and
gene mutations. Therefore, we asked what the independent contribu-
tion of each to the derangement of the transcriptome could be. To this
end, we implemented a linear regression model that assesses which
transcripts are specifically associated to distinct genomic features (29).
We plotted, for each driver lesion, the number of up- or downregulated
transcripts and their fold change (Fig. 1B). IGH translocations and
hyperdiploidy were associated overall with the most substantial dif-
ferential gene expression patterns observed, along with amplifications
and gains in chr(1q21). Other CNAs had fewer transcriptomic corre-
lates, followed by specific gene mutations. Within the former group,
CYLD deletions showed the highest number of differentially expressed
transcripts compared with normal CYLD copy number (CN) status.
Mutations of the 53 knowndriver genes inmultiplemyeloma (13)were
characterized by less consistent transcriptomic patterns. However,

interesting correlations emerged from this analysis. DIS3 and NRAS
mutations were the two lesions whose occurrence was associated with
the largest transcriptional modulation with respect to germline con-
figuration. A high number of differentially expressed long noncoding
RNA (lncRNA) was observed in DIS3-mutated versus WT patient
samples in particular, confirmingDIS3maymostly regulate expression
at the post-transcriptional level (Supplementary Data S2; ref. 38). As
expected, GO analysis for NRAS and KRAS mutations showed differ-
ential expression of genes pertaining to the MAPK pathway (Supple-
mentary Fig. S1A and S1B).Among less frequentmutations,TGDS and
RB1 in 13q and the MYC transcriptional regulators IRF4 and MAX
displayed correlation with the transcriptome. Conversely, most of the
remaining gene mutations were not associated with any differentially
expressed transcript.

IGH translocations exert their transforming activity by overexpres-
sing target oncogenes. Indeed, modelling predicted versus observed
expression of CCND1 showed that the t(11;14) accounted for most of
the observed inter-patient heterogeneity in CCND1 transcript levels
(Fig. 1C, left), as was the case for NSD2 and to a lesser extent FGFR3
expression in t(4;14), MAF in t(14;16), and MAFB in t(14;20) (Sup-
plementary Fig. S2A–S2D). In the case of CNAs, the picture was not as
clear cut: while low CYLD expression levels were mostly explained by
locus deletions (Fig. 1C, right), not all cases of chr(17p13) or TRAF3
gene deletions resulted in downregulation of TP53 or TRAF3, respec-
tively (Supplementary Fig. S2E and S2F). In the case of chr(1q21)gain/
amp, heterogeneity of expression levels of the key target genes CKS1B
andMCL1 could be attributed to the allelic status of the locus only to an
extent (Supplementary Fig. S2G and S2H).

Therefore, structural, numeric variants and few mutations in
driver genes were associated with most of the transcriptomic
heterogeneity between multiple myeloma cases. For canonical IGH
translocations this is likely mediated by overexpression of the target
oncogene. The transcriptomic inter-patient variability observed in
the case of CNAs is likely associated with the altered expression of
more than one target gene and can be partially explained by the
clonality of the event.

Impact of driver recurrent gene mutations on gene-expression
regulation

Despite having a smaller correlation with the transcriptome, recur-
rent genemutations have a clear driver role.Many genes aremutated in
a HS pattern, and specific effects of HS versus non-HS variants as
compared to their WT status are unknown. We therefore sought to
analyze genotype–phenotype correlations for 4 of the main mutated
genes with knownHS:KRAS,NRAS,BRAF, and IRF4. The distribution
of HS and non-HS mutations within the main cytogenetic categories
was neutral except for kinase-dead BRAF mutations at codon D594,
mostly occurring in t(14;16) cases (Supplementary Fig. S3). As a first
step, we interrogated the Catalogue of Somatic Mutations in Cancer
(COSMIC) to interrogate the codon usage of these gene mutations in
CoMMpass as compared with different solid cancer types (colon, lung
adenocarcinoma, and skin melanoma) and other hematologic malig-
nancies. Interestingly, multiple myeloma showed a specific mutational
spectrum for some of these genes. KRAS in particular was mostly
mutated in the Q61 codon inmultiplemyeloma, while in solid cancers,
diffuse large B-cell lymphomas, chronic lymphocytic leukemia (CLL),
and acute myeloid leukemia (AML) showed mostly G12 and G13
mutations (Fig. 2A; Supplementary Fig. S4A). NRAS was mainly
mutated at the Q61 codon. A similar picture was also observed for
solid cancers. However, in this latter setting, G12 and G13 residues
mutations were also enriched in comparison with multiple myeloma

Myeloma Genomic Complexity Transcriptional Impact
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(Fig. 2B). Interestingly, other hematologic malignancies showed a
predominance of NRAS G12 and G13 mutations, and only CLL
showed a mutational pattern similar to multiple myeloma (Supple-
mentary Fig. S4B). The IRF4 K123 HS was specific for multiple
myeloma. Nevertheless, we identified other IRF4 mutated HS in B
and in T-cell neoplasms, all within the DNA binding domain. In solid

cancers, where IRF4 is not usually expressed, we did not identify any
clustered mutational locus (Fig. 2C; Supplementary Fig. S4C). Finally,
while BRAF mutations were mostly clustered on the V600, multiple
myeloma and other hematologic malignancies showed a higher inci-
dence of the “kinase-dead” D594 mutations as compared with solid
tumors (Fig. 2D; Supplementary Fig. S4D). Notable exceptions were

Figure 1.

Transcriptomic profile.A, Principal component analysis based on the main karyotypic subtypes: samples are represented as dots in the space identified by the three
principal components and are color-coded based on their karyotype. B, Stacked bar chart showing the differentially expressed genes per each genomic abnormality
(FDR < 0.05, fold change cut-off 1.5). Bars indicate the contributions of upregulated genes (red) and downregulated genes (blue). FC, fold change. C, Scatterplot
representing expression prediction for the CCND1 and CYLD genes versus observed expression values: samples are color-coded dots based on the significant
genomic abnormality (FDR < 0.01), in blue t(11;14) samples, in green del(CYLD) samples and in black the other samples; R2 represents the association between
genomic alteration and expression changes.
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hairy cell leukemia and Langherans’ histiocytosis, where only the V600
residue mutated (Supplementary Fig. S4D).

Next, we asked whether HS and non-HS mutations would carry
different functional relevance as assessed by transcriptomic analysis:
for KRAS and NRAS, we found transcriptomic correlates for HS gene
mutations only. Interestingly, even if the two genes fuel the same
proliferative pathway (Supplementary Fig. S1), NRAS HS mutations
were associated with differential expression of more than 2,000 genes,
as compared with 80 for KRAS HS mutations (Fig. 2AI, BI; Supple-
mentary Fig. S5A and S5B). In the case of IRF4, again HS mutations
correlated with the highest number of differentially expressed tran-
scripts, while non-HSmutationswere characterized by a less substantial
and partly overlapping transcriptional profile (Fig. 2CI; Supplementary

Fig. S5C). Interestingly, for BRAF mutations, the D594 codon was
correlatedwith the highest level of differential gene expression, showing
some overlap with mutations in the canonical codon V600. In partic-
ular, the kinase-dead mutations at D594 were associated with the
differential expression of 183 genes, three times more than the V600
ones. This may be partly explained by the specific occurrence of D594
mutations inMAF-translocatedmultiplemyeloma subgroup (4/7 cases)
as previously described (14). Overall, non-HS mutations contributed
very little in BRAF (Fig. 2DI; Supplementary Fig. S5D).

Therefore, transcriptomic correlates seem to correspond mostly to
HS mutations, and the patterns of HS usage seem to be specific for
multiple myeloma as compared with other solid and hematologic
cancers.

Figure 2.

Hotspot versus non-HS and WT analysis. A–D, Lollipop plots for the four main mutated genes; each plot shows in the top the hotspots in multiple myeloma, at the
bottom the hotspots in the peculiar solid cancers. Lollipop plots have been generated applying the R package maftools. AI–DI, Venn plots for each differential
expression analysis.
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Functional impact of biallelic events affecting tumor suppressor
genes in multiple myeloma

Biallelic events carry an increasingly recognized prognostic
effect in multiple myeloma. In particular, double-hit events occur-
ring in tumor suppressor genes have been described to have a
functional impact on cell fitness and survival and to represent the
reservoir for disease relapse and drug resistance in more advanced
stages (10–12, 39). Therefore, we sought to explore the transcrip-
tomic consequences of biallelic events and how these are different
from mono-allelic ones in key tumor suppressors: FAM46C, DIS3,
RB1, TGDS, TRAF3, CYLD, and TP53.

To this end, we looked at genes with a cumulative effect, i.e., genes
significantly deregulated in biallelic versus WT and/or biallelic versus
mono-allelic statuses. Overall, among samples of patients with mul-
tiple myeloma the mono-allelic status was associated with little
transcriptomic change as compared with WT, while biallelic events
showed more profound changes (Supplementary Fig. S6; Supplemen-
tary Table S1 and Supplementary Data S3). Then, to better explain the
putative functional impact of differential gene expression, we per-
formed GO analysis on genes with a cumulative effect. As a common
feature, we found a generalized upregulation of genes involved in cell-

cycle regulation and cell proliferation. Interestingly, biallelic inactiva-
tions of TP53, TGDS, and RB1 upregulated similar cyclins (CCND2,
CCNA2, CCNE2) and spindle checkpoints genes (E2F1 and MCMs).
Furthermore, they shared also upregulation of aurora kinase-A
(AURKA), cyclin-dependent kinases (CDK1 and CDK2) and Polo-
kinase-1 (PLK1), genes for which targeted treatments are being trialed
(Supplementary Fig. S7). These results were confirmed by a GSEA.
Indeed, we observed that cases with inactivation of TP53, TGDS, RB1,
or FAM46C sharedmany cancer hallmarks gene sets, all related to cell-
cycle regulation and MYC (Supplementary Fig. S8).

However, each gene aberration also showed a specific transcrip-
tomic profile associated with biallelic inactivation. CYLD double-hit
events showed as expected upregulation of downstream effectors of the
NF-kB pathway such as BIRC3, TRAF4, NFKB2, IKBKE, RELB, and
TNFAIP3 (Fig. 3A, top; Supplementary Fig. S8). Moreover, we also
detected an upregulation of genes involved in the interaction with
microenvironment as ICAM1, EDN1, and FGF2 related to angiogen-
esis enhancement (40), orMIR146A implicated in the communication
with mesenchymal stromal cells. Interestingly, CYLD inactivation
correlatedwith a significant overexpression ofBCL2, with a cumulative
effect for biallelic events (Fig. 3A, bottom). In the case of TP53 double-

Figure 3.

Biallelic inactivation analysis. A and B, CYLD and TP53 analysis. In the top left panel, the z-score value heatmaps of the cumulative effect genes, where columns
represent the gene status and rows represent the genes. In the top right panel, the gene-network plot for cumulative effect genes, where big dots indicate the
enrichedpathways, small dots represent thederegulated genes, and the color-coding refers to theFC inbiallelic versusWTcontrast (log2CPM). In the lower panel, the
box plots represent the cumulative gene expression trend in the three statuses, for each analysis: the dots specify the samples in each status, the red line symbolizes
the trend of the gene expression, the red number denotes the incremental or decremental expression FC, the black number the P value.
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hits, we noted an upregulation of cell-cycle genes as well as PHF19, a
recently discovered poor prognostic marker in multiple myeloma
(Fig. 3B; ref. 41). Therefore, we further explored this finding applying
GSEA to dissect possible interactions between TP53 inactivation and
PHF19 overexpression. Interestingly, the two abnormalities showed an
overlap in upregulation of cell-cycle related and MYC controlled
pathways (Supplementary Fig. S8), suggesting a convergence of
mechanisms underlying poor prognosis in multiple myeloma. Fur-
thermore, TP53 double-hits were associated with downregulation of
SLAMF7, an immunotherapeutic target inmultiple myeloma (Fig. 3B,
bottom). Interestingly, this was only observed in double-hit events and
not when TP53 was mutated or deleted only. FAM46C double-hit
events were characterized by an upregulation of CD38 and a concom-
itant low expression of CD55 and CD59, recently associated with
daratumumab resistance (Supplementary Fig. S7A) (42). Moreover,
we found an upregulation of CD44, a gene involved in multiple
myeloma cell homing and lenalidomide resistance (43). Then, we
analyzed the impact of chr(13q) deletions and mutations of genes
located within this region (Supplementary Fig. S7B–S7D). TGDS and
RB1 biallelic events deregulatedmostly genes involved in cell-cycle and
cell proliferation. Double-hit events of TGDS were predominantly
associated with gene upregulation, while patients with RB1 biallelic
inactivations were characterized by differentially expressed genes in
both directions compared with samples with normal/mono-allelic
status of the gene. DIS3 alterations correlated with increased expres-
sion of lncRNA regulatory genes (Supplementary Fig. S7B–S7D) as
expected given its function (38). TRAF3 inactivation was associated
with NF-kB pathway activation and downregulation of signaling
related to mRNA metabolic processes and protein catabolism (Sup-
plementary Fig. S7E). Overall, these findings may help to explain the
putative biological and prognostic impact of biallelic events inmultiple
myeloma.

Chromosome 1q gain/amplifications impacted transcriptome
Another recurrent CNA in multiple myeloma affects chr(1q21),

where gains (3 copies) are thought to be early events and amplifica-
tions (4 or more copies) late events with a negative prognostic
impact (11, 13). As for chromosomal deletions, also in this case we
observed several genes characterized by a progressively increased
change in expression in diploid versus gain versus amplifications of
chr(1q21). While an intermediate differential expression was
observed in the gain group compared with the disomic one, greater
expression z-scores of these altered transcripts characterized the
amplified cohort (Fig. 4A). As this was the single CNA with the
largest number of transcriptomic correlates (Fig. 1B), we asked
whether alteration of expression only impacted genes in the dupli-
cated region or was genome-wide. Taking into account the number
of differentially expressed genes in each chromosome corrected for
the chromosomal length, we observed how small chromosomes (i.e.,
21 or 22) contributed proportionally as much as chromosome 1 to
transcriptomic changes between normal disomic configuration and
1q extra-copies. This suggests that chr(1q21)gain/amp may have
profound implications on the transcriptome of the cell which are
genome-wide (Fig. 4B). Subsequently, we applied a GO analysis on
the genes with 1q CN-associated differential expression. Proliferation-
related pathways, i.e., cell-cycle and spindle checkpoint genes were
significantly upregulated (Fig. 4C). Chr(1q21)ampwas associatedwith
downregulation of CCND1 and upregulation of CCND2 along with
other oncogenes (AURKA, AURKB, and PLK1) confirming the view
that multiple myeloma is a disease of deregulated cyclins (Supple-
mentary Fig. S9A and S9B; ref. 44). Given the known association

between chr(1q21)gain/amp and t(4;14), we asked whether chr(1q21)
amp effect on CCND1 and CCND2 could be mediated by t(4;14).
Firstly, we noted that despite the presence of 1,102 shared differentially
expressed genes between the two genetic abnormalities, chr(1q21)gain/
amp was independently associated with 1,191 differentially expressed
genes and t(4;14) with 3,841 (Supplementary Fig. S10A). Of note, while
CCND1 and CCND2 were differentially expressed by both abnormal-
ities, cases of chr(1q21)gain/amp without t(4;14) also showed CCND2
upregulation (Supplementary Fig. S10B), confirming this is a conver-
gent independent downstreameffect of the two abnormalities andnot a
confounding effect of their association. Other than this, a GO analysis
of differentially expressed genes specific to each genetic abnormality
did not show shared deregulated pathways (Supplementary Fig. S10C
and S10D). Finally, several genes with a possible therapeutic impact
were differentially expressed. In particular, PDL1 was downregulated,
while the immunotherapy targets SLAMF7 and GPRC5D were signif-
icantly overexpressed (Fig. 4D; Supplementary Fig. S9C). Of note, the
chromosome 1q amplification was also associated with a significant
upregulation of MCL1 (Fig. 4E), whose overexpression is associated
with a lower response to BCL2 inhibition. Altogether, these data
confirmed the high impact that chromosome 1q alterations have on
the transcriptome and of great importance are the highly significant
expression changes on genes with possible therapeutical implication
for new generation immunotherapies (SLAMF7 and GPRC5D) or
targeted treatments (MCL1).

Structural chromosomal alterations as possible predictors of
response to BCL2 inhibitors

Venetoclax is becoming a commonly used therapeutic approach in
hematological malignancies and shows great promise in the multiple
myeloma field as well (22, 45, 46). Nevertheless, in multiple myeloma
venetoclax use seems to only be beneficial for certain subgroups of
patients and is detrimental for others, making it crucial to identify
reliable biomarkers (47). Studies have highlighted theBCL2/MCL1 and
BCL2/BCL2L1 expression ratios as predictors of response (48). How-
ever, in routine clinical practice these analyses are not performed and
venetoclax use is confined to the t(11;14) setting, as these cases express
high levels of BCL2 (22, 48). Since BCL2 overexpression seems not to
be confined to t(11;14) cases, we mined our data to look for additional
genomic predictors of response to venetoclax studying the expression
levels of BCL2, MCL1, and BCL2L1. Interestingly, as described in
mouse models (49), CYLD-deleted cases showed the most significant
upregulation of BCL2, while t(11;14) cases did not cross our FDR
threshold (Supplementary Table S2) for BCL2 expression unless
associated with del(CYLD). In t(11;14), the most notable feature
was a downregulation of BCL2L1. Conversely, chr(1q21)gain/amps
alone or in association with chr(13) deletions were characterized by
an overexpression of MCL1 (Supplementary Table S2 and Fig. 5),
likely explaining resistance to venetoclax of chr(1q) cases, who, by
contrast, are highly sensitive to MCL1 targeting (50). Indeed,
among BCL2 overexpressing cases, there was an enrichment of
t(11;14) and del(CYLD) (Supplementary Fig. S11A). MCL1 expres-
sion was characterized by an enrichment of chr(1q)gain/amps
among high-expressors (Supplementary Fig. S11B). In the case of
BCL2L1, it was clearly seen how most cases with low expression
were indeed characterized by t(11;14) (Supplementary Fig. S11C).
Concerning expression ratios, chr(1q)gain/amps were associated
with a significant reduction of the BCL2/MCL1 ratio. On the other
hand, the BCL2/BCL2L1 ratio was very high in the t(11;14) setting,
explaining the positive effect of venetoclax in this subgroup
(Supplementary Table S3).
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In conclusion, we observed genetic lesions that are associated with a
peculiar modulation of expression of genes related to the BCL2
pathway which could translate into biomarkers for venetoclax
treatment.

In silico drug sensitivity screening shows that t(11;14) is not the
only predictor for venetoclax response

The above results highlighted some genotype–phenotype correla-
tions that may predict response to BCL2 pathway inhibitors. To
validate these findings in silico, we interrogated public datasets gen-

erated within the DepMap international collaboration, reporting on
genetic dependencies and small molecule sensitivities of about 2,000
cancer cell lines (33, 34). To select the most appropriate cell lines for
our analysis, we used the Celligner algorithm (35). This allowed the
comparison of transcriptomic data from DepMap cell lines and
multiple myeloma samples from CoMMpass, and therefore the selec-
tion of the cell lines most similar to our primary sample data. Multiple
myeloma cell lines are characterized by specific IGH rearrangements,
andCelligner correctly clustered themwithmultiplemyeloma samples
harboring the same translocation (Fig. 6A). Interestingly, even if

Figure 4.

Chromosome 1q gain/amplification analysis. A, The heatmap represents the z-score values for the cumulative effect genes. B, The pie chart represents the
chromosomal distribution of the cumulative effect genes, corrected for chromosomal length. C, Gene-network plot for cumulative effect genes, related to the
amplification versus WT contrast (log2CPM). D, Box plot for the SLAMF7 expression trend in the three statuses. E, Box plot for MCL1 expression trend.
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HDMM cell lines are hardly reported, many cell lines were anchored
with samples of patients with HDMM, which may have translational
relevance. Analysis of genomic and expression data showed that this
was not due to MYC translocation or overexpression. In the sample
space defined by Celligner we selected cell lines harboring the three
chromosomal abnormalities that we identified above as possible
predictors of venetoclax response (features of cell lines are summarized
in Supplementary Table S4). The cell line GRANTA519 and multiple
myeloma cell lines SKMM2 and KMS12BM harbor a t(11;14) trans-
location, and a CYLD deletion in the latters. As expected, these
three cell lines resulted highly sensitive to venetoclax treatment
(Fig. 6B–D). Then, we interrogated the dataset for the U266 and
MOLP8multiplemyeloma cell lines, both carrying a t(11;14). Notably,
these two models showed refractoriness to BCL2 inhibition (Fig. 6E
andF),most likely since they are both characterized by high expression
of MCL1 due to chr(1q)gain/amp, and BCL2L1 gain in the case of
U266. The only cell line inDepMapwith an isolated del(CYLD)was the
RI1, and it was sensitive to venetoclax (Fig. 6G). To gain further
evidence that del(CYLD) could predict venetoclax response, we ana-
lyzed public data on venetoclax sensitivity reported in recent
papers (50–52). By integrating these drug sensitivity data and genomic
information retrieved from literature and publicly available reposito-
ries, we were able to report the characteristics of 53 additional multiple
myeloma cell lines (Supplementary Table S5). Five of these harbored a
del(CYLD), but this was isolated only in PCM6 and in the remaining 4
lines was associated with chr(1q21)gain/amps. Adding independent
evidence to our hypothesis, the PCM6 cell line resulted highly sensitive
to venetoclax (51), while the others were resistant likely due to
MCL1 overexpression. In fact, the MCL1 inhibitor S63845 was
tested in the AMO1 cell line harboring a chr(1q) amplification
and resulted in decreased viability (50). However, the complex
genotype of cell lines and the many genetic and epigenetic variables
affecting expression represent major challenges to the discovery and
wider applicability of candidate biomarkers of venetoclax sensitiv-
ity, and validation by functional studies will clearly be required.
Extensive mining of geno-transcriptomic data and cancer depen-

dencies may increase the spectrum of candidate biomarkers of
venetoclax sensitivity in multiple myeloma.

Discussion
In this study, we systematically dissected the impact of well known

and more recently described genome-wide DNA abnormalities on the
expression profile of 514 multiple myeloma cases to identify putative
functional correlates and surrogates of gene expression that may have
translational implications. As expected, and confirming the validity of
our approach, we found that hyperdiploidy and recurrent IGH trans-
locations were associated with the most substantial differential gene
expression patterns between patients. The assessment of the tran-
scriptomic profiles associated with any recurrent CNA and gene
mutation, representing a hallmark of our analysis, highlighted novel
correlates, by means of which we could also identify specific lesions
worthy of investigation in clinical-grade diagnostics for their potential
implications on patient management. Overall, gene mutations carried
a lower transcriptomic impact. This may be explained by the fact that
most show instances of convergent evolution (e.g., mutually exclusive
mutations ofKRAS andNRAS), do not segregate with specific genomic
lesions, and are often subclonal. Therefore, their impact may be diffuse
and redundant, and furthermore dilutedwhen analyzing bulk sequenc-
ing data. Interestingly though, functional relevance seems to be only
attributable to hotspot mutations for the two most common mutated
genes KRAS and NRAS, and their hotspot usage is quite different
between multiple myeloma and other solid cancers. This finding may
have functional implications that need to be further studied. A
questionable driver event is represented by IGLL5 mutations, as they
aremostly seen as off-targetAID-inducedmutations (53). The fact that
in our analysis IGLL5mutations are not associatedwith the differential
expression of any transcript strongly supports this view.However, they
could be a marker of IGL translocations and poor prognosis (2).

The single CNA associated with the largest number of transcrip-
tomic correlates was chr(1q21), where gains and, to a more extent,
amplifications predicted downregulation of PDL1 and upregulation of

Figure 5.

BCL2 family gene expression analysis. Box plots representing the specific BCL2 family gene expression in t(11;14), del(CYLD), and chr(1q21)gain/amps samples.
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SLAMF7, GPRC5D, and MCL1, with clear implications for treatment
with immunotherapies and BCL2 inhibitors. Overall, chr(1q21)gain/
amp corresponded to a transcriptional modulation that was genome-
wide and not limited to that genomic region, and was associated
with the upregulation of a proliferative program driven by CCND2
and other oncogenes. Indeed, a similar pattern has been reported by
RNA-seq of proteasome inhibitors (PI) and immunomodulatory
agents double-refractory cases (7), making chr(1q)gain/amp one of
the worst prognostic markers even in the era of novel treatments (54).
Of note, transcriptomic changes associated with chr(1q21) were much
more profound in case of amplifications than gains. This was an overall
very notable trend also for tumor suppressor lesions, wheremost of the
transcriptomic changes were found associated with biallelic events
(i.e., mutation of one allele and deletion of the other). Some of these

had therapeutic correlates, such as NF-kB pathway upregulation in
TRAF3 and CYLD inactivation, predicting good response to PI treat-
ment (55, 56). Others had prognostic value, such as PHF19 upregula-
tion that was seen upon TP53 biallelic loss (41).

Most importantly, we identified potential genomic correlates of
response to BCL2 pathway inhibitors. While response to venetoclax is
best associated with a high BCL2/MCL1 or BCL2/BCL2L1 ratio, this is
rarely assessed in the clinic, and the easier to identify t(11;14)
translocation is the typical biomarker used to select patients that may
respond to venetoclax. Our data show how t(11;14) patients display
high BCL2 levels and lack chr(1q21)gain/amp events thus showing low
MCL1 levels. However, their sensitivity to venetoclax is best explained by
their consistently lowBCL2L1 levels. In our in silico analysis, t(11;14) was
found associated with resistance to venetoclax therapy in 2 cell lines,

Figure 6.

In silico drug sensitivity screen. A, UMAP 2D projection of Celligner-aligned sample and cell line expression data: dots represent the samples [HD in light blue, t(4;14)
in yellow, t(11;14) in blue, t(14;16) in salmon, and t(14;20) in pink] and the lymphoma (dark blue) and myeloma (red) cell lines, samples missing karyotype in gray.
B–G,Dose–response curves for cell lines of interest: orange dots represent tests and blue curves represent the fitted trends. drc, dr4plR packages have been used to
generate drug-sensitivity plots.
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where it cooccurred with amplification of 1q and high expression of
MCL1. In this setting, Slomp and colleagues have shown how 1q
amplifications could identify a high-risk patient subset suitable for
therapy with specific MCL1 inhibitors. Interestingly, the authors have
also shown how the combinatorial therapy with BCL2 and MCL1
antagonists could overcome venetoclax resistance in human myeloma
cell lines as well as the newly diagnosed patients (50). Of note, the double
inhibition leads to the formation of proapoptotic BAX-BAK hetero-
complexes promoting apoptosis activation (52), and this could be the
mechanism restoring apoptosis in these cells. Our systematic analysis
also allowed to identify other DNA lesions that may predict venetoclax
response, and among these are CYLD deletions. These are not signifi-
cantly associated with t(11;14) (10, 14), and are associated with the
highest BCL2 levels of the CoMMpass cohort. Consistently, our func-
tional in silico validation confirmed that del(CYLD) cell lines respond to
venetoclax and that this could represent a candidate biomarker to identify
patients who could respond to BCL2 inhibition. Nevertheless, within
multiple myeloma cell lines, CYLD deletions were more variably asso-
ciated with venetoclax sensitivity, owing to complex karyotypes with
additional chromosomal abnormalities involving BCL2 losses and
chr(1q21)gain/amp associated with high MCL1 expression. Therefore,
while our data from primary samples recapitulate in vivomouse models
where CYLD knockdown resulted in BCL2 upregulation (49), the
translation of this evidence into a suitable biomarker of venetoclax
sensitivity in the context of plasma cell neoplasms is hampered by the
scanty cell linemodelswith a cleangeneticbackground, and likelybynon-
geneticmechanisms of resistance (57), andwill require additional studies.
In search for additional predictors of venetoclax sensitivity, Gupta and
colleagues recently highlighted a new gene/antigen signature that is
independent of t(11;14) (51), and whose clinical utility will need testing.

Altogether, our study highlights the impact of detailed molecular
profiling partneredwith clinical annotations and how, when combined
with large datasets of patients, this can be leveraged to study outcomes
of targeted drugs in well defined biological subgroups of patients with
multiple myeloma.
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