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Abstract 

Introduction 

Metabolomics may identify biological pathways predisposing children to the risk of overweight and 

obesity. In this study, we have investigated the cord blood metabolic signatures of rapid growth in 

infancy and overweight in early childhood in four European birth cohorts. 

Methods 

Untargeted liquid chromatography-mass spectrometry metabolomic profiles were measured in cord 

blood from 399 newborns from four European cohorts (ENVIRONAGE, Rhea, INMA and 

Piccolipiu). Rapid growth in the first year of life and overweight in childhood was defined with 

reference to WHO growth charts. Metabolome-wide association scans for rapid growth and 

overweight on over 4500 metabolic features were performed using multiple adjusted logistic mixed-

effect models and controlling the false discovery rate (FDR) at 5%. In addition, we performed a 

look-up analysis of 43 pre-annotated metabolites, previously associated with birthweight or rapid 

growth. 

Results 

In the Metabolome-Wide Association Study analysis, we identified three and eight metabolites 

associated with rapid growth and overweight, respectively, after FDR correction. Higher levels of 

cholestenone, a cholesterol derivative produced by microbial catabolism, were predictive of rapid 

growth (p = 1.6 × 10−3). Lower levels of the branched-chain amino acid (BCAA) valine 

(p = 8.6 × 10−6) were predictive of overweight in childhood. The area under the receiver operator 

curve for multivariate prediction models including these metabolites and traditional risk factors was 

0.77 for rapid growth and 0.82 for overweight, compared with 0.69 and 0.69, respectively, for 

models using traditional risk factors alone. Among the 43 pre-annotated metabolites, seven and five 



metabolites were nominally associated (P < 0.05) with rapid growth and overweight, respectively. 

The BCAA leucine, remained associated (1.6 × 10−3) with overweight after FDR correction. 

Conclusion 

The metabolites identified here may assist in the identification of children at risk of developing 

obesity and improve understanding of mechanisms involved in postnatal growth. Cholestenone and 

BCAAs are suggestive of a role of the gut microbiome and nutrient signalling respectively in child 

growth trajectories. 

 

Introduction 

Childhood obesity has become a global epidemic in developed as well as in developing countries 

[1], with significant long-term consequences on both physical and psychological health, social and 

economic outcomes [2]. Behavioural dimensions such as diet and physical activity, and an 

‘obesogenic environment’ that shapes those behaviours, have contributed to the spread of childhood 

obesity [3, 4]. In the last decades, there has been a growing interest in the idea that the early life 

environment can have lasting effects on the physiology and metabolism of the fetus and is 

associated with the early metabolic programming of human health [5,6,7]. Recent studies have 

revealed that several in utero exposures such as maternal socioeconomic status, clinical and 

environmental factors are associated with growth in infancy and with the subsequent development 

of childhood overweight or obesity [8,9,10,11,12,13]. The prenatal environment can affect fetus 

weight homeostasis and may result in a ‘thrifty phenotype’ that stores excess calories and 

predisposes children to weight gain [14]. Hence, a metabolic signature at birth may help elucidate 

the mechanisms involved in metabolic health later in life. 

Metabolomics, the profiling of circulating small molecules, has been increasingly applied to 

investigate biological mechanisms associated with childhood obesity [15, 16]. However, few studies 

have investigated metabolic changes in cord blood that may predict subsequent infant growth and 

overweight and obesity [17]. Isganaitis, Rifas-Shiman et al. [18] analysed the metabolome in cord 

blood plasma from 26 cases and 26 controls differing in their postnatal weight trajectories using 

targeted mass spectrometry (MS) analysis of 415 metabolites, nested in an American cohort. There 

was a trend for lower levels of tryptophan metabolites in children that followed a rapid growth to 

obesity at 7 years trajectory. Sorrow, Maguire et al. [19] similarly applied a targeted MS analysis of 

384 metabolites in cord blood of 25 obese and non-obese American children at 3–5 years. Children 



with obesity had elevated lipid species, acetaminophen metabolites and acylcarnitines compared 

with non�obese children, although no multiple testing correction was applied. Hellmuth, Uhl et al. 

[20] applied a range of targeted LC-MS assays to assess 209 metabolites in cord blood of 700 

German children in relation to birthweight, postnatal weight gain and BMI throughout adolescence. 

Although many metabolites were associated with weight at birth, no associations with postnatal 

measures survived multiple testing correction. Although initial studies have so far been based on 

small numbers of children or limited numbers of molecules, they reveal the potential of metabolic 

profiling in detecting biomarkers and pathways related to rapid growth in infancy as well as to 

overweight and obesity in early childhood. Identifying markers that are predictive of obesity onset 

may assist in the development of targeted intervention programmes for at-risk groups of children. 

In this study, we have investigated the cord blood metabolic signatures of rapid growth in infancy 

and overweight in early childhood in four European birth cohorts, using untargeted LC-MS-based 

metabolic profiling. Our aims were twofold: firstly, to identify markers associated with rapid 

growth and overweight risk to provide mechanistic insight and elucidate causal pathways to obesity; 

and secondly to improve prediction of obesity risk in neonates through assessment of the predictive 

performance of models incorporating identified metabolites, in comparison with models based on 

traditional risk factors alone. 

Materials and methods 

Study population 

The study population included participants from four population-based birth participating in the 

STOP project: ENVIRONAGE [21] (Belgium), INMA [22] (Spain), Piccolipiu [23] (Italy) and 

Rhea [24] (Greece). Ethical approval was obtained from the local Research Ethics Committees from 

each centre. Informed consent was obtained from the parents of the children. Further details of 

blood sampling, clinical, dietary and socioeconomic data of cohort individuals are given in the 

respective references and supporting information 1. 

Untargeted metabolomics 

Cord blood samples were analysed in randomised order as a single uninterrupted batch with a 

UHPLC-QTOF-MS system (Agilent Technologies), as previously described [25]. Further details of 

the acquisition and structural annotation of features are given in supporting information 1. 

Outcome assessment 



Rapid growth in infants in the first 12 months was categorised based on the definition of Ong et al. 

[25]. According to this definition, a clinically significant increment that indicates rapid growth 

occurs when there is a gain in weight of at least 0.67 standard deviations between different target 

ages. In this study, length data at birth were not available. Hence, rapid growth was defined as the 

weight z score change of >0.67 standard deviations (SD) between birth and twelve months of age 

based on World Health Organisation (WHO) growth charts [26]. A two-step prediction approach 

was used for calculating sex- and age-specific weight at exactly 12 months, using fractional 

polynomials of age by gender in each cohort [27] (supporting information 1). 

To maintain sample size for the analysis of overweight in early childhood, we used a single 

measurement at an age greater than four years and as close to 6 years as available. The classification 

for healthy and overweight was based on WHO sex-adjusted and age-adjusted BMI z scores. WHO 

provides different classifications scheme for children under the age of 5 years (0–5< years) [28] and 

over the age of 5 years (5–18 years) [29]. Following the WHO proposed classification by De Onis 

and Lobstein [30], children younger than 5 years were classified as overweight if they had a BMI z 

scores >1 SD and children over 5 years were classified as overweight if they had a BMI z-score 

greater than 2 SDs [30]. 

Statistical analysis 

A Metabolome-Wide Association Study (MWAS) was applied to investigate the association 

between cord blood metabolomics and infant rapid growth/childhood overweight using multiple 

mixed-effect logistic regression models using the lme4 R package [31]. The basic model (Model 1) 

was adjusted for sex and age of the child at outcome measurement, ethnicity and we used a random-

effect for cohort. To account for multiple testing, a Benjamini–Hochberg false discovery rate (FDR) 

[32] was applied using a cutoff of 5%. 

We then applied additional covariate adjustment to significant features identified in the MWAS 

analysis. A directed acyclical graph was used to visualise assumptions regarding covariates for 

further model adjustment (Figure S1). Covariates were chosen based on a bivariate analysis of their 

correlation with outcomes (Logistic Regression). The resulting model (Model 2) included Model 1 

covariates and maternal BMI, paternal BMI, gestational age, weight gained during pregnancy, 

paternal education, passive and active smoking status during pregnancy, parity and mode of 

delivery. 



Pathway enrichment analysis on significant features was conducted using the Mummichog 

programme [33], supplemented with manual curation of the metabolite identities assigned by 

Mummichog (supporting information 1). 

A look-up analysis, using the same statistical approach as the MWAS analysis (including 5% FDR), 

was conducted on 43 metabolites that had been previously annotated in the same data set as used in 

this study, due to their associations with birthweight [34, 35] or because they had previously been 

reported to predict a rapid growth leading to overweight in childhood trajectory, and could also be 

identified with high confidence through retention time and MS/MS matching in our data set [18]. 

In sensitivity analyses, we re-ran Model 2 for metabolites associated with rapid growth or 

overweight, stratified by cohort, sex and size for gestational age and additionally adjusted for 

birthweight. 

We further assessed how well rapid growth in infancy or overweight in early childhood are 

predicted using metabolites in comparison with traditional factors using Random Forest 

classification models [36] (supporting information 1). We used three different sets of variables for 

each of the outcomes: (1) traditional risk factors (sex, birthweight, ethnicity, maternal BMI, paternal 

BMI, gestational age, maternal weight gain during pregnancy, paternal education, maternal passive 

and active smoking status during pregnancy, parity and mode of delivery), (2) significantly 

associated metabolites from the MWAS analysis and (3) significantly associated metabolites from 

MWAS analysis in combination with traditional risk factors. A bootstrap method of 1000 

repetitions was advocated to quantify optimism and evaluate the generalisation of the model. A 

threefold cross-validation routine was performed on the training set (random 80% of the total 

observations) to each model to determine the optimum probability threshold. The model 

performance was evaluated on the relevant test set (remaining 20% of the total observations) using 

receiver operating characteristic (ROC curve) and area under the curve or AUROC for assessing the 

goodness-of-fit of the classifier. To further evaluate the predictive model, we performed a 

leave�one�out analysis by repeating the modelling process on a combined data set with one cohort 

retained as the validation set (supporting information 1). 

Results 

Participant Information and metabolomic data 



Table 1 shows the characteristics of the population used in the analysis of rapid growth in infancy 

and overweight in early childhood (stratification by cohort, including available dietary information, 

is presented in Table S1, S2. In bivariate analyses (Table 1), birthweight, parity, maternal weight 

gained during pregnancy, mode of delivery and gestational age were all significantly associated 

(P < 0.05) with rapid growth, while maternal passive and active smoking during pregnancy, 

maternal BMI, paternal education level, paternal BMI and rapid growth in infancy were 

significantly associated with overweight in early childhood. After data filtering procedures, 4714 

metabolic features were available for statistical analysis. 

Cord blood metabolomics and rapid growth in the first year of life 

The analysis of rapid growth included 391 children, with 114 (28.9%) classed as rapid growers in 

the first year of life. In MWAS analysis, adjusting for age at the outcome measurement, sex, cohort 

and ethnicity (Model 1), six metabolic features were significantly associated (FDR < 5%) with rapid 

growth in the first year of life (Fig. 1A). Table S3 contains the retention time as well as the exact 

mass of all significantly associated features, including unassigned metabolites. The metabolic 

features were grouped into four metabolites after grouping of ions originating from the same 

molecule (matched by retention time and pairwise feature correlation, Table S3). One metabolite 

could be identified as cholestenone (4-cholesten-3-one; HMDB0000921), a steroid lipid in the class 

of cholesterols. Upon adjustment for further covariates (Model 2), three of the four associated 

metabolites, including cholestenone, remained significantly associated with rapid growth (Fig. 2A). 

Cholestenone levels were higher in the cord blood of rapid growers, whereas levels of the rest of the 

metabolites were lower in the cord blood of rapid growers. 

In a look-up analysis, we analysed associations with 43 known metabolites (retention time and m/z 

information given in Table S4) in the metabolome data set that had been previously annotated based 

on their associations with birthweight [34, 35], or with rapid infancy weight gain and childhood 

obesity [18] (including indolelactic acid, sphingosine, tryptophan and leucine)(Table S5). Fourteen 

metabolites were associated with rapid growth in the first year of life (Fig. 2B) after correcting for 

5% FDR in basic adjustment analyses (Model 1), including higher levels of nine 

phosphatidylcholines (PCs) or LysoPCs, cholestenone, cholesterol, progesterone and two 

acylcarnitines tetradecadiencarnitine (C14:2) and decenoylcarnitine (C10:1). In additionally 

adjusted analyses (Model 2) cholestenone, two PCs (PC(34:2) and plasmalogen PC(36:4)/PC(O-

36:5)), two acylcarnitines, docosahexaenoic acid (DHA), diacylglycerol (C36:4) and progesterone 



were nominally associated (P < 0.05) with rapid growth (Fig. 2B). Directions of association with 

rapid growth were opposite to directions observed previously with birthweight [34]. Correcting 

Model 2 for 5% FDR, only cholestenone remained associated with rapid growth in the first year of 

life. 

As shown in the network graph (Fig. 2C), cholestenone was highly correlated with PC(34:2), 

moderately correlated with unidentified metabolite U4 and had weaker, positive correlations with 

the other rapid growth-associated metabolites. We noted strong correlations between DHA and 

plasmalogen PC(36:4)/PC(O-36:5) as well as between tetradecadiencarnitine (C14:2) and PC(34:2). 

Mummichog analysis indicated enrichment among rapid growers in the ‘C21-steroid hormone 

biosynthesis and metabolism’ and ‘Androgen and oestrogen biosynthesis and metabolism’ 

pathways, with weaker support for enrichment of the ‘Urea cycle/amino group metabolism’ 

pathway (supporting information 1 and 2, Table S10). 

Cord blood metabolomics and overweight in early childhood 

The analysis of child overweight in early childhood included 272 children from the Piccolipiu, Rhea 

and INMA cohorts, of which 48 (17.6%) were classed as being overweight or obese (mean age at 

weight status assessment: 5.12 years (SD:1.11)). In the MWAS, adjusting for cohort and ethnicity 

(Model 1), 36 features were significantly associated (FDR < 5%) with overweight in early childhood 

(Fig. 1B). After grouping ions originating from the same compound (Table S6), there were eight 

unique compounds associated with overweight (Fig. 3A). One compound could be annotated as 

valine, a branched-chain amino acid. Retention time as well as exact mass of all significantly 

associated features, including unassigned compounds, are available in Table S6. The inverse 

association of valine with overweight was strengthened upon additional covariate adjustment 

(Model 2) and remained significant after FDR correction. 

In an analysis of the 43 pre-annotated metabolites, leucine and DHA were nominally associated 

(P < 0.05) with overweight in basic analyses (Model 1) (Fig. 2B). In additionally adjusted analyses 

(Model 2) lower levels of leucine, progesterone, indolelactic acid, hexenoylcarnitine (C6:1), 

hexadecenoylcarnitine (C16:1) and DHA were nominally associated (P < 0.05) with overweight in 

early childhood (Table S7). Directions of association with overweight were consistent with 

directions observed previously with birthweight [34]. Only leucine, a BCAA previously identified 



in relation to rapid infancy weight gain and childhood obesity by Isganaitis, Rifas-Shiman et al. 

[18], remained significant after FDR correction. 

Valine was moderately correlated with DHA and had weaker correlations with the unidentified 

compounds U4, U5 and U7 and stronger correlations with U3 and hexadecenoylcarnitine (C16:1). 

Leucine had a weak negative correlation with Valine and strong negative correlations with U1, U4, 

U5 and U7. Strong correlations were observed between progesterone and indolelactic acid as well 

as between the compounds U1, U4, U5 and U7 (Fig. 3C). 

Mummichog analysis did not provide strong support for enrichment of specific pathways with 

childhood overweight (supporting information 1 and 3, Table S11). 

Multivariate prediction models 

We next utilised Random Forest classification models to evaluate the predictive performance of 

three different input variable sets for each of the two outcomes (Fig. 4). The rapid growth prediction 

model trained using only traditional risk factors exhibited a moderate predictive ability of an 

AUROC value of 0.69 (bootstrap 95% confidence interval (CI):0.62–0.77) (Table S8). Adding the 

four metabolites (cholestenone, U2, U4 and U8) identified in the MWAS analysis into the 

prediction model, increased the AUROC to 0.77 (bootstrap 95% CI: 0.73–0.81) (Fig. 4A). For 

overweight, using traditional risk factors alone, the AUROC was 0.69 (bootstrap 95%CI: 0.63–

0.75), while a model using only the eight metabolites, Valine, U1, U2, U3, U4, U5, U7 and U9, 

identified in the MWAS analysis had an AUROC of 0.77 (bootstrap 95% CI: 0.73–0.81) (Table S8). 

The combined traditional risk factor and metabolite model was strongly predictive of overweight 

with an AUROC of 0.82 (bootstrap 95% CI: 0.79–0.85) (Fig. 4B). The leave cohort out analysis 

also showed improvement in predictive performance using metabolites, in the majority of cohorts 

(Table S9). 

Sensitivity analysis 

To assess the robustness and consistency of our results, we stratified our population by cohort and 

by sex and repeated the adjusted models (Model 2) across each subpopulation. Regarding rapid 

growth, results were generally consistent across cohorts for all identified metabolites, including 

cholesterone (Figure S2). However, opposite directions of effects were observed in the Piccolipiu 

cohort for PC(34:2) and plasmalogen PC(36:4)/PC(O-36:5). Regarding overweight, results were 

again consistent across cohorts (Figure S3), although wide confidence intervals were observed in 



Piccolipiu (related to the small number of overweight cases available in this cohort). For valine, 

strong associations were noted in both the INMA and Rhea cohorts. For rapid growth, stronger 

associations were observed in boys with PC(34:2) and diacylglycerol (C36:4), while in girls 

stronger associations with rapid growth were observed with progesterone, tetradecadiencarnitine 

(C14:2), decenoylcarnitine(C10:1) and DHA (Figure S4). Very similar associations were seen with 

overweight upon stratification by sex (Figure S5). 

To assess the role of birthweight in observed associations, we additionally adjusted our models for 

birthweight. There was some attenuation in effect size in associations for rapid growth (Figure S6), 

however, the attenuation with cholestenone was modest and significance was retained. Adjustment 

for birthweight had little effect on associations with overweight (Figure S7). Upon stratification by 

size for gestational age (< and ≥33rd percentile of birthweight for gestational age, Figure S8) we 

observed stronger associations with cholestenone and rapid growth as well as DHA and rapid 

growth among larger for gestational age (≥33rd percentile) infants. We noted stronger associations 

with hexadecenoylacarnitine (C16:1), hexenoylcarnitine(C6:1), leucine and valine and overweight 

among smaller for gestational age (<33rd percentile) infants (Figure S9). 

Discussion 

This is the first study to date that investigates the association between untargeted metabolic profiles 

of cord blood and rapid growth at the first year of life and overweight/obesity in early childhood. 

We identified cholestenone and BCAA levels in cord blood as predictive of rapid growth and 

overweight/obesity, respectively, among healthy deliveries from four European populations. In 

multivariate analysis, we found that the addition of metabolites substantially improved prediction of 

both rapid growth and overweight compared with models using traditional risk factors alone. 

Higher levels of cholestenone were identified as predictive of rapid growth in the MWAS analysis, 

with consistent effects noted across the four included cohorts. Little is known about the effects of 

cholestenone on health. It has previously been reported to be associated with CpG sites that are 

differentially methylated in relation to birthweight [35], however, birthweight did not appear to be 

an important contributor to the relationship between cholestenone and rapid growth in our study. 

Supplementation of diet with cholestenone leads to growth retardation in rodents and high levels 

cause hypertrophy of the adrenal glands, which may suggest potential endocrine effects [37, 38]. 

Cholestenone is produced by bacterial catabolism of cholesterol in the intestinal tract [39]. It 

therefore may be serving as a proxy indicator of the relative abundance of various microbiota 

present at birth, although the infant gut microbiome is generally uniform and under-developed at 



this stage [40]. Indeed, gestational age, which is known to influence the composition of the neonatal 

gut microbiome [41], was strongly associated with cholestenone levels in our data. However, the 

strong association between cholestenone and rapid growth remained after adjustment for gestational 

age. The role of the gut microflora in obesity is increasingly recognised [42] and differences in 

faecal microbiota composition measured during the first year of life have been found to be 

associated with weight status in later childhood [43]. 

Lower levels of the BCAAs valine and leucine were associated with overweight/obesity in early 

childhood, with consistent effects across both the Rhea and INMA cohorts. Associations were 

somewhat stronger with valine than leucine. Lower levels of cord blood leucine were also identified 

as nominally associated with children on a rapid growth trajectory by the study of Isganaitis, Rifas-

Shiman et al. [18]. This is in contrast with the study of Hellmuth et al., where no associations were 

reported between BCAAs in cord blood and weight status at 2 and 10 years, although the authors 

speculated that the long storage period in their study may have degraded certain metabolites such as 

amino acids. BCAAs levels in cord blood represent the balance of supply, from the mother and 

from protein degradation, and of clearance through protein synthesis, excretion and BCAA 

catabolism and/or oxidation. BCAAs have a complex relationship with overweight and obesity. On 

one hand, higher levels in blood are consistently associated with obesity, insulin resistance and type 

2 diabetes. Adjustment for maternal BMI, which would be expected to increase maternal levels and 

the fetal supply of BCAAs, strengthened the association between cord blood BCAA levels and 

childhood overweight, suggesting some negative confounding. On the other hand, numerous 

intervention studies and animal studies have shown that increasing dietary intake of BCAAs has 

beneficial signalling effects, with positive effects on parameters including body composition, 

glycemia and satiety [44]. Multiple mechanisms for these positive effects have been proposed 

including direct effects on hypothalamic and brainstem processes involved in satiety [44]. Cord 

blood BCAAs levels could therefore influence later propensity for overweight through causal 

processes such as control of food intake or alternatively serve as a marker of other metabolic 

processes that influence both propensity for weight gain and levels of BCAAs. 

Apart from the association between leucine and overweight, no other associations were observed for 

metabolites identified by Isganaitis, Rifas-Shiman et al. [18]. Among metabolites previously 

identified as associated with birthweight, we identified higher levels of progesterone, PC(34:2), 

plasmalogen PC(36:4)/PC(O-36:5), DHA, decenoylcarnitine (C10:1), tetradecadiencarnitine 

(C14:2) and diacylglycerol (C36:4) as nominally associated with rapid growth, although these did 

not pass multiple testing correction. Progesterone is the major progestational hormone involved 



throughout all stages of pregnancy, and the pathway enrichment analysis also highlighted the role of 

hormonal signalling in rapid growth. DHA supplementation in milk has been shown to increase 

growth among preterm infants [45]. For overweight in early childhood, we noted nominal 

associations with lower levels of progesterone, indolelactic acid, hexenoylcarnitine (C6:1), 

hexadecenoylcarnitine (C16:1) and DHA. Indolelactic acid is a tryptophan catabolite that has an 

important role in the pathophysiology of obesity [46, 47] and is produced entirely by gut microbes 

[48]. Hexadecenoylcarnitine (C16:1) levels in the blood have been associated with obesity in 

children [49], while positive effects of DHA on obesity risk and metabolic health have been noted 

by multiple studies [50, 51], with proposed mechanisms including suppression of fatty-acid 

synthesis, enhancement of fatty-acid β-oxidation and increase of the serum adiponectin level [52]. 

The relatively small overlap in cord blood metabolites associated with birthweight and with rapid 

growth and with obesity, suggests that different mechanisms underlie these outcomes. Furthermore, 

despite the established association with rapid growth in infancy and later development of 

overweight, the different directions of effect in birthweight-related metabolites, observed with these 

two outcomes, suggest different contributory processes. Indeed, lower birthweight was a strong 

predictor of rapid growth while there was a trend for larger birthweight being associated with 

overweight in childhood. 

Our analysis using a Random Forest classification model revealed that the coupling of the strongly 

associated molecules and demographic and clinical factors has a high ability to predict 

overweight/obesity in early childhood. Isganaitis, Rifas-Shiman et al. [18] suggested that cord blood 

metabolic signatures could be associated with early childhood obesity trajectories demonstrating, in 

a similar way with our analysis, that prediction models based on prenatal obesity factors (maternal 

age, pre-pregnancy BMI and breastfeeding duration) can be improved by adding cord blood 

associated metabolites. Although models would need to be validated in cohorts that are independent 

of the selection of metabolites, our results highlight a potential practical application of 

metabolomics to identify children at risk of obesity and support the potential merit of routine 

screening of cord blood [53]. 

A strength of our study includes the use of cord blood from multiple birth cohorts, enabling 

assessment of the metabolome prior to infant growth, limiting reverse causality. We included a 

number of prenatal sociodemographic and clinical factors in our analysis. However, we did not have 

complete data related to maternal nutrition and physical activity that could be linked to both the 

metabolome and the family environment later in life. Nevertheless, we used paternal socioeconomic 

factors and maternal clinical factors such as BMI that can reflect general patterns of family nutrition 



[54] and physical activity [55,56,57]. Future studies, with high-quality dietary data available, should 

explore the role of maternal nutrition on the cord blood metabolome. 

Although the samples were analysed within a single analytical run in random order, we observed 

heterogeneity across the cohort metabolomic signatures, mainly explained by the processing of cord 

blood into plasma or serum. This heterogeneity can influence the observed associations, and for this 

reason, we added in the model a random effect variable for the cohort. Another limitation was that 

the sample was selected from the general population and we, therefore, had a relatively low number 

of overweight children. Furthermore, the use of BMI z scores to classify children as overweight is a 

blunter assessment of adiposity than direct measures such as dual-energy X-ray absorptiometry 

[58]. We used WHO obesity classification criteria, which have higher sensitivity and lower 

specificity in identifying obese subjects than the International Obesity Task Force cutoffs. The 

untargeted approach is both a strength and limitation: while it provides wide metabolome coverage 

[59], identification of the features can be challenging. Indeed, we were also unable to characterise 

all the significant features in the MWAS analysis. 

Conclusion 

We have demonstrated metabolic profiles associated with rapid growth in infancy and 

overweight/obesity in early childhood, highlighting the role of multiple metabolites in various 

pathways. We presented evidence that cholestenone and BCAAs are associated with rapid growth in 

infancy and overweight/obesity in early childhood, respectively, and provide new insights on the 

potential mechanism underlying overweight risk, particularly early in development. Our findings 

present a potential route to the identification of at-risk children for the provision of targeted 

interventions to improve outcomes for children living in obesogenic environments. 
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Table S1: Demographic, anthropometric and clinical outcome variables. Values are given in mean (standard 96 
deviation, SD) or percent (%) for rapid growth at twelve months of age by cohort. 97 

    
  RHEA 

(n=100) Missing   ENVIRONAGE 
(n=109) Missing  Piccolipiu 

(n=95) Missing  INMA  
(n=87) Missing  

cohort                

RHEA 100 (100%)  ‐     ‐     ‐    

ENVIRONAGE ‐  109 (100%)     ‐     ‐    

Piccolipiu ‐  ‐     95 (100%)     ‐    

INMA ‐  ‐     ‐     87 (100%)    

gender                    

male 53 (53.0%)  55 (50.5%)     54 (56.8%)     42 (48.3%)    

female 47 (47.0%)  54 (49.5%)     41 (43.2%)     45 (51.7%)    

maternal parity before this pregnancy   2 (2.0%)    0 (0%)    0 (0%)    1 (1.1%) 

nulliparous 28 (28.0%)  65 (59.6%)     45 (47.4%)     44 (50.6%)    

uniparous 47 (47.0%)  44 (40.4%)     42 (44.2%)     36 (41.4%)    

multiparous 23 (23.0%)  0 (0%)     8 (8.4%)     6 (6.9%)    

maternal age   0 (0%)    0 (0%)    1 (1.1%)    0 (0%) 

Mean (SD) 30.0 (4.99)  29.1 (3.63)     33.3 (4.46)     31.7 (4.03)    

mother’s education   1 (1.0%)    4 (3.7%)    0 (0%)    0 (0%) 

primary school 8 (8.0%)  9 (8.3%)     6 (6.3%)     18 (20.7%)    

secondary school 57 (57.0%)  29 (26.6%)     40 (42.1%)     40 (46.0%)    

university or higher 34 (34.0%)  67 (61.5%)     49 (51.6%)     29 (33.3%)    

father’s education   2 (2.0%)    10 (9.2%)    0 (0%)    1 (1.1%) 

primary school 21 (21.0%)  10 (9.2%)     16 (16.8%)     23 (26.4%)    

secondary school 57 (57.0%)  45 (41.3%)     43 (45.3%)     44 (50.6%)    

university or higher 20 (20.0%)  44 (40.4%)     36 (37.9%)     19 (21.8%)    

maternal smoking   1 (1.0%)    0 (0%)    0 (0%)    0 (0%) 

no 79 (79.0%)  102 (93.6%)     76 (80.0%)     67 (77.0%)    

yes 20 (20.0%)  7 (6.4%)     19 (20.0%)     20 (23.0%)    

passive smoke exposure   5 (5.0%)    2 (1.8%)    0 (0%)    1 (1.1%) 

no 13 (13.0%)  100 (91.7%)     74 (77.9%)     46 (52.9%)    

yes 82 (82.0%)  7 (6.4%)     21 (22.1%)     40 (46.0%)    

maternal height (cm)   1 (1.0%)    5 (4.6%)    0 (0%)    1 (1.1%) 

Mean (SD) 163 (5.65)  167 (7.07)     164 (5.67)     163 (6.66)    

maternal weight (kg)   1 (1.0%)    0 (0%)    0 (0%)    0 (0%) 

Mean (SD) 66.8 (15.6)  67.4 (14.0)     61.1 (11.2)     63.1 (11.5)    

maternal BMI   1 (1.0%)    0 (0%)    0 (0%)    0 (0%) 

Mean (SD) 25.1 (5.37)  24.1 (4.52)     22.7 (3.91)     23.7 (3.99)    

maternal weight gain (kg)   11 (11.0%)    0 (0%)    1 (1.1%)    0 (0%) 

Mean (SD) 13.1 (5.89)  14.4 (5.20)     12.4 (4.44)     14.2 (4.82)    

paternal height (cm)   1 (1.0%)    5 (4.6%)    0 (0%)    1 (1.1%) 

Mean (SD) 176 (7.21)  179 (7.51)     177 (6.31)     177 (6.48)    

paternal weight (kg)   0 (0%)    5 (4.6%)    0 (0%)    1 (1.1%) 

Mean (SD) 85.0 (14.5)  81.2 (10.8)     78.3 (9.65)     81.3 (13.7)    

paternal age (years)   0 (0%)    4 (3.7%)    1 (1.1%)    0 (0%) 

Mean (SD) 34.2 (5.04)  31.7 (4.77)     36.8 (5.48)     33.6 (4.06)    

delivery   0 (0%)    0 (0%)    0 (0%)    1 (1.1%) 

vaginal 38 (38.0%)  103 (94.5%)     64 (67.4%)     79 (90.8%)    

caesarean 62 (62.0%)  6 (5.5%)     31 (32.6%)     7 (8.0%)    

pregnancy diabetes   0 (0%)    0 (0%)    0 (0%)    33 (37.9%) 

no 89 (89.0%)  107 (98.2%)     88 (92.6%)     49 (56.3%)    

yes 11 (11.0%)  7 (7.4%)     11 (11.0%)     2 (1.8%)    

birth weight (g)   0 (0%)    0 (0%)    0 (0%)    0 (0%) 

Mean (SD) 3270 (428)  3420 (551)    3230 (406)     3290 (402)    

gestational age (weeks)   0 (0%)    0 (0%)    0 (0%)    0 (0%) 

Mean (SD) 38.4 (1.32)  39.0 (1.61)     39.6 (1.60)     39.9 (1.54)    

ethnicity   0 (0%)    0 (0%)    0 (0%)    0 (0%) 

non native 5 (5.0%)  18 (16.5%)     8 (8.4%)     4 (4.6%)    

native 95 (95.0%)  89 (81.7%)     87 (91.6%)     83 (95.4%)    

paternal BMI   1 (1.0%)    5 (4.6%)    0 (0%)    1 (1.1%) 

Mean (SD) 27.2 (3.90)  25.3 (3.10)     24.9 (2.70)     25.8 (3.63)    

breast feeding   4 (4.0%)    109 (100%)    3 (3.2%)    0 (0%) 

no 12 (12.0%)  0 (0%)     12 (12.6%)     7 (8.0%)    

yes 84 (84.0%)  0 (0%)     80 (84.2%)     80 (92.0%)    

breast feeding duration (weeks)   4 (4.0%)    109 (100%)    19 (20.0%)    0 (0%) 

Mean (SD) 19.3 (20.7)  NA (NA)     42.5 (28.9)     23.3 (17.4)    

rapid growth   0 (0%)    13 (4.7%)    0 (0%)     0 (0%)  

no 60 (60.0%)     76 (69.7%)     82 (83.7%)     62 (71.3%)    

yes 40 (40.0%)     33 (30.3%)     16 (16.3%)     25 (28.7%)    

Vegetables (serves/day)   0 (0%)    0 (0%)    0 (0%)    0 (0%) 

Mean (SD) 4.04 (2.87)     1.79 (0.829)     1.13 (0.630)     2.36 (1.17)    

Fruits (serves/day)   0 (0%)    109 (100%)    0 (0%)    0 (0%) 

Mean (SD) 2.12 (2.35)     NA (NA)     0.956 (0.441)     2.88 (1.58)    



Milk products  (serves/day)   0 (0%)    109 (100%)    0 (0%)    0 (0%) 

Mean (SD) 2.42 (1.45)     NA (NA)     1.08 (0.593)     3.08 (1.34)    

Fish (serves/day)   0 (0%)    0 (0%)    0 (0%)    0 (0%) 

Mean (SD) 0.196 (0.198)     2.21 (1.05)     0.175 (0.101)     0.774 (0.559)    

Pulses (serves/day)   0 (0%)    109 (100%)    0 (0%)    0 (0%) 

Mean (SD) 0.422 (0.513)     NA (NA)     0.198 (0.195)     0.250 (0.286)    

Sugar (serves/day)   0 (0%)    109 (100%)    0 (0%)    0 (0%) 

Mean (SD) 1.29 (1.33)     NA (NA)     0.526 (0.378)     4.04 (2.56)    

Eggs (serves/day)   0 (0%)    109 (100%)    0 (0%)    0 (0%) 

Mean (SD) 0.178 (0.297)     NA (NA)     0.179 (0.132)     0.379 (0.179)    

Grains (serves/day)   0 (0%)    109 (100%)    0 (0%)    0 (0%) 

Mean (SD) 3.15 (3.45)     NA (NA)     1.17 (0.354)     2.28 (0.974)    

Meat (serves/day)   0 (0%)    109 (100%)    0 (0%)    0 (0%) 

Mean (SD) 0.477 (0.436)     NA (NA)     1.30 (0.774)     0.882 (0.344)    

Processed meat (serves/day)   10 (10.0%)    109 (100%)    0 (0%)    0 (0%) 

Mean (SD) 0.340 (0.433)     NA (NA)     0.222 (0.237)     0.359 (0.303)    

Potatoes (serves/day)   0 (0%)    109 (100%)    0 (0%)    0 (0%) 

Mean (SD) 0.596 (0.612)     NA (NA)     0.228 (0.154)     0.526 (0.317)    

 98 

Table S2: Individual number, observation number, demographic, anthropometric and clinical outcome variables 99 
average values (standard deviation) or percent (%) for overweight throughout early childhood by cohort. 100 

      
  

RHEA (n=97) Missing   Piccolipiu (n=79) Missing  INMA (n=96) Missing  

cohort              

RHEA 97 (100%)     ‐     ‐    

ENVIRONAGE ‐     ‐     ‐    

Piccolipiu ‐     79 (100%)     ‐    

INMA ‐    ‐     96 (100%)    

age at weight status assessment   0 (0%)    0 (0%)    0 (0%) 

  5.53 (1.03)    4.43 (0.105)    6.16 (0.635)   

  6.02 [4.01, 7.07]    4.42 [4.17, 4.75]    6.14 [4.04, 7.49]   

gender              

male 53 (54.6%)     44 (55.7%)     48 (50.0%)    

female 44 (45.4%)     35 (44.3%)     48 (50.0%)    

maternal parity before this pregnancy  2 (2.1%)    0 (0%)    1 (1.0%) 

nulliparous 26 (26.8%)     37 (46.8%)     51 (53.1%)    

uniparous 46 (47.4%)     37 (46.8%)     37 (38.5%)    

multiparous 23 (23.7%)     5 (6.3%)     7 (7.3%)    

maternal age (years)  0 (0%)    1 (1.3%)    0 (0%) 

Mean (SD) 30.2 (4.94)     33.7 (4.61)     31.6 (4.09)    

Median [Min, Max] 29.8 [20.3, 41.7]     33.9 [19.9, 42.8]     31.8 [23.6, 41.3]    

mother’s education  1 (1.0%)    0 (0%)    0 (0%) 

primary school 7 (7.2%)     4 (5.1%)     18 (18.8%)    

secondary school 55 (56.7%)     33 (41.8%)     44 (45.8%)    

university or higher 34 (35.1%)     42 (53.2%)     34 (35.4%)    

father’s education  2 (2.1%)    0 (0%)    1 (1.0%) 

primary school 20 (20.6%)     11 (13.9%)     27 (28.1%)    

secondary school 55 (56.7%)     37 (46.8%)     46 (47.9%)    

university or higher 20 (20.6%)     31 (39.2%)     22 (22.9%)    

maternal smoking  1 (1.0%)    0 (0%)    1 (1.0%) 

no 77 (79.4%)     65 (82.3%)     74 (77.1%)    

yes 19 (19.6%)     14 (17.7%)     21 (21.9%)    

passive smoke exposure  5 (5.2%)    0 (0%)    2 (2.1%) 

no 13 (13.4%)     62 (78.5%)     48 (50.0%)    

yes 79 (81.4%)     17 (21.5%)     46 (47.9%)    

maternal height (cm)  1 (1.0%)    0 (0%)    2 (2.1%) 

Mean (SD) 163 (5.56)     164 (6.04)     163 (6.59)    

maternal weight (kg)  1 (1.0%)    0 (0%)    0 (0%) 

Mean (SD) 67.1 (15.7)     59.8 (10.6)     62.3 (10.5)    

maternal BMI  1 (1.0%)    0 (0%)    0 (0%) 

Mean (SD) 25.2 (5.42)     22.2 (3.67)     23.4 (3.64)    

maternal weight gain (kg)  11 (11.3%)    0 (0%)    0 (0%) 

Mean (SD) 13.0 (5.78)     12.3 (4.19)     14.3 (4.97)    

paternal height (cm)  1 (1.0%)    0 (0%)    2 (2.1%) 

Mean (SD) 177 (7.14)     178 (6.24)     177 (6.80)    



paternal weight (kg)  0 (0%)    0 (0%)    2 (2.1%) 

Mean (SD) 85.1 (14.4)     79.1 (11.1)     81.1 (13.3)    

paternal age (years)  0 (0%)    1 (1.3%)    0 (0%) 

Mean (SD) 34.2 (5.02)     36.7 (5.50)     33.5 (4.32)    

delivery  0 (0%)    0 (0%)    1 (1.0%) 

vaginal 36 (37.1%)     50 (63.3%)     84 (87.5%)    

caesarean 61 (62.9%)     29 (36.7%)     11 (11.5%)    

pregnancy diabetes  0 (0%)    0 (0%)    41 (42.7%) 

no 87 (89.7%)     73 (92.4%)     50 (52.1%)    

yes 10 (10.3%)     6 (7.6%)     5 (5.2%)    

birth weight (g)  0 (0%)    0 (0%)    0 (0%) 

Mean (SD) 3270 (428)     3230 (406)     3290 (402)    

gestational age (weeks)  0 (0%)    0 (0%)    0 (0%) 

Mean (SD) 38.4 (1.30)     39.7 (1.49)     39.8 (1.51)    

Median [Min, Max] 38.4 [34.2, 41.1]     39.6 [36.6, 44.6]     39.9 [34.3, 44.7]    

ethnicity  0 (0%)    0 (0%)    0 (0%) 

native 4 (4.1%)     5 (6.3%)     4 (4.2%)    

non native 93 (95.9%)     74 (93.7%)     92 (95.8%)    

paternal BMI  1 (1.0%)    0 (0%)    2 (2.1%) 

Mean (SD) 27.2 (3.82)     24.9 (3.18)     25.8 (3.46)    

breast feeding  4 (4.1%)    1 (1.3%)    0 (0%) 

no 12 (12.4%)     10 (12.7%)     8 (8.3%)    

yes 81 (83.5%)     68 (86.1%)     88 (91.7%)    

breast feeding duration (weeks)  4 (4.1%)    16 (20.3%)    0 (0%) 

Mean (SD) 18.8 (20.4)     42.9 (28.8)     23.1 (17.4)    

overweight/obesitya population    0 (0%)    0 (0%)     0 (0%) 

no  66 (68.0%)     75 (94.9%)     67 (69.8%)    

yes  31 (32.0%)     4 (5.1%)     29 (30.2%)    

rapid growth    0 (0%)    0 (0%)    12 (12.5%) 

no  59 (60.8%)     82 (83.7%)     60 (62.5%)    

yes  38 (39.2%)     16 (16.3%)     24 (25.0%)    

Vegetables (serves/day)    0 (0%)    0 (0%)    1 (1.0%) 

Mean (SD)  4.09 (2.88)     1.13 (0.665)     2.31 (1.18)   

Fruits (serves/day)    0 (0%)    0 (0%)    1 (1.0%) 

Mean (SD)  2.15 (2.38)     0.951 (0.458)     2.81 (1.54)   

Milk products (serves/day)    0 (0%)    0 (0%)    1 (1.0%) 

Mean (SD)  2.42 (1.47)  1.10 (0.574)  1.10 (0.574)     3.12 (1.30)   

Fish (serves/day)    0 (0%)    0 (0%)    1 (1.0%) 

Mean (SD)  0.195 (0.200)  0.175 (0.106)  0.175 (0.106)     0.764 (0.551)   

Pulses (serves/day)    0 (0%)    0 (0%)     

Mean (SD)  0.427 (0.519)     0.186 (0.157)     0.249 (0.277)  1 (1.0%) 

Sugar (serves/day)    0 (0%)    0 (0%)     

Mean (SD)  1.30 (1.34)    0.548 (0.389)    3.97 (2.54)   

Eggs (serves/day)    0 (0%)    0 (0%)    1 (1.0%) 

Mean (SD)  0.177 (0.298)     0.175 (0.115)     0.381 (0.173)   

Grains (serves/day)    0 (0%)    0 (0%)     

Mean (SD)  3.12 (3.47)     1.18 (0.343)     2.23 (0.958)  1 (1.0%) 

Meat (serves/day)    0 (0%)    0 (0%)     

Mean (SD)  0.480 (0.442)     1.28 (0.774)     0.869 (0.336)   

Processed meat (serves/day)    0 (0%)    0 (0%)    1 (1.0%) 

Mean (SD)  0.337 (0.438)     0.222 (0.229)     0.344 (0.212)   

Potatoes (serves/day)    0 (0%)    0 (0%)    1 (1.0%) 

Mean (SD)  0.597 (0.617)     0.216 (0.143)     0.524 (0.313)   
aClassification based on WHO sex‐adjusted and age‐adjusted BMI z‐scores 101 

Table S3: All metabolomic features significantly associated (FDR 5%) with rapid growth at in first year of life. In 102 
case of more than one feature per compound were detected, the feature with highest intensity is written in bold. 103 

Compound m/z Rt(min) Annotation Estimate Std Error t-score p-value* 
1 385.3487 9.076708 Cholestenone 0.725 0.132 5.492 1.88E-04 
1 407.3299 9.073516 Cholestenone 0.642 0.127 5.076 8.66E-04 
        

2 269.1894 5.3084226 Unidentified(U8) -0.571 0.125 -4.558 6.09E-03 
        

3 289.2157 4.8316393 Unidentified (U6) -0.563 0.125 -4.502 6.34E-03 
        

4 482.2392 3.6582649 Unidentified (U4) -0.538 0.127 -4.238 1.77E-02 



*Model was adjusted for child’s sex and age at outcome measurement and ethnicity. We used a random effects model by cohort 104 

Table S4: Pre-annotated metabolites in cord blood that have been previously identified in the same dataset 105 
associated with birthweight (Robinson et al.; Alfano et al.), or because they have previously been reported to 106 
predict rapid growth leading to overweight in childhood trajectory (Isganaitis et al.). 107 

ID Metabolite name m/z retention time (minutes) Reference 

1 Leucine 132.1021 1.4519173 Isganaitis et al., 2015 

2 Tryptophan 205.0965 2.4842238 Isganaitis et al., 2015 

3 Indolelactic acid 206.0822 3.8289883 Robinson et al., 2018 

4 Methoxykynurenic acid 220.5393 3.6709497 Robinson et al., 2018 

5 Butyrylcarnitine/Isobutyrylcarnitine (C4:0) 232.1537 1.9274178 Robinson et al., 2018 

6 Hexenoylcarnitine (C6:1) 258.1699 2.8306587 Robinson et al., 2018 

7 Retinol 269.2278 7.2190323 Robinson et al., 2018 

8 Octanoylcarnitine (C8:0) 288.2171 4.4222255 Robinson et al., 2018 

9 Sphingosine 300.2905 6.4203 Isganaitis et al., 2015 

10 Decenoylcarnitine (C10:1) 314.2321 4.8776007 Robinson et al., 2018 

11 Progesterone 315.232 6.3944817 Robinson et al., 2018 

12 Decanoylcarnitine (C10:0) 316.2489 5.1387444 Robinson et al., 2018 

13 Docosahexaenoic acid 329.2482 7.2322 Robinson et al., 2018 

14 Dodecenoylcarnitine (C12:1)  342.2641 5.422301 Robinson et al., 2018 

15 Dodecanoylcarnitine (C12:0) 344.2797 5.647444 Robinson et al., 2018 

16 Tetradecadiencarnitine (C14:2) 368.2793 5.631012 Robinson et al., 2018 

17 Cholesterol 369.3521 9.60744 Alfano et al., 2019 

18 Tetradecenoylcarnitine (C14:1) 370.2955 5.840157 Robinson et al., 2018 

19 Tetradecanoylcarnitine (C14:0) 372.3112 6.56033 Robinson et al., 2018 

20 Cholestenone 385.3487 9.76708 Alfano et al., 2019 

21 Hydroxytetradecenoylcarnitine (C14:1-OH) 386.2899 5.568466 Robinson et al., 2018 

22 Hexadecadienoylcarnitine (C16:2) 396.31 5.9437513 Robinson et al., 2018 

23 Hexadecenoylcarnitine (C16:1) 398.3264 6.1093335 Robinson et al., 2018 

24 Hydroxyhexadecadienoylcarnitine (C16:1-OH) 412.3045 5.749766 Robinson et al., 2018 

25 LysoPC(16:1) 494.325 6.817081 Robinson et al., 2018 

26 LysoPC(18:3) 518.3216 6.7819257 Robinson et al., 2018 

27 LysoPC(18:1) 522.3555 6.979925 Robinson et al., 2018 

28 LysoPC(20:2) 548.3681 7.141414 Robinson et al., 2018 

29 LysoPC(20:4) 563.3141 6.8930106 (Alfano et al., 2019; Robinson et al., 2018), 

30 LysoPC(22:6) 568.3409 6.88448 Robinson et al., 2018 

31 LysoPC(22:5) 570.3551 7.206504 Robinson et al., 2018 

32 Diacylglycerol (C34:2) 615.4959 9.762555 Robinson et al., 2018 

33 Diacylglycerol (C36:4) 639.4946 9.408274 Robinson et al., 2018 

34 Diacylglycerol (C36:3) 641.5112 9.9381895 Robinson et al., 2018 

35 PC(30:0) 706.541 8.492703 (Alfano et al., 2019; Robinson et al., 2018), 

36 PC(32:0) 734.57 8.960004 Robinson et al., 2018 

37 PC(34:2) 758.5747 8.684198 Robinson et al., 2018 

38 PlasmalogenPC(36:4) or PC(O-36:5) 766.5815 8.858829 Alfano et al., 2019; Robinson et al., 2018 

39 PlasmalogenPC(36:3) or PC(O-36:4) 768.5883 9.189 (Alfano et al., 2019; Robinson et al., 2018), 

40 PC(36:4) 782.5722 9.57233 (Alfano et al., 2019; Robinson et al., 2018), 

41 PC(36:4) isomer 793.5614 8.628368 Robinson et al., 2018 

42 Plasmalogen PC(38:4) or PC(O-38:5) 794.6046 9.77853 (Alfano et al., 2019; Robinson et al., 2018), 

43 PC(38:4) 810.6053 9.168946 Robinson et al., 2018 

 108 
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 110 

Table S5: Logistic regression odds ratio per standard deviation (95% CI) for rapid growth at twelve months for 111 
Model 1* and 2** for the birthweight related metabolites. 112 

Model 1* Model 2** 
num Metabolite 

Odd ratio (95%CIs) p-value False 
discovery rate Odd ratio (95%CIs) p-value False 

discovery rate 
1 Butyrylcarnitine/Isobutyrylcarnitine (C4:0) 1.231 (0.982,1.543) 7.09E-02 1.42E-01 1.133 (0.855,1.502) 3.84E-01 5.82E-01 

2 Decanoylcarnitine (C10:0) 1.193 (0.945,1.506) 1.37E-01 2.37E-01 1.204 (0.915,1.584) 1.85E-01 3.95E-01 

3 Decenoylcarnitine (C10:1) 1.405 (1.106,1.785) 5.39E-03 2.32E-02 1.435 (1.087,1.893) 1.07E-02 1.18E-01 

4 Dodecanoylcarnitine (C12:0) 1.140 (0.907,1.432) 2.61E-01 3.96E-01 1.195 (0.912,1.566) 1.96E-01 3.95E-01 

5 Dodecenoylcarnitine (C12:1) 1.121 (0.896,1.403) 3.17E-01 4.65E-01 1.151 (0.882,1.502) 3.02E-01 5.10E-01 

6 Hexadecadienoylcarnitine (C16:2) 1.247 (0.998,1.557) 5.21E-02 1.15E-01 1.138 (0.874,1.482) 3.36E-01 5.27E-01 

7 Hexadecenoylcarnitine (C16:1) 1.068 (0.852,1.338) 5.68E-01 6.75E-01 1.060 (0.807,1.391) 6.75E-01 7.56E-01 

8 Hexenoylcarnitine (C6:1) 1.261 (0.984,1.617) 6.73E-02 1.41E-01 1.088 (0.808,1.465) 5.77E-01 7.27E-01 

9 Hydroxyhexadecadienoylcarnitine 
(C16:1-OH) 1.180 (0.950,1.466) 1.35E-01 2.37E-01 1.167 (0.901,1.512) 2.41E-01 4.61E-01 

10 Hydroxytetradecenoylcarnitine (C14:1-
OH) 1.088 (0.868,1.364) 4.63E-01 6.17E-01 1.071 (0.816,1.405) 6.21E-01 7.39E-01 

11 Octanoylcarnitine (C8:0) 1.155 (0.918,1.454) 2.18E-01 3.42E-01 1.073 (0.822,1.400) 6.05E-01 7.39E-01 

12 Tetradecadiencarnitine (C14:2) 1.325 (1.059,1.658) 1.39E-02 4.37E-02 1.315 (1.013,1.706) 3.97E-02 2.01E-01 

13 Tetradecanoylcarnitine (C14:0) 1.034 (0.816,1.311) 7.80E-01 8.37E-01 0.991 (0.745,1.318) 9.50E-01 9.50E-01 

14 Tetradecenoylcarnitine (C14:1) 1.058 (0.845,1.324) 6.26E-01 7.25E-01 1.048 (0.804,1.366) 7.28E-01 7.81E-01 

15 Leucine 1.045 (0.821,1.329) 7.20E-01 7.92E-01 0.902 (0.678,1.200) 4.79E-01 6.40E-01 

16 Tryptophan 0.923 (0.736,1.158) 4.89E-01 6.25E-01 0.947 (0.725,1.236) 6.87E-01 7.56E-01 

17 Sphingosine 0.942 (0.718,1.236) 6.65E-01 7.50E-01 0.788 (0.605,1.028) 7.94E-02 2.91E-01 

18 Docosahexaenoic acid 1.292 (1.005,1.660) 4.58E-02 1.06E-01 1.456 (1.109,1.911) 6.78E-03 9.95E-02 

19 Diacylglycerol (C34:2) 1.033 (0.778,1.372) 8.20E-01 8.39E-01 1.135 (0.829,1.554) 4.30E-01 6.10E-01 

20 Diacylglycerol (C36:3) 1.084 (0.832,1.413) 5.48E-01 6.70E-01 1.273 (0.961,1.688) 9.30E-02 3.11E-01 

21 Diacylglycerol (C36:4) 1.123 (0.880,1.432) 3.51E-01 4.98E-01 1.376 (1.054,1.796) 1.91E-02 1.40E-01 

22 LysoPC(16:1) 1.004 (0.803,1.256) 9.69E-01 9.69E-01 0.798 (0.608,1.046) 1.02E-01 3.11E-01 

23 LysoPC(18:1) 1.185 (0.946,1.484) 1.40E-01 2.37E-01 0.939 (0.717,1.229) 6.45E-01 7.47E-01 

24 LysoPC(18:3) 1.090 (0.871,1.365) 4.53E-01 6.17E-01 0.963 (0.732,1.266) 7.86E-01 8.24E-01 

25 LysoPC(20:2) 1.303 (1.012,1.677) 3.97E-02 9.71E-02 1.081 (0.822,1.420) 5.78E-01 7.27E-01 

26 LysoPC(20:4) 1.435 (1.106,1.861) 6.52E-03 2.39E-02 1.282 (0.949,1.733) 1.06E-01 3.11E-01 

27 LysoPC(22:5) 0.971 (0.759,1.243) 8.16E-01 8.39E-01 0.757 (0.564,1.016) 6.33E-02 2.53E-01 

28 LysoPC(22:6) 0.862 (0.682,1.090) 2.14E-01 3.42E-01 0.857 (0.657,1.118) 2.55E-01 4.67E-01 

29 PC(30:0) 1.312 (1.046,1.647) 1.89E-02 5.55E-02 0.987 (0.749,1.302) 9.29E-01 9.50E-01 

30 PC(32:0) 1.396 (1.112,1.753) 4.06E-03 2.20E-02 1.148 (0.885,1.488) 2.99E-01 5.10E-01 

31 PC(34:2) 1.542 (1.222,1.946) 2.62E-04 3.84E-03 1.456 (1.132,1.872) 3.46E-03 7.62E-02 

32 PC(36:4) 1.415 (1.125,1.779) 2.99E-03 2.19E-02 1.119 (0.856,1.462) 4.11E-01 6.03E-01 

33 PC(36:4) isomer 1.417 (1.114,1.802) 4.49E-03 2.20E-02 1.297 (0.988,1.702) 6.06E-02 2.53E-01 

34 PC(38:4) 1.274 (1.019,1.593) 3.33E-02 9.15E-02 1.197 (0.928,1.544) 1.67E-01 3.86E-01 

35 Plasmalogen PC(38:4) or PC(O-38:5) 1.379 (1.097,1.732) 5.80E-03 2.32E-02 1.099 (0.846,1.429) 4.80E-01 6.40E-01 

36 PlasmalogenPC(36:3) or PC(O-36:4) 1.431 (1.142,1.792) 1.84E-03 1.62E-02 1.218 (0.943,1.572) 1.31E-01 3.19E-01 

37 PlasmalogenPC(36:4) or PC(O-36:5) 1.484 (1.180,1.868) 7.52E-04 8.27E-03 1.317 (1.011,1.716) 4.11E-02 2.01E-01 

38 Cholestenone 2.064 (1.594,2.673) 3.98E-08 1.75E-06 1.755 (1.236,2.491) 1.66E-03 3.32E-03 

39 Cholesterol 1.535 (1.220,1.930) 2.49E-04 3.84E-03 1.229 (0.941,1.606) 1.30E-01 3.19E-01 

40 Progesterone 1.402 (1.092,1.800) 7.97E-03 2.70E-02 1.428 (1.051,1.940) 2.26E-02 1.42E-01 

41 Indolelactic acid 1.300 (1.013,1.667) 3.89E-02 9.71E-02 1.255 (0.938,1.679) 1.26E-01 3.19E-01 

42 Methoxykynurenic acid 1.084 (0.859,1.367) 4.98E-01 6.25E-01 1.150 (0.867,1.524) 3.33E-01 5.27E-01 

43 Retinol 0.792 (0.603,1.041) 9.41E-02 1.80E-01 0.820 (0.606,1.109) 1.97E-01 3.95E-01 

* Model 1 (adjusted for sex and age of child at outcome measurement, ethnicity and we used a random effects model by cohort) 113 
**Model 2 (Model 1 adjusted for maternal BMI, paternal BMI, gestational age, weight gained during pregnancy, paternal education, 114 
passive and active smoking status during pregnancy, parity, and mode of delivery) 115 
 116 

 117 



Table S6: All metabolomic features significantly associated (FDR 5%) with overweight/obesity at early childhood. 118 
In case of more than one feature per compound were detected, the feature with highest intensity is written in 119 
bold. 120 

Compound m/z Rt(min) Annotation Estimate Std Error t-value p-value* 

5 129.0025 0.4939376 Unidentified (U1) -0.661 0.185 -3.571 3.55E-04 

5 86.99288 0.4942084 Unidentified (U1) -0.627 0.179 -3.512 4.44E-04 

        

6 196.9619 0.5246815 Unidentified (U2) 0.832 0.219 3.794 1.48E-04 

6 253.9104 0.5244932 Unidentified (U2) 0.762 0.214 3.565 3.64E-04 

        

7 514.878 0.5776492 Unidentified (U3) -0.698 0.170 -4.115 3.88E-05 

7 582.8643 0.5770611 Unidentified (U3) -0.677 0.165 -4.111 3.94E-05 

7 446.8882 0.577687 Unidentified (U3) -0.676 0.165 -4.100 4.14E-05 

7 700.8185 0.5779851 Unidentified (U3) -0.767 0.189 -4.065 4.81E-05 

7 378.9011 0.5771529 Unidentified (U3) -0.683 0.168 -4.063 4.85E-05 

7 726.8223 0.5750447 Unidentified (U3) -0.720 0.179 -4.032 5.53E-05 

7 760.8202 0.5745219 Unidentified (U3) -0.684 0.170 -4.020 5.82E-05 

7 650.8544 0.5757769 Unidentified (U3) -0.612 0.154 -3.981 6.85E-05 

7 692.8324 0.5753962 Unidentified (U3) -0.723 0.182 -3.973 7.11E-05 

7 718.8356 0.5748507 Unidentified (U3) -0.574 0.147 -3.914 9.09E-05 

7 242.9253 0.5751633 Unidentified (U3) -0.696 0.178 -3.906 9.39E-05 

7 312.9127 0.5741116 Unidentified (U3) -0.714 0.183 -3.903 9.49E-05 

7 108.9488 0.5738347 Unidentified (U3) -0.724 0.187 -3.866 1.11E-04 

7 106.9512 0.5741819 Unidentified (U3) -0.713 0.187 -3.821 1.33E-04 

7 310.9139 0.5743221 Unidentified (U3) -0.689 0.180 -3.819 1.34E-04 

7 658.8351 0.5753322 Unidentified (U3) -0.704 0.185 -3.809 1.40E-04 

7 176.937 0.5720361 Unidentified (U3) -0.716 0.189 -3.796 1.47E-04 

7 174.9394 0.5723583 Unidentified (U3) -0.707 0.187 -3.771 1.62E-04 

7 828.8043 0.5720578 Unidentified (U3) -0.645 0.175 -3.696 2.19E-04 

7 870.7891 0.5769692 Unidentified (U3) -0.710 0.196 -3.629 2.84E-04 

7 624.843 0.5741374 Unidentified (U3) -0.726 0.200 -3.620 2.94E-04 

7 598.8356 0.5796612 Unidentified (U3) -0.705 0.195 -3.620 2.95E-04 

7 462.8653 0.5798938 Unidentified (U3) -0.695 0.194 -3.581 3.42E-04 

7 394.8761 0.5797012 Unidentified (U3) -0.695 0.195 -3.571 3.56E-04 

7 530.8525 0.579978 Unidentified (U3) -0.694 0.195 -3.565 3.63E-04 

7 666.8233 0.5794433 Unidentified (U3) -0.712 0.200 -3.557 3.75E-04 

7 258.9015 0.5785645 Unidentified (U3) -0.682 0.193 -3.530 4.15E-04 

7 794.8107 0.5737721 Unidentified (U3) -0.611 0.173 -3.529 4.16E-04 

7 734.812 0.5787313 Unidentified (U3) -0.696 0.197 -3.527 4.21E-04 

7 326.8868 0.5771512 Unidentified (U3) -0.686 0.196 -3.494 4.76E-04 

        

8 154.0264 0.6849625 Unidentified (U4) -0.702 0.172 -4.088 4.35E-05 

        

9 169.134 0.6985534 Unidentified (U5) -0.759 0.206 -3.687 2.27E-04 

        

10 209.1159 6.164805 Unidentified (U7) -0.671 0.181 -3.705 2.12E-04 

        

13 443.4095 8.544215 Unidentified (U9) 0.893 0.221 4.046 5.21E-05 

13 460.4366 8.543666 Unidentified (U9) 1.001 0.262 3.822 1.32E-04 

        

14 72.08108 0.8007007 Valine -0.611 0.163 -3.748 1.78E-04 

14 249.0292 0.8028366 Valine -0.670 0.181 -3.694 2.21E-04 
*Model was adjusted for child’s sex and age at outcome measurement and ethnicity. We used a random effects model by cohort 121 



 122 

Table S7: Logistic regression odds ratio per standard deviation (95% CI) for overweight/obesity in early childhood 123 
for Model 1* and 2** for the birthweight related metabolites. 124 

Model 1* Model 2** 
num Metabolite 

Odd ratio (95%CIs) p-value False discovery 
rate Odd ratio (95%CIs) p-value False discovery 

rate 
1 Butyrylcarnitine/Isobutyrylcarnitine (C4:0) 0.777 (0.570,1.058) 1.09E-01 6.43E-01 0.734 (0.498,1.081) 1.17E-01 3.58E-01 

2 Decanoylcarnitine (C10:0) 0.912 (0.653,1.274) 5.89E-01 8.36E-01 0.868 (0.581,1.296) 4.88E-01 7.67E-01 

3 Decenoylcarnitine (C10:1) 1.193 (0.858,1.659) 2.93E-01 7.70E-01 1.155 (0.769,1.734) 4.88E-01 7.67E-01 

4 Dodecanoylcarnitine (C12:0) 0.906 (0.646,1.272) 5.70E-01 8.36E-01 0.834 (0.553,1.258) 3.86E-01 7.04E-01 

5 Dodecenoylcarnitine (C12:1) 0.902 (0.658,1.235) 5.20E-01 8.36E-01 0.716 (0.476,1.077) 1.09E-01 3.58E-01 

6 Hexadecadienoylcarnitine (C16:2) 0.941 (0.701,1.263) 6.86E-01 8.39E-01 0.928 (0.649,1.326) 6.80E-01 9.07E-01 

7 Hexadecenoylcarnitine (C16:1) 0.772 (0.544,1.094) 1.46E-01 6.43E-01 0.627 (0.400,0.984) 4.23E-02 3.12E-01 

8 Hexenoylcarnitine (C6:1) 0.764 (0.530,1.102) 1.50E-01 6.43E-01 0.613 (0.382,0.984) 4.26E-02 3.12E-01 

9 Hydroxyhexadecadienoylcarnitine (C16:1-
OH) 1.033 (0.787,1.356) 8.14E-01 9.01E-01 1.040 (0.746,1.449) 8.18E-01 9.66E-01 

10 Hydroxytetradecenoylcarnitine (C14:1-
OH) 1.096 (0.801,1.498) 5.68E-01 8.36E-01 1.053 (0.711,1.559) 7.96E-01 9.66E-01 

11 Octanoylcarnitine (C8:0) 0.963 (0.695,1.333) 8.19E-01 9.01E-01 0.936 (0.643,1.363) 7.31E-01 9.28E-01 

12 Tetradecadiencarnitine (C14:2) 1.004 (0.744,1.355) 9.79E-01 9.79E-01 0.940 (0.653,1.352) 7.39E-01 9.28E-01 

13 Tetradecanoylcarnitine (C14:0) 0.880 (0.638,1.214) 4.37E-01 8.36E-01 0.776 (0.531,1.133) 1.88E-01 4.22E-01 

14 Tetradecenoylcarnitine (C14:1) 0.907 (0.657,1.251) 5.51E-01 8.36E-01 0.779 (0.523,1.160) 2.19E-01 4.37E-01 

15 Leucine 0.658 (0.460,0.941) 2.17E-02 4.78E-01 0.469 (0.293,0.751) 1.61E-03 4.90E-02 

16 Tryptophan 0.728 (0.529,1.002) 5.11E-02 6.28E-01 0.720 (0.496,1.045) 8.38E-02 3.58E-01 

17 Sphingosine 0.821 (0.552,1.221) 3.29E-01 7.70E-01 0.742 (0.507,1.086) 1.25E-01 3.58E-01 

18 Docosahexaenoic acid 0.610 (0.412,0.903) 1.35E-02 4.78E-01 0.619 (0.395,0.970) 3.63E-02 3.12E-01 

19 Diacylglycerol (C34:2) 0.835 (0.537,1.300) 4.25E-01 8.36E-01 0.640 (0.372,1.100) 1.07E-01 3.58E-01 

20 Diacylglycerol (C36:3) 0.920 (0.618,1.368) 6.79E-01 8.39E-01 0.990 (0.654,1.498) 9.63E-01 9.93E-01 

21 Diacylglycerol (C36:4) 1.146 (0.820,1.601) 4.24E-01 8.36E-01 1.182 (0.801,1.742) 4.00E-01 7.04E-01 

22 LysoPC(16:1) 1.213 (0.880,1.671) 2.38E-01 7.50E-01 1.154 (0.789,1.688) 4.59E-01 7.67E-01 

23 LysoPC(18:1) 1.117 (0.813,1.536) 4.94E-01 8.36E-01 1.118 (0.764,1.636) 5.65E-01 7.94E-01 

24 LysoPC(18:3) 1.253 (0.917,1.713) 1.56E-01 6.43E-01 1.263 (0.875,1.821) 2.12E-01 4.37E-01 

25 LysoPC(20:2) 1.022 (0.704,1.484) 9.09E-01 9.46E-01 1.126 (0.784,1.618) 5.20E-01 7.88E-01 

26 LysoPC(20:4) 0.959 (0.689,1.334) 8.03E-01 9.01E-01 0.752 (0.520,1.088) 1.30E-01 3.58E-01 

27 LysoPC(22:5) 1.102 (0.759,1.601) 6.10E-01 8.38E-01 0.957 (0.593,1.545) 8.58E-01 9.68E-01 

28 LysoPC(22:6) 0.928 (0.664,1.297) 6.61E-01 8.39E-01 0.993 (0.706,1.399) 9.70E-01 9.93E-01 

29 PC(30:0) 0.968 (0.702,1.335) 8.42E-01 9.04E-01 1.043 (0.702,1.551) 8.34E-01 9.66E-01 

30 PC(32:0) 1.015 (0.746,1.381) 9.25E-01 9.46E-01 1.115 (0.760,1.637) 5.78E-01 7.94E-01 

31 PC(34:2) 1.068 (0.775,1.472) 6.87E-01 8.39E-01 1.271 (0.887,1.821) 1.92E-01 4.22E-01 

32 PC(36:4) 0.905 (0.661,1.238) 5.31E-01 8.36E-01 0.981 (0.680,1.414) 9.17E-01 9.84E-01 

33 PC(36:4) isomer 0.829 (0.616,1.115) 2.14E-01 7.24E-01 0.750 (0.527,1.067) 1.10E-01 3.58E-01 

34 PC(38:4) 0.810 (0.594,1.104) 1.81E-01 6.65E-01 0.717 (0.486,1.057) 9.34E-02 3.58E-01 

35 Plasmalogen PC(38:4) or PC(O-38:5) 0.795 (0.576,1.096) 1.61E-01 6.43E-01 0.762 (0.522,1.115) 1.61E-01 4.18E-01 

36 PlasmalogenPC(36:3) or PC(O-36:4) 0.855 (0.623,1.173) 3.33E-01 7.70E-01 0.809 (0.556,1.178) 2.69E-01 5.15E-01 

37 PlasmalogenPC(36:4) or PC(O-36:5) 0.796 (0.582,1.088) 1.53E-01 6.43E-01 0.764 (0.519,1.125) 1.73E-01 4.22E-01 

38 Cholestenone 1.312 (0.942,1.826) 1.08E-01 6.43E-01 1.343 (0.923,1.953) 1.23E-01 3.58E-01 

39 Cholesterol 0.919 (0.675,1.250) 5.89E-01 8.36E-01 0.999 (0.691,1.445) 9.97E-01 9.97E-01 

40 Progesterone 0.732 (0.531,1.009) 5.71E-02 6.28E-01 0.590 (0.383,0.910) 1.71E-02 2.81E-01 

41 Indolelactic acid 0.854 (0.629,1.160) 3.13E-01 7.70E-01 0.657 (0.462,0.934) 1.92E-02 2.81E-01 

42 Methoxykynurenic acid 1.185 (0.843,1.667) 3.29E-01 7.70E-01 0.977 (0.656,1.456) 9.10E-01 9.84E-01 

43 Retinol 0.866 (0.590,1.271) 4.62E-01 8.36E-01 0.731 (0.488,1.094) 1.27E-01 3.58E-01 

* Model 1 (adjusted for child sex and age at outcome measurement, ethnicity and we used a random effects model by cohort),  125 
**Model 2 (Model 1 adjusted for maternal BMI, paternal BMI, gestational age, weight gained during pregnancy, paternal education, 126 
passive and active smoking status during pregnancy, parity, and mode of delivery) 127 
 128 



 129 

Figure S1: Directed acyclical graph (DAG) to visualise assumptions regarding covariates, metabolome and 130 
outcome. Covariates are coloured gray, metabolome black and outcome white. The examining outcomes are: 1) 131 
rapid growth at 1st year of age and 2) overweight/obesity in early childhood. 132 

 133 



 134 

Figure S2: Logistic regression odds ratio per standard deviation (95% CI) for rapid growth for Model 2 (adjusted 135 
for child sex and age at outcome measurement, ethnicity and we used a random effects model by cohort 136 
adjusted for maternal BMI, paternal BMI, gestational age, weight gained during pregnancy, paternal education, 137 
passive and active smoking status during pregnancy, parity, and mode of delivery) stratified by cohort for the 8 138 
between the 6 nominal statistically significant birthweight related metabolites and the 4 associated with rapid 139 
growth at 12 months. Where * is P< 0.05 and ** is FDR<0.05. Bars show 95% confidence intervals. 140 



 141 

Figure S3: Logistic regression odds ratio per standard deviation (95% CI) for overweight/obesity in early 142 
childhood for Model 2 (adjusted for child sex and age at outcome measurement, ethnicity and we used a random 143 
effects model by cohort adjusted for maternal BMI, paternal BMI, gestational age, weight gained during 144 
pregnancy, paternal education, passive and active smoking status during pregnancy, parity, and mode of 145 
delivery) stratified by cohort for the 6 nominal statistically significant birthweight related metabolites and the 8 146 



associated with overweight/obesity in early childhood. Where * is P< 0.05 and ** is FDR<0.05. Bars show 95% 147 
confidence intervals. 148 

 149 

Figure S4: Logistic regression odds ratio per standard deviation (95% CI) for rapid growth for Model 2 (adjusted 150 
for child sex, age at outcome measurement, ethnicity and we used a random effects model by cohort adjusted for 151 
maternal BMI, paternal BMI, gestational age, weight gained during pregnancy, paternal education, passive and 152 
active smoking status during pregnancy, parity, and mode of delivery) stratified by sex for the 7 nominal 153 
statistically significant birthweight related metabolites and the 4 associated with rapid growth at 12 months. 154 
Where * is P< 0.05 and ** is FDR<0.05. Bars show 95% confidence intervals. 155 



  156 

Figure S5: Logistic regression odds ratio per standard deviation (95% CI) for overweight/obesity in early 157 
childhood for Model 2 (adjusted for child sex, age at outcome measurement, ethnicity and we used a random 158 
effects model by cohort adjusted for maternal BMI, paternal BMI, gestational age, weight gained during 159 
pregnancy, paternal education, passive and active smoking status during pregnancy, parity, and mode of 160 
delivery) stratified by sex for the 6 nominal statistically significant birthweight related metabolites and the 8 161 
associated with overweight/obesity in early childhood. Where * is P< 0.05 and ** is FDR<0.05. Bars show 95% 162 
confidence intervals. 163 



 164 

Figure S6: Logistic regression odds ratio per standard deviation (95% CI) for rapid growth at twelve months for 165 
Model 1 (adjusted for child sex and age at outcome measurement, ethnicity and we used a random effects model 166 
by cohort), Model 2 (Model 1 adjusted for maternal BMI, paternal BMI, gestational age, weight gained during 167 
pregnancy, paternal education, passive and active smoking status during pregnancy, parity, and mode of 168 
delivery) and Model 3 (Model 2 adjusted for birthweight) for the 7 nominal statistically significant birthweight 169 
related metabolites and the 4 associated with rapid growth at twelve months. Where * is P< 0.05 and ** is 170 
FDR<0.05. Bars show 95% confidence intervals. 171 

 172 



 173 

Figure S7: Logistic regression odds ratio per standard deviation (95% CI) for overweight/obesity in early 174 
childhood for Model 1 (adjusted for child sex and age at outcome measurement, ethnicity and we used a random 175 
effects model by cohort), Model 2 (Model 1 adjusted for maternal BMI, paternal BMI, gestational age, weight 176 
gained during pregnancy, paternal education, passive and active smoking status during pregnancy, parity, and 177 
mode of delivery) and Model 3 (Model 2 adjusted for birthweight) for the 6 nominal statistically significant 178 
birthweight related metabolites and the 8 associated with overweight/obesity in early childhood. Where * is P< 179 
0.05 and ** is FDR<0.05. Bars show 95% confidence intervals. 180 



 181 

Figure S8: Logistic regression odds ratio per standard deviation (95% CI) for rapid growth for Model 2 (adjusted 182 
for child sex, age at outcome measurement, ethnicity and we used a random effects model by cohort adjusted for 183 
maternal BMI, paternal BMI, gestational age, weight gained during pregnancy, paternal education, passive and 184 
active smoking status during pregnancy, parity, and mode of delivery) stratified by Small of Gestational Age 185 
(SGA) for the 7 nominal statistically significant birthweight related metabolites and the 4 associated with rapid 186 
growth at 12 months. Where * is P< 0.05 and ** is FDR<0.05. Bars show 95% confidence intervals. 187 



 188 

Figure S9: Logistic regression odds ratio per standard deviation (95% CI) for overweight/obesity in early 189 
childhood for Model 2 (adjusted for child sex, age at outcome measurement, ethnicity and we used a random 190 
effects model by cohort adjusted for maternal BMI, paternal BMI, gestational age, weight gained during 191 
pregnancy, paternal education, passive and active smoking status during pregnancy, parity, and mode of 192 
delivery) stratified by Small of Gestational Age (SGA) for the 6 nominal statistically significant birthweight related 193 
metabolites and the 8 associated with overweight/obesity in early childhood. Where * is P< 0.05 and ** is 194 
FDR<0.05. Bars show 95% confidence intervals. 195 

  196 



 197 
 198 

1. Study population 199 

The ENVIRONAGE cohort recruits since 2010, and the sampling of this specific study 200 

population occurred between 2014 and 2015 in Belgium. Women were recruited when they 201 

arrived at the South-East-Limburg Hospital in Gent  Follow-up anthropometric data collection 202 

for children is available up to two years of age. ENVIRONAGE study was approved by the 203 

ethical committees of Hasselt University and Hospital East-Limburg, Genk, Belgium. The 204 

INMA cohort is a network of birth cohorts in Spain that recruited pregnant women from the 205 

first trimester at public primary health care centers or hospitals in Sabadell from July 2004 to 206 

July 2006. Follow-up anthropometric data measurements, samples and surveys of the 207 

participating children have been collected until 16 years of age. INMA study was approved 208 

by the Ethical Committee of the Municipal Institute of Medical Investigation. The Piccolipiu 209 

study recruited women giving birth between 2011 and 2013 at selected hospitals in five 210 

Italian cities, Turin, Trieste, Viareggio, Florence, Rome. Children included in STOP were 211 

selected from the Turin center. Follow-up anthropometric data collection surveys occurred at 212 

6, 12 and 24 months after the delivery and then when the children turned 4 and 6 years with 213 

direct measurements at a clinical visit. For Piccolipiu study, Ethical approvals have been 214 

obtained from the Ethics Committees of the Local Health Unit Roma E (management 215 

center), of the Istituto Superiore di Sanità (National Institute of Public Health), and of each 216 

local center. The Rhea cohort enrolled women during the first trimester of pregnancy at 217 

public primary health care centres or hospitals in Heraklion, Greece, between 2007 and 218 

2008. Follow-up anthropometric measurements, samples and surveys for the participants 219 

are available up to 11 years. Follow-up anthropometric measurements, samples and surveys 220 

for the participants are available up to 11 years. Rhea was approved by the ethical 221 

committee of the University Hospital in Heraklion, Crete, Greece.  For all studies, informed 222 

consent was given by all participants. 223 



Venipuncture was used for collecting blood samples of cord vessels before the placenta was 224 

delivered. Samples were processed into either plasma (Environage, Piccolipiu) or serum 225 

(Rhea, INMA) as previously described1. Cohort inclusion criteria and further protocols can be 226 

found in the respective cohort references. Samples were selected from each cohort on the 227 

basis of biomaterial and data availability2-5. Selected samples were shipped to the 228 

International Agency for Research on Cancer, Lyon, France for metabolomics analysis. 229 

Family lifestyle factors were collected from mothers through an interview by trained 230 

fieldworkers and medical history for each family transferred from hospital records1. 231 

Regarding maternal diet during pregnancy (Table S1-S2), in the INMA cohort, an adapted 232 

version of Willett’s questionnaire6 was developed and validated for the Spanish 233 

population7.A Food Frequency Questionnaire (FFQ) was administered by trained 234 

interviewers during the 3rd trimester. The questionnaire consisted of question related to the 235 

frequency that a participant had consumed specific types of food8.The questionnaire had 236 

nine possible intake food categories, ranging from ‘never or less than once per month’ to ‘6 237 

or more times per day’.  The average daily food consumption calculated based on the overall 238 

intake frequency for each food item intake for each participant. In the RHEA cohort was 239 

developed a semi-quantitative questionnaire, containing 250 food items8. The participants 240 

were asked about both the frequency of consumption and the average portion size. The 241 

exact frequency of consumption was given per day, per week and/or per month, depending 242 

on the food item. The intake frequency for each food item was converted to the average 243 

daily intake for each participant. In the ENVIRONAGE cohort information on the maternal 244 

diet during the pregnancy was derived from the questionnaire filled out after delivery, 245 

including questions on the consumption of soft drinks, fish, fruit, and vegetable intake. 246 

Participants were asked for the frequency of average portion consumption per day and/or 247 

per week, depending on the food item. In the Piccolipiu cohort an FFQ for 13 items based on 248 

other questionnaires, but not ad hoc validated, was used. 249 



2. Untargeted metabolomics 250 

Cord blood samples were prepared by protein precipitation and analyzed in randomized 251 

order as a single uninterrupted batch with a UHPLC-QTOF-MS system consisting of a 1290 252 

Binary LC, a Jet Stream electrospray ionization source, and a 6550 QTOF mass 253 

spectrometer (Agilent Technologies). Details of the analysis have been described earlier 254 

Robinson, Keski-Rahkonen et al 1. In short, 30 µL of the sample was mixed with 200 µL of 255 

acetonitrile and filtered with 0.2 µm polypropene well plate filters, and the analysis was 256 

performed on a reversed phase column using a 13-minute methanol-water gradient. The 257 

mass spectrometer was operated in positive polarity with a mass range of 50-1000 Da. 258 

Preprocessing of the acquired data was carried out using Agilent’s recursive feature finding 259 

workflow as described earlier in detail 1. Briefly, a molecular feature extraction algorithm was 260 

used to find singly charged proton adducts, which were filtered by detection frequency and 261 

peak size into a target list of features, which were extracted from the raw data using a find-262 

by-ion algorithm with a matching tolerance for the mass and retention time at ±10 ppm and 263 

±0.04 min. Peak areas were used as a measurement of feature intensity. Metabolic features 264 

present in <60% of the samples were removed and data were log-transformed. Missing 265 

values were imputed leaving 4714 features for analysis using imputeLCMD R package 9. For 266 

identification of the features discovered in the present study, mass-to-charge ratios (m/z) 267 

were searched in the Human Metabolome Database 10 and METLIN 11, using ions [M+H]+, 268 

[M-H2O+H]+ and [M+Na]+, with 15 ppm molecular weight tolerance. Identity of the candidate 269 

metabolites was confirmed by reanalysis of representative samples together with pure 270 

chemical standards and comparing retention times and MS/MS spectra. When standards 271 

were not available, MS/MS spectra were acquired when possible and compared against 272 

those in public databases (www.mzcloud.org, METLIN). Level of identification was defined 273 

as proposed by Sumner, Amberg et al 12. Chromatograms and mass spectra of all identified 274 

compounds are provided in the Supporting Information. 275 



3. Random Forest and model evaluation for optimism  276 

A bootstrap method of 1000 repetitions was advocated to quantify optimism and evaluate the 277 

generalization of the model. In this analysis, we had two dependent variables to examine. 278 

The first dependent variable was the rapid growth at twelve months of age and the second in 279 

early childhood as it was defined in the main text. We used three different sets of 280 

independent variables for each of the outcomes: 1) traditional risk factors (cohort, ethnicity, 281 

maternal BMI, paternal BMI, gestational age, maternal weight gained during pregnancy, 282 

paternal education, maternal passive and active smoking status during pregnancy, parity 283 

and mode of delivery), 2)significantly associated metabolites from the MWAS analysis, and 284 

3) significantly associated metabolites in combination with traditional risk factors. Al the 285 

models were adjusted for age and gender. A Random Forest classification model of 250 286 

trees was trained on the relevant training set using Scikit-learn default parameters 13. 287 

For all the bootstrapped models, we use a training set (random 80% of the total 288 

observations) to determine the optimum probability threshold, and the performance was 289 

evaluated on the relevant test set (remaining 20% of the total observations) for the cohorts 290 

that remained to the sample. The performance of all the models was assessed through 291 

receiver operating characteristic (ROC curve), and we estimate the bootstrapped 95% 292 

confidence intervals. 293 

To further evaluate the predictive model, we performed a leave‐one‐out analysis by 294 

repeating the modelling process on a combined data set with one cohort out. We carried out 295 

this evaluation step following the above-mentioned methodology. 296 

The results showed that the rapid growth prediction model trained using only traditional risk 297 

factors and exhibited a moderate predictive ability of an AUROC value of 0.69 (bootstrap 298 



95% confidence interval (CI): 0.62, 0.77)). Adding the four metabolites (cholestenone, U2, 299 

U4, and U8) identified in the MWAS analysis into the prediction model, increased the 300 

AUROC to 0.77 (bootstrap 95% confidence interval (CI): 0.71, 0.83)) (Table S8). For 301 

overweight, using traditional risk factors alone, the AUROC was 0.69 (bootstrap 95% 302 

confidence interval (CI): 0.63, 0.75)), while a model using only the eight metabolites, Valine, 303 

U1, U2, U3, U4, U5, U7 and U9, identified in the MWAS analysis had an AUROC of 0.76 304 

(bootstrap 95% confidence interval (CI): 0.69, 0.81)). The combined traditional risk factor 305 

and metabolite model was strongly predictive of overweight with an AUROC of 0.82 306 

(bootstrap 95% confidence interval (CI): 0.79, 0.85)) (Table S8). 307 

Table S8: Summary of rapid growth and 12 months of age and overweight/obesity in childhood. Average AUROC 308 
across 1000 bootstrapped test sets for all the cohorts. 309 

Rapid growth at 12 months of age  Overweight/obesity in early childhood 
Model* 

Average 
AUROC 

Lower 
95%CI 

Upper 
95%CI 

Average 
AUROC 

Lower 
95%CI 

Upper 
95%CI 

1  Questionnaires**  0.69  0.62  0.77  0.69  0.63  0.75 

2  Metabolomics***  0.72  0.64  0.81  0.76  0.69  0.81 

3 
Metabolomics and 
questionnaires**** 

0.77  0.71  0.83  0.82  0.79  0.85 

*All the models were adjusted for age and sex. 310 
**Multivariate analysis for cohort, ethnicity, maternal BMI, paternal BMI, gestational age, maternal weight gained during pregnancy, paternal 311 
education, maternal passive and active smoking status during pregnancy, parity, and mode of delivery. 312 
***Multivariate analysis of rapid growth at 12 months of age for Cholestenone, U4, U6 and U8 and of overweight/obesity in early childhood for 313 
Valine, U1, U2, U3, U4, U5, U7 and U9**** Multivariate model using the covariates of model 1 and 2. 314 
 315 

Table S9: Summary of rapid growth and 12 months of age and overweight/obesity in childhood. Average ROC 316 
and CI95% across 1000 bootstrapped test sets using and leave-cohort-out approach. 317 

Rapid growth at 12 months of age Overweight/obesity in early childhood 
Model* Validation cohort  Average 

AUROC 
Lower 
95%CI 

Upper 
95%CI 

Average 
AUROC 

Lower 
95%CI 

Upper 
95%CI 

ENVIRONAGE  0.72  0.68  0.74  ‐  - - 

Piccolipiu  0.74  0.69  0.79  0.79  0.75  0.83 

RHEA  0.61  0.57  0.66  0.63  0.61  0.65 
1 Questionnaires** 

 

INMA‐Sabadell  0.80  0.77  0.83  0.68  0.64  0.72 

ENVIRONAGE  0.64  0.61  0.67  ‐  - - 

Piccolipiu  0.68  0.64  0.72  0.62  0.59  0.73 

RHEA  0.74  0.73  0.75  0.75  0.71  0.78 
2 

Metabolomics*** 
 

INMA‐Sabadell  0.70  0.67  0.73  0.62  0.58  0.64 

ENVIRONAGE  0.70  0.67  0.74  ‐  - - 

Piccolipiu  0.81  0.76  0.83  0.64  0.60  0.68 

3  Metabolomics and 
questionnaires**** 

RHEA  0.65  0.61  0.68  0.79  0.74  0.83 



INMA‐Sabadell  0.82  0.79  0.85  0.71  0.68  0.74 

*All the models were adjusted for age and sex. 318 
**Multivariate analysis for ethnicity, maternal BMI, paternal BM, gestational age, maternal weight gained during pregnancy, paternal education, 319 
maternal passive and active smoking status during pregnancy, parity, and mode of delivery. 320 
***Multivariate analysis of rapid growth at 12 months of age for Cholestenone, U4, U6 and U8 and of overweight/obesity in early childhood for 321 
Valine, U1, U2, U3, U4, U5, U7 and U9 322 
****Multivariate model using the covariates of model 1 and 2. 323 
The results of the leave one cohort out analysis (Table S9) for rapid growth showed an 324 

improvement in predictive performance upon addition of metabolites for Piccolipiu, Rhea and 325 

INMA as validation cohorts. For overweight, the leave one cohort out analysis (Table S9) 326 

showed an improvement in predictive performance upon addition of metabolites for Rhea 327 

and INMA as validation cohorts. These differences in predictive performance across cohorts 328 

may reflect the heterogeneity of the metabolic profiles we observed in each cohort and also, 329 

for overweight models, the lower age range and proportion of overweight cases in the 330 

Piccolipiu cohort (Figure S10).  331 

The statistical analyses were performed using R (‘The R Project for Statistical Computing’) 332 

software environment (v3.5.2) and Python 3.6. 333 

 334 

Figure S10: PCA analysis of the whole metabolome and scatter plot of first two principal components, coloured 335 
by cohort.  336 

 337 



 338 
 339 

4. Metabolic pathway enrichment analysis 340 

We performed pathway enrichment analysis using Mummichog (version: 2.3.3-20200213, 341 

default metabolic human model MFN_1.10.4.). Mummichog is a bioinformatics Python-based 342 

platform that infers and categorizes functional biological activity using directly the output 343 

from mass spectrometry 14. The algorithm searches tentative compound lists from metabolite 344 

reference databases against an integrated model of human metabolism to identify functional 345 

activity. Fisher’s exact tests are used to infer p-values, which are adjusted for type I error 346 

through a pathway permutation procedure. Likelihood of pathway enrichment across 347 

significant features is compared to pathways identified across the entire compound set in a 348 

reference list (the entire metabolome dataset), considering the probability of mapping the 349 

significant metabolic features to pathways. Mummichog parameters were set to match 350 

against ions included in the ‘positive mode’ setting at ± 8 ppm mass tolerance ("M+H[1+]" and 351 

"M+Na[1+]").  352 

Mummichog assigned tentative annotations to 405 of the 4714 features as significant 353 

(P<0.05) for rapid growth in 12 months (Supporting information 2) and to 613 of the 4714 for 354 

overweight/obesity in early childhood (Supporting information 3). Mummichog reference 355 

feature list was mapped to 627 Empirical Compounds which 69 were statistically significant 356 

for rapid growth in 12 months and 78 statistically significant for overweight/obesity in early 357 

childhood. According Mummichog, Empirical Compounds are putative metabolites as 358 

measured by Liquid chromatography coupled to high-resolution mass spectrometry (LC-359 

HRMS). These putative metabolites can contain a mixture of enantiomers, stereoisomers, 360 

and positional isomers that are not resolved by the instruments15. 361 

The results showed that the three enriched pathways with overlap size ≥4 for rapid growth in 362 

infancy were “Androgen and estrogen biosynthesis and metabolism”, “C21-steroid hormone 363 

biosynthesis and metabolism” and “Urea cycle/amino group metabolism” (Table S10) and 364 



enriched pathways with overlap size ≥4 for overweight/obesity in early childhood were 365 

“Valine, leucine and isoleucine degradation”, “Biopterin metabolism” and “Glycine, serine, 366 

alanine and threonine metabolism”(Table S11).  367 

Additionally, to further validate the pathways proposed by mummichog, we carried out a 368 

manual curation of the metabolite identities assigned by mummichog. For the compounds 369 

previously identified by the laboratory and for which pure chemical standards were available, 370 

retention times were compared to exclude false mummichog annotations.  371 

The results of this manual validation lend support for the correctness of following 372 

mummichog-predicted pathways: for rapid growth, “C21-steroid hormone biosynthesis and 373 

metabolism”, “androgen and estrogen biosynthesis and metabolism”, and “Urea cycle/amino 374 

group metabolism” retained overlap sizes of 13,12 and 5, respectively after excluding the 375 

false metabolite annotations (Table S10). For overweight, “Glycine, serine, alanine and 376 

threonine metabolism” retained an overlap size of 5, although the statistical support was 377 

weak (p = 0.05 before manual exclusion) (Table S11).  378 

Table S10: Mummichog analysis statistically significant pathways for rapid growth at 12 months of age. 379 

Pathways 
Overlap 

sizeA 

Pathway 

sizeB 
p-valueC Overlap empirical compoundsE 

C21-steroid hormone biosynthesis 

and metabolism 
15  58 8e-05 

E285, E479, E151D, E423, E487D, E124,  

E181,  E309, E386,  E539,  E219,  E382,  

E379,  E416, E36 

Androgen and estrogen 

biosynthesis and metabolism 
12 30 8e-05 

E285, E386, E36,  E423,  E124,  E416,  

E309, E219, E539, E463,  E209,  E382 

Urea cycle/amino group 

metabolism 
8 34 0.007 

E288D, E387, E94, E57D, E488D, E98, 

E548D, E37D 

A Pathway size is number of detected Empirical Compounds for each pathway. 380 
B Overlap size is number of significant Empirical Compounds.  381 
C Empirical p-values are estimated by permutation test. 382 
D This empirical compound has not been identified in the manual identification. 383 



E Details on empirical compounds are available in supporting information 2. 384 
 385 

Table S11: Mummichog analysis statistically significant pathways for overweight/obesity in early childhood. 386 

Pathways 
Overlap 

sizeA 

Pathway 

sizeB 
p-valueC Overlap empirical compoundsE 

Valine, leucine and isoleucine 

degradation 
6 13 0.0006 E34,  E17, E239, E350D, E549D, E180D 

Biopterin metabolism 4 9 0.005 E484D, E601, E290D, E175 

Glycine, serine, alanine and 

threonine metabolism 
8 42 0.050 

E17, E350D, E449, E3, E407, E549D, 

E180D, E394 

A Pathway size is number of detected Empirical Compounds for each pathway. 387 
B Overlap size is number of significant Empirical Compounds.  388 
C Empirical p-values are estimated by permutation test. 389 
D This empirical compound has not been identified in the manual identification. 390 
E Details on empirical compounds are available in supporting information 3. 391 

5. Modelling of weight and height growth trajectories 392 

Patterns of growth across childhood follow a complex pattern (growth is non-linear). We 393 

used a two-step approach to estimate growth curves for participating cohorts. First, we 394 

identified for each cohort the best fitting fractional polynomials of age and constructed sex-395 

and age- specific weight and height growth curves16. Briefly, a series of models were carried 396 

out for each cohort in which age was raised to a large number of combinations of powers 397 

(each of the following single powers, plus each combination of two powers: −2, −1, −0.5, 0, 398 

0.5, 1, 2, 3, where a power of zero is the log function), resulting in a wide range of possible 399 

weight and height curves17. Then we used mixed-effects linear regression models with the 400 

previously identified fractional polynomials of age, including a random intercept for child and 401 

random age slopes. Such models allow for individual variation in growth curves within each 402 

cohort, and use all available data from all the eligible children under a missing at random 403 

assumption18. Predicted weight and height values within each cohort were estimated for the 404 

exact age of 12months for the cohorts’ individuals.  405 

We used the WHO growth charts to monitor child growth 19, 20. These charts are growth 406 

standards based on data collected from selected communities worldwide. The use of WHO 407 

standards allows for growth assessment of children independent of ethnicity and 408 

socioeconomic status, thus, permitting international comparisons. These charts have been 409 



adopted in a growing number of countries in Europe and other parts of the world 21, and 410 

endorsed by international bodies such as the United Nations Standing Committee on 411 

Nutrition 22 and International Pediatric Association 23.  412 

The selected models are available in Table S12 and the performance of the models are 413 

presented in Figure S11-S14. 414 

Table S12: Comparison of prediction concordance from different fractional polynomial powers for sex-specific 415 
weight and height in participating cohorts. 416 

Boys Girls 
 

Weight Height Weight Height 

Difference Difference Difference Difference 
Cohort N n Powers rhoc* 

Mean (SD) 
Powers rhoc*

Mean (SD) 
Powers rhoc*

Mean (SD) 
Powers rhoc* 

Mean (SD) 

ENVIRONAGE 108 1104 -2 0.5 0.994 -0.001 (0.477) -2 0.5 0.998 -0.011 (1.134) 0 0 0.996 -0.001 (0.408) -1 0.5 0.998 -0.006 (1.048) 

INMA-Sabadell 404 3149 0.5 3 0.997 -0.000 (0.592) 0 1 0.998 -0.000 (1.415) 0.5 3 0.997 0.000 (0.506) 0.5 3 0.998 -0.000 (1.417) 

PICCOLIPIU 99 943 0 0 0.991 -0.000 (0.359) 0 0 0.989 -0.000 (1.537) 0.5 1 0.992 0.000 (0.300) 0 0 0.989 -0.000 (1.456) 

RHEA 1092 21045 0 0.5 0.989 -0.000 (0.858) 0.5 0.5 0.997 0.000 (1.530) 0.5 3 0.996 -0.000 (0.502) 0.5 1 0.997 0.000 (1.384) 

* rhoc: concordance correlation coefficient. 417 
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Figure S11: Actual vs Predicted values of weight and height in participating ENVIRONAGE cohort. 419 
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Figure S12: Actual vs Predicted values of weight and height in participating INMA cohort. 421 
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Figure S13: Actual vs Predicted values of weight and height in participating Piccolipiu cohort. 423 
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Figure S14: Actual vs Predicted values of weight and height in participating RHEA cohort. 425 
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