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ABSTRACT: The SARS-CoV-2 coronavirus outbreak continues
to spread at a rapid rate worldwide. The main protease (Mpro) is
an attractive target for anti-COVID-19 agents. Unexpected
difficulties have been encountered in the design of specific
inhibitors. Here, by analyzing an ensemble of ∼30 000 SARS-
CoV-2 Mpro conformations from crystallographic studies and
molecular simulations, we show that small structural variations in
the binding site dramatically impact ligand binding properties.
Hence, traditional druggability indices fail to adequately discrim-
inate between highly and poorly druggable conformations of the
binding site. By performing ∼200 virtual screenings of compound
libraries on selected protein structures, we redefine the protein’s
druggability as the consensus chemical space arising from the multiple conformations of the binding site formed upon ligand binding.
This procedure revealed a unique SARS-CoV-2 Mpro blueprint that led to a definition of a specific structure-based pharmacophore.
The latter explains the poor transferability of potent SARS-CoV Mpro inhibitors to SARS-CoV-2 Mpro, despite the identical
sequences of the active sites. Importantly, application of the pharmacophore predicted novel high affinity inhibitors of SARS-CoV-2
Mpro, that were validated by in vitro assays performed here and by a newly solved X-ray crystal structure. These results provide a
strong basis for effective rational drug design campaigns against SARS-CoV-2 Mpro and a new computational approach to screen
protein targets with malleable binding sites.
KEYWORDS: conformational space, druggability, Mpro, molecular dynamics simulation, virtual screening, protein binding site flexibility,
SARS-CoV-2

In December 2019, a new coronavirus (CoV), belonging to
the clade b of the Betacoronavirus viral genus, caused an

outbreak of pulmonary disease in the Hubei province in
China.1,2 In the first months of 2020, the new pandemic spread
globally and it is still continuing. The virus shares more than 80%
of its genome with that of the SARS coronavirus discovered in
2002 (SARS-CoV).1,2 Hence it has been named severe acute
respiratory syndrome-coronavirus 2 (SARS-CoV-2) by the
International Committee on Taxonomy of Viruses.
Interfering with viral replication is a promising strategy of

treatment. In this context, the chymotrypsin-like proteinase
(often referred to as the main protease, Mpro hereafter) is an
excellent pharmaceutical target.3,4 It does not depend on host
immunogenic responses, and it is essential for generating the 16
nonstructural proteins, critical to the formation of the replicase
complex.

Mpros are highly conserved enzymes across CoVs.5,6 SARS-
CoVMpro was already suggested as one of the main drug targets
in the pandemic associated with that virus, about 15 years
ago.7−9 Inhibitors of proteases (e.g. aspartyl protease) are also
common drugs used in the clinic against other deadly viruses,
e.g. HIV-1.10

The SARS-CoV Mpro active form is a homodimer (Figure
1A), with each monomer consisting of N-terminal, catalytic, and
C-terminal regions (Figure 1B).11 Mpros were shown to process
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polyproteins on diverse cleavage sites, using a cysteine/histidine
catalytic dyad:12 the histidine (His41 in SARS-CoV-2) forms a
hydrogen bond (Hbond) with a water molecule that, in turn,
interacts with an aspartate (Asp187) and a histidine (His164)
side chains. Asp187 is further stabilized through a salt-bridge
with a nearby arginine (Arg40, Figure 1C). In this way, His41
can act as a base, extracting a proton from the catalytic cysteine
(Cys145) side chain and activating it for the nucleophilic attack
that cuts the polypeptide.
SARS-CoV-2 Mpro shares 96% sequence identity with Mpro

from SARS-CoV (Supporting Information (SI), section S1,
Figure S1A). Twelve residues differ between both Mpros, and
only one, namely, Ser46 in SARS-CoV-2 (Ala46 in SARS-CoV),
is located at themouth of the active site cavity (Figure S1B). The
binding sites share 100% of sequence identity (Figure S1A).
Thus, exploiting the known libraries of SARS-CoV Mpro
inhibitors has been a strategy followed by many research groups.
Unfortunately, most SARS-CoV Mpro inhibitors with good
(nM) activity against SARS-CoVMpro in vitro and in cell-based
assays, exhibited limited (sub-μM) potency against the protein
from SARS-CoV-2 in enzymatic assays, and low-μM IC50 values
(4−5 μM) in cell-based assays.13,14

A similar scenario has emerged from the virtual screening
(VS) of Mpro inhibitors toward SARS-CoV-2. Indeed, none of
these strategies, (i) repurposing of SARS-CoV drugs for SARS-
CoV-2,15,16 (ii) Deep Docking trained on SARS-CoV Mpro
inhibitors,17 (iii) libraries of the other SARS proteases,18−20 and
(iv) clinically approved drugs for other SARS Mpros or other
similar proteases,21−26 have led so far to clinical advances.
Because only 12 residues, far from the binding site, differ
between SARS-CoV Mpro and SARS-CoV-2 Mpro, the
mutation of distant residues can substantially contribute to the
binding site plasticity and to the ligand binding through
allosteric regulation.27 The inability to identify Mpro inhibitors
for SARS-CoV-2 might also be due to the short amount of time
passed since it is rise to urgency. Recently, however, it has been
shown that the dipeptide prodrug GC376, and its parent
compound GC373 inhibit the two proteases with IC50 values in
the nanomolar range.28 This suggests that, despite the intrinsic
and significant differences between the two Mpros, common
binding features against some classes of high-affinity ligands are
retained.
Molecular dynamics (MD) simulations15 provided hints to

address this riddle: they showed that the SARS-CoV Mpro

active sites display major differences in both shape and size. In
particular, while both Mpros reduce their accessible volume
upon inhibitor binding by approximately 20%, the maximal
volume of the holo SARS-CoV Mpro active site is over 50%
larger than that of SARS-CoV-2. In addition, the accessibility of
the binding hotspots (i.e., the key residues for substrate binding)
and the flexibility of one of the two loops delimiting the binding
pockets (ASL1 in Figure 1B) differs between the two Mpros.15

The simulations indicate that the binding sites of the twoMpros
are dynamically diverse and that ligand binding can impact them
differently.29

Therefore, transferable binding features across Mpros, as well
as unique ones for SARS-CoV-2, are difficult to predict: the
exceptional flexibility and plasticity of the binding site is here
coupled with large adjustments of the cavity shape in response to
the binding of an inhibitor. This clearly emerges from an analysis
of the SARS-CoV-2 Mpro binding pocket’s conformational
changes (performed here) across the majority of the 196 X-ray
crystal structures available in the Protein Data Bank up to
September 30th 2020.15,30−32 This flexibility makes a rational
drug-design approach extremely challenging:15,33 the screening
potential of Mpro conformational space is too large, too flexible,
and unpredictable, and the actual available binding space can
differ significantly from ligand to ligand.15,30,34

It is therefore imperative to identify the relationship among
SARS-CoV-2 conformational space, flexibility, druggability, and
ligand binding. Here, we analyzed the mentioned 196 X-ray
crystal structures, along with about ∼31 000 conformations
extracted, not only from the longest (100 μs) MD simulation of
SARS-CoV-2 Mpro so far,35 but also from the binding site
enhanced sampling simulations carried out here. Among these
structures, we selected ∼30 000 conformations for which we
systematically performed druggability analyses on the binding
sites. The top 216 druggable structures were selected for virtual
screening of a sample library of ∼13 500 ligands. The latter
includes marketed drugs and compounds under development,
the internal chemical libraries from Fraunhofer Institute and the
Dompe ̀ pharma company, as well as the so-far known inhibitors
of SARS-CoV Mpro from literature.
We redefine here the protein druggability in a new way

exploiting the chemical space shaped by the different
configurations of the binding site upon virtual screening.
Specifically, we identified a consensus protein−ligand inter-
action fingerprint across the chemical space and the correspond-

Figure 1. Structure of SARS-CoV-2Mpro (PDB id: 6Y2E). (A) The enzyme is a homodimer.14 (B) Each monomer consists of three domains (I−III):
The chymotrypsin-like and picornavirus 3C protease−like domains I and II (in blue and green, respectively) form six-stranded antiparallel β-barrels,
that harbor the substrate-binding site between them, including the ASL1 and ALS2 loops (residues 44−53 and 184−194, respectively). Domain III (in
yellow-red) is a globular bundle formed by five helices, and it is involved in the dimerization of the protein. (C) Close-up of the active site and of the
Hbond network. Atoms are in stick representation colored according to atom type, while Hbonds are indicated using dashed lines.
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ing SARS-CoV-2 Mpro unique structure-based pharmacophore.
The latter was able to identify known nM-binders (IC50 ≤ 400
nM) of SARS-CoV-2 Mpro, distinguish these from micromolar
inhibitors, and to identify Myricetin and Benserazide as novel
nM inhibitors. The prediction was validated by an enzymatic
activity binding assay. The calculated bindingmode ofMyricetin
is in excellent agreement with a recently solved X-ray crystal
structure (Kuzikov et al., submitted). The active pharmacophore
also provides a rationale for the variability in ligand affinity of
currently known SARS-CoV ligands and for the general lack of
transferability of SARS-CoV ligands to SARS-CoV-2, shedding
light on the complexity, plasticity, and druggability of SARS-
CoV-2 Mpro.

■ RESULTS AND DISCUSSION
To understand how Mpro’s binding site conformation affects
the druggability and the chemical space of selected binders, we
considered ∼30 000 Mpro conformations spanning different
binding site arrangements and flexibility obtained from different
sources (Table 1). These include the following:

(i) All the X-ray crystal structures deposited to date of apo
and holo SARS-CoV-2 Mpro. After analyzing all of them,
we selected 43 structures for follow-up analysis. These
exhibit a RMSD lower than 1 Å with respect to the
excluded ones. Therefore, they can be considered a good
representative ensemble of the overall deposited SARS-
CoV-2 X-ray crystal structures (“X-ray ensemble” here-
after, see Table S1).

(ii) Two sets of MD ensembles: (a) The “MD10000”
ensemble, that is 10 000 frames, taken every 10 ns, of a

100 μs-longMD of apoMpro fromD. E. Shaw Research35

and (b) the “MSM ensembles”, two collections of 30 and
40 representative conformations extracted from a three-
state and a four-state Markov state model (MSM),
respectively. The MSM analysis was performed on the
same 100 μs-long MD trajectory (see section S2, Figure
S2). These are included to identify conformations
representing structural changes potentially related to
binding.

(iii) About 22 000 conformations obtained with two enhanced
sampling methods implemented in the TRAPP (TRAn-
sient Pockets in Proteins) web server:36 Enhanced
sampling by Langevin Rotamerically Induced Perturba-
tion (LRIP)37 and constraint-based sampling by
tConcoord38 referred to as “LRIP/tC ensembles” here-
after. These ensembles were derived using the X-ray
crystal structures of the protein in complex with the
inhibitor N3 (PDB ID 6LU7) and with another α-
ketoamide inhibitor (PDB ID 6Y2G).

Binding Site Features and Druggability. We calculated
specific binding site parameters for the ensembles described
above (see SI section S3 for the complete list). We discuss here
the volume, and the hydrophobicity, because they turn out to be
key descriptors of the SARS-CoV-2 Mpro active site shape and
druggability (see below). The latter was evaluated with the
“druggability” scores: SiteScore and Dscore, as derived from the
SiteMap39 tool implemented in the Schrödinger suite 2019−4
(Schrödinger, LLC, New York, NY, 2019) and the CNN and LR
(Convolution Neural Network and Linear Regression) drugg-
ability models40 as implemented in the TRAPP package.41

Although TRAPP and SiteMap use different approaches for
computing the pocket characteristics (3D grid-based versus
residue-based), the trends in the computed parameters are
similar.
From this analysis, we conclude the following:

(i) The binding site volumes computed with TRAPP for the
holo X-ray crystal structures are distributed over a slightly
larger and more variable range of values than that for the
apo X-ray crystal structures (Figure 2A, Figure S3). The
distribution of volumes is higher in the MD and LRIP/tC
ensembles with respect to the X-ray. Indeed, the loop
region shows a high amount of flexibility (see Figure S4
and paragraph below). The difference in volume
distributions in the crystal structures could be caused by
crystal packing as we show in SI section S3.2 (Table S3,
Figure S5).
During the MD simulations, on the other hand, the

large range and variability in binding site volume are
associated with conformational changes of loops ASL1
(res. 44−53) and ASL2 (res. 184−194) (Figure 2B,
Figure S4). It can be seen that ASL1 is more flexible than
ASL2, from the MSM analysis (section S2) and by
calculation of the residue occurrence in the binding site
(section S3, Figure S3). Volume variability also results
from the transient participation (with a frequency of
∼25%) of the N- and C-terminal tails of the adjacent
subunit in the binding site (Figure 2C). During the MD,
these two termini move in the proximity of the pocket. For
the seven apo X-ray crystal structures, where the termini
are resolved (Tables S1,S2), the C-terminus is far away
from the binding sites, whereas the N-terminus is always
close by (see Figure 2D). In the holo crystal structures, the

Table 1. Mpro Conformational Ensembles Considered in
This Study

Mpro protein’s conformational space

name

total no. (N) of
conformations

analyzed

no. of binding
site

conformations
analyzed

(chain A and
chain B)

no. of druggable
binding site

conformations
screened (chain A
and chain B)

X-ray ensemble 196 86 84
MSM ensemble
(four-state model)/
MSM ensemble
(three-state model)

40 (four-state
model)

80 (four-state
model)

20 (four-state
model)

30 (three-state
model)

MD10000 10 000 2000 16 + 40
LRIP/tC ensembles 21 994 21 994 16 + 40

ligands’ conformational space

name

total no.
of
molecules notes

sample library 13 534
active molecules 193 fraction of the sample library for which an

experimental IC50 measure against SARS-
CoV is available

crystallographic
ligands

37 available from the Protein Data Bank

consensus
molecules

33 fraction of the sample library that is found in
common across the top 1% of the best-
performing structures

consensus active 16 fraction of the active molecules found in the
consensus molecules

SARS-CoV-2
Mpro binders

41 available from literature
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Figure 2. Binding site analysis of computational ensembles. (A) Binding site volume distributions fromTRAPP for X-ray structures andMD/LRIP/tC
ensembles. MD10000 contains conformations very similar to the frames extracted by the MSM analyses on the same trajectories, therefore these are
not shown here. Binding site volume distributions from SiteMap are in Figure S3. (B) Analysis of ASL1 and ASL2 conformations (in chain A and B) in
MSM (four-state model). Orange and blue squares refer to open and close conformations, respectively. The three-state model clusters are reported in
Figure S3. (C) Binding site residues in the 100 μs-long MD trajectory: average occurrence in snapshots at 1 μs intervals for chains A and B, separately.
Unlike chain A, extensive conformational changes are observed in the loop formed by residues 181−194 of chain B (see Figure S4). (D) Average
occurrence of the binding site residues in the set of apo and holo X-ray structures (Table S1). Residues from the same chain are shown in blue, while
residues from the adjacent chain are colored in orange. The percentage of each residue was calculated considering the number of structures for which
that residue was resolved.
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N- and C-terminal tails of the adjacent subunit can both
be found close to the binding site (see Figure 2D). A
similar scenario is observed for the holo structures in the
LRIP/tC ensemble, where both terminals are present in
the binding pocket even more often (in about 40% of
simulated structures, Figure S3).

(ii) The binding site hydrophobicity is here estimated in
terms of hydrophobicity distribution across the different
conformational ensembles, calculated with TRAPP and
SiteMap. Holo X-ray crystal structures include conforma-
tions with higher hydrophobicity of the pocket with
respect to the apo ones: these are complexes in which
large ligands, with a molecular mass of 400 Da or greater,
are covalently bound to Cys145 (PDB IDs 6LU7, 7BUY,
and 7C8R). TheMD and LRIP/tC ensembles instead can
span from low to high hydrophobicity values (see section
S3.3, Figure S6A).

Druggability. Here, we analyze the druggability as defined
by the CNN and LR scores from TRAPP40 along with DScore/
SiteScore from SiteMap.39,42 All pockets in the crystallographic
structures (except one, PDB ID 6WTK) are scored as druggable:
their druggability indices are above the scores’ thresholds for
druggability (0.8, 0.8, 0.5, 0.5 for SiteMap, DScore, LR, and
CNN models, respectively, Figure S6. These thresholds were
taken fromHalgren et al.42 and Yuan et al.40, respectively). There
is, however, no notable correlation between the druggability
scores derived from the SiteMap and TRAPP methods. This is
expected because the observed variations in the druggability
index lie within the method prediction uncertainty. Despite the
slightly lower druggability indices in SiteScore and TRAPP-LR

for the apo X-ray crystal structures compared to the holo crystal
structures, they are still predicted to be druggable within the
uncertainty of the methods. In contrast, about 50% of the
simulated structures (MD, LRIP, and tConcoord) were
predicted not to be druggable (Figure S6).
The druggability scores of the simulated, and, more, of the X-

ray crystal structures correlate with binding site hydrophobicity
(Figure S6, section S3.3, and Tables S4,S5). The correlation
with other binding site features is much smaller (see Tables
S4,S5). We conclude that, as expected, the more hydrophobic
the pocket is, the better it is scored.

Virtual Screening.We defined a sample library of a total of
13 534 compounds (Table 1, Figure S7). The library included
commercialized drugs and compounds under development, the
internal chemical library from Dompe ̀ pharma company, and
compounds from the Fraunhofer Institute BROAD Repurpos-
ing Library, as well as known inhibitors of SARS-CoV Mpro. In
particular the library included a set consisting of 180 compounds
with pIC50 against SARS-CoV Mpro greater than 6 reported in
the literature (active molecules, hereafter).9,13,43−65 Our sample
library is chemically very diverse as compared to the crystallo-
graphic ligands in complex with SARS-CoV-2 Mpro and the
active molecules (see Figure S7). A more detailed chemo-
informatic analysis is reported in section S4.1−2.
We selected SARS-CoV-2 Mpro conformations with scores

above the druggability thresholds. These include all the X-ray
crystal structures except 6WTK (42 structures), 10 MSM
ensemble conformations (MSM selection), and 8 representa-
tives of the top 10% scoring conformations from the MD10000

Figure 3. Virtual screening performance evaluation. Top 1% EF from the FRED virtual screenings performed on the binding sites in chains A and B in
the X-ray crystal structures (A), in the MD10000 and LRIP/tC selection (section S3.4) (B) and in the MSM selection (C), that is, 10 structures with
druggability index greater than 0.9 as extracted from the four-state modelMSM ensemble. The bars are colored from red to dark green according to the
value of the AUC in the ROC curves (color scale on the bottom left corner). The asterisk (∗) symbol in panel A highlights the apo structures. Glide
results are shown in Figure S10.
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and LRIP/tC ensembles (see Table 1, section S4.3, Table S6,
Figures S8,S9).
The ligands were screened against the conformations using

OpenEye FRED66 and Schrödinger Suite Glide Version
85012.67,68 We discuss here the results obtained with FRED.
Those obtained with Glide present similar trends and are
reported in the SI (section S4.4 and Figure S10). Also, we report
here only the calculation results obtained with the MD10000/
LRIP/tC and X-ray selections. The data obtained with theMSM
selection are reported in the SI (section S4.5, Figure S11).
The quality of the virtual screenings was evaluated in terms of

(i) enrichment factor (EF) defined as EF(1%) = (no. active
molecules in the top 1%/no. molecules in the top 1%)/(active
molecules in the whole set); (ii) receiver operating characteristic
(ROC) curves, used to evaluate the true positive rate and the
area under the curve (AUC).
The structures from the MD10000/LRIP/tC and MSM

selections, along with the apo X-ray structures, exhibited a poor
EF (below 5%), despite being identified as druggable by all the
druggability prediction methods here implemented (Figure 3).

The poorer performance of the apo X-ray crystal structures was
expected since they exhibited overall lower druggability scores
with respect to the holo structures (Figure S6F). This was not
the case with the selected structures from the MD10000 and
LRIP/tC ensembles (see section S4.3), where only the 10% of
the structures with the highest druggability scores were used for
screening. This suggests that the druggability prediction
methods are not sensitive enough to distinguish between high-
and low-EF conformations for the chemical space considered
(see also discussion below). On the other hand, for the holo X-
ray crystal structures, both “well-performing” (EF > 15%) and
“poorly-performing” (EF < 5%) conformations were identified
(Figure 3).
Next, we determined which of these ensembles exhibits a

protein−ligand interaction fingerprint (PLIF) comparable to
the one established by the ligands cocrystallized with SARS-
CoV-2 Mpro. In the PLIF of the latter (Figure 4A), we observe
an overall predominance of Hbond interactions over hydro-
phobic ones, with Cys145 (catalytic dyad), Gly143, Ser144,
His163, and Glu166 as the most attractive residues to form

Figure 4.Virtual screening pose analysis of well performing and poorly performing receptor conformations. Average PLIF of (A) the crystal structures,
(B) the top 1% of molecules from virtual screenings on well performing and poorly performing X-ray structures, and (C) the MD10000 and LRIP/tC
selection. The PLIF of the top 1% of theMSM selection is reported in Figure S11. The occurrence of interactions between the ligands and the well- and
poorly performing structures is plotted on the upper and lower half-plane, respectively. All bar plots were normalized with respect to the highest found
occurrence (interactions with Glu166 in upper panel B). Binding site shape averaged over the well-performing (D), poorly performing (E), the
MD10000/LRIP/tC selection (F), and the apo (G) structures (H). The yellow arrow in panel D is highlighting the “anchor” site. Superposition of a
well performing and poorly performing crystal structures of SARS-CoV-2 Mpro (6LU7 and 5REK, well performing and poorly performing,
respectively); ribbons are in purple and in yellow, respectively, while the N3 ligand is in blue carbon stick representation. The Ser46-Pro168 and
Ala193-Pro168 Cα distances are highlighted. This latter panel was done following the scheme published in Kneller et al.27
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Hbond interactions (comparable occurrence) with the ligands.
The only exception is represented by His41 (catalytic dyad),
which is similarly involved in Hbonds and hydrophobic
interactions.
The PLIF of the well-performing conformations (Figure 4B,

upper panel) matches the one of the crystallographic complexes
(Figure 4A). Namely, the same hot-spot (i.e., preferential
residues for ligand binding) residues emerge: the ligands form
Hbonds with Cys145 (catalytic dyad), Gly143, Ser144, Gly166,
and His163, as well as hydrophobic interactions with His41
(catalytic dyad). The main difference between the two PLIFs is
in the lower occurrence of Hbonds involving Gly143, Ser144,
and Cys145 (catalytic dyad) than in the crystallographic
complexes, and in the higher occurrence of hydrophobic
contacts with Thr25 and His41 (the second residue in the
catalytic dyad). This change in the surrounding of the reactive
cysteine, Cys145 (Thr25, Gly143, Ser144) might be due to the
presence of several covalent ligands in the crystal structures.
Covalent binding might locally alter the PLIF, and this effect is
not considered in the virtual screening.
In all the other selections (i.e., poorly performing X-ray

structures, Figure 4B lower panel, MD10000 and LRIP/tC
selection, Figure 4C, and MSM selection, Figure S11), the key
Hbonds above-discussed have an occurrence that is markedly
lower than nonspecific hydrophobic interactions. Also, the latter
interactions substantially decrease, including those with His41
(catalytic dyad). Moreover, in the MSM, MD10000 and LRIP/
tC selections, ligands interact with almost all residues of the
binding site (Figure 4C and Figure S11), but with an occurrence

below 25% (for each interaction type) and with a strong
predominance of hydrophobic interactions versus Hbonds. This
points to a rather nonspecific binding of the screened molecules
in the MD/MSM-selected structures.
Summarizing, we found that our evaluation of the virtual

screening procedure correctly identifies the conformations able
to provide the most similar PLIF to the known crystallized
ligands of SARS-CoV-2 Mpro.
To rationalize these dramatic differences in the PLIF across

the ensembles of structures, we compared their average binding
site shapes. We found that the residues in the MSM, MD10000,
and LRIP/tC selections are distributed over a larger volume
than in the crystal structures (Figure 4D−F); therefore, the
spatial location of the hotspots (i.e., Hbond donors/acceptors,
hydrophobic patches, charges) is significantly different. Even
reselecting the conformations from theMD-ensembles using the
similarity with respect to well-performing structures as criterion
(i.e., root mean square deviation, RMSD), did not provide a
satisfying performance, nor the optimal spatial location of the
hotspots (section S5, Figure S12), indicating that key features
for obtaining high EFs in the virtual screening, that is, the precise
placement of interacting residues, are missing.
Taken together, these results may explain why the

druggability indices are unable to distinguish the binding site
features linked to a good performance in virtual screening: very
subtle variations of the conformations of the binding site
residues induced upon binding, and therefore not present in the
structural ensembles generated in the absence of a ligand, can
lead to significant differences in the EF (see also Figure S13).

Figure 5. Virtual screening pose analysis of “consensus active”molecules. Average PLIF of the (A) 16 “consensus active”molecules, (B) 7 nM (IC50≤
400 nM) inhibitors, and (C) 19 μM inhibitors docked onto the well-performing receptors. (D) Active-pharmacophore, where the five fundamental
interactions (according to the selected cutoff, see methods) are displayed as spherical meshes. The docked pose of 11r, satisfying all the five
interactions, is shown. (E) Docking poses of 16 “consensus active” molecules in SARS-CoV-2 Mpro (PDB ID 6LU7, chain A) binding site (black
carbon representation). The 11r inhibitor pose is superimposed and highlighted in orange. (F) Docked pose of the inhibitor GC373.
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These subtle variations are very challenging to discriminate in
terms of druggability indices.
The Active-Pharmacophore and the SARS-CoV-2

Blueprint on the Chemical Space. To identify the relevant
ligand features that might relate to high affinity binding, we
extract here the consensus chemical space, defined by the
common ligands across the top 1% of the well-performing
structures in the virtual screening. These are 32 molecules, 16 of
which belong to the “active” molecules in our library
(“consensus active” hereafter, Figure S14 and Table 1). We
next calculated the corresponding pharmacophore (i.e., an
ensemble of steric and electronic features that is necessary to
ensure the optimal supramolecular interactions with a specific
biological target) and linearly combined it with the X-ray
pharmacophore. This is done to consider possible additional
features coming from covalent binding that cannot be covered
by the virtual screening protocol. The consensus pharmaco-

phore combined with the X-ray pharmacophore constitutes the
“active-pharmacophore”, hereafter (see Methods, Figure 5).
Next, we tested the predictive power of our active-

pharmacophore in discriminating the higher affinity binders
across all the so-far known SARS-CoV-2 Mpro inhibitors: these
are 46 molecules coming from the papers published until
November 20th 2020, which were not included in our sample
library and that display a measured affinity spanning from 30 nM
to 125 μM.14,28,69−75 Some of these molecules were excluded by
the docking software due to their excessive size or due to the
presence of metals (e.g. Candesartan Cilexetil, Evans blue,
Phenylmercuric acetate).
For this purpose, we calculated the Dice coefficient, which

measures the number of features in common between the
molecule and the active-pharmacophore, relative to the average
number of features present.76 When scoring the 46 known
SARS-CoV-2 Mpro binders according to the Dice coefficient,

Figure 6.Chemical Structures of selected (A) nM and (B) sub-μM inhibitors of SARS-CoV-2Mpro with a binding pose. The blue circles highlight the
moieties buried in the “anchor site”, while the orange circles show the portion of the molecules in proximity to Thr24, Thr25, Thr26. The docking
poses of Compounds 23, 26, and 27, depicted in the blue rectangular area, do not present atoms in the surrounding of these two subpockets and were
obtained from literature78 during the submission process.
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the highest scored molecules are 11a, 11b, 11r, UAWJ246,
UAWJ247, UAWJ248, Compound 23, Compound 26, Com-
pound 27, and CG373 (see Figure S15), which are also the
highest affinity (IC50 ≤ 400 nM) SARS-CoV-2 Mpro binders
(nM-binders, hereafter). On the other hand, it is not possible to
discriminate the sub-μM-binders of SARS-CoV-2 Mpro (400
nM < IC50 ≤ 1000 nM) from the μM ones (IC50 > 1000 nM)
(see Figure S16). These results have to be taken with great care
given the fact we are comparing assay-dependent IC50 values
coming from different laboratories. Also, several of these
inhibitors are predicted to be covalent binders, which further
complicates the use of their respective IC50 values (see the
discussion offered in the Limitation paragraph). Therefore, in
the next section, we analyzed the chemical space shaped by the
well-performing conformations upon ligand binding, and offer a
rationale for the predictive power of our active-pharmacophore
in identifying nM-binders of SARS-CoV-2 Mpro.
Rationalization of the Active-Pharmacophore and

SARS-CoV to -CoV-2 Mpro Ligands’ Transferability. The
PLIF of the consensus chemical space is dominated by the
“consensus active” ones (the latter PLIF is almost identical to
the former one, Figure S17A) and it shows a predominance of
Hbond interactions with His163, Glu166, Gln189, and Cys145
(Figure 5A), as well as hydrophobic interactions with Thr25,
His41, Met165, Pro168, and Gln189. Accordingly, the same
trend can be seen for the PLIF of the SARS-CoV-2 Mpro nM-
binders (Figure 5B), the only differences being (i) the additional
high occurrence of Gly143 and Ser144 Hbonds (as already
observed in the PLIF of the X-ray structures), and (ii) the lower
occurrence of hydrophobic interactions with Thr25.
When the binding poses of the “consensus active” molecules

and the nM-binders of SARS-CoV-2 Mpro (Section S6) are
compared, we found indeed that the indole group (in 11a, 11b,
and 7 of the 16 molecules of the “consensus active” set) or the
benzyl group (in GC373, 11r, and 6 of the 16 molecules of the
“consensus active” set), or the benzimidazole group (in 1 of the
16 of the “consensus active” set) is buried in the upper subcavity
defined by residues Glu166, Pro168, Gln182, Gln189, and
Thr190 (Figure 5E,F). Notably, this cavity region which consists
of β-sheets (residues from Tyr161 to Asp176) and the coil

(residues fromGly183 to Ala194) was previously denoted as the
“anchor site”.77 This region was shrunk in the poorly performing
structures, further validating the importance of this part of the
binding side and also the quality of our model that correctly
excluded the conformations potentially incompatible with nM-
binders. Instead, the benzothiazole moiety of the “consensus
active” is placed in the lower part of the binding cavity defined by
Thr24, Thr25, and Thr26. This benzothiazole moiety is absent
in the SARS-CoV-2 Mpro nM-binders, possibly explaining the
lower occurrence of hydrophobic interactions with Thr25.
These findings suggest that the binding to the lower part of the

binding site (Thr24, Thr25, Thr26) is not a relevant feature for
the nM affinity of SARS-CoV-2 ligands. In contrast, the high
occurrence of Gly143 and Ser144 Hbonds appears to be a
signature of nM-binders of SARS-CoV-2Mpro, also found in the
PLIF of the known X-ray ligands of SARS CoV-2 complexes.
Notably, the formation of these two Hbonds appear to be
significantly hampered in the “consensus active” set due to the
presence of the above-mentioned benzothiazole moiety, that
seems to compromise the juxtaposition of the Hbond acceptors
of the ligands. Accordingly, none of the SARS-CoV-2 nM-
binders display benzothiazole or analogous bulky aromatic
groups in such a position (Figure S14, Figure 6).
Analysis of all 166 holo SARS-CoV-2 Mpro crystal structures

also showed that all their ligands except two (PDB IDs 7JKV and
6XR3) do not have a benzothiazole or analogous bulky aromatic
groups in the Thr24, Thr25, Thr26 subpocket (Figure S18).
Concerning the μM binders known so far, only very few of them
are predicted to have a bulky group in such a position (Figure
S16). In other words, our results suggest that the bottom part of
the binding cavity in SARS-CoV-2 Mpro should only host small
aromatic/hydrophobic moieties (or nothing at all) to facilitate
the formation of Gly143 and Ser144 Hbonds, the latter being a
signature of the currently known nM-binders to SARS-CoV-2
Mpro.
Currently, the X-ray structure of GC373 in complex with

SARS-CoV-2 Mpro was solved (PDB ID: 7BRR, recently
superseded by PDB ID 7D1M (October 28th 2020). The ligand
in the crystal structure appears in two different conformations,
one resembling the predicted pose from us, in which the benzyl

Figure 7. Binding poses of predicted high affinity ligands. Binding poses ofMyricetin (EOS100914, A) and Benserazide (EOS100736, B), predicted to
be high affinity binders using our active-pharmacophore model, and experimentally confirmed to be nM SARS-CoV-2 Mpro inhibitors. The protein
structure is shown as a white surface (PDB ID 6WTT, chain A), while Myricetin and Benserazide are shown in blue and coral ball-and-sticks,
respectively. The poses shown here are the best scored ones according to the Dice coefficient. The insert panels show the molecular formulas of
Myricetin and Benserazide. The diamond symbol in the scheme of panel A highlights the position of the nucleophilic attack by Cys145 on Myricetin.
(C)Overlay of crystal structure (PDB ID 7B3E, green), docked (blue, RMSD 3.14 Å), and refined (yellow, RMSD 0.46 Å) binding poses ofMyricetin.
Binding pocket residues are shown in white ribbons and sticks with heteroatoms colored according to the atom type. The orientation of panel C was
rotated with respect of those of panels A and B to show the covalent bond found in the X-ray crystal structure between Cys145 and the Myricetin
reactive carbon.
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group of GC373 is not buried in the upper subcavity defined by
residues Glu166, Pro168, Gln182, Gln189, and Thr190; the
other in which this benzyl group is exposed toward the solvent.
Yet, when the crystallographic complex undergoes 500 ns ofMD

simulations, the pose where the aromatic ring is exposed toward
the solvent rearranges as in the predicted docking pose (see
Section S7 and Figure S19). Such results further validate our
active-pharmacophore. The latter is not only able to

Figure 8. t-Distributed Stochastic Neighbor Embedding (t-SNE) plot of the sample chemical library screened (see SI equation S4.2 for details). The
sample library, the molecules denoted as “active” (due to their experimental binding affinity toward SARS-CoV), as well as 7 known SARS-CoV-2
Mpro binders are all plotted in different shades of blue. The 2D representations of a selection of nM affinity SARS-CoV-2Mpro binders colored in the
darkest blue shade (labeled a−d) are shown on the side. Ligands identified in the top 100 of the well-performing structures (“consensus”) are colored
in yellow, while the subset of those that also have a high affinity toward SARS-CoV in experiments are plotted in orange. Lastly, the cocrystallized
ligands are shown in red, with selected ligands shown in 2D representation on the side (labeled e−g). The inset with a magnified portion of the t-SNE
plot is reported at the bottom of the figure. The “active” molecules appear to be more chemically diverse than the SARS CoV-2 Mpro cocrystallized
ligands since they are spread over all the t-SNE plot, while the cocrystallized ligands mostly cluster in the bottom part of the plot. This region
corresponds to peptides covalently bound to SARS-CoV-2 Mpro-C145 (PDB IDs: 6LU7, 6LZE, 6M0K, 6WTJ, 6WTK, 6WTT, 6XA4, 6XBH, 6XBG,
6XBI, 6Y2F, 6Y2G, 6YZ6, 6Z2E, 7BQY, 7BRR, 7C8R, 7C8T, and 7C8U, see Table S1).
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discriminate the nM-binders of SARS-CoV-2 Mpro (IC50≤ 400
nM) from the rest, but it also identifies key specific transferable
and not-transferable binding features of nM SARS-CoV Mpro
binders to SARS-CoV-2 Mpro ones.
Taken together, these results suggest that our active-

pharmacophore is a fair representation of the SARS-CoV-2
Mpro blueprint in the chemical space. Namely, it correctly
represents a set of binding features compatible with the induced
SARS-CoV-2 conformational space of the binding site. The
latter is in part determined by the ligand upon binding and in
part it depends on the residues differing in SARS-CoV-2 Mpro
with respect to SARS-CoV Mpro, as also shown in Bzoẃka et
al.15

A cheminformatics analysis of the molecules that were active,
but not part of our “consensus active” set is offered in the SI (see
section S8, Figure S20).
Identification of nM-Binders of SARS-CoV-2 Mpro.We

considered a set of publicly available compounds within the E4C
network,79 from the EU-OPENSCREEN Bioactive Compound-
Library,80 coming from the PROBE MINER repository.79,81

The set was rescored based on theDice similarity of their docked
pose to our active-pharmacophore (see Methods). Benserazide
(EOS100736) and Myricetin (EOS100814) compounds (see
schemes in Figure 7A,B) were predicted as nM-binders of SARS-
CoV-2Mpro candidates. SARS-CoV-2Mpro biochemical assays
performed here established the accuracy of our predictions by
measuring IC50 values as low as 140 nM and 220 nM,
respectively (see section S9.1−2), Figure S21).
The best docking pose of Myricetin, as coming out from our

virtual screening procedure, shows an orientation which is
comparable to the one observed in the newly solved X-ray
structure with PDB ID 7B3E (resolution 1.77 Å, see Figure 7C).
In this pose, the bicyclic rings in the two structures nicely
overlap, while the 3,4,5-trihydroxyphenyl moiety is rotated in
our predicted pose with respect to the crystallographic one. By
refining the docking pose (see section S9.3 and Figure 7C) both
the bicyclic ring and the 3,4,5-trihydroxyphenyl moiety assumes
an orientation nearly identical to the one found in the X-ray pose
after covalent binding with Cys145, with an overall RMSD of
0.46 Å between the refined predicted pose and the crystallo-
graphic one. Interestingly, Baicalin features the same isoflavone
scaffold as Myricetin, yet it binds the protein with a different
orientation, as shown by X-ray structure determination (PDB ID
6M2N). Our procedure predicted this orientation, although the
best binding pose differed more significantly from the
crystallographic one than the one obtained with Myricetin
(see section S9.4, Figure S22).
Myricetin and Benserazide contain polyhydroxy-phenolic

moieties, which are considered promiscuous due to their redox
features and also to the presence of a high number of close
Hbond acceptor/donor sites that allow them to satisfy several
3D-pharmacophores. Nonetheless, these classes of compounds
have, respectively, reached approved clinical usage (i.e., for
Parkinson’s disease82 and alcohol use disorder83) and are in use
in our diet like other polyhydroxyphenol-containing products.84

Also, Quercetin, structurally similar to Myricetin, was identified
as a mild inhibitor of SARS-CoV-2 Mpro (Ki ∼ 7 μM).85

SARS-CoV-2 Mpro is an important target for COVID-19
drug discovery because of its key role for viral replication and
low similarity with human proteases.3,4 Given its conserved
nature with respect to the other Mpros across Coronaviruses
and the presence of a huge number of crystallized structures (apo
and holo), several drug repurposing and structure-based drug

design campaigns have been conducted.17−26 Unfortunately,
this has so far led to only 10 SARS-CoV-2Mpro inhibitors in the
nM range (IC50≤ 400 nM).78,86 This contrasts with SARS-CoV
Mpro, for which 127 inhibitors are known in this
range.44,45,50,52,54,58−60,63 The observed difficulties in identifying
potent SARS-CoV-2 Mpro inhibitors was suggested to arise
from the large plasticity of the binding site,15 along with other
factors (also observed for SARS-CoVMpro), including induced-
fit conformational changes and formation of covalent bonds
upon ligand binding.27,29,77 Therefore, the available binding
space can differ significantly from ligand to ligand.
Accounting for receptor binding site flexibility in molecular

docking is a significant challenge.87 This can be partially
overcome with a careful choice of the most appropriate receptor
and reference ligand(s) or by performing ensemble docking
approaches.88,89 While it seems logical to employ multiple
protein structures and ligands where available, very few
published studies have systematically evaluated the impact of
using additional information on proteins’ and ligands’
structure.90 These studies arrive at the conclusion that an
alternative structure-based design approach may be needed to
define pharmacophores based on the binding site and use them
to search large chemical databases.91,92

Our paper exploits the particularly large amount of structural
information available for Mpro (∼200 X-ray structures in the
apo and in the holo forms), along with a very longMD simulation
from D. E. Shaw Research35 and structures generated here by
enhanced sampling of the binding site dynamics. First, we have
determined the potential druggability of each of the ∼30 000
Mpro conformations generated from these sources, as calculated
using TRAPP and SiteMap druggability tools.36,39,41 Next, we
have used a sample library to understand how selected potential
high-druggable protein conformations perform when probed
with a diverse chemical space, here defined by ∼13 000
compounds (see t-SNE plot in Figure 8, and methods for
details).
Our library included also “active”molecules, that is, molecules

that are known to bind with nM affinity (pIC50 > 6) to SARS-
CoV Mpro. Therefore, virtual screenings against ∼200 protein
conformations were performed. We found that only a few of
these highly druggable (“well-performing”) conformations
recognize a sufficiently high percentage of such “active”
molecules: the ones in common among the well-performing
structures, “consensus active” molecules, represent a small
subgroup of the overall “active” molecules’ ensemble with
specific features. In particular, the “consensus active” (16
molecules) are mostly clustered in two main areas of the t-SNE
plot, both corresponding to peptidomimetic structures but
differing from each other by the presence of a benzothiazole
moiety and an additional peptide bond. The specific protein−
ligand interaction fingerprint (PLIF) of the “consensus active”
molecules strikingly resembles the one emerging from the
SARS-CoV-2 Mpro cocrystallized ligands. The latter indeed
cluster in the same region of the t-SNE plot. Notably, no
consensus was found for the poorly performing structures.
We then combined the crystallographic and the virtual

screening PLIFs (i.e., the chemical space emerging from
experimental structures and the chemical space selected upon
virtual screening).
Within the limitations of the procedure (see Limitations

paragraph), we obtained an “active-pharmacophore” that we
first used against a selection of SARS-CoV-2 Mpro binders (46
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molecules): the latter are very diverse and they are spread overall
the t-SNE plot (Figure 8).
The active-pharmacophore could predict known nM-binders

for SARS-CoV-2 Mpro (12 molecules out of the total of 46),
which are also clustered in the peptides and peptidomimetics
region of the t-SNE plot, and discriminate these from the μM
ones. Moreover, it could also discriminate the transferable from
the nontransferable binding features from SARS-CoV to SARS-
CoV-2 Mpro.
The former include the interaction with the catalytic dyad

residues along with (i) His163, the mutation of which to Ala
inactivates SARS-CoV Mpro93 and (ii) Glu166, which plays a
role in the dimerization (required for enzymatic activity) in
SARS-CoV.94 In addition, its interactions with the N-finger of
the other subunit assist the correct orientation of residues in the
binding pocket for both proteins.94,95 Also (iii) Gln189, which
correlates evolutionally with residues from the Cys44-Pro52
loop in both proteins, which was shown to regulate ligand
entrance to the binding site15 in both proteins; and (iv) Ser144,
the mutation of which to Ala hampers the catalytic activity in
SARS-Cov Mpro.96

The nontransferable binding features include the ability to
place large hydrophobic/aromatic groups in the part of the
cavity defined by Thr25 and Thr26 that is partially lost in SARS-
CoV-2 Mpro compared to SARS-CoV Mpro. This appears to
affect Hbonds with Gly143 and Ser144. Accordingly, this cavity
is empty or occupied by a smaller aromatic group such as the
benzyl ring in all the known nM-binders and the cocrystallized
ligands of SARS-CoV-2 Mpro. In contrast, several of the known
nM-binders of SARS-CoV Mpro have benzothiazole or
analogous bulky aromatic groups in this position.
We finally used our active-pharmacophore against a public

library of compounds. We predicted two ligands to be nM for
SARS-CoV-2: Benserazide and Myricetin. While in-cell anti-
cytopathic effects and virus yield reduction assays showed a
modest effect of those compounds, they are nevertheless
confirmed to be nM binders of SARS-CoV-2 Mpro in binding
assays (Figure S21).97 Our predicted pose of Myricetin is in
excellent agreement with the independently solved X-ray crystal
structure of the complex (Figure 7C). This was not expected
since Baicalin, bearing the same isoflavone scaffold of Myricitin,
binds in a reversed orientation (PDB ID 6M2N). Thus, the
pharmacophore not only successfully predicts poses in the
highly flexible binding site of SARS-CoV-2 Mpro, but it also
discriminates between different orientations of quite similar
chemical scaffolds.
Our methodological approach also demonstrates that only a

small fraction of the binding sites of the apo protein from crystal
structures or simulations are similar to those of the well-
performing holo structures. However, even the conformations
with high structural similarity and high druggability scores,
generated by molecular dynamics simulations, yielded low
enrichment factors in virtual screening. Thus, druggability
assessmentmethods fail to discriminate between small structural
variations of the binding site that lead to successful performance
in virtual screening. These small structural differences
significantly impact ligand binding predictions as observed in
our virtual screening campaigns. They could also be a source of
disappointing results in other virtual screening campaigns on
Mpro carried out so far by research groups world-
wide.19,25,30,31,98 These observations indicate that there is
space to improve the discriminatory ability of druggability
scores by training on a wider range of structures generated by

simulation as well as crystallography. Moreover, they highlight
the need to develop simulation methods to generate holo-like
protein structures for virtual screening.
This work was carried out in part within the framework of the

EXSCALATE4CORONAVIRUS (E4C)79 project. We here
used 400 000 core-hours on the JURECA supercomputer in the
Jülich Supercomputing Centre for the virtual screenings. Our
work demonstrates how an advanced computational procedure
combined with experimental validation can correctly predict
structure and affinity trends of effective hit molecules for a
challenging protein target. This combined approach may
provide a powerful drug discovery strategy, especially against
pandemic viruses and other pathogens, for which the immediate
identification of effective treatments is of paramount impor-
tance.

■ EXPERIMENTAL PROCEDURES
Protein Expression, enzymatic activity methodologies and
primary screen and dose response are reported in the SI
(section S9.1 and S9.2)

Site Analysis of SARS-CoV-2 Main Protease Structure.
The SiteMap tool,99 together with the TRAPP approach41 were
used for the characterization of the proteins’ binding sites.
TRAPP provides tools for (i) the exploration of binding pocket
flexibility and (ii) the estimation of druggability variation in an
ensemble of protein structures.41

Druggability Calculation. Two druggability indices from
SiteMap tool were used: The SiteScore is based on a weighted
sum of several properties accounting for the degree of pocket
enclosure, size, and the balance between hydrophobic and
hydrophilic character in the binding site. The Dscore uses
almost the same properties as SiteScore but different coefficients
are used and hydrophilicity is not considered.
In the TRAPP tool, the active site pocket of SARS-CoV-2

Mpro was defined by assigning a distance of 3.5 Å around all
atoms of the ligand N3 from PDB ID 6LU7. This distance was
used to detect residues that potentially may contribute to the
binding site and to define dimensions of a 3D grid that was then
used to compute the binding pocket shape. Then the binding
pocket for each structure was mapped on the 3D grid. The
druggability score of this pocket was computed using linear
regression (LR) or a convolutional neural network (CNN) and
scaled between 0 and 1.40 Scores were calculated for all
conformations generated for 6LU7 and 6Y2G from LRIP and
tConcoord, as well as for frames collected every 10 ns from the
100 μs spanning classical MD trajectory generated by starting
from the crystal structure with PDB ID6Y84by D. E. Shaw
Research.35 For each structure, a set of the binding site residues
that line the binding pocket was detected using the procedure
implemented in the TRAPP package. Specifically, each residue
was characterized by the number of atoms that contact with the
binding pocket.

Structure Selection.We selected all structures generated by
tConcoord, LRIP (see SI section S10), or extracted from MD
trajectories, within the top 10% of the LR and CNN druggability
score. These structures were then clustered by the binding site
similarity into eight clusters using k-means procedure (see
Figure S8 and also section S4.3 for more details).

Virtual Screening and Library Preparation. Virtual
screening studies were performed on a repurposing library
including all the commercialized and under development drugs
retrieved in the Clarivate Analytics Integrity database, merged
with the internal chemical library fromDompe ̀pharma company
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of already proven safe-in-man compounds and the Fraunhofer
Institute BROAD Repurposing Library, removing duplicate
structures. Known inhibitors of SARS-CoVMpro were retrieved
from several sources including the literature, the Clarivate
Analytics Integrity database, the GOSTAR database, and the
data repository shared by the Global Health Drug Discovery
Institute. Library preparation is reported in the SI section S10.
Virtual screening was conducted on the 216 selected receptors
by both Fred100 and Glide68 docking programs. The protocols
are reported in the SI section S10.
Fingerprints Generation. Results are reported in the SI

(section S10).
Limitations. As with any modeling study, our models also

have limitations. Protein mobility is most probably increased by
the presence of moving and displaceable water molecules.101

Solvation effects can account for up to 100-fold difference in
binding affinity (corresponding to ∼3 kcal/mol in binding free
energy102). Our docking protocols do not consider individual
water molecules. Also, we in part rely on scoring functions to
rank and select the best binding poses. Current docking/scoring
methods102,103 were suggested to provide reasonable predic-
tions of ligand binding modes, but their performance can be
disappointing. Additionally, those methods are often system-
dependent, making it very hard to decide which scoring function
is suitable for the chosen target protein. To partially overcome
these issues, we carefully setup Glide and Fred docking
procedures by reproducing a set of covalent and noncovalent
SARS-CoV-2Mpro-ligand crystal poses (Table S7) and by using
other criteria, as ROC and EF to establish the quality of our
docking procedure.
Moreover, we compare assay-dependent IC50 data coming

from different laboratories. In addition, several of the known
Mpros inhibitors are covalently bound to the protein.
Irreversible (covalent) enzyme inhibitors cannot be unambig-
uously ranked for biochemical potency by using IC50 values,
because the same IC50 value could originate either from
relatively low initial binding affinity accompanied by high
chemical reactivity, or the other way around.104 In other words,
the important quantity to be considered would be the rate of
covalent modification, (kinact/Ki), that describes the efficiency
of covalent bond formation resulting from the potency (Ki) of
the first reversible binding event and themaximumpotential rate
(kinact) of inactivation.105 This information is unfortunately not
available for most of the ligands here considered.
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Jülich 52425, Germany; Faculty of Mathematics, Computer
Science and Natural Sciences, RWTH Aachen, Aachen 52062,
Germany

Cathrine Bergh − Science for Life Laboratory & Swedish e-
Science Research Center, Department of Applied Physics, KTH
Royal Institute of Technology, Stockholm 11428, Sweden

Maria Kuzikov − Department of Screening Port, Fraunhofer
Institute for Translational Medicine and Pharmacology ITMP,
Hamburg 22525, Germany; orcid.org/0000-0001-8771-
1865

Elisa Costanzi − Elettra-Sincrotrone Trieste S.C.p.A.,
Basovizza, Trieste 34149, Italy

Candida Manelfi−Dompé Farmaceutici SpA, L’Aquila 67100,
Italy

Paola Storici − Elettra-Sincrotrone Trieste S.C.p.A., Basovizza,
Trieste 34149, Italy

Philip Gribbon − Department of Screening Port, Fraunhofer
Institute for Translational Medicine and Pharmacology ITMP,
Hamburg 22525, Germany

Andrea R. Beccari − Dompé Farmaceutici SpA, L’Aquila
67100, Italy

Carmine Talarico − Dompé Farmaceutici SpA, L’Aquila
67100, Italy

Francesca Spyrakis − Department of Drug Science and
Technology, University of Turin, Turin 10125, Italy;
orcid.org/0000-0002-4016-227X

Erik Lindahl − Science for Life Laboratory& Swedish e-Science
Research Center, Department of Applied Physics, KTH Royal
Institute of Technology, Stockholm 11428, Sweden; Science for
Life Laboratory, Department of Biochemistry and Biophysics,
Stockholm University, Solna SE-106 91, Sweden

Andrea Zaliani − Department of Screening Port, Fraunhofer
Institute for Translational Medicine and Pharmacology ITMP,
Hamburg 22525, Germany; orcid.org/0000-0002-1740-
8390

Paolo Carloni− Institute for Neuroscience andMedicine (INM-
9), Institute for Molecular Neuroscience and Neuroimaging
(INM-11), and Institute for Advanced Simulations (IAS-5)
“Computational biomedicine”, Forschungszentrum Jülich,

ACS Pharmacology & Translational Science pubs.acs.org/ptsci Article

https://doi.org/10.1021/acsptsci.0c00215
ACS Pharmacol. Transl. Sci. 2021, 4, 1079−1095

1091

http://pubs.acs.org/doi/suppl/10.1021/acsptsci.0c00215/suppl_file/pt0c00215_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsptsci.0c00215/suppl_file/pt0c00215_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsptsci.0c00215/suppl_file/pt0c00215_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsptsci.0c00215/suppl_file/pt0c00215_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsptsci.0c00215/suppl_file/pt0c00215_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsptsci.0c00215?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acsptsci.0c00215/suppl_file/pt0c00215_si_001.pdf
http://orcid.org/0000-0002-2032-4630
http://orcid.org/0000-0002-2032-4630
mailto:g.rossetti@fz-juelich.de
http://orcid.org/0000-0002-0730-6796
http://orcid.org/0000-0001-8771-1865
http://orcid.org/0000-0001-8771-1865
http://orcid.org/0000-0002-4016-227X
http://orcid.org/0000-0002-4016-227X
http://orcid.org/0000-0002-1740-8390
http://orcid.org/0000-0002-1740-8390
pubs.acs.org/ptsci?ref=pdf
https://doi.org/10.1021/acsptsci.0c00215?rel=cite-as&ref=PDF&jav=VoR


Jülich 52425, Germany; Faculty of Mathematics, Computer
Science and Natural Sciences, RWTH Aachen, Aachen 52062,
Germany; orcid.org/0000-0002-9010-0149

Rebecca C. Wade − Molecular and Cellular Modeling Group,
Heidelberg Institute for Theoretical Studies (HITS),
Heidelberg 69118, Germany; Zentrum für Molekulare Biologie
der University Heidelberg, DKFZ-ZMBH Alliance, Heidelberg
69120, Germany; Interdisciplinary Center for Scientific
Computing (IWR), Heidelberg University, Heidelberg 69120,
Germany; orcid.org/0000-0001-5951-8670

Francesco Musiani − Laboratory of Bioinorganic Chemistry,
Department of Pharmacy and Biotechnology, University of
Bologna, Bologna 40126, Italy; orcid.org/0000-0003-
0200-1712

Daria B. Kokh − Molecular and Cellular Modeling Group,
Heidelberg Institute for Theoretical Studies (HITS),
Heidelberg 69118, Germany; orcid.org/0000-0002-4687-
6572

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsptsci.0c00215

Author Contributions
#J.G., S.A., and A.H. equally contributed. E.L., A.Z., P.C.,
R.C.W., F.M., D.B.K., and G.R. shared senior authorship. J.G.
and S.A. performed all the docking experiments, the PLIF and
pharmacophore calculations, as well as editing most of the
figures and tables of the manuscript. A.H. and D.B.K. performed
the TRAPP analyses. B.P.J. collected and analyzed the X-ray
structures. F.M. andG.R. performed the SiteMap analyses. C.M.,
C.T., and A.B. took care of the library collection. C.B. and E.L.
performed the MSM analyses. M.K., P.G., and A.Z. performed
the experiments. E.C. and P.S. solved the crystal structure. F.S.,
A.Z., P.C., R.C.W., F.M., D.B.K., and G.R. wrote the manuscript
and contributed to the design of the research and the analysis of
the data. All authors have given approval to the final version of
the manuscript.
Notes
The authors declare no competing financial interest.
Tables S1−S3 in .xlsx format are available at DOI: 10.5281/
zenodo.4299967. The data sets (.csv, .xlsx) generated during this
study are available at DOI: 10.5281/zenodo.4299967.

■ ACKNOWLEDGMENTS

This research was conducted under the project “EXaSCale
smArt pLatform Against paThogEns for Corona Virus−
Exscalate4CoV” founded by the EU’s H2020-SC1-PHE-
CORONAVIRUS-2020 call, Grant No. 101003551. Additional
computational resources were provided by the Swedish National
Infrastructure for Computing (SNIC) and the Knut and Alice
Wallenberg Foundation. D.B.K and R.C.W. acknowledge the
support of the Klaus Tschira Foundation. G.R., P.C., D.B.K., and
R.C.W. acknowledge the Human Brain Project funded by the
European Union’s Horizon 2020 Framework Programme for
Research and Innovation under the Specific Grant Agreement
No. 945539 (Human Brain Project SGA3). G.R., A.Z., P.S., and
P.C. acknowledge the E4C consortium. We would also like to
thank Dr. Katja Herzog (EU-OPENSCREEN ERIC) for
providing access to the EU-OPENSCREEN ERIC Bioactive
Compound Library data.80

■ REFERENCES
(1) Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu,
Y., Tao, Z.-W., Tian, J.-H., Pei, Y.-Y., Yuan, M.-L., Zhang, Y.-L., Dai, F.-
H., Liu, Y., Wang, Q.-M., Zheng, J.-J., Xu, L., Holmes, E. C., and Zhang,
Y.-Z. (2020) A new coronavirus associated with human respiratory
disease in China. Nature 579 (7798), 265−269.
(2) Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W.,
Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., Chen, H.-D., Chen, J., Luo, Y.,
Guo, H., Jiang, R.-D., Liu, M.-Q., Chen, Y., Shen, X.-R., Wang, X.,
Zheng, X.-S., Zhao, K., Chen, Q.-J., Deng, F., Liu, L.-L., Yan, B., Zhan,
F.-X., Wang, Y.-Y., Xiao, G.-F., and Shi, Z.-L. (2020) A pneumonia
outbreak associated with a new coronavirus of probable bat origin.
Nature 579 (7798), 270−273.
(3) Chen, Y., Liu, Q., and Guo, D. (2020) Emerging coronaviruses:
Genome structure, replication, and pathogenesis. J. Med. Virol. 92 (4),
418−423.
(4) Xue, X., Yu, H., Yang, H., Xue, F., Wu, Z., Shen, W., Li, J., Zhou, Z.,
Ding, Y., Zhao, Q., Zhang, X. C., Liao, M., Bartlam, M., and Rao, Z.
(2008) Structures of Two Coronavirus Main Proteases: Implications
for Substrate Binding and Antiviral Drug Design. J. Virol. 82 (5), 2515−
2527.
(5) Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J. R., and
Hilgenfeld, R. (2003) Coronavirus Main Proteinase (3CLpro)
Structure: Basis for Design of Anti-SARS Drugs. Science 300 (5626),
1763.
(6) Naqvi, A. A. T., Fatima, K., Mohammad, T., Fatima, U., Singh, I.
K., Singh, A., Atif, S. M., Hariprasad, G., Hasan, G.M., andHassan,M. I.
(2020) Insights into SARS-CoV-2 genome, structure, evolution,
pathogenesis and therapies: Structural genomics approach. Biochim.
Biophys. Acta, Mol. Basis Dis. 1866 (10), 165878−165878.
(7)Wang,M., Yan, M., Xu, H., Liang,W., Kan, B., Zheng, B., Chen, H.,
Zheng, H., Xu, Y., Zhang, E., Wang, H., Ye, J., Li, G., Li, M., Cui, Z., Liu,
Y.-F., Guo, R.-T., Liu, X.-N., Zhan, L.-H., Zhou, D.-H., Zhao, A., Hai, R.,
Yu, D., Guan, Y., and Xu, J. (2005) SARS-CoV infection in a restaurant
from palm civet. Emerging Infect. Dis. 11 (12), 1860−1865.
(8) Haagmans, B. L., and Osterhaus, A. D. M. E. (2006) Nonhuman
primate models for SARS. PLoS Med. 3 (5), e194−e194.
(9) Yang, S., Chen, S.-J., Hsu,M.-F., Wu, J.-D., Tseng, C.-T. K., Liu, Y.-
F., Chen, H.-C., Kuo, C.-W., Wu, C.-S., Chang, L.-W., Chen, W.-C.,
Liao, S.-Y., Chang, T.-Y., Hung, H.-H., Shr, H.-L., Liu, C.-Y., Huang, Y.-
A., Chang, L.-Y., Hsu, J.-C., Peters, C. J., Wang, A. H. J., and Hsu, M.-C.
(2006) Synthesis, Crystal Structure, Structure−Activity Relationships,
and Antiviral Activity of a Potent SARS Coronavirus 3CL Protease
Inhibitor. J. Med. Chem. 49 (16), 4971−4980.
(10) Patick, A. K., and Potts, K. E. (1998) Protease inhibitors as
antiviral agents. Clin. Microbiol. Rev. 11 (4), 614−627.
(11) Zhong, N., Zhang, S., Zou, P., Chen, J., Kang, X., Li, Z., Liang, C.,
Jin, C., and Xia, B. (2008) Without Its N-Finger, the Main Protease of
Severe Acute Respiratory Syndrome Coronavirus Can. Form a Novel
Dimer through Its C-Terminal Domain. J. Virol. 82 (9), 4227−4234.
(12) Paasche, A., Zipper, A., Schäfer, S., Ziebuhr, J., Schirmeister, T.,
and Engels, B. (2014) Evidence for substrate binding-induced
zwitterion formation in the catalytic Cys-His dyad of the SARS-CoV
main protease. Biochemistry 53 (37), 5930−46.
(13) Zhang, L., Lin, D., Kusov, Y., Nian, Y., Ma, Q., Wang, J., von
Brunn, A., Leyssen, P., Lanko, K., Neyts, J., de Wilde, A., Snijder, E. J.,
Liu, H., and Hilgenfeld, R. (2020) α-Ketoamides as Broad-Spectrum
Inhibitors of Coronavirus and Enterovirus Replication: Structure-Based
Design, Synthesis, and Activity Assessment. J. Med. Chem. 63 (9),
4562−4578.
(14) Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering,
L., Becker, S., Rox, K., and Hilgenfeld, R. (2020) Crystal structure of
SARS-CoV-2 main protease provides a basis for design of improved α-
ketoamide inhibitors. Science 368 (6489), 409−412.
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