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Article highlights: 1 

 The type I interferon pathway may be a central player in APS pathogenesis and 2 

development 3 

 Type I interferon signature have shown promising results in discriminating 4 

distinct APS phenotypes 5 

 The translational application of the type I interferon signature in routine clinical 6 

practice, although fascinating, needs further investigation 7 

 Heterogeneous methodological approaches in type I interferon signature 8 

quantification represent a major limitation for its translational applicability in 9 

APS setting  10 

 The use of therapeutic agents directly or indirectly targeting interferon 11 

production and functions is promising, especially for those aPL-positive patients 12 

who presented higher IFN-I signature 13 

 14 

Abstract 15 

Introduction: Antiphospholipid Syndrome (APS) is a systemic autoimmune disease 16 

with a complex multifactorial pathogenesis, combining genetic background, traditional 17 

cardiovascular risk factors, disease-specific features such as the presence of 18 

antiphospholipid antibodies (aPL), and an imbalance of various immune system 19 

functions. Recent data support the role of interferons (IFN), especially type I IFN (IFN-20 

I), in the onset and development of APS clinical manifestations, including thrombotic 21 

events and obstetric complications. Areas covered: In this review we aimed to discuss 22 

the growing body of evidences on the relevance of IFN-I pathways in APS, both from a 23 

basic mechanistic perspective, focusing on its possible use in disease/patients 24 

stratification. The IFN-I signature has shown promising, although preliminary, results in 25 

segregating aPL-positive subjects by aPL profile, association with other autoimmune 26 

conditions such as lupus, age at onset, and current treatment, among others. Expert 27 

opinion: To date, the scarce available data as well as methodological and technical 28 

heterogeneity among studies limit the comparability of the results, thus requiring further 29 

validation to translate these findings to routine clinical practice. Therefore, further 30 

research is required in pursuit of more nuanced patient profiling and the development of 31 

new immunomodulatory therapeutic strategies for APS beyond anti-coagulant and anti-32 

platelet agents.  33 
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 1 

1. Introduction 2 

The Antiphospholipid Syndrome (APS) is clinically defined by the occurrence of 3 

vascular thromboses, both venous and arterial, and by pregnancy morbidity events, such 4 

as recurrent unexplained early miscarriages, foetal deaths and late obstetrical 5 

complications in patients persistently positive for antiphospholipid antibodies (aPL), 6 

including lupus anticoagulant (LA), anti-cardiolipin (aCL), and anti-β2-glycoprotein I 7 

(aβ2GPI) antibodies [1]. Commonly, affected patients manifest exclusively one of the 8 

two forms, either thrombotic or obstetric APS, and only a minority of subjects have 9 

characteristics of both, suggesting the existence of pathogenic mechanisms that are only 10 

partially overlapping [2]. 11 

While aPL positivity is necessary to confirm a diagnosis of APS, their mere presence 12 

seems not to be sufficient to cause the full APS pathophysiology, and the hypothesis of 13 

a second trigger, therefore called “second hit”, is usually suggested [3]. Furthermore, 14 

since its first description, the clinical spectrum of APS has been expanded, including a 15 

wide range of pathologic features, the so-called “extra criteria manifestations”, such as 16 

cardiac valve disease, cognitive impairment and haematological abnormalities, which 17 

cannot be explained solely by the hypercoagulable state typical of the disease [4]. In 18 

parallel, new autoantibody specificities and pathogenic pathways have been identified 19 

and their role in APS pathogenesis is emerging with variable degrees of relevance to 20 

APS clinical scenarios [5–11]. Overall, these advances reflect the complex 21 

multifactorial nature of APS pathogenesis and support the difficulties encountered by 22 

physicians in managing this systemic condition [12].  23 

Interferons (IFNs) are a large family of proteins with autocrine and paracrine actions. 24 

IFNs are mostly secreted by infected cells in response to viral infections but they also 25 

play numerous roles in modulating innate and adaptive responses, including in cancer 26 

protection and autoimmunity. Based on their receptors, IFNs have been categorized into 27 

three main distinct groups: IFN type I (including IFN-α and IFN-β among others), II, 28 

and III. These groups are further divided into subtypes based on their structural and 29 

antigenic characteristics [13]. 30 

Type I IFN (IFN-I) exert several crucial functions, such as balancing the innate immune 31 

response and favouring immunologic memory and antigen-specific T and B cells 32 
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responses. Nowadays, IFN-I is also considered a key player in the initiation, progression 1 

and treatment response of a wide number of immune-rheumatic diseases, such as 2 

systemic lupus erythematosus (SLE), Sjӧgren’syndrome, systemic sclerosis, rheumatoid 3 

arthritis (RA) and myositis [14]. 4 

In this review, we aimed to summarise the available evidence regarding the pathogenic 5 

pathways and mechanisms associated with IFN-I activation in APS, as well as potential 6 

clinical and therapeutic implications.  7 

 8 

2. Interferon activation and signature in APS patients: pathogenic pathways and 9 

mechanisms  10 

2.1 Sources of type I interferons in APS 11 

2.1.1 Cells producing type I interferons  12 

Plasmacytoid dendritic cells (pDCs) recognize viruses via toll like receptors (TLRs) and 13 

release IFN-I, thus modulating anti-viral responses [15,16]. pDCs are also known to be 14 

major producers of the specific IFN-I, interferon alpha (IFN-α) in many autoimmune 15 

diseases [17–22]. Beyond pDCs, fibroblasts [23], epithelial cells [24], endothelial cells 16 

[25], and neutrophils [26,27] can be primed to produce IFN-I. Which cells are the most 17 

important producers of IFN-I in APS remains to be determined. 18 

2.1.2 TLR-triggered generation of type I interferon 19 

In 2011, Prinz et al. [28] demonstrated increased expression of TLR7/8 by peripheral 20 

blood mononuclear cells (PBMCs) in the specific population of APS patients. In this 21 

study exposing pDCs to either total IgG fractions from patients or non-cofactor-22 

dependent monoclonal aPL promoted IFN-α expression in a TLR7-dependent manner; 23 

this only occurred in the presence of traditional TLR7 ligands such as single-stranded 24 

RNA, suggesting that aPL sensitize pDCs to these ligands [28]. This ligand dependence 25 

is somewhat reminiscent of lupus, where IFN-I induction likely depends on the presence 26 

of both RNA and ribonucleoprotein-binding antibodies [29–33]. From a mechanistic 27 

standpoint, aPL appeared to prime pDCs to internalize RNA, while also promoting 28 

translocation of TLRs from the endoplasmic reticulum to the endosome [28]. All these 29 

events were downstream of endosomal NADPH activation and superoxide production, 30 

as inhibiting either blocked aPL-mediated effects [28].  Based on these findings, it has 31 
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been suggested that, irrespective of the concomitant presence of SLE,  aPL are able to  1 

directly maximize the sensitization to TLR7. This could represent, therefore, an 2 

additional pathogenic factor in APS and in aPL- positive SLE patients. In the context of 3 

SLE, a large amount of data indicates that different TLRs, mainly TLR2-5 and TLR7-9, 4 

are involved in SLE susceptibility, onset, and progression [34]. Regarding the 5 

production of IFN-I in SLE patients, it is recognized that pDCs are induced via TLR9 6 

stimuli to produce IFN-α, increasing the production of B cell activating factor (BAFF), 7 

which in turns activates B cells autoreactivity [35]. In addition, IFN-α levels are 8 

reported to correlate with TLR5, TLR7, and TLR9 mRNA in PBMCs of SLE patients 9 

[36].  10 

It is worth mentioning that other TLRs, such as TLR2 and TLR4, which are not directly 11 

linked to IFN-I, are also involved in APS pathogenesis. They have been shown to have 12 

a central role in thrombosis, endothelial dysfunction, and inflammatory cytokine and 13 

chemokine production, with their activation mediated by the presence of aPL, especially 14 

aβ2GPI IgG and aβ2GPI IgG/β2GPI immune complexes [37].   15 

2.1.3 Potential connections between β2-glycoprotein I and type I interferon 16 

β2GPI, a circulating phospholipid-binding protein with roles in innate immunity and 17 

apoptotic cell clearance, is the most studied antigen for aPL [38–41]. Using a lupus 18 

mouse model that relies on duplication of TLR7, Giannakopoulos et al. [42] found 19 

impaired apoptotic cell clearance when β2GPI was knocked out. The knockout mice also 20 

demonstrated higher IFN-I signatures, higher autoantibody titers, and an exaggerated 21 

lupus phenotype as compared with the β2GPI-expressing mice [42]. The Authors 22 

speculated on a TLR7 inhibitory function of β2GPI in this model, which might be 23 

disrupted by aPL [42]. To this end, several studies have found a correlation between the 24 

presence of aβ2GPI antibodies and the IFN-I signature in primary APS patients [43–45]. 25 

One study showed that while IFN-I levels in patients with primary APS, SLE only, and 26 

SLE with APS were similar, and aβ2GPI positivity was correlated with higher IFN-I 27 

score in primary APS patients. This suggests there may be different and independent 28 

pathways that drive disease pathogenicity [46]. 29 

An area for potential future research is the fact that basal levels of IFN-I appear to be 30 

maintained by commensal bacteria [47–50]. Interestingly, a recent study hinted that the 31 

commensal bacterium Roseburia intestinalis, which has homologous sequences to 32 
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β2GPI, may be a nidus of autoimmunity in APS patients [51]. The extent to which the 1 

microbiome may be contributing to aPL and/or IFN-I production in APS is an area we 2 

expect to see investigated in the coming years.  3 

2.1.4 MicroRNA and type I interferon 4 

MicroRNAs are short non-coding RNA molecules that bind to the 3’ end of untranslated 5 

mRNAs and reduce their translation, thereby regulating gene expression [52]. There is 6 

ample evidence that specific microRNAs destabilize and thereby suppress IFN-pathway 7 

transcripts in different cell types; not surprisingly, dysregulation of these microRNAs 8 

have been associated with autoimmune diseases [52–59]. In a recent study, global pDC 9 

microRNA expression was found to be downregulated in APS patients (both primary 10 

and associated with SLE), where it tracked with the IFN-I signature [60]. Pathway 11 

analysis of the downregulated microRNA target genes demonstrated “pDC activation” 12 

as a regulated pathway, thereby hinting at interplay between pDCs, microRNAs, and 13 

IFN-I [60]. Interestingly, related studies have found APS patient microRNAs to be 14 

associated with accelerated atherosclerosis and oxidative stress, as well as the 15 

prothrombotic phenotype inherent to many APS patients [61,62]. 16 

2.1.5 Neutrophil extracellular traps and type I interferon  17 

Neutrophil extracellular traps (NETs) are extracellular webs of DNA and microbicidal 18 

proteins that have the potential to cause tissue damage, trigger endothelial activation, 19 

and serve as a source of autoantigens [63–65]. As compared with healthy neutrophils, 20 

APS neutrophils release NETs in an exaggerated fashion [64,66], while administration 21 

of aPL to mice triggers large thrombi enriched in NETs [67]. APS patients also appear 22 

to have increased circulating numbers of so-called low-density granulocytes 23 

(LDGs)[68], which have a lower threshold to release NETs as compared with normal-24 

density neutrophils. In lupus, it is well established that NETs activate pDCs via TLRs 25 

and thereby induce production of IFN-I, which in turn primes neutrophils to release 26 

more NETs [64,69,70]. Interestingly, recent data showed that while augmented NET 27 

release and an increase in LDG numbers were observed in those SLE patients who 28 

display higher IFN-I signatures, LDG numbers did not associate with IFN-I signatures 29 

in APS [71]. These findings, although preliminary, further strengthen the idea of APS 30 

and SLE as distinct pathological entities, with different pathogenic pathways and 31 
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underlying mechanisms. Nevertheless, whether NETs are a driver of IFN-I production 1 

in APS setting is still an area deserving of future research [72]. 2 

An interesting study related to this topic reported that SLE patients with a single 3 

nucleotide polymorphism (SNP) in the neutrophil cytosolic factor 1 gene, which 4 

encodes a subunit of NADPH oxidase 2,  not only have higher IFN-I activity (as 5 

compared to SLE patients with the normal genotype), but are also more likely to have 6 

high levels of circulating aPL and to actually develop APS [73]. While overall NET 7 

production in patients with the implicated SNP was apparently impaired due to reduced 8 

production of cellular reactive oxygen species (ROS), neutrophil expression of 9 

mitochondrial ROS was enhanced [73], with mitochondrial ROS being known to trigger 10 

NETs that are particular interferogenic [74]. Another study profiling gene expression of 11 

primary APS neutrophils as compared with control neutrophils found IFIT1 (an IFN-I 12 

regulated gene) as the most upregulated gene [75], hinting at a potential bidirectional 13 

relationship between neutrophils and IFN-I in the context of APS. Many questions still 14 

remain including the extent to which IFN-I may regulate neutrophils in APS.  15 

2.2 Downstream effects of type I interferon in APS 16 

2.2.1 Vascular damage and type I interferon  17 

IFN-I are a well-known driver of the endothelial dysfunction and premature 18 

atherosclerosis inherent to SLE [76,77]. Accelerated endothelial damage and 19 

atherosclerosis have also been recognized in many APS patients [78–81]. In a cohort of 20 

patients with primary APS, Grenn et al. [43] evaluated the association between the IFN-21 

I signature and endothelial progenitor cell (EPC) dysfunction, which have been linked 22 

together in other autoimmune diseases [82–86]. They found that both classic EPCs and 23 

circulating angiogenic cells (CACs, which are myeloid-derived and have proangiogenic 24 

properties) from APS patients, failed to differentiate into mature endothelial cells  [43]. 25 

This defect did not correlate with the presence of aPL, but rather with levels of IFN-I. 26 

Furthermore, blockade of the IFN-I receptor in vitro rescued the differentiation into 27 

healthy endothelial cells [43]. In pursuit of other mechanisms that could lead to vascular 28 

damage in APS, a different group found IFN-I expression to correlate with both 29 

increased tissue factor expression and increased intermediate and non-classical 30 

monocytes, the latter having been associated with cardiovascular disease in SLE and 31 

RA [44]. 32 
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2.2.2 Type I interferon and adaptive immunity 1 

As a bridge between innate and adaptive immunity, IFN-I activate antigen-presenting 2 

cells (APCs), increase the expression of CD86 and MHC class I and II molecules on 3 

APCs, and enable B cell differentiation [87–89]. Specific to humoral immunity, IFN-I 4 

upregulate BAFF on DCs [90] and efficiently trigger BAFF mobilization from 5 

intracellular stores to the cell surface of lupus monocytes [91]. B cells and pDCs from 6 

SLE patients demonstrate increased BAFF expression, which can be decreased by anti-7 

IFN-I agents [91–93]. In APS, clinical studies have found a correlation between BAFF 8 

levels and higher adjusted global APS scores [94]. Higher levels of both BAFF and 9 

IFN-α have also been appreciated in APS patients with adverse pregnancy outcomes, 10 

albeit without a clear correlation between the two cytokines [95]. Whether disrupting 11 

IFN-I activity in APS may also negate BAFF expression is an area deserving of future 12 

research [96], including disease stratification to guide treatment-decision making. 13 

When focusing on pregnancy complications in the context of APS, a very limited 14 

number of studies have observed an association between obstetric events, mainly 15 

preeclampsia and higher IFN-I levels [97], which is in line with previous data from SLE 16 

patients suggesting a role for IFN-α in inducing angiogenic imbalance [98]. Further 17 

studies are needed to elucidate the possible role of IFN-I in pregnancy morbidity in APS 18 

patients.     19 

As discussed above, ligands of TLR7 trigger IFN-I production by pDCs, with 20 

subsequent differentiation of B cells into antibody-producing plasmablasts [99]. 21 

Recently, a study linked a specific TLR7 SNP to higher IFN-I production from APS 22 

PBMCs; the patients also demonstrated increased plasmablast numbers along with 23 

decreased memory and regulatory B cell populations [100]. When studied ex vivo, it 24 

appeared that CD20-negative B cells (a population that includes plasmablasts) were the 25 

most important producers of aPL [100]. These results are notable given that similar 26 

derangements in B cell populations have been found in SLE, where circulating 27 

plasmablasts are predictive biomarkers in at least a subset of patients [100–102]. 28 

 29 

3. IFN signature and APS: from different laboratory techniques to diagnostic and 30 

therapeutic implications  31 
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Due to the rapidly growing body of evidence supporting a role for IFN-I in the 1 

immunopathogenesis of APS, and other systemic diseases, there has been a parallel 2 

interest in capturing the activation of the IFN-I pathway from a translational 3 

perspective. The assessment of the IFN-I pathway activation through the so-called ‘IFN 4 

signature’ has been hypothesized to provide an added value in diagnosis, patient 5 

stratification and treatment decisions in APS. However, despite several efforts, some 6 

obstacles still exist before considering the IFN signature as a biomarker to be used in 7 

the routine clinical setting. To date, the cross-sectional nature of the majority of the in 8 

vivo studies limits clinical validation. Moreover, the heterogeneity of assays used to 9 

measure the IFN signature and IFN activation described in the literature represents a 10 

further challenge to be addressed. In the following section, a summary of the 11 

approaches to capture the IFN signature in APS together with their potential clinical 12 

relevance are discussed. 13 

A major challenge to assess the IFN activation is the great diversity of IFN ligands and 14 

their relatively short half- lives, which hinder our ability to capture IFN activation at the 15 

protein level. Although recent developments such as ultrasensitive single molecule 16 

assays (Simoa) [20] or dissociation-enhanced lanthanide fluorescence immunoassay 17 

(DELFIA)[103] seem to partially overcome these issues, there is limited evidence on 18 

their actual added value. Besides, their use in the setting of APS needs to be explored. 19 

Consequently, most of the available studies focused on the assessment of the cellular 20 

response to IFN-I, that is, the assessment of IFN-inducible gene expression, usually in 21 

whole blood or sorted immune cell populations. These approaches have been conducted 22 

by qPCR classical methods or by large-scale microarrays. Pre-analytical, technical-23 

related, and methodological limitations can be also observed for this approach, the 24 

choice of the candidate IFN-inducible genes and the calculation of the score or signature 25 

being the most evident ones. With a similar rationale, the quantification of IFN-induced 26 

gene encoded proteins in serum has been also explored in APS. Additionally, the use of 27 

cellular assays to measure IFN activity using different cell substrates has been also 28 

proposed. Finally, the identification of epigenetic fingerprints to the IFN signature has 29 

added another layer of complexity to this scenario. In sum, a considerable number of 30 

distinct approaches have been described to measure the IFN signature in APS, although 31 

they cover a notable variety of biological processes and readouts. Consequently, there is 32 

a relatively solid evidence about the presence of the IFN-I pathway in APS, but its 33 
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clinical implication needs to be considered with caution. Although grouped under a 1 

common umbrella, these methods likely provide a different, and probably 2 

complementary, information for the clinical setting.   3 

Microarray studies have revealed that a number of IFN-related genes are differentially 4 

expressed in APS as compared with healthy controls and/or SLE patients, either in 5 

whole blood or in sorted cell subsets (monocytes or neutrophils)[43,44,75,104,105]. 6 

Actually, IFN-related genes were ranked among the most upregulated genes [43,104]. 7 

Although a significant overlap was observed with SLE and SLE-associated with APS, 8 

current evidence suggests that differential, APS-specific components can be found in 9 

the IFN signature, which reinforces differential pathogenic substrates among these 10 

conditions [104], as previously discussed. Interestingly, this specific imprint was related 11 

to mitochondria biogenesis and function and oxidative stress, hence underlining the 12 

links between IFN and mitochondrial activity in APS. Nevertheless, although 13 

interesting from a basic perspective, in order to relate individual genes to complex 14 

pathogenic pathways, the added value of microarray studies for clinical and therapeutic 15 

decisions is uncertain.   16 

Most of the studies analysing the IFN signature in APS are based on gene expression 17 

analyses by qPCR methods. However, a large variation in the number of genes assessed 18 

(from 3 to 41 genes) and a lack of consistent methods to select the target genes 19 

(candidate genes vs unsupervised methods) and score calculations (averages, 20 

normalizations, z-scores, etc.) make difficult to compare the results obtained across 21 

studies [44,106–109]. In general terms, an IFN signature can be distinguished in APS 22 

patients, and both quantitative and qualitative differences seem to emerge compared to 23 

SLE or secondary APS patients. In fact, an IFN signature can be observed in about a 24 

half of the APS patients (38-49%)[44,106], whereas a higher activation could be found 25 

in SLE (70-90%)[44,106,110]. Additionally, not all genes exhibited similar alterations 26 

in APS compared to SLE or secondary APS patients, thus reinforcing their potential 27 

disease-specific involvement. Interestingly, the genes more consistently analysed were 28 

those ubiquitously found to be elevated in systemic diseases, such as MX1, IFI44, 29 

IFI44L or IFIT1. Although the increase in the IFN signature in APS is clear, there is 30 

limited evidence on their actual value as a diagnostic biomarker, and whether it should 31 

be considered a patient subset feature rather than a disease feature is still under debate. 32 

Since the former will be more relevant for patient stratification whereas the latter will be 33 
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for disease diagnosis, this represents a point of major interest for the clinical setting. In 1 

patients with established disease, some studies have highlighted an association between 2 

the IFN signature and diverse disease outcomes, such as antibody status (aβ2GPI 3 

positivity and triple positivity)[43,106], obstetric events [108] or age at onset [108], but 4 

replication studies are needed.  5 

Of note, a recent study from Flessa et al. have moved beyond IFN-I and tried to explore 6 

the significance of a new member of the IFN family, the type III IFNs (IFNλ, 7 

particularly IFNλ1) which is thought to play an additional role in the pathogenesis of 8 

several autoimmune conditions, such as APS [111]. Interestingly, lower IFNλ1 gene 9 

expression in PBMCs showed an independent association with obstetric APS and 10 

pregnancy complications. This data might suggest an impaired function of IFNλ1 in 11 

modulating neutrophil activation and NETs formation leading to foetal damage in the 12 

affected patients. Moreover, the study reported higher levels of IFN-I score/IFNλ1 ratio 13 

in those primary APS patients who presented with triple aPL positivity and aβ2GPI 14 

[111]. Overall, these evidences seem to confirm both the pivotal role of IFNs in APS 15 

pathogenesis and its link with autoantibodies production.  16 

Finally, IFN signature by qPCR has been reported to be influenced by pharmacological 17 

agents, such as hydroxychloroquine (HCQ) [44,106] and statins [44]. 18 

On the one hand, these findings may suggest that the IFN signature could be a 19 

targetable mechanism in APS, as proposed in other conditions. On the other hand, these 20 

results highlight that treatments can be a significant confounding factor for the IFN 21 

signature, hence requiring a dedicated analysis, especially since studies addressing the 22 

very early stage of the disease in treatment-naïve cohorts are lacking.  23 

Detection of IFN signature in APS at the protein level, including IFNα or IFN-induced 24 

proteins detection [43,107], as well as functional assays using cell- reporter lines have 25 

also been used in APS [43]. Although some studies showed promising results, the 26 

findings are far from providing a clear added value for the clinical setting. Finally, a 27 

recent genome-wide methylation study has characterized several differentially 28 

methylated sites between APS and controls [112]. Among them, the hypomethylation of 29 

the IFI44L locus was found to discriminate between APS and SLE.  30 

 31 
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4. Conclusions 1 

In conclusion, available data suggest that aPL have the ability to potentiate TLR 2 

activity, which results in IFN-I production by pDCs and possibly other cell types. This 3 

process is likely to be modulated by microRNAs and NETs, with hints that bidirectional 4 

relationships may be at play. Regarding pathogenesis, elevated levels of IFN-I may 5 

contribute to endothelial damage and increased in plasmablast numbers, the latter likely 6 

to be an important source of aPL. In Table 1 and Figure 1 the main mechanisms 7 

involved in IFN-I production and its effects are presented, along with main therapeutic 8 

immunomodulatory approaches and possible future treatment targets in the APS 9 

context.  10 

While IFN-I represent a fascinating and promising tool in APS clinical setting, both for 11 

diagnostic, clinical management, and prognostic purposes, the high heterogeneity in 12 

pre-analytical and methodological approaches along with the relatively low number of 13 

available studies (and lack of long-term trials), have limited researchers to reach solid 14 

conclusions negatively impacting the translation of these findings into routine clinical 15 

practice. Nevertheless, current literature has pointed out the existence of a distinct IFN-I 16 

signature when comparing APS patients with healthy controls and SLE with or without  17 

APS, along with its correlation with clinical and disease-specific serological features, 18 

thus supporting its potential role in identifying different subsets of the disease.  19 

 20 

5. Expert opinion  21 

5.1 How can type I interferon expression help us in identifying APS subsets? 22 

To date, IFN-I have been extensively proven to be relevant in SLE setting, for 23 

diagnosis, patient characterization and disease activity assessment [24,113,114]. 24 

Subsequently, fewer studies have evaluated the ability of the IFN-I signature and 25 

activation to identify specific subgroups of aPL-positive subjects in larger SLE cohorts 26 

with promising results [107]. In fact, Iwamoto et al. reported an independent correlation 27 

between aPL positivity and IFNα activation in SLE African-American patients. 28 

Moreover, this correlation was not observed in either Hispanic-American or European-29 

American subjects, supporting the link between IFN pathways not only with disease-30 

specific features, such as autoantibody production, but also with genetic background, 31 

which is well known to play a central role in APS pathogenesis [12,115]. Interestingly, 32 
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a recent attempt by Idborg et al. to characterize a cohort of SLE patients from a 1 

molecular perspective based on their autoantibody profile, have identified two distinct 2 

main subgroups, one associated with the presence of SSA/SSB positivity and the other 3 

characterized by LA positivity [116]. Higher degrees of IFN-I activation were found in 4 

the SSA/SSB+ subgroup as compared with the aPL-positive patients where complement 5 

activation and systemic inflammation seemed to be more prominent mechanisms, with 6 

possible therapeutic implications [116]. Furthermore, recent experiences have 7 

specifically addressed the role of IFN-I in primary APS showing clear associations with 8 

specific clinical manifestations and autoantibody profiles [45,108]. Moreover, different 9 

degrees of global activation of the IFN-I signature along with distinct activation patterns 10 

of IFN-I-regulated gene networks have been appreciated among healthy controls, aPL-11 

carriers, primary APS patients, and SLE patients with and without APS; furthermore, a 12 

positive association has been detected between IFN-I signatures and the presence of the 13 

anti-phosphatidylserine/prothrombin IgG isotype, an autoantibody specificity of 14 

emerging importance in APS [117,118]. Taken together, these limited data support the 15 

possible use of the IFN-I signature in APS characterization and disease subset 16 

identification, with potential implications for more effectively personalizing prognosis 17 

and therapeutic strategies. Moreover, the identification of disease mechanisms occurring 18 

at the earliest stages of the disease will broaden the understanding about disease-19 

initiating pathogenic mechanisms, with potential relevance for disease prevention and/or 20 

early management. 21 

5.2 How can type I interferon expression play a role in guiding the therapeutic 22 

strategies in APS?  23 

Evaluating the potential associations between the IFN-I signature and the clinical, 24 

laboratory and treatment characteristics of patients with primary APS is crucial in 25 

pursuit of identifying potential new approaches directly or indirectly targeting IFN 26 

pathways by using both highly-specific anti-IFN antibodies or therapeutic approaches 27 

that can modulate IFN production and functions. In this context, the use of HCQ, which 28 

is largely employed in both thrombotic and obstetric APS as well as a prophylactic 29 

strategy in high-risk aPL-positive subjects, has been shown to be associated with lower 30 

degrees of IFN-I activation in patients with primary APS [45], in line with its ability to 31 

modulate NETs formation and TLR signalling [44]. Monoclonal anti-IFNα agents, such 32 

as sifalimumab and rontalizumab, have been developed and tested in SLE cohorts, with 33 
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heterogeneous results [119,120]. Other monoclonal antibodies with a potentially wider 1 

spectrum of anti-IFN-I functions, such as anifrolumab, have demonstrated more 2 

promising results [121].  3 

Overall, given the likely role of the IFN-I signature in APS pathogenesis and 4 

progression, as well as the complex interplay between the various cellular functions and 5 

pathologic mechanisms regulated by IFN-I, the employment of therapeutic agents able 6 

to directly or indirectly target the IFN-I-associated pathways represents an interesting 7 

treatment option both in SLE and APS. Further prospective studies are however needed 8 

in order to elucidate clinical effectiveness and safety profiles, especially in APS.  9 

5.3 How can type I interferon signature can be useful in APS patients stratification and 10 

profiling?  11 

Although the presence of the IFN-I signature in APS patients has been demonstrated by 12 

different and complementary approaches, a number of knowledge gaps still remain that 13 

prevent their implementation in routine clinical practice at present. First, the lack of 14 

consensus about how to best quantify the IFN-I signature is a major impediment. 15 

Standardized recommendations are therefore warranted. Furthermore, large, well-16 

designed studies, with an adequate appraisal of confounding factors and long-term 17 

follow-up, are needed to delineate the added value of the IFN-I signature especially for 18 

disease activity assessment and individual risk stratification. In fact, the concept of an 19 

APS disease activity index represents an unmet need giving the lack of reliable 20 

biomarkers which directly correlate with the development of discrete thrombotic and 21 

obstetric complications as well as organ damage over time. On the other hand, 22 

numerous attempts have been made with the aim of identifying homogeneous groups of 23 

subjects at greater risk of developing clinical manifestations of the syndrome which 24 

however seem inadequate to cover the entire spectrum of the disease [122–124]. 25 

Scoring systems have been also developed and validated over the years combining 26 

disease specific features and traditional cardiovascular risk factors, which have a pivotal 27 

role in clot formation [125,126]. Two recent studies, in which a clustering-analysis 28 

approach was employed, confirmed the presence of relatively homogeneous subgroups 29 

of aPL-positive subjects sharing similar clinical and serological characteristics 30 

corresponding to known and defined nosological entities [127,128]. At the same time, 31 

both studies also demonstrated the extreme heterogeneity of APS manifestations and the 32 

existence of an interesting subgroup of aPL-positive patients showing intermediate 33 
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characteristics between SLE and primary APS, particularly with lower risk for 1 

developing thrombotic events and higher rates of systemic features such as anti-nuclear 2 

antibodies (ANA) positivity (97%) and cytopenia (mainly thrombocytopenia), 3 

supporting the idea of a continuum in APS clinical spectrum [128]. In line with these 4 

data, the employment of an approach based on patient profiling, rather than its mere 5 

categorization into discrete disease groups, should allow for a more real- life, precise, 6 

and personalized management of these patients. Interestingly, given its crucial role in 7 

anti-viral responses, IFN-I has been further studied in the context of SARS-CoV-2 8 

infection. Based on the available data, the dysregulation o f IFN functions has been 9 

associated with the most severe forms of the disease [129], through an exaggerated 10 

enhancement of pro- inflammatory factors that lead to tissue damage, a hypercoagulable 11 

state and autoimmune reactions, including the production of autoantibodies, especially 12 

in susceptible individuals [129–131]. These data would seem to both confirm the 13 

complexity of IFN pathways in disease pathogenesis and progression, while also 14 

emphasizing that we must move beyond a dichotomous perspective and rather employ 15 

more sophisticated approaches that will enable more insightful clinical application. 16 

Available data suggest that the IFN-I signature may represent an additional tool not only 17 

to better define APS patients, but also to better characterized aPL-positive patients who 18 

do not fulfil traditional classification criteria, in particular aPL asymptomatic subjects, 19 

patients who are refractory to standard treatment and those patients who present with 20 

intermediate and “systemic” forms of APS who could benefit from alternative 21 

therapeutic approaches beyond anti-coagulant and anti-platelets agents (with anti-IFN-I 22 

agents being one consideration). In addition, a special focus should be made in the early 23 

stages of the disease, in order to assess the role of IFN-I signature in early diagnosis and 24 

to evaluate drivers of its fluctuations during follow-up. 25 
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Table 1. Influence and regulation of type I interferon in antiphospholpid syndrome 7 

Factors potentially associated with increased IFN-I in APS 

Factor Possible mechanism Study design References 
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 1 

aPL 

 Associated with IFN-I signature in clinical studies 

 Increase IFN-I t ranscript expression by pDCs 

 Prime pDCs to internalize RNA 

 Promote translocation of TLRs from endoplasmic ret iculum to endosome 

 Sensitize cells to TLR ligands 

 Possibly inhib it the anti-inflammatory function of β2 GPI 

 Microbiome (Roseburia intestinalis) due to the presence of homologous 

sequences to β2GPI can play a role in IFN-I production 

Human in vivo, ex 

vivo, in vitro and 

animal models 

[27,37-40], PAPS 

[38], SLE, SAPS 

and PAPS [39,40] 

[28,42–45] 

TLRs  

 Increased expression in APS  

 pDCs produce IFN-I in a TLR7-dependent pathway 

 TLR7 ligands needed to produce IFN-I  

 Interferogenic TLR7 SNP associated with increased plasmablast numbers  

Human in vivo, ex 

vivo, in vitro and 

animal models, 

PAPS, SAPS [92] 

[28,100] 

pDCs   Quintessential producers of IFN-I 

Human in vivo, ex 

vivo, in vitro and 

animal models [16-

19] 

[17–22] 

Potential downstream effects of IFN-I in APS    

Endothelial 

injury 

 IFN-I linked with EPC dysfunction 

 Increased pro-atherosclerotic monocyte subsets 

Human in vivo, ex 

vivo assays, PAPS, 

SAPS and SLE 

patients [38, 39] 

[43,44] 

Increased 

BAFF  
 Potential correlation between IFN-I and BAFF in APS patients  

In vivo assays, aPL 

positive PAPS, 

SAPS and SLE 

patients [88, 89] 

[94,95] 

Potential bidirectional effects   

NETs  

 APS patients have increased number of LDGs, which produce more NETs  

 NETs are a source of antigens that can stimulate TLRs on pDCs ; as 

discussed above, TLRs and pDCs can enhance IFN-I production 

 APS NETs have enhanced expression of mitochondrial ROS, which are 

more interferogenic than cytosolic ROS  

 The IFN-I regulated gene group was the most significantly enriched in APS 

neutrophils  

 In SLE, IFN-I primes neutrophils to form NETs  

Human in vivo, ex 

vivo, in vitro and 

animal models,  

PAPS, SAPS and 

SLE patients 

[64,66,68,70,73–

75] 

 

[64,66,68,70,73–

75] 

Plasmablasts  

 A SNP causing increased TLR7 and IFN-I production was associated with 

increased plasmablast numbers  

 CD20-negative B cells (includes plasmablast population) produce aPL, 

which can then increase IFN-I expression as discussed above 

Human in vivo 

and ex vivo 

assays,  PAPS 

and SAPS 

patirents 

  [100] 

Unclear association   

 

microRNA 

regulation  

 

 

 

 Downregulated microRNA expression and IFN-I signature linked in  APS 

Human in vivo and 

ex vivo assays,  

PAPS, SAPS and 

SLE patients 

 

   [60] 
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aPL means antiphospholipid antibodies; APS, antiphospholipid syndrome;β2GPI, 1 

β2glycoprotein I; BAFF, B cell activating factor; EPC, endothelial progenitor cell; IFN-2 

I, type I interferon; NETs, neutrophil extracellular traps;LDGs, low-density 3 

granulocytes; pDCs, plasmacytoid dendritic cells;SLE, systemic lupus erythematosus; 4 

ROS, reactive oxygen species; SNP, single nucleotide polymorphism; TLRs, toll like 5 

receptors; PAPS, primary APS patients; SAPS, secondary APS patients.  6 

 7 

Figure 1. Main sources and effects of type I interferon in antiphospholipid syndrome.  8 

 9 

pDCs are recognized as the main source of IFN-I. Although not completely elucidated, 10 

it is known that a number of complex processes causes an increased production of IFN-I 11 

in APS setting, leading to endothelial dysfunction, accelerated atherosclerosis, and 12 

higher levels of BAFF which are responsible for an increased production of 13 

autoantibodies. APL, especially aβ2GPI, are thought to induce IFN-I production 14 

through the hyperactivation of TLR. Moreover, IFN-I production seems to be 15 

modulated by microRNA, which global expression have been reported to be 16 

downregulated in pDCs of APS patients, and by NETs. It is still debated whether the 17 

increase in NETs formation and LGDs number are directly responsible for higher IFN-I 18 
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levels, as it has been reported in SLE pathogenesis. This figure also shows the main 1 

treatment agents with immunomodulant properties employed in APS, along with 2 

possible future therapeutic targets including those with direct anti-IFN-I effects.  3 

pDCs means plasmacytoid dendritic cells; IFN-I, type I interferon; BAFF, B-cell 4 

activating factor; aPL, antiphospholipid antibodies; aβ2GPI, anti-β2-glycoprotein I 5 

antibodies; LDGs, low-density granulocytes; NETs, neutrophil extracellular traps; TLR, 6 

toll like receptor; HCQ, hydroxychloroquine; APS, antiphospholipid syndrome. 7 
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