A Bayesian model for presence-only semicontinuous
data, with application to prediction of abundance of

Taxus Baccata in two Italian regions.
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In studies about the potential distribution of ecological niches only the presence of the
species of interest is usually recorded. Pseudo-absences are sampled from the study
area in order to avoid biased estimates and predictions. For cases in which, instead
of the mere presence, a continuous abundance index is recorded we derive a two-part
model for semicontinuous (i.e., positive with excess zeros) data which explicitly takes
into account uncertainty about the sampled zeros. Our model is a direct extension
of the one in Ward et al. (2009). It is fit in a Bayesian framework, which has many
advantages over the maximum likelihood approach of Ward et al. (2009), the most
important of which is that the prevalence of the species does not need to be known
in advance. We illustrate our approach with real data arising from an original study
aiming at the prediction of the potential distribution of the Taxus baccata in two central
Italian regions.
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1 INTRODUCTION

The elaboration of appropriate conservation actions of a forest habitat should be based
on the knowledge of its dynamics, and of the potential spread of the species in the habitat.
Decisions are supported by definition of environmental niches, description of the use of
habitats, and prediction of geographic distributions of species. Accurate maps of geographic
distributions can also help understand the effects of climate change.

A potential distribution map provides a spatial prediction of the suitable areas for a
species. The main aim of these analysis is related to prediction rather than to interpreta-
tion, so that often machine learning approaches are used (Prasad, Iverson, and Liaw 2006;
Scarnati et al. 2009b). Chaubert-Pereira, Guédon, Lavergne, and Trottie (2009) propose an

approach more focused on interpretation, in a related context.
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In recent years new data sources (atlases, museum and herbarium records, species lists,
incidental observation databases and radio-tracking studies) and GIS tools have been in-
creasingly used in ecological studies. A peculiar characteristic of these data sources is that,
often, only information about locations where the species is present are available. Method-

ologies targeted especially for these data need to be developed.

Motivation of this work arises from a study about the spatial distribution of Taxus bac-
cata in two central Italian regions. This original study was performed in order to support
decisions for species management, in particular about conservation strategies for Taxus bac-

cata.

In our study, not only we recorded the presence of the species, but also an index mea-
suring its abundance, the so called Importance Value (IV). Nevertheless, we have measures
only about locations with a positive abundance. As any other study in which only presences
are observed, direct use of the data may lead to predictions of the potential distribution in

which a presence is predicted too frequently, and abundance is over estimated.

This problem is usually tackled by sampling locations of pseudo-absence, that is, lo-
cations in which the species of interest is assumed to be absent, and using them as if they
were truly observed zeros. See Pearce and Boyce (2006) for a brief discussion. Elith et al.
(2006) illustrate that using sampled zeros can considerably improve predictions. See also
Zaniewski, Lehmann, and Overton (2002) and Engler, Guisan, and Rechsteiner (2004).

A limitation of most common approaches is that they treat pseudo-absences as if they
were truly observed zeros, without taking into account that some of the sampled zeros could
actually be locations in which the species is present. There are few exceptions: Phillips,
Anderson, and Schapire (2006) introduce the method of Maximum Entropy (Maxent) for
modelling species geographic distributions; Ward et al. (2009) explicitly take into account
bias due to presence-only sampling. The model in Ward et al. (2009) can only be used when
the outcome of interest is a dichotomous variable simply measuring whether the species is
present or absent in a given location. In this work we extend their model to abundance
data, that is, to an outcome which is either zero or a positive real number. These data are
usually referred to as semicontinuous data or data with excess zeros, and analysis can be
carried out by means of a two-part model which combines modelling the probability of a
positive outcome with the density of the outcome conditionally on the fact that it is positive.
Two-part models similar to our proposal, but without uncertainty related to the zeros, have
been recently discussed and fit in the classical framework by Li, Elashoff, Robbins, and
Xun (2009) and by Leathwick et al. (2008) among others. Zhou and Tu (1999) derive an
ANOVA type test for two-part models, and Lachenbruch (2002) compares different testing
strategies. The main innovation in our work is that we have uncertainty related to the zeros,
and explicitly take it into account. Our resulting model can hence also be thought to as a
two-part model with partial possible measurement error. Further, we adjust for the case-

control type sampling performed.
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We derive inference for our model in a Bayesian framework, which has many advan-
tages over the maximum likelihood approach of Ward et al. (2009), the most important

being that the prevalence of the species does not need to be known in advance.

The paper is structured as follows. In Section 2 we present our model; in Section 3 we
discuss computational aspects of the Bayesian approach for parameters estimation, derive
the predictive distribution and show how to compute predictions minimizing the posterior
expected loss. In Section 3.4 we describe a strategy for validating the predictive ability of
our model. In section 4 we conduct a simulation study in order to illustrate the performance
of our proposed approach, in Section 5 we outline the results of the application of our

proposal to the motivating example. We conclude with a brief discussion in Section 6.

A sample R (R Development Core Team 2009) code for fitting the proposed model is

available at http://afarcome. interfree.it/mcmcTaxus.r.

2 MODELLING METHOD

Let Y be a random variable measuring the outcome of interest, where ¥ > 0. We only
observe locations in which ¥ > 0, and then sample a certain number of pseudo-absences
from the remaining locations. The resulting random variable is denoted with Z. We observe
Zi,...,Zy, at n locations; where Z; > 0 implies ¥; = Z; > 0; but when Z; = 0, we only know
that ¥; > 0. We let & = Pr(Y > 0) denote the prevalence of the species of interest.

As is done in Ward et al. (2009), we assume that the observed locations with Y > 0 are
sampled at random from all locations where the species is present and pseudo-absences are
generated randomly from the remaining locations in the study area in a case-control fashion
(i.e., the number of pseudo-absences is fixed and could be based on the number of available

presences).

We must keep in mind that there may be a selection bias for the observed abundance,
since for instance more accessible locations may be more often sampled. We will ignore
for the time being this bias, which is sometimes counterbalanced by sampling zeros with a
similar bias. This combination of the samples of observed presences and pseudo-absence is

what we will refer to as presence-only data.

We denote with X; a vector of environmental covariates for the i-th location, which
are known for the entire study area. We model the semicontinuous response through a
two-part model. The two parts are usually made of a logistic model for the probability
that the response is positive, and a regression model for the log-response conditionally on
the fact that it is positive. We here extend the classical two-part model for taking into
account uncertainty related to pseudo-absences. We use an indicator function s so that

s; = 1 indicates that the i-th observation is either an observed presence or a pseudo-absence.
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The logit model can be specified as follows:
Puley)

= logit[P(Y > 0|x)] = n(x), (2.1)

where 11(x) = x'f is linear in x.

For the continuous part of our model it is assumed that

where 17/(X) = X o and log(Y) is conditionally distributed as a normal variate with standard
deviation ©.

The notation used underlines that the same or a different set of covariates can be used on
each part of the model. We bound our attention to linear models. Other choices are grounds
for further work. Furthermore, in Section 5 we will illustrate that the above assumptions of
linearity are adequate for the data at hand.

We now note that the case-control scheme used for sampling pseudo absences ignores
prevalence. A naive model which ignores this fact may be seriously biased (Keating and
Cherry 2004), especially when the species is not rare. Along the lines of Ward et al. (2009)
we then adjust the two-part model through a “case-control style adjustment” (McCullagh
and Nelder 1989, p. 111). In Appendix A we show that the logistic model (2.1) needs to be

adjusted according to

(2.3)

logit(P(Y > Ofx,s = 1)) = n(x) + log <”P+5””> ,

Eny
where n,, and n,, are respectively the number of observed abundance (z > 0) and the number
of pseudo-absence locations (z = 0); while the regression model (2.2) needs no adjustment
conditionally on s = 1.

In the case control framework, one usually uses a ratio of 1:1, 2:1 or 3:1 for the con-
trols. In our case, controls are pseudo-absences. A different strategy is used in Elith et al.
(2006), where a large number of downweighted pseudo-absences are used. In this paper we
prefer setting n, = n,,, and repeatedly sampling pseudo-absences and re-fitting the model in
order to check for spurious effects which may be present among a large number of pseudo-
absences, even if downweighted.

Secondly, since Y is not observed, we need to link parameters to the observed Z in
order to perform inference. To do so, we derive the observed likelihood L(0|z,X) for the

presence-only data, which can be expressed as:

Iy, _ n, =11 ())> 1 .
- 1+ent) el T;Mexp{n(xi)_W} 1 o 2.4)
i=1 |14+ (1 +%> eTI(Xi) 1+ (1 _'_%) en(xi) Zimc .

where 0 is a short-hand notation for the parameters at stake and 1 is the indicator function
for condition C.

The algebra and rationale behind (2.4) are developed in full in Appendix B.
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3 INFERENCE
3.1 PRIORS

In order to derive inference in the Bayesian framework we need to specify prior distri-

butions. We use the following specification:

n(B,a,0,6) = 7(B|Xg)7(e[Za) (o) 7(E), 3.1
where 7(3|2g) and 7(a|Zy), following a standard practice in Bayesian regression, denote
zero-centered multivariate normals.

We complete prior specification letting (o) be an inverse Gamma and 7 (£ ) summarize
available information on prevalence.

A special role is played by the informative prior on &, due to the fact that data contain
very little information on & (see Ward et al. (2009) for the identifiability issues related to &).
In practice, inference and predictions are based on the integrated likelihood (with respect to
the prior on &). We stress that nonidentification makes inference arbitrarily sensitive to the
prior. The proposed model considers a parametrization with a simple contextual meaning,
so that it is possible to elicit an informative prior for &. For methods in prior elicitation, see
for instance Kadane et al. (1980); Kadane and Wolfson (1998); Garthwaite, Kadane, and
O’Hagan (2005), and references therein.

3.2 MODEL FIT

Since not all ¥; are observed, we have a missing data model.

In order to approximate the posterior distribution, we make use of an MCMC sampling
scheme adapted from Diebolt and Robert (1994). The MCMC sampling scheme we pro-
pose is a Bayesian counterpart of the EM algorithm, which gives samples from the posterior
distribution after burn-in. The sampling scheme is based on alternating a data augmenta-
tion/imputation step, in which the latent observations Y are sampled from their full condi-
tional, with posterior sampling steps.

We hence augment the data making use of the latent observations Y, and derive conse-
quently the so called complete likelihood. In our context, the complete likelihood L(0|z,y, X )
for the presence-only data, in terms of both z and y, is given by:

1{.\',':0}
1

H 1+ <1 + gr‘l’u) exp{Bx;}

(3.2)

Liyi>0

exp{Bxi} (1+2)
U (15 22 )exp{B) V270

where B represents the vector of k covariates are used for the logistic part and & represents

xp {—2;2 (log(yi) — aii)z}

the vector of h covariates are used for the linear regression part. So that 11(x) = Bx; and

N’ (X) = ax;. A detailed derivation of (3.2) is given in Appendix C.
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The general iteration of the (Metropolis within) Gibbs sampling scheme we propose is
detailed in Algorithm 1.

Algorithm 1 Gibbs sampling scheme

1. Sample the latent variables Y; from f(Y;|Z;,X;,s; = 1), i = 1,...,n; where
fi|Zi,X;) = ly=z % 1750 + lz=0f(Yi|Z; = 0,X;,5; = 1). That is, we simply set
Y; = Z;, when Z; > 0 and when Z; = 0 note that

f¥i1Zi =0,Xi,5:= 1) = f(¥ilXi, 5= 1),

since we assumed that data are sampled uniformly at random from the study area.
Sampling of ¥; when Z; = 0 must then be performed in two steps, since f(¥;|X;,s; = 1)
is a mixed measure. First, we shall sample 1y~ from P(Y; > 0|X;,s; = 1), and then

set ¥; = ly~oy, where y is sampled from f(y|¥; > 0,X;).

2. Sample B (the regression parameters for the logistic part) from

exp{¥7 lv.>0B%i}
1+ (1+ g2 ) exp{x) BR)

n(BIY,X) o< m(B)

3. Sample the remaining parameters o and ¢ simultaneously as

n((et,0)|Y,X) < w(a,0)L(6|z,y,X)

4. Sample & from its prior.

At Step 1 we sample latent variables from their full conditionals. The innovation with
the sampling scheme in Diebolt and Robert (1994) is that latent variables are not discrete,
and actually known when Z; > 0. We then augment generating Y; from its semicontinuous
full conditional distribution when Z; = 0. When Z; > 0, Y; is not sampled since its full
conditional is a point mass on Z;. Convergence of the chain is guaranteed from the fact that
fYi|Z;, X;,s; = 1), albeit arising from a unusual semicontinuous distribution, is exactly the
full conditional for ¥;. All needed regularity conditions are consequently implied by model
assumptions.

After we have sampled or set values for Y, Step 2 arises from straightforward conditional
independence conditions, (2.4) and (2.3).

In Step 3, we face several difficulties associated with setting up Metropolis Hastings
(MH) steps for the parameters in (¢, 5). Key to success for MH is linked to a clever choice
for the candidate transition kernel, which does not seem readily available here. Furthermore,
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the last full conditional distribution is also potentially multi-modal, and even if a good
candidate transition kernel were available, tuning of MH would be made harder by volatility
in the latent indicators 1ly,~. In order to avoid difficulties linked with setting up Metropolis
Hastings, we sample (o, o) simultaneously with Adaptive Rejection Metropolis Sampling
(Gilks, Best, and Tan 1995). In our experience the ARMS approach works nicely, and needs
no tuning.

For sampling the logistic regression parameters at Step 2 we still use an ARMS for
simplicity, even if there are many different alternative approaches for this standard problem.

We sample & from its prior since presence-only data do not return information on this
parameter. It is straightforward to check that the full conditional for & coincides with the
prior. As noted before, posterior summaries will be then model averaged (Hoeting, Madi-
gan, Raftery, and Volinsky 1999) with respect to prior knowledge about &. This approach is
a powerful and simple tool for explicitly incorporating uncertainty related to the prevalence;
and when the prevalence is known, it is straightforward to modify the approach by simply
setting the prior for £ as a point mass.

3.3 PREDICTION

The distribution of predictions is the main target of our analysis. Prediction involves ob-
taining the posterior distribution for the study area, which we can denote by (Y| Z, Xpew, X ),
where (Yew, Xnew) denotes the response for a new location with the associated (known) co-

variates. Bayes theorem can be used to show that

n(Ynew|Z>XneWaX) = /f(Ynew‘Xnew,e)Tc(9|ZaX) de. (33)
0

After MCMC sampling, having obtained a sample 0y,...,0p from the posterior, computa-
tion of (3.3) is straightforward through Monte Carlo integration:

T (Ynew!Y: Xnew: X) = 1/BY " f (Yew|Xnew 6;).-
J

The use of the predictive distribution (3.3) goes well beyond building predictions for each
location of interest. In pratice, a posterior probability distribution is available for each
location. Hence, the predictive distribution can be used to build predictions by minimizing
the posterior expected loss, but also it can be plotted for certain locations of interest, it can
be used to predict more sophisticated quantities (e.g., the probability that an IV exceeds a
certain threshold in a given location, the distribution of the number of locations in which
the IV is above a certain threshold, and so on).

Many of these summaries are of interest to the biologists, but the most important is
probably the map with predictions minimizing the posterior expected loss. The posterior
expected loss is minimized if we predict a presence whenever

&newBi

P(Ynew > 0|Xnen, Z, X ) = 1/132m >

J

p,
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where p = 0.5 under the 0-1 loss, and p = K; /(Ko + K ) if we set as K| the loss of a false
positive and as Ky the loss for a false negative (see Berger (1985), Bernardo and Smith
(1994)). When a presence is predicted, the predicted abundance minimizing the quadratic

loss is the posterior expected IV, that is,

E10g(Ynew) | Xnew: Z, X, Ynew > 0] =2 1/BY #at;.
j

3.4 VALIDATION THROUGH CROSS-VALIDATION PREDICTIVE DENSITIES

Since prediction is the main objective of our analysis, it is important to use appropriate
devices for validation of the predictive ability of the model. When the number of observed
presences is large enough, the observations may be randomly split in a training and a test
set, and the predictive accuracy estimated on the test set (this is the approach of Ward et al.
(2009), see also Hastie, Tibshirani, and Friedman (2001)). When the number of observed
presences is small, using a smaller sample for estimation may result in a sensibly poorer
performance of the model. A cross-validation approach is probably more suitable in such
cases.

In our Bayesian framework we hence derive cross-validation predictive densities (Gelfand,
Dey, and Chang 1992; Gelfand 1996) to check whether the model is adequate.

The cross-validation predictive densities are denoted by {7 (y,|Z(,)),r=1,...,n}, where
Z, is the set of observed presences and sampled pseudo-absences from which the r-th
observation was deleted.

For each observation in the sample we use a leave-one-out principle and obtain a cor-
responding predictive density 7(y,|Z,)), which suggests what values of y, are likely when
the model is fit to all the observations except the r-th. The actual z, can be compared to
this density to see whether it is likely under the model, and consequently the model can be
deemed to be valid if a large majority of the observations are likely with respect to their
cross-validation predictive density.

In order to approximate the cross-validation predictive densities we use the so-called
composition method (Gelfand 1996; Tanner 1996), which is computationally efficient and
leads to reliable estimates. The cross-validation predictive densities are approximated, in

this approach, with an importance sampling scheme which we now describe.

Let once again 0y,...,60 be a sample from the posterior distribution 7(6|Z). Fix r €

{1,...,n}, and compute the ratio

m(61Z))

L o,

7(6,12)

for j = 1,...,B for weighting. The weights (wy,...,wp) are then used for obtaining a
sample from 7(6|Z,)), which we denote with (6],...,0g). The latter vector is obtained
by resampling with replacement from the collection (6y,...,0g) with probabilities propor-

tional to (wi,...,wg). A sample y7,...,ys from 7(y,|Z,) is now obtained along the lines
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of Section 3.3. The composition method shall be repeated for each r = 1,...,n; finally
obtaining n samples of size B from each cross-validation posterior predictive density.

Since the sampled pseudo-absences could be unobserved presences, we suggest to per-
form validation only using the predictive densities corresponding to the observed presences.
We then perform model validation as follows (see Gelfand et al. (1992)): for each observed
presence, we build a (1 — o) credibility interval from the corresponding cross-validation
predictive density. The (1 — ) credibility interval is the shortest interval containing (1 — )
posterior probability mass. Then, we define the prediction coverage probability as the pro-
portion of predictive intervals covering the corresponding observed presences, and declare
the model to be valid if the prediction coverage probability is close to the nominal level
(1—a).

4 SIMULATION STUDY

The performance of our proposed model is investigated in this section on simulated
data. We extended the EM algorithm of Ward et al. (2009) to abundance data, in order to
obtain maximum likelihood estimates for comparison.

We generate a semicontinuous response Y from the following two-part model
logit[P(Y > 0 | x1,x2)] = Bo + Bix1 + Paxa
and, conditionally on Y > 0 and x3
log(Y) = o+ ox3 + €,

where By = —4.5, B1 =3, Bo =2, 0p = 0.3, a; = 1, and € is sampled from a standard nor-
mal. The covariates are generated independently as follows: x; is sampled from a Bernoulli
with parameter 0.2, mimicking a categorical predictor, and the other two covariates are
generated from standard normals. At each replication we generate a study area of N obser-
vations, and randomly select a proportion A of the observed presences for the presence only
sample used for model fitting. We then sample pseudo absences from the remaining data,
and fit the Bayesian and the oracle classical model in which we assume a correctly known
prevalence. For the Bayesian approach, we use the following priors: for the logistic and
regression coefficients, normal zero centered priors with variance equal to 25 and 9 respec-
tively; an exponential for the precision parameter (i.e., the inverse of ¢), and a Beta with
parameters 0.6 and 5 for prevalence. We replicate data generation and model fitting 1000
times, and report the average results over the 1000 replications.

In Table 1 we report the average Mean Squared Error (MSE) of the parameter estimates

of Bayesian and EM model for different values of N and A.

[Table 1 about here.]
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For our Bayesian method it can be seen that, as expected, the MSE decreases with N.
On the other hand, there does not seem to be a strong dependence on A, indicating that it
does not really matter how many presences are obtained, as long as these are sampled inde-
pendently and uniformly from the study area and the final sample size is large enough. The
EM algorithm seems to be dependent both on N and A, and it is sometimes outperformed
by the Bayesian approach even if we gave it the unfair advantage of assuming a known, and
correct, prevalence. The MSE for the regression coefficients are in general comparable, but
the Bayesian approach seems to work much better than the frequentist method in estimating
o. This is due to a negative bias in the estimate of ¢ obtained with the EM algorithm, which
could be explained by the optimism in assuming a known prevalence. The same assumption
seems to lead to a smaller MSE in the coefficients of the logistic part when N is large, and
larger when N is small. In Table 1 we also show the mean length of the 95% credibility
intervals and their frequentist coverage for £. It can be seen that the frequentist coverage
is very large, and that the mean length is large too and reflects prior inputs (i.e., a much
smaller mean length could be obtained with a more concentrated prior).

A further comparison between the Bayesian and frequentist method is given in Table
2, where we compare the predictive performance of the methods. At each replication we
compute the MSE for positive predictions, and summarize the performance of the presence-

absence part of the model computing sensitivity and specificity.
[Table 2 about here.]

The appears to be no difference between (oracle) frequentist and the Bayesian approach,
in both cases the predicted values are very close to the observed values, sensitivity is rather
large and specificity is rather small.

Finally, we provide a small study evaluating sensitivity of the parameter estimates to
the choice of priors. In Table 3 we show the MSE of the parameters when N = 10000 and
A = 0.1 for additional sets of priors. Prior set (a) is the set used for the previous simulations
and described at the beginning of the section. In prior set (b) we have added a bias to our
priors. In fact, we have centered the priors for logistic and regression coefficients on -0.5,
and further we have used a Gamma with parameters 1.5 and 1 for the precision parameter.
Prior set (¢) is equivalent to (a), with the exception of the prior for the prevalence parameter,
where we have used a Beta distribution with parameters 0.46 and 2.64; and finally in prior
set (d) we use zero centered Student’s T distributions with three degrees of freedom for the

B and o parameters.
[Table 3 about here.]

It can be seen that there does not seem to be prior sensitivity with the sample sizes

common encountered in real data applications.
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S PREDICTING THE ABUNDANCE OF TAXUS BACCATA

Taxus baccata is a relict of the Cenozoic flora, characterized by warm-humid climatic
conditions. It survived glaciations in refugia areas, and may have followed Fagus in succes-
sive postglacial expansions. This process has determined the current fragmented presence
and reduced consistency. Taxus baccata has low resistance to intense cold and it probably
survived mainly thanks to the ability of asexual reproduction and sex variations of adults
in case of need. The data that we use was recorded in a study area located in central Italy,
with specific reference to Abruzzo and Lazio regions. The area of interest extends for about
28000 Km?, with an heterogenous morphology, which includes sandy coasts and the sum-
mits of the Apennines (the highest peak being the Gran Sasso, 2912 m of altitude). The
forest habitat of Taxus baccata in these two regions is of high conservation priority in Eu-
rope (Scarnati et al. 2009a).

The aim of the analysis is to obtain a map of the potential distribution of Taxus baccata,
through climatic, topographic, structural and environmental parameters. This map is then
used for elaborating conservation strategies (Guisan and Zimmermann 2000).

Climatic maps in GRID format, with a spatial resolution of 500 m, were built. These
maps were obtained by interpolating precipitation and temperature data recorded in 300 me-
teorological stations and calculating the average data for the 1960-1990 period (see Attorre
et al. (2007a) for technical details).

The environmental covariates considered were:
MIN_T_1 Minimum temperature of the coldest month (January)
MAX_T_7 Maximum temperature of the hottest month (July)
T_MED Average temperature in twelve consecutive months
TOTAL_P Total annual precipitation
SUMM_P Precipitation during summer
WINT_P Precipitation during winter
MOISTURE Moisture index
ALT Altitude

Descriptive analysis of these are summarized in Table 4 for the entire grid, and in Table
5 for the plots in which a presence was recorded. Note that in Table 4 we report only on

suitable locations for proliferation of Taxus Baccata (see below).
[Table 4 about here.]

[Table 5 about here.]
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Locations with presence of Taxus baccata were identified by GPS coordinates, and se-
lected through bibliographical information and indications of the staff of the protected areas.
There are many indeces of abundance which could be used. In this research we have used
the Importance Value (IV), for a definition of which we point the reader to Scarnati et al.
(2009a). In each selected location the IV of Taxus baccata was measured based equally on

relative basal area and the number of stems contained within it.

In our study we have observed 97 presences, and need to build predictions for a total of
111882 locations. A few of these 111882 locations are excluded from the analysis because
they almost surely correspond to locations in which the species is absent: GIS tools are
used to discard completely unsuitable locations due for instance to presence of lakes, cities,
roads, and so on. We discard also sites where one or more of habitat characteristics assume

values that do not allow the plant growth.

In order to obtain information on prevalence we proceeded independently consulting
ecologists and experts, asking them a rough estimate of their expected prevalence, a min-
imum and a maximum. We also recorded estimates of prevalence of Taxus Baccata and
similar species obtained in previous studies dedicated at least to part of the area under
consideration. A consensus was obtained on a prevalence between 2% and 6%. We conse-
quently decided to conservatively center the prior on 0.03. Since the majority of our con-
sulted sources indicated a prevalence of at most 5%, we also decided to let the third quartile
of the prior be slightly smaller than 0.05; and to have a .95 upper quantile of approximately
10%, an upper limit common to many of our sources. Given these informations, we elicited
a Beta prior with parameters 0.6 and 19.4, which has a mean of 0.03, a third quartile slightly
larger than 0.04, and a .95 upper quantile of around 0.10.

For regression coefficients there are two default prior choices in pratice: a zero-centered
Gaussian with diagonal covariance matrix, and a zero-centered Gaussian with covariance
matrix yYX’'X, where X is the matrix of covariates used in the model. We then set the priors
for the remaining parameters by fixing X5 =Xy = 0?1, where I denotes a diagonal matrix
of the appropriate size; and center the prior for ¢ on its maximum likelihood estimate. We
have preferred a diagonal covariance matrix since it attenuates the final correlation between
estimates, i.e., collinearity; plus, we also avoid the arbitrary choice of the hyperparameter

parameter 7.

In order to reduce spurious effects, we repeat the pseudo-absence generation 40 times,
and fit our model separately on each data set. At each repetition, we sample 97 pseudo-
absences from the suitable sites with the case-control approach of Attorre et al. (2007b),
select at random starting values for the parameters, and run Algorithm 1 for a total of
100000 sweeps. We allow a burn-in of 50000 iterations, and we use one each twentieth
of the 50000 remaining iterations for posterior estimation. We perform model choice ac-
cording to the structured stochastic search variable section (SSSVS) approach of Farcomeni

(2010), to which we point the reader for details. We consider the possibility of including
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any of the available covariates, plus all two-way interactions, in each part of the model. We
use hierarchical constraints so that an interaction is not included in a model without both
covariates contributing to it. SSSVS allows to estimate a probability of inclusion for each
coefficient. As proved by Farcomeni (2010), consistency in model choice is achieved as
long as covariates with a probability of inclusion larger than 50% are used in the model, and
the other covariates are discarded.

Our 40 repetitions did not provide conflicting conclusions, so that probably we have
observed no spurious effects in the sampled pseudo-absences. We provide results related to
a single (randomly chosen) repetition.

In Table 6 we show the posterior means of each covariate included in the final model
chosen with SSSVS, and individual probabilities of inclusion. All other covariates, in-
cluding the interactions, have an estimated probability of inclusion smaller than 50%, and
therefore are omitted from the final model. We remind that the parameter estimates should
not be directly interpreted due to collinearity. In Table 7 we report the correlation matrix
between the covariates included in the final model.

We compare our estimates with the maximum likelihood estimates obtained with an EM
algorithm along the lines of Ward et al. (2009), assuming a known prevalence of 3%. It can
be seen from Table 6 that final parameter estimates are comparable, especially with respect
to the regression part of the model. The logistic part of the frequentist model is dependent
on the assumptions related to the prevalence, which must be assumed known with the EM
approach. Note further that the variance estimated with the maximum likelihood approach
is slightly smaller than the posterior mean for the variance, and it has been observed in
the simulation study that EM with known prevalence tends in fact to under estimate the
variance of the continuous part of the model. Note finally that the posterior summaries
for the prevalence parameters are essentially equivalent to the prior summaries, as the data

contain very little information on prevalence.
[Table 6 about here.]
[Table 7 about here.]

We validate the predictive performance of our model by building 1 — & = 0.95 predictive
intervals for the observed presences. We finally obtain a prediction coverage probability of
0.948, so that we can claim the model valid from a predictive point of view. We have
not experienced a strong prior sensitivity, and have obtained results equivalent for practical
purposes by varying the prior assumptions in a reasonable range.

In Figure 1 we present a map of the potential distribution of the abundance of Taxus
baccata built using GIS tools. The predictions in Figure 1 minimize the posterior expected

loss.

[Figure 1 about here.]
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As an additional measure of goodness of fit we calculated the R? and the False Negative
Rate (FNR). These are equal to 0.18 and 0, respectively. The same measures are calculated
for the maximum likelihood estimates, and we obtained R? = 0.20 and FNR= 0.16. For
comparison we also have computed the same measures with different distributions for the
continuous component, obtaining similar results. It seems like peaks of large abundance
are not captured well by the model, with a strong regression to the mean effect. We have
consequently tried distributions allowing for larger skewness, but these did not seem to fit
the data well overall. The peaks of abundance actually correspond to areas in which Taxus
baccata was planted and is currently nurtured and protected by human intervention, and it
would not have been so abundant otherwise. We then conclude that the R is not large due to
the fact that important covariates were not measured, rather than because of the log-normal
distribution not approximating well the data. In our application we are not interested in
a correct prediction of the actual abundance, but only of its potential distribution. Recall
finally that the log-normal distribution is validated by the prediction coverage probability.

The estimated potential distribution in Figure 1 leads us to conclude that Taxus is poten-
tially situated at both a higher and lower altitude than expected. The first behavior (higher
altitudes) is likely due to a retreating process to areas less accessible by livestock (for in-
stance, cows). The second behavior (lower altitudes) has been seen in areas with a high
moisture index (e.g., close to lakes in the Northwestern and Southwestern Lazio), which
makes the area more suitable for a presence of Taxus.

Further, 7axus is more likely to be common on the western Tyrrhenian side, where the
temperatures are higher (with respect to the eastern Adriatic side of the area). The same
reasoning applies to the regions of the area in the central part of the map, which are facing
South.

We now focus on the locations corresponding to protected area (Special Protection
Zone) ZPS12, in Monti Lepini, Lazio; established by European Community directive 79/409/CEE.
We select the 363 locations corresponding to area ZPS12 and compatible with a presence
of Taxus, and consider the posterior probability of observing a presence (Pr(IV > 0)) and
a moderately large abundance (Pr(/V > 2)). Descriptive statistics for these probabilities

computed at the 363 locations of special interest are reported in Table 8.
[Table 8 about here.]

It can be argued that Taxus is very likely to be present in the entire area, but only in
few locations an high IV is expected. We estimate about one quarter of locations with
Pr(IV > 2) > 0.7, indicating that these locations are highly suitable for Taxus.

Our results were used to select locations for conservation actions. In areas were a high
suitability for Taxus was predicted two projects aimed at the construction of fences to protect

its regeneration from livestock have recently started.
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6 DISCUSSION

In studies with presence-only data, a direct use of the observations may lead to biased
predictions. A common solution is to add pseudo-absences to the sample but, especially
if the species of interest is not rare, blindly using pseudo-absences as if they were true
absences may obviously lead to pessimistic, and even biased, estimates. In this work we
have introduced a model which takes into account uncertainty related to pseudo-absence
sampling with abundance data.

We have restricted our attention to linear models for both the probability of observing
a presence and for the density conditional on a positive abundance. Even if linear models
have proved adequate for the data at hand, we point out that these are not the only choices,
and that other more flexible choices for 17(-) and n’(+) could be used (e.g., generalized ad-
ditive models, Hastie and Tibshirani (1990)). The same reasoning applies to the parametric
assumption on the continuous part of the model. In this paper we have in practice used a
log-normal model, but other assumptions could be used (for instance, a Weibull model).

Modification of our approach for these different choices is often straightforward and

does not usually lead to major modification of the inferential strategies described in Section
3.
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A CASE-CONTROL ADJUSTMENT

Proposition 1. Given the usual logistic model logit(Pr(Y > 0|X) = n(x) we can use a

case-control style adjustment to show:

logit(Pr(Y > 0|X,s = 1)) = n(x) +log <"”;’f"> (A.1)

where n,, and n, are respectively the number of observed abundance (Z > 0) and the number

of pseudo-absence locations (Z = 0).

Further, there is no need for adjustment for the linear regression part:
fYYy>0X,s=1)=f(Y|Y >0,X). (A.2)

Proof. Following the usual case-control calculations presented in (McCullagh and Nelder
1989, p. 111) we define 73 =Pr(s = 1]Y > 0) and Y = Pr(s = 1Y = 0) the sampling rates of
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our data from all true abundance and absences respectively. We assume that these sampling
rates are independent of X, so in particular Pr(s = 1|Y > 0,X) =Pr(s = 1|Y > 0).
An application of Bayes rule to Pr(Y > 0|X,s = 1) gives

Pr(s = 1|Y > 0,X)Pr(Y > 0]X)

Pr(Y > 0)X,s=1) =
V>0 =1) Pr(s = 1|Y = 0,X)Pr(Y = 0|X) + Pr(s = 1|Y > 0,X)Pr(Y > 0|X)

’}/len(x)
Pt nen™’
Hence,
logit(Pr(Y > 0|X,s =1)) = n(x) +log <;//1> . (A.3)
(

We now need only to derive an explicit expression for the second summand in (A.3).
The true number of positive abundances (¥ > 0) in our presence-only sample is not known,
but it is straightforward to see that the expected number is n, + &n,, that is, the number of

samples for which Z > 0 plus a proportion & of the number of samples for which Z = 0.

Hence,
Pr(Y >0|s=1) = iyt &
np+ny
and similarly
1 —
Pr(y —0fs=1) — (L=8)m
np+ny

An application of Bayes rule gives

Pr(Y >0|s=1)Pr(s=1)
Pr(Y >0)

n = Pr(s=1Y >0)=

n,+&ny

mPr(s =1)

and

% = Pr(s=1]Y =0)= Pr(Y = g\rs(;:l)(gr(s =1)

- (1_5)”14 (s = 1):
= Oy T

which can be combined to see that
4! n,+ gnu é
log <> = log < —log| ——
% (1=8&)ny 1-¢
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To see (A.2) once again we can use Bayes rule to see

Pr(s=1|Y,Y > 0,X)f(Y]Y > 0,X)
F¥Ir>0,s=1,%) Pr(s=1|Y > 0,X)

_ Pr(s=1Y >0)f(Y|Y >0,X)
B Pr(s=1|Y > 0) = (Y >0.X),

since we assumed the sampling rates to be dependent only on the presence, but not on the

actual value for the abundance. O]

B DERIVATION OF OBSERVED LIKELIHOOD

Proposition 2. Using a short-hand notation 0 to denote the parameters at stake, the ob-

served likelihood L(0|z,X) for the presence-only data is given by:

o : . 1 4>
L en® A Trien(x') 1 (log(zi) — 1 (%))* {z>0}
; - expq - (B.1)
i 1"‘(1"‘5’1)6”("0 1+(1+é—é’u) en(xi))z,-\/ﬁc o

where 1¢ is the indicator function for condition C.

Proof. The observed likelihood for presence-only data is given by:

L(G‘Z7X) = HPr(Zi = 0|Xi7si = 1)1{51‘:0}
[Pr(Zi > 0|X,Si = 1)f(Zi|Zi > OaXiasi — 1)]1{:,->0}

We derive an explicit expression first using a total probability argument across ¥ > 0 and
Y=0:

Pr(Z>0|X,s=1) = Pr(Z>0]Y >0,X,s=1)Pr(Y >0/X,s=1)
+ Pr(Z>0)Y =0,X,s=1)Pr(Y =0[X,s = 1).

An application of Bayes rule and the fact that Z > 0 is independent of X gives:

Pr(Z>0,Y >0|s=1)

s =

We can now mimick computations used for deriving the case control adjustment to see that
the expected number of true presences (¥ > 0) in our data is n, + &n,. Hence, Pr(Y >
Ols=1) = (n,+&ny)/(n, +ny,). Also, by definition of Zand Y, Pr(Z >0,Y >0[s=1) =
n,/(n,+n,). Consequently:

np

Pr(Z> 0’Y > O,X,S: 1) = m
p u
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Further, Pr(Z > 0]Y = 0,s = 1) = 0 because all Z > 0 in the data must occur for ¥ > 0.
Combining (A.1) with the latter expressions, after some manipulation, we get that

p_ o1 (x)
Pr(Z>0X,s=1) =0+ — =" .
1+ (1 + .gn;f )en(x)

Consequently, the explicit form of the observed likelihood for the presence-only data is

given by:
L(Bz,X) = HPr(Zi =0|X,s; = 1)1{2i=0}

[PI'(Z,‘ > 0|X,S,’ = 1)f(Zi|Z,‘ > O,X,Sl' = 1)]1{21>O}

Ly
4 ents) e

i1+ (1 + 57”) en(xi)

o gn(x) Moo}

= f(zilzi > 0,X,5:=1) :
1+ (1 + g”,fu)en(xﬂ)

and one can simply substitute f(z;|z; > 0,X,s; = 1) with its expression to see (2.4).

C DERIVATION OF COMPLETE LIKELIHOOD

Proposition 3. The complete likelihood L(6|z,y,X) in terms of both z and y, and letting
N(x) = f'x and n'(X) = &'%, is given by:

1m0
1

i1+ (1 + %) exp{B'x;}

exp{pB'x:} (1 + gn:) 1 X {_2;2 (log(yi) — o'%;)

€xp
1+ <1 + 5%) exp{B'x;} YiV2mC

(C.1)

01

2

Proof. Using a conditioning argument, we get that
L(Olz,y,X) = [[Pr(yizilXisi=1)
i
= HPr(Zi|YiaSi = 1,X;) Pr(y;|X;,si = 1)
= J]Pr(ilXi,si=1)
i

= HPI'(yi =0|X;,s; = 1)1-‘7:0 [Pr(yi > 0|X;,s, = 1) f(yilyi > 0,Xi, 81 = IX}@Z?
i



A BAYESIAN MODEL FOR PRESENCE-ONLY SEMICONTINUOUS DATA 19

The form of Pr(y;|X,s; = 1) follows directly from (A.1):
N(X)+log ( ezt )

14 en(x)Hog(n”g%)

eT] (X) np"”é”u
ny

1 +en(o te e

o) ( 1+ g2 )

1+ <1+§”5M)en<’<>

exp{Blxi} (1+ 42 )

Pr(Y >0/X,s=1) =

= - (C.3)
1+ <1 + éirfu) exp{B'x;}
and
Pr(Y =0[X,s=1) = 1—Pr(Y >0[X,s=1)
1
- - (C.4)
1+ (1 + 5,’;) exp{B'x;}
The density f(y|y > 0,X,s; = 1), due to (A.2), is given by:
FOl> 0.5 =1) = exp{ 30 g~} (€
) ) y 271:6 262 1 .

Then, the explicit form of the complete likelihood for the presence-only data, in terms of
both z and y, can be obtained by substituting (C.3), (C.4) and (C.5) into (C.2).
O
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IV TAXUS
0,01-872

* 873-11.4M
11.42 - 21,87

Figure 1. Potential distribution of the abundance of Taxus baccata. R> = 0.18, False Negative
Rate=0
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Bayesian Model EM algorithm
N=10* | N=10* | N=900 | N=900 || N=10* | N=10* | N=900 | N =900
A=10% | A=30% | A=10% | A=30% || A=10% | A =30% | A =10% | A =30%
Parameters
Bi 0.3668 | 03847 | 0.6028 | 0.6000 0.2910 | 0.2055 14512 | 1.4103
B> 0.4056 | 0.4018 | 04772 | 0.4338 0.1078 | 0.0782 | 0.6281 | 0.5891
oo 0.0012 | 0.0015 | 0.0129 | 0.0146 0.0012 | 0.0015 | 0.0130 | 0.0149
a 0.0012 | 0.0016 | 0.0136 | 0.0160 0.0012 | 0.0016 | 0.0136 | 0.0169
c 0.0001 | 0.0001 | 0.0001 | 0.0001 0.0860 | 0.0871 | 0.0927 | 0.0859
y 3 | 0.0006 | 0.0008 | 0.0073 | 0.0169 [ - - - -
95% CIE,L [ 0.1367 | 0.1361 | 0.1373 | 0.1424 - - - -
95% CILE,C || 1.0000 | 1.0000 | 1.0000 | 1.0000 - - - -

Table 1. MSE of the parameter estimates of Bayesian model and EM model for different values
of N and A in simulated data. We omit Sy since it is summarized in the final prevalence
estimate. The last two lines report the mean length (L) and coverage (C) of the 95%

Cl for the prevalence parameter £. The number of replications is 1000.
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Test ‘ N ‘ A ‘ Bayesian Model | EM model
10* | 10% 0.0000 0.0000
MSE 10* | 30% 0.0000 0.0000
900 | 10% 0.0002 0.0000
900 | 30% 0.0002 0.0000
10* | 10% 0.8401 0.8401
Sensitivity | 10* | 30% 0.8402 0.8402
900 | 10% 0.8408 0.8409
900 | 30% 0.8303 0.8271
10* | 10% 0.1600 0.1600
Specificity | 10* | 30% 0.1603 0.1603
900 | 10% 0.1597 0.1601
900 | 30% 0.1673 0.1681

Table 2. MSE for positive predictions, sensitivity and specificity of the predicted pres-
ence/absence for different values of N and A in simulated data. The results are averaged
over 1000 replications.
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Prior settings
Parameters (a) \ (b) \ (©) \ (d) \
Bi 0.3668 | 0.3918 [ 0.3974 [ 0.3811
B 0.4056 | 0.4109 | 0.3289 | 0.3966
% 0.0012 | 0.0012 [ 0.0012 | 0.0012
o 0.0012 | 0.0014 | 0.0010 | 0.0011
c 0.0001 | 0.0001 | 0.0024 | 0.0001
S [ 0.0006 | 0.0006 | 0.0006 | 0.0006 ||

Table 3. Sensitivity analysis: MSE obtained with (a) default priors, (b) biased priors, (c) biased
prior on the prevalence parameter, (d) flat priors. The results are based on 1000
replications.
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Min Ist Quartile | Median | Mean | 3rd Quartile Max Std. Dev.
MIN_T_1 -5.56 -3.00 -2.17 -1.99 -1.05 4.09 1.42
MAX_T_7 17.92 22.04 23.51 23.35 24.76 27.99 1.79
T_MED 5.09 7.82 8.94 8.87 9.95 13.34 1.42
TOTAL_P 629.00 1029.00 1189.00 | 1210.98 1403.00 1894.00 | 244.59
SUMM_P 91.00 145.00 165.00 | 170.16 191.00 292.00 33.45
WINT_P 153.00 304.00 363.00 | 374.99 447.00 706.00 95.06
MOISTURE 0.94 1.20 1.29 1.32 1.38 2.29 0.18
ALT 900.00 1035.00 1217.00 | 1243.68 1424.00 1750.00 | 234.75

Table 4. Descriptive statistics for the environmental covariates on the whole data
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Min 1st Quartile | Median | Mean | 3rd Quartile Max Std. Dev.
MIN_T_1 -3.99 -2.57 -1.90 -1.79 -1.25 2.02 1.22
MAX_T_7 19.70 21.05 22.41 22.27 23.52 24.84 1.41
T_MED 5.90 7.56 8.38 8.45 9.04 11.61 1.16
TOTAL_P 22.00 1251.00 1405.00 | 1413.74 1620.00 1696.00 | 205.68
SUMM_P 141.00 161.00 203.00 | 196.09 219.00 254.00 31.19
WINT_P 256.00 336.00 440.00 | 429.27 507.00 560.00 86.17
MOISTURE 1.10 1.30 1.35 1.38 1.40 1.74 0.16
ALT 969.00 1278.00 1430.00 | 1392.15 1503.00 1715.00 | 157.19
ABUNDANCE 1.16 7.00 12.00 20.11 30.00 78.00 17.82

Table 5. Descriptive statistics for the environmental covariates for locations where abundance is

positive.
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model parameters | Posterior Mean | Std. Err. Prob. Inclusion ‘ EM ‘

logistic intercept 1.82 0.112 - | —0.80

TOTAL_P 0.94 0.100 0.85 0.86

MIN_T_1 —0.52 0.113 0.79 | —=0.24

MAX_T.7 0.65 0.105 0.80 0.53

ALT 0.66 0.126 0.81 0.82

regression intercept 2.88 0.013 - 2.98

TOTAL_P 0.17 0.008 0.99 0.14

MIN_T_1 -0.29 0.010 0.75 | —0.34

MOISTURE —0.08 0.009 0.65 | —0.09

ALT —0.65 0.012 0.98 | —0.76

o 0.93 0.003 - 0.66
£ ] 0.03 |  0.005 | 95%CI : (0.000 —0.136) | - |

Table 6. Posterior mean, estimated standard error and probability of inclusion for each covariate
included in the final model after SSSVS; plus maximum likelihood estimates obtained
with EM algorithm for comparison.
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TOTAL.P MAX.T7 MIN.T.1 ALT MOISTURE
TOTAL_P 1.00 -0.09 0.14  0.12 0.14
MAX_T_.7 -0.09 1.00 042 -0.90 0.42
MIN_T_1 0.14 0.42 1.00 -0.57 1.00
ALT 0.12 -0.90 -0.57  1.00 -0.57
MOISTURE 0.14 0.42 1.00 -0.57 1.00

Table 7. Correlation between covariates used in the final model.
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D1 LORENZO, FARCOMENI AND GOLINI

Min 1st Quartile Median Mean 3rd Quartile Max Std. Dev.
Pr(IV >0) | 0.86 0.93 095 094 0.96 0.98 0.02
Pr(1V >2) | 0.23 0.41 0.58 0.56 0.73 0.83 0.17

Table 8. Descriptive statistics for the 363 posterior estimated probabilities of a positive and of
a moderately large abundance in the Special Protection Zone ZPS12.



