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BILINEAR PSEUDO-DIFFERENTIAL OPERATORS
WITH GEVREY-HÖRMANDER SYMBOLS

AHMED ABDELJAWAD, SANDRO CORIASCO, AND NENAD TEOFANOV

Abstract. We consider bilinear pseudo-differential operators who-
se symbols may have a sub-exponential growth at infinity, together
with all their derivatives. It is proved that those symbol classes can
be described by the means of the short-time Fourier transform and
modulation spaces. Our first main result is the invariance property
of the corresponding bilinear operators. Furthermore we prove the
continuity of such operators when acting on modulation spaces. As
a consequence, we derive their continuity on anisotropic Gelfand-
Shilov type spaces.

Introduction

The study of multilinear operators has been influenced by the Calde-
rón-Zygmund theory. Indeed, one of the achievements of Coifman-
Meyer’s pioneer work [12] is the realization of pseudo-differential oper-
ators in terms of singular integrals of Calderón-Zygmund type. Their
approach is based on a multilinear point of view and have had a far
reaching impact in operator theory and partial differential equations.
For example, boundedness of a class of translation invariant bilinear
operators on Lebesgue spaces is proved in [12]. Furthermore, the bilin-
ear Calderón-Zygmund theory developed by Grafakos and Torres [23]
paved the way to the extension of those results to bilinear pseudo-
differential operators which are non-translation invariant, i.e. whose
symbols may depend on the space variable as well. We refer to [5] for a
brief survey and discussion of applications to partial differential equa-
tions, and to [9] for a systematic study of bilinear pseudo-differential
operators with symbols in bilinear Hörmander classes. See also [29] for
a recent contribution in the context of Triebel-Lizorkin and local Hardy
spaces.

Another type of results concerns bilinear (and multilinear) operators
whose symbols are not necessarily smooth. Their continuity properties
on modulation spaces were first observed in [6]. In contrast to classi-
cal bilinear pseudo-differential operators considered in e.g. [12], these
operators are treated by the techniques of time-frequency analysis, see
also [7–9,14,32].
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Key words and phrases. Bilinear operator, Pseudo-differential operators, Modu-

lation spaces, Gelfand-Shilov spaces, Gevrey regularity.
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In this paper, we employ the techniques of time-frequency analysis
and modulation spaces, and consider bilinear pseudo-differential op-
erators of Gevrey-Hörmander type whose symbols are of infinite or-
der and may have a (super-)exponential growth at infinity, together
with all their derivatives. The linear counterpart of such operators is
considered in [10], within the environment of isotropic Gelfand-Shilov
spaces of functions and distributions, see also [2, 50], and extended to
the anisotropic setting in [1, 4]. The main purpose of this paper is to
extend some boundedness results given there to the bilinear case.

More precisely, we consider Gevrey-Hörmander type symbols a ∈
Γσ,s(ω)(R

3d) (or a ∈ Γσ,s,0(ω) (R3d)), see Definition 1.8, and the correspond-

ing pseudo-differential operators, denoted by Opr,t(a), see (1.14) be-
low. When r = t = 0 we recover the Kohn-Nirenberg correspondence
considered, e.g., in [6, 8], while for r = t = 1/2 we obtain the Weyl
correspondence, considered in [40,42]. We remark that, in view of this
choice of symbol classes, we cannot rely on arguments based on stan-
dard (e.g., Littlewood-Paley) localization techniques. The substitute
for this is, from the very beginning, a “global approach”, aimed at
obtaining and employing appropriate characterizations of the involved
objects, in terms of suitable estimates which hold true on the whole
Euclidean spaces.

The paper is organized as follows. In Section 1 we collect neces-
sary definitions, background material and basic facts on Gelfand-Shilov
spaces, weight functions, modulation spaces, symbol classes and the
corresponding bilinear pseudo-differential operators. In Section 2, we
first study exponential-type operators on Gelfand-Shilov space and
prove the corresponding invariance properties. We proceed with a char-
acterization of the symbol spaces in terms of their regularity and decay
properties, and suitable estimates related to modulation spaces. Finally,
we prove our main results about the continuity of bilinear operators in
Section 3.

1. Preliminaries

In this section we provide notation and background material which
will be used throughout the paper. Proofs and details are in general
omitted, since they can be found, e.g., in [13,15–20,25,40,43–45].

We use the standard notation for Euclidean spaces and multiindeces,
cf. [28]. For example, if x = (x1, ..., xd) ∈ Rd and α = (α1, ..., αd) ∈ Nd,
then xα = xα1

1 . . . xαdd , ∂αx = ∂α1
x1
. . . ∂αdxd , |α| = α1 + · · · + αd and α! =

α1! . . . αd!. Here N denotes the set of non-negative integers. If α ∈ Nd,
then α > 0 means that αj > 0 for every j = 1, . . . , d, and similarly
for α ≥ 0. We write A(θ) . B(θ), θ ∈ Ω, if there is a constant c > 0
such that |A(θ)| ≤ c|B(θ)| for all θ ∈ Ω. We write A(θ) � B(θ) if
A(θ) . B(θ) and B(θ) . A(θ) for all θ ∈ Ω. Here Ω is an open subset
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of RN . If B1 and B2 are topological vector spaces, then B1 ↪→ B2 means
that B1 is continuously embedded into B2. By S (Rd) we denote the
Schwartz space of rapidly decreasing functions, and S ′(Rd) denotes its
dual space of tempered distributions.

1.1. Gelfand-Shilov spaces. Let h, s, σ > 0 be fixed. Then Sσs;h(Rd)

is the Banach space of all f ∈ C∞(Rd) such that

‖f‖Sσs;h ≡ sup
α,β∈Nd

sup
x∈Rd

|xα∂βf(x)|
h|α+β|α!s β!σ

<∞, (1.1)

endowed with the norm (1.1). Obviously, Sσs;h(Rd) increases as h, s and

σ increase, and it is contained in S (Rd) for every h, s, σ > 0.
The Gelfand-Shilov spaces Sσs (Rd) and Σσ

s (Rd) are defined as the
inductive and projective limits respectively of Sσs;h(Rd), i.e.

Sσs (Rd) =
⋃
h>0

Sσs;h(Rd) and Σσ
s (Rd) =

⋂
h>0

Sσs;h(Rd), (1.2)

with the usual inductive and projective limit topologies. Note that
Σσ
s (Rd) 6= {0}, if and only if s + σ ≥ 1 and (s, σ) 6= (1

2
, 1

2
), and

Sσs (Rd) 6= {0}, if and only if s + σ ≥ 1, see [22, 33]. For every s, σ > 0
we have

Σσ
s (Rd) ↪→ Sσs (Rd) ↪→ Σσ+ε

s+ε (Rd) ↪→ S (Rd) (1.3)

for every ε > 0. If s + σ ≥ 1, then the last two inclusions in (1.3)
are dense, and if in addition (s, σ) 6= (1

2
, 1

2
) then the first inclusion in

(1.3) is dense. Moreover, for σ < 1 the elements of Sσs (Rd) admit entire
extensions to Cd satisfying suitable exponential bounds, [22].

The spaces Sσs (Rd) and Σσ
s (Rd) combine global regularity with suit-

able decay properties at infinity, thus offering an abstract functional an-
alytic framework for some problems in mathematical physics, [24, 31].
The following result is a well-known characterization of Sσs (Rd) and
Σσ
s (Rd) in terms of the exponential decay of derivatives of their ele-

ments. The proof is standard, see e.g. [3, Appendix A].

Lemma 1.1. Let f be a smooth function on Rd, f ∈ C∞(Rd). Then
f ∈ Sσs (Rd) (respectively f ∈ Σσ

s (Rd)) if and only if for every α ∈ Nd

|∂αf(x)| . l|α|α!σe−h|x|
1
s , x ∈ Rd, (1.4)

for some l, h > 0 (respectively for every l, h > 0).

The Gelfand-Shilov distribution spaces (Sσs )′(Rd) and (Σσ
s )′(Rd) are

the projective and inductive limit respectively of (Sσs;h)′(Rd):

(Sσs )′(Rd) =
⋂
h>0

(Sσs;h)′(Rd) and (Σσ
s )′(Rd) =

⋃
h>0

(Sσs;h)′(Rd). (1.2)′
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It follows that S ′(Rd) ↪→ (Sσs )′(Rd) when s+σ ≥ 1, and if in addition
(s, σ) 6= (1

2
, 1

2
), then (Sσs )′(Rd) ↪→ (Σσ

s )′(Rd).
Next we rewrite the definition of Gelfand-Shilov spaces in the no-

tation which is convenient for our analysis, see also [10, 22, 27]. We
put

Rd0+···+dk = Rd0 ×Rd1 × · · · ×Rdk = R(d0,...,dk) = Rd.

Definition 1.2. Let k ∈ N, σ = (σ0, . . . , σk) > 0, s = (s0, . . . , sk) > 0,
and d = d0 + · · ·+ dk. The Gelfand-Shilov spaces

Sσs (Rd) = Sσ0,...,σks0,...,sk
(Rd0+···+dk) and Σσ

s (Rd) = Σσ0,...,σk
s0,...,sk

(Rd0+···+dk),

consist of all F ∈ C∞(Rd0+···+dk) such that

|xα0
0 . . . xαkk ∂

β0
x0
. . . ∂βkxkF (x0, . . . , xk)| . h|α0+β0+···+αk+βk|

k∏
j=0

αj!
sjβj!

σj

for some h > 0 and for every h > 0 respectively, where xj ∈ Rdj ,
αj, βj ∈ Ndj , j = 0, . . . , k. The dual spaces of Sσs (Rd) and Σσ

s (Rd) are
respectively denoted by

(Sσs )′(Rd) = (Sσ0,...,σks0,...,sk
)′(Rd0+···+dk)

and
(Σσ0,...,σk

s0,...,sk
)′(Rd) = (Σσ0,...,σk

s0,...,sk
)′(Rd0+···+dk).

The space Sσs (Rd) is nontrivial if and only if sj + σj ≥ 1, for each
j = 0, . . . , k and Σσ

s (Rd) is nontrivial if and only if sj + σj ≥ 1, and
(sj, σj) 6= (1

2
, 1

2
) for each j = 0, . . . , k.

Obviously, if σj = σ, sj = s and dj = d, j = 0, . . . , k, then

Sσ0,...,σks0,...,sk
(Rd0+···+dk) ≡ Sσs (R(k+1)d), Σσ0,...,σk

s0,...,sk
(Rd0+···+dk) ≡ Σσ

s (R(k+1)d),

(Sσ0,...,σks0,...,sk
)′(Rd0+···+dk) ≡ (Sσs )′(R(k+1)d),

and
(Σσ0,...,σk

s0,...,sk
)′(Rd0+···+dk) ≡ (Σσ

s )′(R(k+1)d).

The Fourier transform F is the linear and continuous map on S (Rd),
given by the formula

(Ff)(ξ) = f̂(ξ) ≡ (2π)−
d
2

∫
Rd

f(x)e−i〈x,ξ〉 dx, ξ ∈ Rd,

when f ∈ S (Rd). Here 〈 · , · 〉 denotes the usual scalar product on
Rd. The Fourier transform extends uniquely to homeomorphisms from
(Sσs )′(Rd) to (Ssσ)′(Rd), and from (Σσ

s )′(Rd) to (Σs
σ)′(Rd). Further-

more, it restricts to homeomorphisms from Sσs (Rd) to Ssσ(Rd), and
from Σσ

s (Rd) to Σs
σ(Rd), cf. [22] and Proposition 1.4 here below. This,

together with the kernel theorem for Gelfand-Shilov spaces (see [30,35,
39]) implies the following mapping properties of partial Fourier trans-
forms on Gelfand-Shilov spaces. Here, FjF is the partial Fourier trans-
forms of F (x0, x1, . . . , xk) with respect to xj ∈ Rdj , j = 0, . . . , k.
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Proposition 1.3. Let k ∈ N, sj, σj > 0, j = 0, . . . , k. Then the
following is true:

(1) the mapping Fj on S (Rd0+···+dk) restrict to homeomorphism

Fj : Sσ0,...,σks0,...,sk
(Rd0+···+dk)→ Sσ0,...,σj−1,sj ,σj+1,...,σk

s0,...,sj−1,σj ,sj+1,...,sk
(Rd0+···+dk);

(2) the mapping Fj on S (Rd0+···+dk) is uniquely extendable to home-
omorphism

Fj : (Sσ0,...,σks0,...,sk
)′(Rd0+···+dk)→ (Sσ0,...,σj−1,sj ,σj+1,...,σk

s0,...,sj−1,σj ,sj+1,...,sk
)′(Rd0+···+dk).

The same holds true if the Sσ0,...,σks0,...,sk
-spaces and their duals are replaced

by corresponding Σσ0,...,σk
s0,...,sk

-spaces and their duals in each occurrence.

The result analogous to Proposition 1.3 holds for partial Fourier
transforms with respect to some choice of variables.

Proposition 1.4. Let k ∈ N, σ = (σ0, . . . , σk) > 0, s = (s0, . . . , sk) >
0, and d = d1 + · · ·+ dk. Then the following conditions are equivalent.

(1) F ∈ Sσs (Rd) (F ∈ Σσ
s (Rd));

(2) for some r > 0 (for every r > 0) it holds

|F (x0, . . . , xk)| . e
−r

(
|x0|

1
s0 +···+|xk|

1
sk

)

and

|F̂ (ξ0, . . . , ξk)| . e
−r

(
|ξ0|

1
σ0 +···+|ξk|

1
σk

)
.

(3) for every α = (α0, . . . , αk) ∈ Nd and for some h, r > 0 (for
every h, r > 0) it holds

|∂αF (x0, . . . , xk)| . h|α|
k∏
j=0

α
σj
j e
−r

(
|x0|

1
s0 +···+|xk|

1
sk

)
.

Proof. The equivalence between (1) and (2) follows from [11], and (1)
⇔ (2) can be proved by a slight modification of the proof of Lemma
1.1 (cf. [3, Appendix A]) and we therefore leave it for the reader.

�

1.2. Weight functions. A function ω is called a weight or weight
function on Rd, if ω, 1/ω ∈ L∞loc(Rd) are positive everywhere. Without
loss of generality we may assume that the weight functions are contin-
uous on Rd, cf. [25]. Let ω and v be weights on Rd. Then ω is called
v-moderate or moderate, if

ω(x1 + x2) . ω(x1)v(x2), x1, x2 ∈ Rd. (1.5)
5



If v can be chosen as polynomial, then ω is called a weight of poly-
nomial type. A weight function v is submultiplicative, if it is symmetric
in each coordinate and

v(x1 + x2) . v(x1)v(x2), x1, x2 ∈ Rd.

From now on, v always denote a submultiplicative weight if nothing
else is stated. In particular, if (1.5) holds and v is submultiplicative,
then

ω(x1)

v(x2)
. ω(x1 + x2) . ω(x1)v(x2), x1, x2 ∈ Rd. (1.6)

If ω is a moderate weight on Rd, then there exists a submultiplicative
weight v on Rd such that (1.5) and (1.6) hold, cf. [45,46,48]. Moreover
if v is submultiplicative on Rd, then

1 . v(x) . ec|x| (1.7)

for some constant c > 0 (cf. [26, Lemma 4.2]).
In particular, if ω is moderate, then there exists c > 0 such that

ω(x+ y) . ω(x)ec|y| and e−c|x| . ω(x) . ec|x|, x, y ∈ Rd.

For a given k ∈ N, we let PE(Rd0+···+dk) be the set of all moderate
weights on Rd0+···+dk , and P(Rd0+···+dk) be the subset of PE(Rd0+···+dk)
which consists of weights of polynomial type.

If ω ∈PE(Rd0+···+dk) then there exists a submultiplicative weight v
on Rd0+···+dk , such that

ω(x0, . . . , xk)

v(y0, . . . , yk)
. ω(x0 + y0, . . . , xk + yk) . ω(x0, . . . , xk)v(y0, . . . , yk),

(1.8)
where xj, yj ∈ Rdj , j = 0, . . . , k. Note that (1.7) for a submultiplicative
weight v on Rd0+···+dk becomes

1 . v(x0, . . . , xk) . er(|x0|+···+|xk|), xj ∈ Rdj , j = 0, . . . , k, (1.9)

for some r > 0.
Next we extend the weight functions considered in [1, 2] to the case

when Rd = Rd0+···+dk .

Definition 1.5. Let k ∈ N and sj > 0, j = 0, . . . , k. Then, the set
Ps0,...,sk(R

d0+···+dk) (P0
s0,...,sk

(Rd0+···+dk)) consists of all weights ω ∈
PE(Rd0+···+dk) such that

ω(x0 + y0, . . . , xk + yk) . ω(x0, . . . , xk)e
r(|y0|

1
s0 +···+|yk|

1
sk ), xj, yj ∈ Rdj

(1.10)
holds for some (for every) r > 0.

In particular, if ω ∈Ps0,...,sk(R
d0+···+dk) (P0

s0,...,sk
(Rd0+···+dk)), then

e−r(|x0|
1
s0 +···+|xk|

1
sk ) . ω(x0, . . . , xk) . er(|x0|

1
s0 +···+|xk|

1
sk )

for some r > 0 (for every r > 0).
6



By (1.8) and (1.9) it follows that

P0
s0,...,sk

(Rd0+···+dk) = Ps̃0,...,s̃k(R
d0+···+dk) = PE(Rd0+···+dk)

when sj < 1 and s̃j ≤ 1, j = 0, . . . , k. For convenience we set

P0
E(Rd0+···+dk) = P0

E,1(Rd0+···+dk).

The following extension of [2, Proposition 1.6], shows that for any
weight in PE(Rd0+···+dk), there are equivalent weights that satisfy the
anisotropic Gevrey regularity.

Proposition 1.6. Let there be given ω ∈ PE(Rd0+d1+···+dk). Then
there exists a weight ω0 ∈ PE(Rd0+d1+···+dk) ∩ C∞(Rd0+d1+···+dk) such
that the following is true:

(1) ω0 � ω;

(2) for every (multiindex) αj ≥ 0, j = 0, . . . , k, we have

|∂α0
x ∂

α1
ξ1
. . . ∂αkξk ω0(x, ξ1, . . . , ξk)| . h|α0+α1+···+αk|

k∏
j=0

αj!
sjω(x, ξ1, . . . , ξk)

� h|α0+α1+···+αk|
k∏
j=0

αj!
sjω0(x, ξ1, . . . , ξk), x ∈ Rd

0, ξj ∈ Rdj , j = 1, . . . , k,

for every h > 0 and sj > 0, j = 0, . . . , k.

The proof is appropriate modification of the proof of [2, Proposition
1.5] and can be found in [3, Appendix].

1.3. Modulation spaces. Modulation spaces, originally introduced
by Feichtinger in [17], are recognized as appropriate family of spaces
when dealing with problems of time-frequency analysis, see [17–21,25,
36,38], to mention just a few references. A broader family of modulation
spaces is recently studied in [2, 34,50].

Let s, σ > 0, such that s+σ ≥ 1, and let φ ∈ Sσs (Rd) be fixed. Then
the short-time Fourier transform Vφf of f ∈ (Sσs )′(Rd) with respect to
the window function φ is defined by

Vφf(x, ξ) ≡ F (f · φ( · − x))(ξ), x, ξ ∈ Rd.

This definition makes sense as a Gelfand-Shilov distribution [1, Remark
1.5].

If f, φ ∈ Sσs (Rd), then

Vφf(x, ξ) = (2π)−
d
2

∫
f(y)φ(y − x)e−i〈y,ξ〉 dy.

Let s, σ > 0, such that s+σ ≥ 1. Let there be given φ ∈ Sσs (Rd) \ 0,
p, q ∈ [1,∞] and ω ∈ PE(R2d). Then the modulation space Mp,q

(ω)(R
d)
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consists of all Gelfand-Shilov distributions f on Rd such that

‖f‖Mp,q
(ω)
≡
(∫ (∫

|Vφf(x, ξ)ω(x, ξ)|p dx
)q/p

dξ
)1/q

<∞ (1.11)

(with the obvious changes if p =∞ and/or q =∞). If p = q we simply
write Mp

(ω) instead of Mp,p
(ω), and if ω = 1, then we set Mp,q = Mp,q

(ω) and

Mp = Mp
(ω).

The spaces Mp,q
(ω) are Banach spaces and every φ ∈M r

(v) \ 0 yields an

equivalent norm in (1.11) and so Mp,q
(ω) is independent on the choice of

φ ∈M r
(v) [50, Proposition 1.1].

Gelfand-Shilov spaces and their dual spaces can be described as pro-
jective or inductive limits of modulation spaces [48, Theorem 3.9]. In
particular, we have the following characterization of Gelfand-Shilov
spaces by the means of the short-time Fourier transform. We refer
to [27] for the proof, see also [37, 41,48].

Proposition 1.7. Let k ∈ N, σ = (σ0, . . . , σk) > 0, s = (s0, . . . , sk) >
0, and d = d1 + · · · + dk. Also let φ ∈ Sσs (Rd) \ 0. Then the following
is true:

(1) F ∈ Sσs (Rd) if and only if

|VφF (x0, . . . , xk, ξ0, . . . , ξk)| . e
−r

(
|x0|

1
s0 +···+|xk|

1
sk +|ξ0|

1
σ0 +···+|ξk|

1
σk

)
(1.12)

holds for some r > 0;

(2) if, in addition, φ ∈ Σσ
s (Rd) \ 0, then F ∈ Σσ

s (Rd) if and only if
(1.12) holds for every r > 0.

1.4. Symbol classes and Pseudo-differential operators. First we
introduce function spaces related to symbol classes of the multilinear
pseudo-differential operators. We consider a ∈ C∞(Rd0+···+dk) which
obey various conditions of the form

|∂αx∂
β1
ξ1
. . . , ∂βkξk a(x, ξ1, . . . , ξk)|

. h|α+β1+···+βk|α!σ
k∏
j=1

βj!
sj · ω(x, ξ1, . . . , ξk),

w ∈PE(Rd0+d1+···+dk), α ∈ Nd0 , βj ∈ Rdj , sj, σ, h > 0, j = 1, . . . , k.
When k = 1 we recover the condition (1.14) from [4]. Similarly to [4],

for a given w ∈ PE(Rd0+d1+···+dk) and sj, σ, h > 0, j = 1, . . . , k, we
8



consider norms of the form

‖a‖Γσ,s;h
(ω)
≡

sup
α∈Nd0

βj∈Ndj

 sup
x∈Rd0

ξj∈Rdj

(
|∂αx∂

β1
ξ1
. . . , ∂βkξk a(x, ξ1, . . . , ξk)|

h|α+β1+···+βk|α!σ
∏k

j=1 βj!
sj · ω(x, ξ1, . . . , ξk)

) .

(1.13)

More precisely, we are interested in invariance and continuity for
bilinear pseudo-differential operators when symbols belong to the fol-
lowing symbol classes.

Definition 1.8. Let there be given σ, sj, h > 0, j = 1, . . . , k and
ω ∈PE(Rd0+d1+···+dk), and set s = (s1, . . . , sk).

(1) The set Γσ,s;h(ω) (Rd0+···+dk) consists of all a ∈ C∞(Rd0+···+dk) such

that

‖a‖Γσ,s;h
(ω)

<∞,

where the norm ‖ · ‖Γσ,s;h
(ω)

is given by (1.13).

(2) The sets Γσ,s(ω)(R
d0+···+dk) and Γσ,s;0(ω) (Rd0+···+dk) are given by

Γσ,s(ω)(R
d0+···+dk) ≡

⋃
h>0

Γσ,s;h(ω) (Rd0+···+dk)

and

Γσ,s;0(ω) (Rd0+···+dk) ≡
⋂
h>0

Γσ,s;h(ω) (Rd0+···+dk),

and their topologies are, respectively, the inductive and the
projective limit topologies of Γσ,s;h(ω) (Rd0+···+dk) with respect to

h > 0.

As it is common in the theory of ultradifferentiable functions, we say
that (the inductive limit) Γσ,s(ω)(R

d0+···+dk) is a Roumieu class, and (the

projective limit) Γσ,s;0(ω) (Rd0+···+dk) is a Beurling class of test functions.

Notice that Γσ,s(ω)(R
d0+···+dk) and Γσ,s;0(ω) (Rd0+···+dk) are nontrivial for

any σ, sj, h > 0, j = 1, . . . , k. For instance by Proposition 1.6 for any
ω ∈PE(Rd0+d1+···+dk) there exist a smooth function ω0 ∈PE(Rd0+d1+···+dk)
such that ω0 ∈ Γσ,s;0(ω) (Rd0+···+dk).

When k = 1 we put σ1 = σ and recover the symbol classes Γσ,s(ω)(R
d0+d1)

and Γσ,s;0(ω) (Rd0+d1) considered in [4].

Next we recall some facts on pseudo-differential operators. The pseudo-
differential operator Opt(a) is the linear and continuous operator on

9



S(Rd), defined by the formula

Opt(a)f(x) =
1

(2π)d

∫∫
a(x− t(x− y), ξ)f(y)ei〈x−y,ξ〉 dydξ, x ∈ Rd.

More generally, the definition of Opt(a) extends uniquely to a ∈ S ′(R2d),
and then Opt(a) is continuous from S(Rd) to S ′(Rd).

Let t = (t1, t2, . . . , tm) ∈ [0, 1]m, be such that
∑m

j=1 tj ≤ 1, and put
~f = (f1, f2, . . . , fm) ∈ S (Rmd). The multilinear pseudo-differential
operator Opt(a) from S (Rmd) to S ′(Rd) is defined by the formula

Opt(a)~f(x) =
1

(2π)2md

∫∫
e−iψ(x,y,ξ)at(x,y, ξ)

m∏
j=1

fj(yj)dydξ,

where

at(x,y, ξ) = a(x+
m∑
j=1

(tjyj − x), ξ, η), x, yj, ξj ∈ Rd,

and the phase function ψ is defined by

ψ(x,y, ξ) =
m∑
j=1

〈yj − x, ξj〉, x, yj, ξj ∈ Rd.

Whenm = 2 we obtain bilinear pseudo-differential operators Opr,t(a).

That is, Opr,t(a) is the bilinear and continuous operator from S (Rd)⊗
S (Rd) to S ′(Rd), defined by the formula(

Opr,t(a)(f, g)
)

(x) =

(2π)−2d

∫∫∫∫
e−iψ(x,y,z,ξ,η)ar,t(x, y, z, ξ, η)f(y)g(z) dydzdξdη, x ∈ Rd,

(1.14)

where (r, t) ∈ [0, 1]× [0, 1], r + t ≤ 1,

ar,t(x, y, z, ξ, η) = a(x+ r(y − x) + t(z − x), ξ, η), x, y, z, ξ, η ∈ Rd,

and the phase function ψ is defined by

ψ(x, y, z, ξ, η) = 〈y − x, ξ〉+ 〈z − x, η〉, x, y, z, ξ, η ∈ Rd.

If r = t = 0, then the definition of Op0(a) coincides with the defini-
tion of bilinear pseudo-differential operators

Ta(f, g)(x) = (2π)−d
∫∫

ei〈x,ξ+η〉a(x, ξ, η)f̂(ξ)ĝ(η) dξdη, x ∈ Rd,

considered in e.g [8], and the corresponding multilinear extension is
studied in [32].

In fact, in Sections 2 and 3 we will consider the action of Opr,t(a)
when restricted to different Gelfand-Shilov spaces, and related unique
extension of such operators to Gelfand-Shilov distributions.
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We will use the following results about the continuity of linear pseudo-
differential operators with symbols in Gevrey-Hörmander classes, and
we refer to [4, Theorem 2.1] and [1, Theorem 3.7] respectively, for the
proofs.

Proposition 1.9. Let s, σ ≥ 1, p, q ∈ [1,∞], ω, ω0 ∈ P0
s,σ(R2d), and

a ∈ Γσ,s(ω0)(R
2d). Then Opt(a) is a continuous operators fromMp,q

(ω0ω)(R
d)

to Mp,q
(ω)(R

d) for any t ∈ [0, 1].

Note that, in the notation of Definition 1.5 we have P0
s,σ(R2d) =

P0
s0,s1

(Rd0+d1) when s0 = s, s1 = σ and d1 = d2 = d.

Proposition 1.10. Let A ∈M(d,R), s, σ > 0 be such that s+ σ ≥ 1,

ω ∈ P0
s,σ(R2d) and let a ∈ Γσ,s;h0 (R2d) for some h > 0. Then OpA(a)

is continuous on Sσs (Rd) and on (Sσs )′(Rd).

2. Characterization and invariance property for bilinear
pseudo-differential operators

Our aim in this section is to show that Γσ,s1,s2(ω) (R3d) and Γσ,s1,s2;0
(ω) (R3d)

can be characterized in terms of estimates of short-time Fourier trans-
forms and modulation spaces. This is done in subsection 2.2. We refer
to [1,49] for similar results related to “standard” pseudo-differential op-
erators. As a preparation, we show that Opr,t(a) is independent of the
choice of r and t, which gives the invariance property for bilinear op-
erators, Theorem 2.2. The counterpart of Theorem 2.2 for “standard”
pseudo-differential is proved in e.g. [1, 4, 49]. The key tools we employ
to achieve the desired characterizations and invariance properties are
mapping results for exponentials of certain linear operators, similar to
the typical ones often appearing in the “usual” Weyl-Hörmander cal-
culus, whose description is given here below.

2.1. Mapping properties of exponential-type operators on Gel-
fand-Shilov spaces. For the study of mapping properties of the oper-
ator e−i〈rDξ+tDη ,Dx〉 we need the following auxiliary result. By M(d,R)
we denote the set of all d× d-matrices with entries in R.

Lemma 2.1. Let A,B ∈M(d,R) and a ∈ S (R3d). Then(
F−1

2,3 (ei〈ADξ+BDη ,Dx〉a)
)
(x+ Ay +Bz, y, z) = (F−1

2,3 a)(x, y, z), (2.1)

x, y, z ∈ Rd.

Proof. Throughout the proof, the integrals are observed as either Fourier
transforms or inverse Fourier transforms of appropriate distributions.
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The left-hand side of (2.1) is given by(
F−1

2,3 (ei〈ADξ+BDη ,Dx〉a)
)
(x+ Ay +Bz, y, z)

=

∫∫
ei(〈y,ξ〉+〈z,η〉)

(
ei〈ADξ+BDη ,Dx〉a)

)
(x+ Ay +Bz, ξ, η) dξdη,

and(
ei〈ADξ+BDη ,Dx〉a)

)
(x+ Ay +Bz, ξ, η)

=

∫∫∫
ei(〈x+Ay+Bz,ζ〉+〈y1,ξ〉+〈z1,η〉)ei(〈Ay1+Bz1,ζ〉)â(ζ, y1, z1) dζdy1dz1,

where

â(ζ, y1, z1) =

∫∫∫
e−i(〈x1,ζ〉+〈y1,ξ1〉+〈z1,η1〉)a(x1, ξ1, η1) dx1dξ1dη1,

x1, ξ1, η1 ∈ Rd. Let Ψ ≡ Ψ(x, x1, y, y1, z, z1, ζ, ξ, η, ξ1, η1) be given by

Ψ = 〈y + y1, ξ〉+ 〈z + z1, η〉+ 〈x+ Ay +Bz, ζ〉
+ (〈Ay1 +Bz1, ζ〉)−(〈x1, ζ〉+ 〈y1, ξ1〉+ 〈z1, η1〉),

x, x1, y, y1, z, z1, ζ, ξ, η, ξ1, η1 ∈ Rd. It follows that(
F−1

2,3 (ei〈ADξ+BDη ,Dx〉a)
)
(x+ Ay +Bz, y, z)

=

∫∫∫∫∫∫∫∫
eiΨ(x,x1,y,y1,z,z1,ζ,ξ,η,ξ1,η1)

× a(x1, ξ1, η1) dx1dξ1dη1 dζdy1dz1 dξdη, x, y, z ∈ Rd. (2.2)

Since∫
ei〈y+y1,ξ〉 dξ = δ(y + y1), and

∫
ei〈z+z1,η〉 dη = δ(z + z1),

where δ is the Dirac delta distribution, it follows that (2.2) reduces to∫∫∫∫
ei(〈x,ζ〉−〈x1,ζ〉+〈y,ξ1〉+〈z,η1〉)a(x1, ξ1, η1) dζdx1dξ1dη1

=

∫∫
ei(〈y,ξ1〉+〈z,η1〉)a(x, ξ1, η1) dξ1dη1 =

(
F−1

2,3 a
)

(x, y, z),

and the claim follows. �

Next we show some mapping properties of the operator e−i〈rDξ+tDη ,Dx〉

which are an important ingredient in our analysis.

Theorem 2.2. Let sj, σj, j = 1, 2, 3, be such that

sj + σj ≥ 1, 0 < s2, s3 ≤ s1, and 0 < σ1 ≤ σ2, σ3 (2.3)

and let r, t ∈ [0, 1] be such that r + t ≤ 1. Then the following is true:
12



(1) e−i〈rDξ+tDη ,Dx〉 on S (R3d) restricts to a homeomorphism on
Sσ1,s2,s3s1,σ2,σ3

(R3d), and extends uniquely to a homeomorphism on

(Sσ1,s2,s3s1,σ2,σ3
)′(R3d);

(2) if in addition (sj, σj) 6= (1
2
, 1

2
), j = 1, 2, 3, then e−i〈rDξ+tDη ,Dx〉

on S (R3d) restricts to a homeomorphism on Σσ1,s2,s3
s1,σ2,σ3

(R3d), and

extends uniquely to a homeomorphism on (Σσ1,s2,s3
s1,σ2,σ3

)′(R3d).

Proof. We only prove (1) and leave (2) for the reader.
Let a ∈ S (R3d) and let Ur,t be the map given by

(Ur,tF )(x, y) = F (x− ry − tz, y, z), x, y ∈ Rd.

By Lemma 2.1, we have(
F−1

2,3 (ei〈rDξ+tDη ,Dx〉a)
)
(x+ry+tz, y, z) = (F−1

2,3 a)(x, y, z), x, y, z ∈ Rd,

wherefrom ei〈rDξ+tDη ,Dx〉 = F2,3 ◦Ur,t ◦F−1
2,3 . Therefore it only remains

to show that the mapping Ur,t is continuous on Sσ1,σ2,σ3s1,s2,s3
.

Since the Fourier transform with respect to the 2nd and 3rd variables
switches between the corresponding decay and regularity properties on
Gelfand-Shilov spaces we consider G = Ur,tF , where F ∈ Sσ1,s2,s3s1,σ2,σ3

. Then

G(x, y, z) = F (x−ry− tz, y, z) and Ĝ(ζ, ξ, η) = F̂ (ζ, ζ+rξ, ζ+ tη),

x, y, z, ζ, ξ, η ∈ Rd. In view of Proposition 1.3 and from the assumptions
on sj and σj, it follows that there exist constants c, r0 > 0, where c
depends on r, t, sj and σj only, such that

|G(x, y, z)| = |F (x− ry − tz, y, z)|

. e−r0(|x−ry−tz|
1
s1 +|y|

1
s2 +|z|

1
s3 ) . e−cr0(|x|

1
s1 +|y|

1
s2 +|z|

1
s3 ),

x, y, z ∈ Rd, and

|Ĝ(ζ, ξ, η)| = |F̂ (ζ, ζ + rξ, ζ + tη)|

. e−r(|ζ|
1
σ1 +|ζ+rξ|

1
σ2 |ζ+tη|

1
σ3 ) . e−cr(|ζ|

1
σ1 +|ξ|

1
σ2 +|η|

1
σ3 ),

ζ, ξ, η ∈ Rd. The result follows since by Proposition 1.4 the topology
in Sσ1,σ2,σ3s1,s2,s3

(R3d) can be defined by the above estimates.
�

Corollary 2.3. Let s, σ > 0 be such that s + σ ≥ 1 and σ ≤ s. Then
e−i〈rDξ+tDη ,Dx〉 is a homeomorphism on Sσs (R3d), Σσ

s (R3d), (Sσs )′(R3d)
and on (Σσ

s )′(R3d).

Next we study an invariance property of bilinear pseudo-differential
operators Opr,t(a) given by (1.14). More precisely, it can be shown that
for every Gelfand-Shilov distribution a there is a unique distribution
b in the same Gelfand-Shilov class such that Opr1,t1(a) = Opr2,t2(b),
when rj, tj ∈ [0, 1] and rj + tj ≤ 1. The following result, which explains
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the relation between such a and b, follows from Theorem 2.2 when the
conditions in (2.3) are fulfilled. We refer to [3, Appendix A] for an
independent proof.

Proposition 2.4. Let rj, tj ∈ [0, 1] be such that rj + tj ≤ 1, and let
a, b ∈ (Sσ1,s2,s3s1,σ2,σ3

)′(R3d), where sj, σj > 0, and sj + σj ≥ 1, j = 1, 2, 3.
Then

Opr1,t1(a) = Opr2,t2(b)

⇔ (2.4)

e−i〈r1Dξ+t1Dη ,Dx〉a(x, ξ, η) = e−i〈r2Dξ+t2Dη ,Dx〉b(x, ξ, η), x, ξ, η ∈ Rd.

Note that the latter equality in (2.4) makes sense since it is equivalent
to

e−i〈r1y+t1z,ζ〉â(ζ, y, z) = e−i〈r2y+t2z,ζ〉b̂(ζ, y, z), ζ, y, z ∈ Rd.

Moreover, by using the similar arguments as in e. g. [1,10,51], it can be
shown that the map a 7→ e−i〈ry+tz,ζ〉a is continuous on (Sσ1,s2,s3s1,σ2,σ3

)′(R3d).
The following corollary is a consequence of [10, Theorem 4.6] and

Proposition 2.4.

Corollary 2.5. Let sj, σj > 0 be such that sj+σj ≥ 1, (sj, σj) 6= (1
2
, 1

2
),

j = 1, 2, 3 and rj, tj ∈ [0, 1] be such that rj + tj ≤ 1, j = 1, 2. If
a, b ∈ (Σσ1,s2,s3

s1,σ2,σ3
)′(R3d), are such that Opr1,t1(a) = Opr2,t2(b) Then

a ∈ Γσ1,s2,s3;0
(ω) (R3d) ⇔ b ∈ Γσ1,s2,s3;0

(ω) (R3d)

and

a ∈ Γσ1,s2,s3(ω) (R3d) ⇔ b ∈ Γσ1,s2,s3(ω) (R3d),

for any given ω ∈PE(R3d).

Passages between different kinds of pseudo-differential calculi have
been considered before [28, 51]. On the other hand, for the bilinear
pseudo-differential calculi, it seems that the representation a 7→ Opr,t(a)
for (r, t) ∈ [0, 1]× [0, 1] such that r+ t ≤ 1, has not been considered so
far.

2.2. Gevrey-type symbol classes characterizations. Our first re-
sult concerns the Roumieu case of symbols in Γσ,s,s(ω) (R3d). It can be

deduced from [10, Proposition 4.3], see also [1, Proposition 2.4]. For
the sake of completeness, we give the proof.

Proposition 2.6. Let sj, σj > 0, j = 1, 2, 3, be such that the conditions
in (2.3) hold, let ω ∈ P0

s1,σ2,σ3
(R3d) and let a be a Gelfand-Shilov

distribution on R3d.
Then the following conditions are equivalent:
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(1) a ∈ Γσ1,s2,s3(ω) (R3d), that is, a ∈ C∞(R3d) and

|∂αx∂
β
ξ ∂

γ
ηa(x, ξ, η)| . h|α+β+γ|α!σ1β!s2γ!s3ω(x, ξ, η), x, ξ, η ∈ Rd,

for every α, β, γ ∈ Nd and some h > 0;

(2) For every φ ∈ Sσ1,s2,s3s1,σ2,σ3
(R3d) \ 0, there exist constants h,R > 0

such that for every α, β, γ ∈ Nd,

|∂αx∂
β
ξ ∂

γ
η

(
ei(〈x,ζ〉+〈y,ξ〉+〈z,η〉)Vφa(x, ξ, η, ζ, y, z)

)
|

. h|α+β+γ|α!σ1β!s2γ!s3ω(x, ξ, η)e−R(|ζ|
1
σ1 +|y|

1
s2 +|z|

1
s3 ), (2.5)

x, ξ, η, ζ, y, z ∈ Rd.

(3) For every φ ∈ Sσ1,s2,s3s1,σ2,σ3
(R3d) \ 0, there exist a constant R > 0

such that

|Vφa(x, ξ, η, ζ, y, z)| . ω(x, ξ, η)e−R(|ζ|
1
σ1 +|y|

1
s2 +|z|

1
s3 ), x, ξ, η, ζ, y, z ∈ Rd.

(2.6)

Proof. That (2) implies (3) is immediate, since (2.5) is equal to (2.6)
when α = β = γ = 0.

Let X = (x, ξ, η), Y = (x1, ξ1, η1), Z = (ζ, y, z) ∈ R3d, and set

Fa(X, Y ) = a(X + Y )φ(Y ) = a(x+ x1, ξ + ξ1, η + η1)φ(x1, ξ1, η1).

Assume that (1) holds true. By the Leibniz rule, (1.10) and Proposition
1.4 we obtain

|∂αx∂
β
ξ ∂

γ
ηFa(x, ξ, η, x1, ξ1, η1)|

. h|α+β+γ|α!σ1β!s2γ!s3ω(x, ξ, η)e−R(|x1|
1
s1 +|ξ1|

1
σ2 +|η1|

1
σ3 ),

x, ξ, η, x1, ξ1, η1 ∈ Rd, for some constants h,R > 0.
It follows that the set{
Ga,h,X(Y ) | Ga,h,x,ξ,η(x1, ξ1, η1) =

∂αx∂
β
ξ ∂

γ
ηFa(x, ξ, η, x1, ξ1, η1)

h|α+β+γ|α!σ1β!s2γ!s3ω(x, ξ, η)

}
is bounded in Sσ1,s2,s3s1,σ2,σ3

(R3d). If F2Fa denotes the partial Fourier trans-
form of Fa(X, Y ) with respect to the Y -variable, then we get

|∂αx∂
β
ξ ∂

γ
η (F2Fa)(x, ξ, η, ζ, y, z)|

. h|α+β+γ|α!σ1β!s2γ!s3ω(x, ξ, η)e−R(|y|
1
σ1 +|z|

1
s2 +|ζ|

1
s3 ),

x, ξ, η, x1, ξ1, η1 ∈ Rd, for some constants h,R > 0. This, together with
the Leibnitz rule applied to ∂αx∂

β
ξ ∂

γ
η

(
ei(〈x,ζ〉+〈y,ξ〉+〈z,η〉)Vφa(x, ξ, η, ζ, y, z)

)
gives (2).

15



Assume now that (3) holds. By the inversion formula we get

a(X) =
(2π)−

3d
2

‖φ‖2
L2

∫∫
Vφa(Y, Z)φ(X − Y )ei〈X,Z〉 dY dZ, X ∈ R3d,

(2.7)
in the weak sense. Since φ ∈ Sσ1,s2,s3s1,σ2,σ3

(R3d) we notice that

(X, Y, Z) 7→ Vφa(Y, Z)φ(X − Y )ei〈X,Z〉

is a smooth map, and

(Y, Z) 7→ ZαVφa(Y, Z)∂βφ(X − Y )ei〈X,Z〉

is an integrable function for every X ∈ R3d, α = (α1, α2, α3) ∈ N3d,
and β = (β1, β2, β3) ∈ N3d in view of (3). Hence the derivatives of a in
(2.7) satisfy the following estimates:

|∂αa(X)| ≤
∑
β≤α

(
α

β

)∫∫
|ZβVφa(Y, Z)(∂α−βφ)(X − Y )| dY dZ

.
∑
β≤α

(
α

β

)∫∫
|Zβω(Y )e−R(|ζ|

1
σ1 +|y|

1
s2 +|z|

1
s3 )(∂α−βφ)(X − Y )| dY dZ

.
∑
β≤α

(
α

β

)
h
|α−β|
2 (α1 − β1)!σ1(α2 − β2)!s2(α3 − β3)!s3

×
∫∫
|Zβ|e−R(|ζ|

1
σ1 +|y|

1
s2 +|z|

1
s3 )ω(Y )e−h1(|x−x1|

1
s1 +|ξ−ξ1|

1
σ2 +|η−η1|

1
σ3 ) dY dZ,

X ∈ R3d, for some constants h1, h2 > 0, and we used Lemma 1.1. For
any β ∈ N3d, σ, sj > 0 such that sj + σ ≥ 1, j = 1, 2, and h2, R > 0, it
holds

|ζβ1yβ2zβ3e−R(|ζ|
1
σ +|y|

1
s+|z|

1
s )| . h

|β|
2 β1!σ1β2!s2β3!s3e−

R
2

(|ζ|
1
σ1 +|y|

1
s2 +|z|

1
s3 ),

ζ, y, z ∈ Rd, so that

|∂αa(X)|

. h
|α|
2

∑
β≤α

(
α

β

)
(β1!(α1 − β1)!)σ1(β2!(α2 − β2)!)s2(β3!(α3 − β3)!)s3

×
∫∫

e−
R
2

(|ζ|
1
σ1 +|y|

1
s2 +|z|

1
s3 )ω(Y )e−h1(|x−x1|

1
s1 +|ξ−ξ1|

1
σ2 +|η−η1|

1
σ3 ) dY dZ

. (2h2)|α|α1!σ1α2!s2α3!s3

×
∫
ω(X + (Y −X))e−h1(|x−x1|

1
s1 +|ξ−ξ1|

1
σ2 +|η−η1|

1
σ3 ) dY, X ∈ R3d.

(2.8)
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Since ω ∈P0
s1,σ2,σ3

, that is (1.10) holds for every r > 0, by choosing
r ∈ (0, h1/2), from (2.8) it follows that

|∂αa(X)| . (2h2)|α|α1!σ1α2!s2α3!s3ω(X), X ∈ R3d,

for some constant h2 > 0 (and we conclude that (2.7) holds also in the
pointwise sense). Therefore (3) implies (1) and the result follows. �

We refer to Proposition 2.7 in the extended version of this paper [3]
for the Beurling case which can be proved by following similar argu-
ments as in the proof of Proposition 2.6.

In the next result however, we consider the Beurling case and give a
description of the symbol class Γσ1,s2,s3;0

(ω) (R3d) in terms of modulation

spaces M∞,q
(1/ωR)(R

3d) for q ∈ [1,∞] and ωR defined in (2.9) below. To

prove Proposition 2.7 we follow arguments analogous to those used in
the proofs of [1, Proposition 3.5] and [10, Proposition 4.4].

We leave for the reader to write down Proposition 2.7 when the
(Roumieu case) symbol class Γσ1,s2,s3(ω) (R3d) is considered instead.

Proposition 2.7. Let R > 0, q ∈ [1,∞], sj, σj > 0, (sj, σj) 6= (1
2
, 1

2
),

j = 1, 2, 3, and let the conditions in (2.3) hold. Also, let φ, φ0 ∈
Σσ1,s2,s3
s1,σ2,σ3

(R3d) \ 0, ω ∈Ps1,σ2,σ3(R
3d), and let

ωR(x, ξ, η, ζ, y, z) = ω(x, ξ, η)e−R(|ζ|
1
σ1 +|y|

1
s2 +|z|

1
s3 ). (2.9)

Then

Γσ1,s2,s3;0
(ω) (R3d) =

⋂
R>0

{ a ∈ (Σσ1,s2,s3
s1,σ2,σ3

)′(R3d) ; ‖ω−1
R Vφa‖L∞,q(R3d×R3d) <∞}.

(2.10)

Proof. When q =∞, (2.10) becomes

Γσ1,s2,s3;0
(ω) =

⋂
R>0

M∞
(1/ωR)(R

3d),

which is a straightforward consequence of Proposition ??. Therefore it
is enough to prove that⋂

R>0

M∞
(1/ωR)(R

3d)

=
⋂
R>0

{ a ∈ (Σσ1,s2,s3
s1,σ2,σ3

)′(R3d) ; ‖ω−1
R Vφa‖L∞,q(R3d×R3d) <∞}.

Put

V0,a(X, Y ) = |(Vφ0a)(x, ξ, η, ζ, y, z)|, Va(X, Y ) = |(Vφa)(x, ξ, η, ζ, y, z)|

and G(x, ξ, η, ζ, y, z) = |(Vφφ0)(x, ξ, η, ζ, y, z)|,
17



where X = (x, ξ, η) ∈ R3d and Y = (ζ, y, z) ∈ R3d. By Proposition 1.7
we have

0 ≤ G(x, ξ, η, ζ, y, z) . e−R(|x|
1
s1 +|ξ|

1
σ2 +|η|

1
σ3 +|ζ|

1
σ1 +|y|

1
s2 +|z|

1
s3 ), (2.11)

x, ξ, η, ζ, y, z ∈ Rd, for every R > 0.
From [25, Lemma 11.3.3] (when extended to the duality between

Gelfand-Shilov spaces and their dual spaces of distributions) it follows
that Va . V0,a ∗G, so we obtain

(ω−1
R · Va)(X, Y ) .

(
(ω−1

cR · V0,a) ∗G1

)
(X, Y ), , X, Y ∈ R3d, (2.12)

for some G1 which satisfies (2.11), and for a constant c > 0 independent
of R. By applying the L∞-norm on the both sides of (2.12) we obtain

‖ω−1
R Va‖L∞(R6d) = sup

Y
sup
X

∣∣ω−1
R Va(X, Y )

∣∣
. sup

Y
sup
X

∣∣ω−1
cRV0,a ∗G1(X, Y )

∣∣
. sup

Y

(∫∫ (
sup
X

(ω−1
cR · V0,a)(X, Y − Y1)

)
G1(X1, Y1) dX1dY1

)
≤ ‖ω−1

cR · V0,a‖L∞,q‖G1‖L1,q′ � ‖ω−1
cR · V0,a‖L∞,q ,

wherefrom⋂
R>0

{ a ∈ (Σσ1,s2,s3
s1,σ2,σ3

)′(R3d) ; ‖ω−1
R Vφa‖L∞,q(R3d×R3d) <∞}

⊂
⋂
R>0

M∞
(1/ωR)(R

3d).

For the opposite inclusion we put Kj = ω−1
jcR ·V0,a, j = 1, 2. By (2.12)

and Minkowski’s inequality we have

‖ω−1
R · Va‖

q
L∞,q . ‖ ((K1 ∗G) ‖qL∞,q

.
∫

sup
X

(∫∫
K1(X −X1, Y − Y1)G(X1, Y1) dX1dY1

)q
dY

.
∫ (∫∫

sup (K2( · , Y − Y1))G(X1, Y1)

×e−cR(|ζ−ζ1|
1
σ1 +|y−y1|

1
s2 +|z−z1|

1
s3 ) dX1dY1

)q
dY

. ‖K2‖qL∞
∫ (∫∫

G(X1, Y1)e−cR(|ζ−ζ1|
1
σ1 +|y−y1|

1
s2 +|z−z1|

1
s3 ) dX1dY1

)q
dY

. ‖K2‖qL∞ ≡ ‖ω
−1
2cR · V0,a‖qL∞ .
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Finally, by interchanging the roles of φ and φ0 we get

‖ω−1
R · V0,a‖L∞,q . ‖ω−1

2cR · Va‖L∞ ,
i.e.⋂

R>0

M∞
(1/ωR)(R

3d)

⊂
⋂
R>0

{ a ∈ (Σσ1,s2,s3
s1,σ2,σ3

)′(R3d) ; ‖ω−1
R Vφa‖L∞,q(R3d×R3d) <∞},

and the result follows. �

In [10, Theorem 4.1], it is shown that if A is a d × d-matrix with
real entries, then the operator ei〈ADξ,Dx〉 is a homeomorphism between
certain classes of symbols. We proceed with an analogous result in the
context of the symbol class Γσ1,s2,s3;0

(ω) (R3d).

Theorem 2.8. Let sj, σj > 0 be such that the conditions in (2.3) hold,
and let r, t ∈ [0, 1] be such that r + t ≤ 1.
If ω ∈P0

s1,σ2,σ3
(R3d), then a ∈ Γσ1,s2,s3(ω) (R3d) if and only if

e−i〈rDξ+tDη ,Dx〉a ∈ Γσ1,s2,s3(ω) (R3d).

If ω ∈Ps1,σ2,σ3(R
3d) instead, and if, in addition to (2.3), (sj, σj) 6=

(1
2
, 1

2
), j = 1, 2, 3, then a ∈ Γσ1,s2,s3;0

(ω) (R3d) if and only if

e−i〈rDξ+tDη ,Dx〉a ∈ Γσ1,s2,s3;0
(ω) (R3d).

Proof. We give the proof for the Beurling case, and the Roumieu case
is left for the reader.

We will use the result of Proposition 2.7. Therefore we fix a window
function φ ∈ Σσ1,s2,s3

s1,σ2,σ3
(R3d) and let φr,t = e−i〈rDξ+tDη ,Dx〉φ. Then, in

view of Theorem 2.2 (2), φr,t belongs to Σσ1,s2,s3
s1,σ2,σ3

(R3d).
By similar arguments as in the proof of Lemma 2.1, we get

|(Vφr,t(e−i〈rDξ+tDη ,Dx〉a))(x, ξ, η, ζ, y, z)|
= |(Vφa)(x+ ry + tz, ξ + rζ, η + tζ, ζ, y, z)|, (2.13)

x, ξ, η, ζ, y, z ∈ Rd. Then using (2.13) and a change of variables argu-
ment, we get

‖ω−1
0,0;RVφa‖Lp,q = ‖ω−1

r,t;RVφr,t(e
−i〈rDξ+tDη ,Dx〉a)‖Lp,q ,

where

ωr,t;R(x, ξ, η, ζ, y, z) = ω(x+ ry+ tz, ξ + rζ, η+ tζ)e−R(|y|
1
s2 +|z|

1
s3 +|ζ|

1
σ1 ),

and p, q ∈ [1,∞].
Hence Proposition 2.7, and the fact that there exists a constant c > 0

such that
ω0,0;R+c . ωr,t;R . ω0,0;R−c,
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give

a ∈ Γσ1,s2,s3;0
(ω) (R3d) ⇔ ‖ω−1

0,0;RVφa‖L∞ <∞ for every R > 0

⇔ ‖ω−1
r,t;RVφr,t(e

−i〈rDξ+tDη ,Dx〉a)‖L∞ <∞ for every R > 0

⇔ ‖ω−1
0,0;RVφr,t(e

−i〈rDξ+tDη ,Dx〉a)‖L∞ <∞ for every R > 0

⇔ e−i〈rDξ+tDη ,Dx〉a ∈ Γσ1,s2,s3;0
(ω) (R3d),

and the result follows.
�

3. Continuity of bilinear pseudo-differential operators
with symbols of Gevrey-regularity and infinite order

We first discuss the continuity of bilinear operators in Op(Γσ1,s2,s3(ω) )

and Op(Γσ1,s2,s3;0
(ω) ) when acting on products of modulation spaces. In

particular, Theorem 3.1 can be considered as an extension of [47, The-
orem 3.2] to bilinear operators and a more general class of weights.

Theorem 3.1. Let sj, σj > 0 be such that the conditions in (2.3) hold.
Also, let v1 ∈P0

s1
(Rd), vj ∈P0

σj
(Rd), j = 2, 3, ω0, ω ∈P0

s1,σ2,σ3
(R3d),

and let ω0 be ⊗3
j=1vj-moderate. Furthermore, let r, t ∈ [0, 1] such that

r + t ≤ 1, and let p, q ∈ [1,∞]. If a ∈ Γσ1,s2,s3(ω0) (R3d), then there exists

R > 0 such that Opr,t(a) is continuous from Mp,q
(ω0ω)(R

d)×M∞,∞
(1/ωR)(R

d)

to Mp,q
(ω)(R

d), where

ωR(x, ξ, η) = e−R(|x|
1
s1 +|ξ|

1
σ2 +|η|

1
σ3 ), x, ξ, η ∈ Rd.

Remark 3.2. We will use estimates similar to those obtained in the
proof of [9, Theorem 6.1]. We observe that out arguments are any-
way different since, in view of the fact that we employ Gevrey tpye
symbols, we cannot rely on standard localization techniques. The idea
is that for a fixed function g in appropriate space of test functions,
a ∈ Γσ1,s2,s3(ω) (R3d), and r = t = 0, the operator Op0,0(a)( · , g) ≡ Ta( · , g)

can be regarded as a linear pseudo-differential operator (with symbol
depending on g), that is,

Op0,0(a)(f, g)(x) = (2π)−
d
2

∫
ei〈x,ξ〉ag(x, ξ)f̂(ξ) dξ,

where

ag(x, ξ) = (2π)−
d
2

∫
ei〈x,η〉a(x, ξ, η)ĝ(η) dη. (3.1)

If ag ∈ Γσ1,s2(ω0) (R2d), then the continuity of Op0,0(a)( · , g) from Mp.q
(ω0ω)

to Mp.q
(ω) follows by Proposition 1.9.
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Lemma 3.3. Let sj, σj > 0 be such that the conditions in (2.3) hold.
Also, let v1 ∈P0

s1
(Rd), vj ∈P0

σj
(Rd), j = 2, 3, ω0, ω ∈P0

s1,σ2,σ3
(R3d),

and let ω0 be ⊗3
j=1vj-moderate.

If g ∈ Sσ1s1 (Rd) and a ∈ Γσ1,s2,s3(ω0) (R3d), then the symbol ag given by

(3.1) belongs to Γσ1,s2(ω) (R2d), where ω(x, ξ) ≡ ω0(x, ξ, 0) ∈P0
s1,σ2

(R2d).

Proof. By (3.1) it follows that ag is a smooth function. Indeed,

(x, ξ, η) 7→ ei〈x,η〉a(x, ξ, η)ĝ(η)

is a smooth mapping and

η 7→ ηγei〈x,η〉∂αx∂
β
ξ a(x, ξ, η)ĝ(η)

is an integrable function for every x, ξ, α, β and γ.
Since ĝ ∈ Ss1σ1(R

d) (cf. Proposition 1.3) and since ω0 ∈P0
s1,σ2,σ3

(R3d),
it follows that∣∣∣∂αx∂βξ ag(x, ξ)∣∣∣ .∑

γ≤α

(
α

γ

)∫ ∣∣∣ηγ∂α−γx ∂βξ a(x, ξ, η)ĝ(η)
∣∣∣ dη

.
∑
γ≤α

(
α

γ

)∫
h|α+β−γ|(α− γ)!σ1β!s2

∣∣∣∣ω0(x, ξ, η)ηγe−r|η|
1
σ1

∣∣∣∣ dη
.
∑
γ≤α

(
α

γ

)∫
h|α+β−γ|(α− γ)!σ1β!s2ω0(x, ξ, 0)

∣∣∣∣er0|η| 1
σ3 ηγe−r|η|

1
σ1

∣∣∣∣ dη,
for every r0 > 0, and some constants r, h > 0. Since r0 can be chosen
such that r0 < r, and since∣∣∣∣ηγe−(r−r0)|η|

1
σ1

∣∣∣∣ . h|γ|γ!σ1e−
(r−r0)

2
|η|

1
σ1 ,

we get∣∣∣∂αx∂βξ ag(x, ξ)∣∣∣
. h|α+β|β!s2

∑
γ≤α

(
α

γ

)
((α− γ)!γ!)σ1

∫
ω0(x, ξ, 0)e−(r−r0)|η|

1
σ1 dη,

. (4h)|α+β|α!σ1β!s2ω(x, ξ), x, ξ ∈ Rd,

for some constant h > 0, where ω(x, ξ) ≡ ω0(x, ξ, 0) ∈ P0
s1,σ2

(R2d).
This gives the desired result. �

Proof of Theorem 3.1. In view of the invariance properties for the bilin-
ear pseudo-differential operators given in Theorem 2.8, we may assume
r = t = 0 without loss of generality.

By Proposition 1.9 and Lemma 3.3, it follows that Op(a)(f, g) is a
continuous mapping from Mp.q

(ω0ω)(R
d)×Sσ1s1 (Rd) to Mp.q

(ω)(R
d). Now the

result follows from Proposition 1.7. �
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We refer to [3, Theorem 3.4] for the Beurling case counterpart of
Theorem 3.1.

Finally, the characterization of Gelfand-Shilov spaces via modulation
spaces gives the following result (cf. [27, 41, 48]), see also Proposition
1.7.

Theorem 3.4. Let there be given s, σ > 0 such that s + σ ≥ 1, v1 ∈
P0

s (Rd), vj ∈P0
σ(Rd), j = 2, 3, and ω0 ∈P0

s,σ,σ(R3d), such that ω0 is

⊗3
j=1vj-moderate. If r, t ∈ [0, 1], such that r+t ≤ 1, and a ∈ Γσ,s,s(ω) (R3d)

then Opr,t(a) is continuous from Sσs (Rd)×Sσs (Rd) to Sσs (Rd), and from

(Sσs )′(Rd)× (Sσs )′(Rd) to (Sσs )′(Rd).

Proof. In view of Theorem 2.8, it is enough to consider the case when
r = t = 0, i.e. Op0,0(a).

By Proposition 1.10 and Remark 3.2, it is enough to show that
ag given by (3.1) belongs to Γσ,s(ω)(R

2d) for ω(x, ξ) ≡ ω0(x, ξ, 0) ∈
P0

s,σ(R2d). This follows from Lemma 3.3. Now the the continuity of

Opr,t(a) from Sσs (Rd) × Sσs (Rd) to Sσs (Rd) follows from Theorem 3.1
and Proposition 1.7.

The continuity of Opr,t(a) from (Sσs )′(Rd)× (Sσs )′(Rd) to (Sσs )′(Rd)
follows by duality. �

The analogous result hold for the Beurling case, see [3, Theorem 3.6].
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