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ABSTRACT 

 

Hepatocyte growth factor (HGF) and its receptor MET represent validated targets for cancer 

therapy. However, HGF/MET inhibitors being explored as cancer therapeutics exhibit cytostatic activity 

rather than cytotoxic activity, which would be more desired. In this study, we engineered an 

antagonistic anti-MET antibody that, in addition to blocking HGF/MET signaling, also kills MET-

overexpressing cancer cells by antibody-dependent cellular cytotoxicity (ADCC). As a control reagent, we 

engineered the same antibody in an ADCC-inactive form that is similarly capable of blocking HGF/MET 

activity, but in the absence of any effector function. In comparing these two antibodies in multiple 

mouse models of cancer, including HGF-dependent and -independent tumor xenografts, we determined 

that the ADCC-enhanced antibody was more efficacious than the ADCC-inactive antibody. In orthotopic 

mammary carcinoma models, ADCC enhancement was crucial to deplete circulating tumor cells and to 

suppress metastases. Prompted by these results, we optimized the ADCC-enhanced molecule for clinical 

development generating an antibody (ARGX-111) with improved pharmacological properties. ARGX-111 

competed with HGF for MET binding, inhibiting ligand-dependent MET activity; down-regulated cell 

surface expression of MET, curbing HGF-independent MET activity; and engaged NK cells to kill MET-

expressing cancer cells, displaying MET-specific cytotoxic activity. ADCC assays confirmed the cytotoxic 

effects of ARGX-111 in multiple human cancer cell lines and patient-derived primary tumor specimens, 

including MET-expressing cancer stem-like cells. Together, our results show how ADCC provides a 

therapeutic advantage over conventional HGF/MET signaling blockade, and generate proof-of-concept 

for ARGX-111 clinical testing in MET-positive oncological malignancies. 
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INTRODUCTION 

 

 MET, the product of the c-MET proto-oncogene, is a transmembrane tyrosine kinase that is 

expressed by the majority of epithelial tissues and by endothelial, muscle, neuronal, hematopoietic and 

immune cells (1). The high affinity ligand of MET, hepatocyte growth factor (HGF), is a pleiotropic 

cytokine that is secreted by cells of mesenchymal origin, typically fibroblasts and macrophages (2). HGF 

signaling through MET promotes a peculiar biological program that results from the fine orchestration of 

complementary biological activities including pro-migratory, mitogenic and anti-apoptotic cues (3). This 

process, known collectively as invasive growth, is essential for embryogenesis, during which HGF/MET 

signaling is responsible for migration, proliferation and survival of various progenitor cells (4). In normal 

adult tissues, HGF-driven invasive growth is usually quiescent, but is resumed following tissue injury to 

promote wound healing and tissue regeneration (5). 

 While HGF/MET signaling is tightly controlled in normal tissues, it is frequently subverted in tumors, 

which exploit the invasive growth program in order to grow within and to colonize the host organism 

(6). HGF overexpression in the tumor microenvironment correlates with increased tumor aggressiveness 

and invasion (7). HGF is also a powerful pro-angiogenic factor promoting tumor angiogenesis (8). 

Aberrant activation of MET is frequently observed in human cancer and can be due to different 

molecular mechanisms, including c-MET transcriptional activation, amplification or mutation, as well as 

autocrine or paracrine HGF stimulation (9). In the clinic, MET protein overexpression and c-MET gene 

amplification have been identified as negative prognostic markers for a variety of oncological diseases, 

including lung (10), colon (11), breast (12), head and neck (13) and gastric (14) carcinoma, as well as 

multiple myeloma (15) and glioblastoma multiforme (16). 

Several inhibitors have been developed so far to tackle HGF/MET activity in cancer, including small 
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molecule MET tyrosine kinase inhibitors, anti-HGF antibodies and anti-MET antibodies (17-19). 

Surprisingly, and in striking contrast to the importance of HGF/MET signaling for survival of different cell 

types during embryogenesis, HGF- or MET-targeted drugs have however demonstrated cytostatic rather 

than cytotoxic activity on tumor cells, independently of their mechanism of action (20, 21). In fact, even 

in the most MET-dependent tumors displaying c-MET gene amplification, inhibition of MET activity leads 

to G1 arrest and not to cell death, both in cellular studies and in xenografts (22). Consistent with this 

idea, HGF/MET signaling in cancer cells is typically associated with promotion of epithelial-to-

mesenchymal transition (EMT) and with tumor progression rather than with tumor onset (1, 4, 6, 9). 

To overcome this pharmacological limitation, and to investigate whether MET-targeted cytotoxicity 

would confer a therapeutic advantage over plain HGF/MET inhibition, we engineered an antagonistic 

anti-MET antibody that, in addition to blocking both HGF-dependent and -independent MET activation, 

displays enhanced antibody-dependent cellular cytotoxicity (ADCC). At the same time, we also 

engineered an ADCC-dead version of the same antibody that inhibits HGF/MET signaling but is 

completely devoid of any effector function, and compared the anti-tumor and anti-metastasis activity of 

this antibody pair in multiple mouse models of cancer. The results presented here suggest that killing 

MET-expressing cancer cells by ADCC is significantly more effective from a therapeutic viewpoint than 

simply inhibiting HGF/MET signaling. 
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MATERIALS AND METHODS 

 

Cell culture 

 A549, BxPC3, MDA-MB-231, NCI-H1437, NCI-H2122, NCI-H441, NCI-H596, Raji, SNU-5, TOV-112D, 

U87-MG and 786-O cells were purchased from the American tissue Type Culture Collection (ATCC). 

A498, L540, MKN-45 and U266 cells were purchased from the Deutsche Sammlung von 

Mikroorganismen und Zellkulturen (DSMZ). EBC-1 cells were purchased from the Japanese Collection of 

Research Bioresources (JCRB). All cells were cultured according to the protocols provided by the supplier 

and used within 6 months after receipt or validated by short tandem repeat profiling using Cell ID™ 

System (Promega). LOC cells (23), immortalized human mammary fibroblasts (24) and CRCM tumors (25) 

have been described previously. 

 

ADCC assays 

 ADCC of MKN-45, NCI-H441 and A549 cells was determined with a standard 51Cr release assay (26) 

using human peripheral blood mononuclear cells from 3 different donors (Etablissement Français Du 

Sang) and a 50:1 effector:target ratio. All experiments were performed in triplicate. Percent lysis was 

analyzed versus antibody concentration, and the EC50 and EMAX values were calculated using Prism 

software (GraphPad). ADCC of MDA-MB-231 cells and of primary triple negative mammary carcinoma 

cells was analyzed using an ADCC Reporter Bioassay Kit (Promega). Single cell suspensions were stained 

with AldeFluorTM (Stemcell Technologies) and then sorted by FACS using a MoFlo™ XDP cell sorter 

(Beckman Coulter). ALDH-1+ cells were incubated with increasing ARGX-111 concentrations (0-667 nM) 

and reporter effector cells (effector:target ratio 2.5:1), and ADCC was measured as described by the 

manufacturer. Data were analyzed and fit using Prism software (GraphPad). 
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Subcutaneous xenograft mouse models 

 U87-MG or MKN-45 cells (3×106 cells/mouse) were injected s.c. into the right or left hind flank of 6-8 

week-old CD-1 nude mice (Charles River). When tumor volume approached 100 mm3, mice were 

randomly assigned to 3 treatment arms (U87-MG, 10 mice/group; MKN-45, 6 mice/group): irrelevant 

IgG1; WT52-E; and WT52-D. Antibodies were administered two times a week by i.p. injection, and tumor 

volume was monitored over time as described (24). At autopsy, tumor weight was determined on 

freshly explanted tumors (U87-MG). For analysis of MET and phospho-MET levels, mice bearing MKN-45 

tumors were treated with a single bolus of WT52-E or irrelevant IgG1 (3 mice/group) and tumors were 

extracted for analysis 24 hours later. Tumor sections were analyzed by immuno-histochemistry using 

anti-MET or anti-phospho-MET antibodies (both from LSBio). 

 

Orthotopic mammary carcinoma models 

 For the neo-adjuvant setting, MDA-MB-231-luc cells were mixed 4:1 with immortalized human 

mammary fibroblasts and then injected bilaterally (2.5×106 cells/injection site) into the mammary fat 

pad of 6 week-old female CB17 SCID mice (Charles River) as described (24). After 3 weeks, mice were 

stratified based on tumor volume and randomly assigned to the following treatment arms (n = 8): IgG1; 

WT52-E; WT52-D. Antibodies were administered 2 times a week by i.p. injection at a dose of 5 mg/kg 

IgG1. Tumor growth was monitored over time as described (24). After 4 weeks of treatment, tumors 

were surgically removed, and neo-adjuvant therapy was interrupted. Two weeks after surgery, mice 

were injected with luciferin, sacrificed, and subjected to autopsy. Metastatic dissemination was 

determined by bioluminescence analysis of isolated lungs and femurs as described (24). The number of 

CTCs was determined at the indicated time points by measuring luciferase activity on mouse blood. 

Approximately 100 μl of whole blood was cleared from erythrocytes using red blood cell lysis buffer (BD 

Biosciences), and CTCs were collected by centrifugation. The cell pellet was washed in PBS and then 
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lysed in 20 μl luciferase assay buffer (Promega). Luciferase activity was measured on 10 μl of cell lysate 

using a Luciferase Reporter Assay System kit (Promega). Samples were analyzed with a GloMax 96 

Microplate Luminometer (Promega). Estimation of CTC number was calculating using a standard curve 

of luciferase-expressing MDA-MB-231 cells. For the adjuvant setting, MDA-MB-231-luc cells were 

injected orthotopically into the mammary fat pad of 6 week-old female CB17 SCID mice along with 

human mammary fibroblasts as described above, and CTCs were determined at regular time intervals. 

Primary tumors were removed by surgery approximately 5 weeks after cell injection. Two days after 

surgery, mice were randomized based on CTC number and assigned to 3 treatment arms (10 

mice/group) as above (IgG1, WT52-E, WT52-D; 5 mg/kg). After 4 weeks of treatment, mice were 

sacrificed and metastatic dissemination was assessed by bioluminescence analysis of whole body and 

isolated organs as described (24). 

 

Study approval 

All procedures involving the use of animals and/or human samples were authorized by the 

competent authorities. Please see online supplementary methods for more information. 

 

Supplementary online material 

The supplementary online material section comprises supplementary figures 1-7, supplementary 

tables 1-7 and supplementary methods. 
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RESULTS 

 

Generation of an ADCC-enhanced antagonistic anti-MET antibody for mouse studies 

We recently reported the generation of a wide panel of chimeric llama-human antagonistic anti-MET 

antibodies (24). The most antagonistic molecule within this panel (WT52) blocks both HGF-dependent 

MET activity (by competing with HGF for binding to MET; Suppl. Fig. S1A-B) and HGF-independent MET 

activity (by promoting MET internalization; Suppl. Fig. S1C-D). WT52 was engineered to an ADCC-

enhanced version (WT52-E) by introducing the S239D/I332E amino acid substitutions in the CH2 domain 

(27). As a control, an ADCC-inactive (‘dead’) mutant version of WT52 (WT52-D) was also engineered that 

contained the E233P/L234V/L235A amino acid substitutions in the CH2 domain (26). ELISA analysis of Fc 

receptor binding revealed that WT52-E displays increased affinity for human FcγRIIIa and its mouse 

orthologue FcγRIV, as well as for human and mouse FcγRI compared to WT52 (Suppl. Tab. S1). WT52-D 

displayed very low affinity for human FcγRI and no affinity for human FcγRIIIa, mouse FcγRI or mouse 

FcγRIV. In in vitro ADCC assays using effector cells from 3 distinct donors, WT52-E displayed a tumor cell 

killing activity directly proportional to MET expression levels and invariably superior to that of WT52 

(Suppl. Tab. S2). WT52-D did not display any ADCC activity in any cell line tested.  

 

ADCC enhancement results in improved anti-tumor activity in both HGF-dependent and -independent 

xenograft models 

 In order to determine whether ADCC enhancement provides an advantage over plain HGF/MET 

inhibition in mouse models of cancer, we tested the WT52-E/WT52-D antibody pair in both HGF-

dependent and -independent xenograft systems. U87-MG cells, which display an autocrine HGF/MET 

loop (28), were injected subcutaneously into CD-1 nude mice (that have functional NK cells and are 
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therefore ADCC-competent) to induce the formation of experimental tumors. Tumor-bearing mice were 

randomly assigned to 3 treatment arms (irrelevant IgG1; WT52-E; WT52-D), and antibodies were 

administered at a dose of 5 mg/kg. Tumor burden analysis revealed that WT52-E and WT52-D inhibited 

tumor growth by 88% (p = 0.0003) and 51% (p = 0.0159), respectively (Fig. 1A). At the end of the 

experiment, the mean weight of control tumors was 1819 ± 331 mg, while that of antibody-treated 

tumors was 295 ± 103 mg (WT52-E) and 930 ± 215 mg (WT52-D; Fig. 1B). The activity of WT52-E and 

WT52-D was also tested in a HGF-independent mouse model of cancer. MKN-45 human gastric 

carcinoma cells, which display constitutive, ligand-independent MET activation (29), were injected 

subcutaneously into CD-1 nude mice. Tumor-bearing mice were randomized into 3 treatment arms as 

above (IgG1; WT52-E; WT52-D), and antibodies were administered at a dose of 1 mg/kg. In this model, 

WT52-E and WT52-D inhibited tumor growth by 85% (p = 0.0018) and 54% (p = 0.0355), respectively 

(Fig. 1C). In a separate experiment using CD-1 nude mice bearing MKN-45 tumors, a single bolus of 

WT52-E (5 mg/kg) resulted in a significant reduction of both phospho-MET and total MET levels (Fig. 

1D). Taken together, these results suggest that ADCC enhancement provides a therapeutic advantage 

over plain HGF/MET signaling inhibition in both HGF-dependent and -independent xenograft models. 

 

MET-targeted ADCC inhibits tumor growth and metastasis in a neo-adjuvant orthotopic mammary 

carcinoma model 

We recently reported that anti-MET antagonistic antibodies inhibit tumor growth and suppress 

metastatic dissemination in an orthotopic model of mammary carcinoma (24). In order to explore the 

therapeutic potential of MET-targeted ADCC in this model, we injected MDA-MB-231 human triple-

negative mammary carcinoma cells expressing luciferase (MDA-MB-231-luc) into the mammary fat pad 

of SCID mice (which have functional NK cells and are therefore ADCC-competent). Since mouse HGF 

does not activate human MET, tumor cells were injected along with HGF-secreting, immortalized human 
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mammary fibroblasts (24). Tumor-bearing mice were randomly assigned to 3 treatment arms as above 

(IgG1; WT52-E; WT52-D), and antibodies were administered at a dose of 5 mg/kg. After 4 weeks of 

treatment, tumors were surgically removed, and neo-adjuvant therapy was interrupted. Two weeks 

after surgery, mice were injected with luciferin, sacrificed, and subjected to autopsy. Metastatic 

dissemination was determined by bioluminescence analysis of isolated lungs and femurs (Fig. 2A). This 

analysis revealed that WT52-E and WT52-D reduced tumor growth by 57% (p < 0.0001) and 20% (p = 

0.0271), respectively (Fig. 2B). Interestingly, however, the effect of anti-MET antibodies was greater on 

metastases. In fact, WT52-E and WT52-D reduced lung metastases (Fig. 2C) by 91% (p = 0.0090) and 74% 

(p = 0.0294), respectively, and femur metastases (Fig. 2D) by 95% (p = 0.0047) and 79% (p = 0.0158). We 

also monitored the number of circulating tumor cells (CTCs) during the whole experiment by measuring 

luciferase activity in the blood. Before surgery, we observed neither a correlation between CTC number 

and tumor volume nor a significant difference in CTC number among the various experimental groups 

(Fig. 2E). However, interestingly, once the primary tumors were removed, mice treated with WT52-E 

displayed significantly reduced CTC number and metastases compared to both the WT52-D and the 

control group (Fig. 2F). 

 

Adjuvant MET-targeted ADCC suppresses metastasis by eliminating circulating tumor cells 

 Metastasis onset following tumor resection is typically due to the seeding of CTCs at secondary 

anatomical sites. Unfortunately, surgery itself is often a cause of tumor cell spreading. Prompted by this 

consideration, we explored the therapeutic potential of MET-targeted ADCC in an adjuvant model of 

metastatic mammary carcinoma in which treatment started after tumor resection. MDA-MB-231-luc 

cells and HGF-secreting human fibroblasts were injected orthotopically into the mammary fat pad of 

SCID mice as described above, and CTCs were determined at regular time intervals. Primary tumors 

were removed by surgery approximately 5 weeks after cell injection. Two days after surgery, mice were 
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randomized based on CTC number and assigned to 3 treatment arms as above (IgG1; WT52-E; WT52-D; 

5 mg/kg). After 4 weeks of treatment, mice were sacrificed and metastatic dissemination was assessed 

by bioluminescence analysis of whole body and isolated organs (Fig. 3A). Consistent with our work 

hypothesis, CTC number burst soon after surgery and then returned to lower levels in approximately a 

week (Fig. 3B). However, while CTC number in mice receiving WT52-E remained low over time, it tended 

to climb up again in mice treated with control IgG1 or with WT52-D. At sacrifice, the WT52-E group 

displayed 89% less CTCs compared to the IgG1 arm (p = 0.0274) and 81% less CTCs compared to the 

WT52-D arm (p = 0.0383; Fig. 3C). In vivo imaging (Suppl. Fig. S2) revealed that WT52-E dramatically 

reduced whole body bioluminescence compared to both IgG1 (86%, p = 0.0035) and WT52-D (81%, p = 

0.0397; Fig. 3D). Bioluminescence analysis of explanted lungs unveiled that WT52-E potently suppressed 

pulmonary metastases compared to both IgG1 (93%, p = 0.0361) and WT52-D (91%, p = 0.0499; Fig. 3E). 

Similarly, WT52-E-treated mice displayed reduced bone metastases compared to both control mice 

(88%, p = 0.0277) and mice of the WT52-D arm (82%, p = 0.0446; Fig. 3F). Interestingly, CTC number in 

each mouse showed a direct correspondence with metastatic dissemination (Suppl. Fig. S3). We 

conclude that killing CTCs by MET-targeted ADCC may be an effective strategy to prevent tumor 

recurrence and to suppress metastatic dissemination. 

 

Generation of ARGX-111, an ADCC-enhanced anti-MET antibody for clinical development 

 The results obtained in mouse models of cancer suggest that MET-targeted ADCC achieves superior 

tumor inhibition and metastasis suppression compared to HGF/MET signaling blockade. Prompted by 

these data, we set to develop an ADCC-enhanced anti-MET antibody for clinical use. The llama WT52 VH 

and VL framework regions display 88% average human identity. Using phage display-based affinity 

enrichment, we selected a molecule with 95% human framework identity (G52; Suppl. Fig. S4). 

Germlining did not affect the major biochemical and biological characteristics of the antibody (Suppl. 
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Tab. S3). G52 was further optimized by introducing the H433K/N434F substitutions in the CH3 region, 

generating the G52-HN antibody. These substitutions are known to increase binding to human FcRn at 

acidic pH while not affecting its affinity at neutral pH, thus enhancing antibody recycling from the sorting 

endosome (30). Surface Plasmon Resonance confirmed that G52-HN has a KD for human FcRn at pH 6.0 

that is approximately 6 times lower compared to G52 (0.255 ± 0.01 nM vs. 1.37 ± 0.11 nM). G52-HN was 

produced in a GS-CHO cell line lacking alpha-1,6-fucosyltransferase, thus obtaining an afucosylated G52-

HN antibody (hereafter referred to as ARGX-111). Antibody afucosylation is known to increase affinity 

for human FcγRIIIa, thus resulting in enhanced ADCC (31). ELISA analysis confirmed that afucosylation 

increased antibody binding to both V158 FcγRIIIa and F158 FcγRIIIa by at least 25 times, while it did not 

significantly affect hFcγRI binding (Suppl. Tab. S4). The major biochemical and pharmacological 

characteristics of ARGX-111 are summarized in Suppl. Fig. S5. 

 

ARGX-111 inhibits HGF-dependent MET activity by competing with HGF for binding to MET 

 The ability of ARGX-111 to inhibit HGF-dependent MET activity was determined in a variety of 

biochemical and biological assays. Flow cytometry analysis on a panel of human tumor cell lines 

expressing different MET levels unveiled that ARGX-111 binds to native MET with an EC50 ranging from 

0.1 nM to 0.7 nM (Suppl. Tab. S5). In ELISA assays, ARGX-111 competed with HGF displaying an IC50 of 

1.3 nM and an IMAX of 95% (Fig. 4A). In MET activation experiments using A549 cells, ARGX-111 inhibited 

HGF-induced MET auto-phosphorylation with an IC50 of 5.3 nM and an IMAX of 74% (Fig. 4B). Similar 

results were obtained using NCI-H1437 NSCLC cells (IC50 = 13.2 nM; IMAX = 60%; Fig. 4C). In a HGF-

dependent cell migration assay using A549 cells seeded in a Boyden chamber, ARGX-111 completely 

neutralized the pro-migratory effect of HGF (Fig. 4D). In an anchorage-independent growth assay using 

NCI-H1437 cells seeded in soft agar, ARGX-111 inhibited HGF-dependent colony formation by 78% (Fig. 

4E). Finally, in a HGF-induced branching morphogenesis assay using SV40 T-antigen-transformed LOC 
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human kidney epithelial cell spheroids (23) and increasing antibody concentrations, ARGX-111 

significantly inhibited HGF-induced branched tubule formation already at a 1:1 molar ratio with 

recombinant HGF (Fig. 4F). 

 

ARGX-111 inhibits HGF-independent MET activity by promoting kinase-independent receptor down-

regulation 

We next determined whether ARGX-111 could affect HGF-independent MET activity in tumor cells 

displaying constitutive MET activation. In phospho-MET ELISA assays, ARGX-111 showed dose-

dependent inhibition of MET auto-phosphorylation in both MKN-45 cells (IC50 = 0.2 nM, IMAX = 63%; Fig. 

5A) and EBC-1 human lung carcinoma cells (IC50 = 12.7 nM, IMAX = 69%; Fig. 5B). Flow cytometry analysis 

of MET expression revealed that ARGX-111 promoted a rapid decrease of MET expression levels in both 

MKN-45 cells (Fig. 5C) and EBC-1 cells (Fig. 5D). Interestingly, this effect was also observed in MDA-MB-

231 human mammary carcinoma cells (Fig. 3E), which express normal MET levels and retain ligand 

sensitivity. ARGX-111-mediated MET down-regulation was dose-dependent, reaching its maximal effect 

already at 10 nM (Fig. 5F). Western blot analysis of conditioned medium (Suppl. Fig. S6A) and of cell 

lysates (Suppl. Fig. S6B) demonstrated that ARGX-111 does not promote receptor shedding but reduces 

total MET protein levels, suggesting that antibody binding to MET results in receptor internalization 

followed by protein degradation. ARGX-111-induced MET-down-regulation also occurred in the 

presence of a highly specific MET tyrosine kinase inhibitor (JNJ-38877605; ref. 32) in MKN-45 (Fig. 5G), 

EBC-1 (Fig. 5H) and MDA-MB-231 cells (Fig. 5I), suggesting that this process does not require MET kinase 

activity. In contrast, MET kinase inhibition did block HGF-induced MET internalization in MDA-MB-231 

cells (Fig. 5I). Western blot analysis confirmed that the concentration of JNJ-38877605 used in these 

experiments achieved complete MET kinase blockade in all cells (Suppl. Fig 6C). 
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ARGX-111 kills MET-expressing cancer cells in the presence of NK cells 

We investigated whether ARGX-111 could kill cancer cells by ADCC using a representative panel of 

human tumor cell lines expressing different MET levels. Cells were incubated with increasing 

concentrations of ARGX-111 (0-1,000 nM) in the presence of NK cells, and tumor cell lysis was 

determined by a standard 51Cr-release assay. An irrelevant IgG1 and the fucosylated G52 antibody were 

used as controls. Each assay was repeated using effector cells derived from 3 different healthy donors 

(Suppl. Tab. S6). This analysis revealed that ARGX-111 induces dose-dependent lysis of all tumor cell 

lines tested with an efficacy directly proportional to MET protein expression levels. The fucosylated G52 

antibody displayed only a modest ADCC activity on MKN-45 cells, which express very high MET levels, 

but did not have any effect on the other cell lines tested (Suppl. Fig. S7A). We also analyzed ARGX-111-

induced antibody-dependent cellular phagocytosis (ADCP) using MKN-45 cells or 786-O human renal cell 

carcinoma cells and human monocyte-derived macrophages. Consistent with our finding that 

afucosylation does not significantly change antibody affinity for FcγRI (Suppl. Tab. S4), ARGX-111 did not 

display increased ADCP compared to G52 in any condition tested (Suppl. Fig. S7B). 

 

MET-targeted ADCC kills mammary carcinoma stem cells 

The results obtained in the orthotopic mammary carcinoma models indicate that MET-targeted 

ADCC impairs the ability of CTCs to colonize distant organs and to give rise to metastases. Since only 

tumor cells with stem-like characteristics are competent to originate secondary colonies, we 

hypothesized that the mammary carcinoma stem cell population may express MET. To test this 

hypothesis, we analyzed co-expression of MET with established breast cancer stem cell markers (33) in 

MDA-MB-231 tumors as well as in a vital library of patient-derived breast xenografts (CRCM tumors; 25) 

generated by implantation of primary mammary carcinomas into immunodeficient mice (Fig. 6A). 

Interestingly, all triple negative tumors from this library expressed MET (Fig. 6B). Flow cytometry 
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analysis of CD24, CD44 and MET unveiled that the majority of cells in the CD44+/CD24lo population 

express MET in both the MDA-MB-231 cell line (99%) and the primary breast carcinoma samples (78-

98%; Suppl. Tab. S7). Similarly, dual staining with AldeFluorTM reaction and anti-MET antibodies revealed 

that ALDH-1-positive tumor cells express MET in all samples analyzed (Fig. 7A). Prompted by these data, 

we determined whether MET-targeted ADCC could kill mammary carcinoma stem cells in vitro. To this 

end, cells derived from MDA-MB-231, CRCM168, CRCM174 and CRCM389 tumors were stained with 

AldeFluorTM and then sorted by FACS. Sorted cells were incubated with increasing ARGX-111 

concentrations (0-667 nM) in the presence of bioluminescent ADCC reporter cells (34), and ADCC was 

determined by analyzing luciferase activity. Remarkably, ARGX-111 promoted dose-dependent ADCC of 

all stem cell populations analyzed (Fig. 7B). We conclude that MET-targeted ADCC may be an effective 

method to eliminate breast cancer stem cells. 
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DISCUSSION 

 

 HGF and its receptor MET have been attracting increasing interest in the last two decades as 

appealing targets for cancer therapy. This interest has led to the development of numerous targeted 

drugs, some of which have reached the clinic. The initial enthusiasm has been partially mitigated, 

however, by the realization that anti-HGF/MET drugs display cytostatic rather than cytotoxic activity in 

most systems, including cell-based assays, mouse models of cancer and oncological patients. In this 

study we report the engineering of an antagonistic anti-MET antibody that, in addition to inhibiting 

HGF/MET signaling, kills MET-expressing tumor cells by enhanced ADCC. The data presented here 

suggest that depleting MET-positive cancer cells is therapeutically more effective than simply inhibiting 

HGF/MET signaling. 

These results must be interpreted at the light of the role played by MET in cancer biology. It has 

been shown that tumors take advantage of HGF/MET signaling in 2 different situations, determined by 

the number of c-MET gene copies contained in their genome (22). Tumors bearing normal c-MET gene 

copy number exploit paracrine HGF stimulation to proliferate in adverse environmental conditions and 

to invade adjacent tissues, but do not strictly depend on HGF/MET signaling for their own survival. In 

this setting, inhibition of HGF/MET signaling attenuates proliferation and invasion, but does not 

eliminate MET-expressing cancer cells per se. On the other hand, tumors displaying high grade focal c-

MET amplification totally rely on constitutive HGF-independent MET signaling, resulting from MET 

protein overexpression, to sustain their proliferation and EMT phenotype (35, 36). In these tumors, MET 

inhibition leads to G1 arrest and to transient reversion of EMT; however, both proliferation and EMT can 

be resumed upon removal of MET blockade (20). Therefore, whether we are hindering HGF-mediated 

oncogenic ‘expedience’ in tumors bearing normal c-MET gene copy number or MET-dependent 
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oncogenic ‘addiction’ in c-MET-amplified lesions, we are temporarily preventing tumor cells to carry out 

their malignant program, but we are not eradicating them. 

This notion acquires high therapeutic relevance in light of the emerging evidence that MET is 

expressed and functionally required in the stem cell compartment of several tumor types, including 

head and neck carcinoma (37), colorectal carcinoma (38), prostate cancer (39), breast cancer (40), and 

glioblastoma multiforme (41). In analogy with normal tissue stem cells, cancer stem cells represent a 

multi-potent tumor cell sub-population that possesses the ability to replicate indefinitely and to give rise 

to secondary tumor colonies with the full differentiation spectrum of the primary lesion. Circulating 

cancer cells with stem-like characteristics are the only cell type that can give rise to metastases and are 

often drug-resistant (42). Following therapy interruption, residual cancer stem cells that survived 

treatment may resume their proliferative cycle, reconquer space in the host organism, and give rise to 

malignant lesions, resulting in new metastases or tumor recurrence (43). From a therapeutic viewpoint, 

killing rather than simply inhibiting the proliferation of cancer stem cells may be associated with a 

greater patient benefit. 

The possibility to intercept MET-positive CTCs with stem-like properties generates a new paradigm 

for the treatment of MET-positive tumors. So far, MET-targeted therapy has been envisioned either for 

causing the regression of established HGF/MET-dependent lesions or for overcoming HGF/MET-driven 

resistance to a second anticancer drug (44). The data presented here suggest that these strategies may 

not exploit the full therapeutic potential of an ADCC-enhanced anti-MET antibody, and point at the neo-

adjuvant and adjuvant settings as valid alternative approaches. Indeed, CTCs are ultimately responsible 

for tumor recurrence or metastasis onset following surgery, independently of how well the original 

lesion has responded to a previous therapy. Based on the results obtained in our neo-adjuvant and 

adjuvant orthotopic breast cancer models, it would be reasonable to expect that eradication of CTCs by 

MET-targeted ADCC is associated with prolonged disease-free survival. Importantly, this opportunity is 



Hultberg, Morello et al. 

19 

unique to an ADCC-enhanced anti-MET antibody. In fact, inhibition of HGF/MET signaling using a 

conventional HGF/MET-targeted drug, whether an antibody or a small molecule, would probably be able 

to prevent the escape of cancer cells from a primary lesion, but would have no effect on the survival of 

metastasis-initiating cells once they are in circulation, especially if these cells have become resistant to 

anoikis during their journey from the home epithelium to the breakout vessel. 

Although MET plays its most relevant physiological role during embryo development and remains 

mostly silent during the adult stage, it is widely expressed in epithelial and endothelial tissues of virtually 

all organs. This broad expression pattern could raise the concern that MET-targeted ADCC may cause 

damage to normal tissues, resulting in systemic toxicity. However, toxicological studies conducted in 

cynomolgus monkeys (Macaca fascicularis) indicate that this is not the case. In fact, while ARGX-111 

does not cross-react with mouse MET, it binds with high affinity to simian MET and to simian FcγRIIIa 

(Suppl. Tab. S4). In a large study involving 40 adult animals, the no-observed adverse event level 

(NOAEL) of ARGX-111 corresponded to a dose of 30 mg/kg administered weekly (data on file). These 

results suggest that MET-targeted ADCC may be well tolerated by normal tissues expressing MET and 

may therefore not interfere with housekeeping physiological functions at doses that are active against 

MET-dependent tumors. More definitive data on ARGX-111 safety will emerge from the phase I study 

that has started in January 2014 (NCT02055066). 
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FIGURE LEGENDS 

 

Figure 1. ADCC enhancement results in improved anti-tumor activity in both HGF-dependent 

and -independent xenograft models. (A) Mice bearing U87-MG tumors were and randomly assigned to 

3 treatment arms (irrelevant IgG1, WT52-E, WT52-D; 5 mg/kg), and tumor volume was monitored over 

time. Statistical significance was calculated by a Student’s T-test. (B) Weight analysis of the tumors 

explanted at the end of the experiment described in A. (C) Mice bearing MKN-45 tumors were randomly 

assigned to 3 treatment arms as above (IgG1, WT52-E, WT52-D; 1 mg/kg), and tumor volume was 

monitored over time. (D) Mice bearing MKN-45 tumors were injected with a single bolus (5 mg/kg) of 

WT52-E or irrelevant IgG1, and tumors were analyzed by immunohistochemistry 24 hours later using 

anti-phospho-MET or anti-total MET antibodies. Magnification: 100X. 

 

Figure 2. MET-targeted ADCC inhibits tumor growth and metastasis in a neo-adjuvant orthotopic 

mammary carcinoma model. (A) Schematic protocol representation. CTCs, circulating tumor cells. (B) 

Analysis of tumor volume over time. Statistical significance was calculated by a Student’s T-test. (C) 

Pulmonary metastases as assessed by lung bioluminescence (BL). (D) Bone metastases as assessed by 

femur bioluminescence. (E) CTCs over time as assessed by blood luciferase activity. (F) At autopsy, CTC 

number correlated directly with the extent of metastatic dissemination and inversely with anti-MET 

treatment. 

 

Figure 3. Adjuvant MET-targeted ADCC suppresses metastasis by eliminating circulating tumor cells. 

(A) Schematic protocol representation. CTCs, circulating tumor cells. (B) Analysis of CTC number over 

time. Statistical significance was calculated by a Student’s T-test. (C) CTC number at autopsy. (D) Whole 
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body bioluminescence (BL) at autopsy. (E) Lung bioluminescence at autopsy. (F) Femur bioluminescence 

at autopsy. 

 

Figure 4. ARGX-111 inhibits HGF-dependent MET activity by competing with HGF for binding to MET. 

(A) The ability of ARGX-111 or an irrelevant IgG1 to compete with HGF for binding to MET was 

determined by ELISA. Data are expressed as % HGF binding in the absence of antibody. (B) The ability of 

ARGX-111 to inhibit HGF-induced MET auto-phosphorylation was determined using A549 cells. Data are 

expressed as % phospho-MET levels relative to cells stimulated with HGF alone. (C) Same as in B but 

using NCI-H1437 cells. (D) Boyden chamber migration assay using A549 cells. Data are expressed as % 

migrating cells relative to total cell number. Statistical significance was calculated by a Student’s T-test. 

(E) Anchorage-independent assay using NCI-H1437 cells. Colony number is expressed as % colonies 

relative to cells stimulated with HGF alone. (F) LOC cell spheroids were seeded in collagen and then 

stimulated with a fixed dose of recombinant HGF in the presence of increasing concentrations of ARGX-

111. Branching morphogenesis was assessed by microscopy. Magnification: 100X. 

 

Figure 5. ARGX-111 inhibits HGF-independent MET activity by promoting receptor down-regulation. 

(A) The ability of ARGX-111 to inhibit HGF-independent MET auto-phosphorylation was determined 

using MKN-45 cells. Data are expressed as % phospho-MET levels compared to untreated (UT) cells. (B) 

Same as in A but using EBC-1 cells. (C) Flow cytometry analysis of ARGX-111-mediated MET down-

regulation in MKN-45 cells. Data are expressed as % MET levels compared to untreated cells. (D) Same 

as in C but using EBC-1 cells. (E) Same as in C but using MDA-MB-231 cells. (F) Dose-response analysis of 

ARGX-111-mediated MET down-regulation in MKN-45 cells. (G-I) Flow cytometry analysis of ARGX-111- 

or HGF-mediated MET down-regulation in the presence or absence of JNJ-38877605, a highly selective 

MET tyrosine kinase inhibitor. Statistical significance was calculated by a Student’s T-test. 
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Figure 6. MET expression in patient-derived primary breast cancer xenografts. (A) Tumor cell 

suspensions obtained by enzymatic digestion of patient-derived mammary carcinoma samples are 

injected orthotopically into the mammary fat pad of a NOG mouse that has been previously humanized 

using human mammary fibroblasts (hMFS). Once engrafted, tumors are propagated from mouse to 

mouse using the same technique. (B) MET expression analysis of cells derived from the vital xenograft 

library described in A. TNBC, triple-negative breast cancer. 

 

Figure 7. MET-targeted ADCC kills mammary carcinoma stem cells. (A) Flow cytometry analysis of MET 

expression in ALDH-1+ mammary carcinoma cells. (B) ADCC assay using ALDH-1-sorted cells derived from 

enzymatic digestion of the tumors described in A. ADCC was determined using bioluminescent ADCC 

reporter cells. LUC, luciferase; AU, arbitrary units. 
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