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Summary
We consider fog computing scenarios where data generated by a set of IoT applications need to
be processed locally by a set of fog nodes, belonging to distinct Fog Infrastructure Providers (FIPs)
sharing the same co-location facility, with the aim of meeting QoS goals despite time-varying
workloads.
We argue that these FIPs may find it profitable to cooperate, by mutually sharing their workload
and resources, andwe show–byusing a game-theoretical framework– that this is indeed the case
when stable coalitions canbe formed.Moreover,wepresent amathematicalmodel formaximizing
the profit obtained for allocating IoT applications to a group of FIPs, that allows to lower costs
and, at the same time, to comply with the associatedQoS parameters.
Based on these results, we devise a coalition formation algorithm that allows each FIP to decide
with whom to cooperate so as to increment its profits. The efficacy of the devised algorithm is
assessed bymeans of an experimental evaluation taking into account different workload intensi-
ties. The results from these experiments show the capability of the proposed algorithm to form
coalitions of FIPs that are profitable and stable in all the scenarios we take into consideration.
KEYWORDS:
Fog computing, Fog federation, Game Theory, Coalition Formation, ProfitMaximization.

1 INTRODUCTION
Large-scale Internet of Things services, such as healthcare 1, smart cities 2, agriculture monitoring 3, and many others 4, are nowadays pervasive in
cyber-physical systems. These services are based on the collection of very large volumes of data, produced by an extremely large number of end
devices (sensors, smart personal devices, vehicles, etc.), located at the edge of the network, that operate on a 24/7 basis every day of the year and
that often need (near) real-time processing 5.
In recent years, Fog Computing 6 has emerged as a suitable solution to the processing needs of IoT data 7,8,9. In a typical Fog Computing architec-

ture, a group of fog nodes – that are placed close-by to IoT devices – provide enough computing, storage, and communication resources to enable
local processing of IoT data, thus avoiding the high-latency transfers to a cloud system, and reducing congestion at the core network.
Latency reduction can be quite expensive in terms of resources, given that (as argued in 10), the latency of communications among the devices

placed in a given area is proportional to the inverse square root of the number of these devices (i.e., to reduce latency by half in a given area hosting
X fog nodes, 4 ∗ X fog nodes must be placed in that area). This implies that the cost incurred by enterprises that need purchasing, operating, and
managing a suitable number of fog nodes to cover large geographic areas might be excessively high, with the result that they could not exploit the
benefits brought by the Fog Computing paradigm.
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A solution to this problem has been envisioned in 10, where the emergence of Fog Infrastructure Providers (FIPs) has been anticipated. Specifically,
a FIP places their resources at the network edge, and rent them on a pay-as-you-go basis to those who require to process their data locally. The
emergenceof FIPswould enable individual enterprises to eliminate the capital andoperational expenses implied by theuseof anown fog computing
infrastructure, as they would not have to purchase, deploy, and manage their own fog resources. Operators would be instead encouraged to enter
the FIP business thanks to the fact that for them it would be easy to amortize these costs, as current virtualization technologies enable them to
safely and effectively multiplex the same physical infrastructure amongmultiple tenants, since each tenant typically needs to use only a fraction of
the physical capacity of fog nodes, as consequence of the variability of the volume of generated data 5.
Moreover, as argued in 10, many of these FIPs will be regional operators, providing service in small urban centers or rural areas, that will exploit

co-location facilities to reduce their operational costs, in line with current trends for small-to-medium-size enterprises 11. In these scenarios, the
profits of FIPs can be increased if they agree to cooperate among thembymutually sharing their users and their infrastructures. As amatter of fact,
the co-located resources of a set of FIPs are indistinguishable from the perspective of latency perceived by a user regardless of the FIPs (s)he is
renting resources from, so a FIPmay host users of another FIP, or can offload its users to another FIP, without incurring into performance penalties.
Consequently, a FIP can increase its net profit by either (a) cutting down its energy consumption costs by turning off some of its fog nodes and
offloading its users to fog nodes of other (cooperating) FIPs, or (b) improving its earnings by runningworkloads generated by users of other FIPs, or
(c) exploiting the capacity of fog nodes belonging to other FIPs to servemore users than it what could do byworking alone.
In order tomotivate FIPs to cooperate among them, suitable benefitsmust result from cooperationwhile, at the same time, the risks ofmonetary

losses (due to the inability to comply with theQoS parameters agreedwith its customers) aremaintained below a suitable threshold.
In this paperwe copewith theproblemof studyingunderwhat conditions a set of FIPsfindsprofitable to cooperate among them, andof providing

a suitable algorithm – based on this study – that allows every FIP to decide whether it is profitable or not to cooperate with other FIPs in the same
areas.
We tackle these problems by exploiting game-theoretic techniques, where the establishment of the cooperation among a set of FIPs is modeled

as a cooperative game with transferable utility 12 (specifically, as a hedonic game 13, whereby every FIP bases its decision on its own preferences), and
we devise an algorithm that allows a group of FIPs to decide whether to cooperate with other FIPs, and if so with whom to cooperate.
In particular,wepropose a game-theoretic framework, that extendsourpreviouswork 14, to study theproblemof forming stable coalitions among

FIPs, and amathematical optimizationmodel to allocate IoT applications to a groupof resources, in order to increaseprofits and, at the same time, to
meet applicationQoS for FIPs inside the same coalition. As a result, we devise a decision algorithm that, taking in input the capacity of fog resources
of each FIP, the QoS levels negotiated with its clients, the intensity of the workload submitted to these resources, and the revenues and costs of
running its ownworkloads and theworkloads of other FIPs on its own these resources, allows it to assess the profitability of joining or not a coalition
formed by other FIPs.
More specifically, we devise a coalition formation algorithm, that is able to form stable coalitions by letting each FIP to autonomously and selfishly

decide whether to leave the current coalition to join a different one or not on the basis of the net profit it receives for doing so. This algorithm is
based on the principle that each FIP pays for the energy consumed to serve each application, whether it belongs to it or to another FIP, but receives
a payoff (computed as discussed later) for doing so.
The effectiveness of the coalition formation algorithm we propose is assessed by means of an extensive experimental evaluation, in which we

consider a set of realistic operational scenarios. The results of our evaluation show that our algorithm enables a population of FIPs to significantly
improve their profits thanks to a suitable combination of energy reduction and satisfaction of QoS requirements.
The contributions of this paper can be summarized as follows:
• we study the problem of improving the profit of a set of FIPs that share the same co-location facility;
• wemodel the problem as a cooperative gamewith transferable utility;
• we devise a distributed algorithm enabling a set of FIPs to autonomously decide whether to form a stable coalition or not on the basis of the
profits theymake by doing so;

• we show its effectiveness through experimental analysis in realistic scenarios.
The remainder of the paper is so organized. In Section 2, we introduce the systemmodel. Section 3 presents the problem statement. In Section 4,

we describe the coalition formation process we propose in this paper. In Section 5, we evaluate our proposed algorithm via simulation and discuss
achieved results. In Section 6, we discuss the state-of-the-art. In Section 7, we conclude the paper and highlight some future works.
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FIGURE 1 System architecture.
2 SYSTEMMODEL
In this paper, we consider systems,whose architecture is schematically shown in Figure 1,where both users and fog nodes are distributed in a group
of n different geographic areas. Within each area, a (possibly large) set of IoT devices, including both stationary (e.g., smart homes, IP cameras, and
smart traffic lights) and mobile (e.g., tablets, smartphones, and connected vehicles) devices, generate a stream of data that need to be processed in
(near) real-time.
Each area is coveredbya single co-location facility that hosts a groupof fognodes running the applications that are responsible for theprocessing

of the data generated by devices located in that area.
We suppose that the communication latency among fog nodes located in the same co-location facility is negligible, while inter-area communica-

tion experiences a significantly higher latency, since it requires the traversal of the core network.
The remainder of the section discusses the characteristics of the key system components, namely the fog nodes (Section 2.1), the applications

(Section 2.2), and the VMs (Section 2.3).

2.1 The FogNodes
Fog nodes are resource-rich small-scale computing systems 15 (e.g., Cloudlets orMicro Data Centers) that are located into the co-location facilities
of the various areas. In particular, we assume that a population ofN FIPs co-exists within each given co-location facility, and that each one of them
provides some of the fog nodes located in that facility. For example, the co-location facility of geographic area j in Figure 1 hosts fog nodes that
belong to FIPs x and y.
Fog nodes rely on a virtualization platform to run theVirtualMachines (VMs)where the various applications are encapsulated togetherwith their

software stack (see below). We assume that this platform provides suitable dynamic resource allocation mechanisms (see for instance 16,17,18,19,20)
able to partition the physical capacity of the fog node across the VMs it runs.
We assume that each fog node z is characterized in terms of its CPU capacity cz, measured through a suitable benchmark (e.g., GeekBench 21),

and of its power consumptionwz(u), which is modeled as in 22 by the following equation:
wz(u) = Wmin

z + u ·
(
Wmax

z −Wmin
z

) (1)
where u ∈ [0, 1] is the CPU utilization of the fog node, andWmin

z andWmax
z are its power consumption (inWatts) when its CPU is in the idle state

andwhen it is fully utilized, respectively. 1
We suppose that, for any fog nodes a and b belonging to the same FIP and located in the same co-location facility, ca = cb andwa(u) = wb(u) for

any value of u (in other words, a and b are identical).

1This model, in spite of its simplicity, has been demonstrated to provide accurate estimates of power consumption for different types of systems when
running several benchmarks representative of real-world applications 22 .
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2.2 The Applications
As discussed above, the data generated in the system are processed by a group ofM applicationsS = {S1, S2, . . . , SM}, each one encapsulated into
a group of VMs. To cover all the various geographic areas of its interest, application Si is presentwith one ormore identical instances in the different
areas, each one corresponding to a VM; the instances located in geographic area j are responsible of processing the data generated by the devices
in that area.
We suppose that the load of data processing requests sent to application Si in any geographic area j changes with time and is described by its

load profile curve ℓi,j(t) expressing, as function of time t, the rate at which requests are submitted (e.g., see 23,24,14). Also, we suppose that, for each
application Si and area j, ℓi,j(t) is known in advance. The load profile curve can be indeed accurately built by estimating both the request rates
generated by stationary devices andmobile users, and by aggregating them into a single measure.
Each application Si is associated with its reference FIPRef (Si) (i.e., the FIP that runs the VMs encapsulating the instances of Si). The same FIP k

can be the reference FIP of many distinct applications, that we denote asApp(k).
We suppose that each application Si is characterized by itsQoS objective, quantified by themaximumvalueQi that the average request process-

ing timeDi can take (in other words, it must be ensured thatDi ≤ Qi). To meet its QoS goal, the owner of application Si makes an agreement with
Ref (Si) stating that (a)Ref (Si)will charge a given amount of money for each instance of Si it runs, computed according to an agreed-upon revenue
rate RRef (Si),i

, per each unit of time, and (b)Ref (Si) will remunerate the owner of Si with an amount of money per each unit of time during which
theQoS goal of Si is not achieved, computed according to the agreed-upon penalty rate LRef (Si),i

.

2.3 The VirtualMachines
The instances of any applicationSi are encapsulated into a group of identical VMs, each ofwhich hosting a single instance, that are instantiated from
a common templateVM, denoted asVM i.

VM i is characterized by the rate µi at which requests are processed in the unit of time. Without loss of generality, we suppose that µi depends
only on the quantity of physical CPU capacityUi allotted to that VM, 2 and thatUi is set to a constant value and is the same for all the instances of
VM i.
Tomake sure thatµi is the same for all the instances ofVM i, we suppose that every of them receives, on the fog node konwhich it runs, a suitable

amount of CPU capacityUk,i computed as discussed below.
First, a profiling experiment is carried out by runningVM i on a reference fog node x (e.g., using the methodology described in 18,19,20) in which

Ux,i is progressively increased until itsmeasured request processing rate reaches the valueµi, and the corresponding valueU∗
x,i of allocated physical

CPU capacity is recorded.
Then, the amount of physical capacityUk,i that must be allocated toVM i on fog node k ̸= x is computed as 25:

Uk,i = U∗
x,i

cx

ck
(2)

where ck and cx represent the physical CPU capacity of fog node k and x, respectively, that are measured as described in Section 2.1. Doing so, we
make sure that all the instances ofVM i will proceed at the same rate on the corresponding fog nodes, so they all will exhibit the same processing
rate µi.
For instance, if U∗

x,i = 0.6, cx = 1 and ck = 2, then Uk,i = 0.6 · 0.5 = 0.3 (i.e., if the physical CPU capacity doubles, µi is obtained by allocating
half of the CPU capacity with respect to the reference fog node).
The choice of imposing that µi remains constant for all the lifetime of the instances of VM i implies that, to achieve the QoS goal Qi of Si in

geographic area j, it is needed to appropriately choose the number Ni,j of VMs allocated on fog nodes placed in that area in order to assure that
Di ≤ Qi. However, Ni,j depends on the value of the load intensity λi,j(t), which is not constant but varies according to the load profile ℓi,j(t), as
already discussed in Section 2.2.
Todetermineλi,j(t), weproceed as follows. First, likewise existingworks (e.g., 24,26,14,27), wediscretize ℓi,j(t)by splitting the timeaxis into uniform

disjoint intervals [t, t + ∆t) of length∆t time units. Then, for any time interval τ , we approximate the value λi,j(τ) as a constant value set to the
peak load in that interval.
The values of λi,j(τ) are then fed as input into an M/M/c-FCFS queueing model 28, where c = Ni,j(τ) represents the group of identical VMs

(instances ofVM i) associated to application Si allocated in a given area j to process a stream of incoming requests which is fairly distributed among
them. The solution of this model yields the minimum number Ni,j(τ) of VMs, instances ofVM i, in time interval τ that satisfies Di ≤ Qi as follows

2The extension to multiple types of physical resources (e.g., RAM and storage) and to multiple classes of VMs, each one with different physical resource
requirements, is straightforward (e.g., see 25).
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(for readability purposes, we drop the dependence on τ ):

Di =
G

µiNi,j − λi,j
+

1

µi
, (3)

Ni,j ≥
G

Qi − 1
µi

+
λi,j

µi
. (4)

where:
• ρ =

λi,j

µiNi,j
is the offered load to the queueing station;

• G = [1+ (1− ρ)(
Ni,j!

(ρNi,j)
Ni,j

)
∑Ni,j−1

k=0

(Ni,jρ)
k

k!
]−1 is the probability of a request to be enqueued before being served.

In addition, to assure the stability of the system, the following inequality must hold:
Ni,j >

λi,j

µi
(5)

3 PROBLEMSTATEMENT
An FIP i aims at increasing its net profit (i.e., the difference between its revenues and costs) as much as possible, in face of the request for allocating,
for every application Sk ∈ App(i), the corresponding set of VMs on its fog nodes FN(i, j) located in a given geographic area j. In the rest of this
paper, we consider, without loss of generality, a single geographic area, as FIPs allocate VMs for instances of applications submitted in a given area
independently from those submitted to other areas. The extension to multiple geographic areas is thus straightforward, given that the overall net
profit earned by FIP is therefore simply the sum of the net profits it earns in each single area.
The net profit rate Pi,j (i.e., the net profit that FIP i makes per unit of time) in a given area j is given by the following difference (to improve

readability, we drop the dependency on time interval):
Pi,j =

∑
Sk∈App(i)

Ri,knk,j −
( ∑

f∈FN (i,j)

xfwf (uf )Ei,j +
∑

Sk∈App(i)

1[0,Nk,j)
(nk,j)Li,k

)
(6)

where xf tells whether fog node f is switched on (xf = 1) or off (xf = 0), nk,j ≤ Nk,j denotes the number of VMs for Sk that are really allocated in
area j (see below), Ei,j is the electricity price charged to FIP i in area j (expressed as a cost rate per unit of time), uf is the total CPU capacity of fog
node FN(i, j) allocated to the VMs it hosts, and 1Ω(x) represents the indicator functionwhich has value 1 if x ∈ Ω and 0 otherwise.
In Eq. (6), the first term of the difference represents the sum of the revenue rates Ri,k that FIP i earns (per unit of time) for hosting nk,j of its

VMs where to run instances of each application Sk, whereas the second term of the difference denotes the costs that FIP i must pay (per unit of
time) to host the above VMs. In turn, these costs are computed as the sum of (a) the energy cost rates resulting from the fraction of CPU capacity of
its powered-on fog nodes to the hosted VMs (see Eq. (1)), and (b) themonetary penalty rates Li,k that FIP imust pay if the QoS of some application
Sk ∈ App(i) is violated (i.e., if nk,j < Nk,j).
The maximization of the net profit rate requires solving an optimization problem to find those values of xi that maximizes Pi,j, and that must

consider the application penalties, the current workload, and the electricity price. This is a challenging task whose solution is discussed in detail in
Section 4.2.
Intuitively,when thenumber ofVMs to allocate on a fognodeFN(i, j) is so small that results in a negative net profit, FIP imust determinewhether

not allocating any VM on FN(i, j) (hence paying the penalties for violating the QoS of the associated applications) would result in a higher profit
than allocating the VMs anyway (for not paying highQoS penalties). Moreover, when the number of VMs is so large that it needsmore than one fog
node to allocate them, FIP imust determine whether allocating all of them would be more profitable than allocating only the ones that results in a
positive profit (thus paying themonetary penalties for those applications whoseQoS is not achieved).
A way to increase the net profit of a FIP is via cooperation, by means of which two or more FIPs in the same geographic area of interest join to

form a coalition where they share their workloads and their fog nodes to serve them.
In particular, with cooperation, FIP i can seek to reduce its energy consumption costs by allocating (some of) its VMs to the fog nodes of other

FIPs, so that its fog nodes can be switched off. Furthermore, FIP i can seek to increase its revenues either by hosting VMs from other FIPs (so as
to amortize its energy consumption costs) or by relying on fog nodes of other FIPs to allocate VMs that, if working alone, it could not host (thus
incurring intomonetary penalties for violating theQoS of the corresponding applications).
It is worth pointing out that each FIP is inclined to cooperatewith other FIPs only if it receives enough incentives to do so thatmake cooperation

at least as profitable as working alone. The lack of these suitable incentives leads to the so called unstable coalitions, that is to coalitions where a
participating FIP prefers either to leave its current coalition tomove to amore profitable one or towork alone. In Section 4, we better formalize this

Page 5 of 16

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience



For Peer Review

6 C. Anglano ET AL.

cooperation process in the framework of the game theory and we propose a distributed algorithm to form stable coalitions among a group of FIPs,
so that no FIP in the same coalition has incentive to leave its current coalition to join a better one.

4 THECOALITION FORMATIONGAME
Wesuppose that the FIPs are rational agents (also referred to as players) being able tomake strategic decisions aiming at increasing their profits. To
pursue these goals the FIPs can cooperate among them. To this aim, a set of FIPs, may form a coalition, i.e., all the FIPs of the coalitionmust agree to
share their own resources and users among them. The coalition formation is a dynamic process where the FIPs move from one to another coalition
to improve their utility. Oneway to describe such a process is tomodel it as a coalition formation game.
In order to join a coalition, a FIPmust indeed find it profitable, i.e., it must be sure that the profit it earns by joining the coalition is noworse of the

one it obtains by working alone. Furthermore, in order to be sure that this profit is not ephemeral, a FIP must seek other properties that guarantee
the suitability of a coalition, namely:
• Coalition stability. A coalition is said to be stable if no player (or possibly no coalition of players) can deviate from the outcome so as to reach
a subjectively better outcome. Several notions of stability have been defined in literature some of which allow to guarantee stability against
single playermoves (Nash stability)while others also allows groupmovements (the core, see 13,29 for details). Lack of stability causes possible
monetary losses for the following reasons: i) aplayer (in our case aFIP) that has joined a coalitionwith the expectationof receiving users from
other players is penalized if, after switching on additional resources to accommodate these users, these other players leave the coalition; ii)
a player that has accepted more users than those that it can serve without incurring into a penalty, expecting to use the resources of other
players to accommodate them, is penalized if these players leave the coalition.

• Fairness. When joining a coalition, a player expects that the resulting profits are fairly divided among participants. As an unfair division leads
to instability, a fair profit allocation strategy is mandatory.

From these considerations, it follows that a way must be provided to each FIP to decide whether to participate to a coalition or not and, if so,
which one among all the possible coalitions is worth joining. In this paper, we address this issue bymodeling the problem of coalition formation as a
coalition formation cooperative game with transferable utility 12, where each FIP cooperates with the other ones to maximize its net profit rate, and by
devising an algorithm to solve it.
In particular, we use the hedonic coalition formation games (also referred to as hedonic games) 13,29,30. A hedonic game is a gamewhere: i) the gain

of any player depends solely on themembers of the coalition towhich the player belongs, and ii) the coalitions arise as a result of the preferences of
the players over their possible set of coalitions. In other words, in this type of coalition games every player is only interested in which players are in
its coalition and does not take into account how players in other coalitions are grouped together.
Given the setN = {1, 2, . . . ,N} of FIPs (i.e., the players of the cooperative game), a coalition C ⊆ N represents an agreement among the FIPs

in C to act as a single entity: theymust agree to share their own resources and users among them.
At any given time, the set of players is partitioned into a coalition partitionΠ, defined as the setΠ = {C1, C2, . . . , Cl}. That is, for k = 1, . . . , l, each

Ck ⊂ N is a disjoint coalition such that∪lk=1Ck = N and Ci ∩ Cj = ∅ for i ̸= j. Given a coalition partitionΠ, for any player i ∈ N , we denote by CΠ(i)
the coalition that contains player i.
In its partition form, a coalition game is defined on the setN by associating a utility value u(C | Π) to each subset of any partition Π ofN . For

hedonic games, the utility value of a coalition is independent of the other coalitions and therefore, u(C | Π) = u(C). In particular, we define the
coalition value u(C) as the net profit rate of coalition C that we compute as the solution of the profit maximization problem that is presented in
Section 4.2.
Obviously, each FIP i ∈ Cmust receive a fraction ϕi(C) of the coalition value, that we call the payoff of i in C. The coalition gamewe propose aims

at getting coalitions in which the FIPs obtain payoffs as high as possible, without violating the fairness requirement, so that stability is achieved.
To this end, we use the Shapley value 31, a payoff allocation rule based on the concept of players’ marginal contribution (i.e., the change in the

coalition valuewhen a player joins that coalition). This implies that, in a given coalition, the FIP that brings a higher contributionwill be rewarded by
other FIPs with smaller contributions. In particular, we use the Aumann-Dréze version 32, which is an extension of the Shapley value for gameswith
coalition structures, and it is defined as:

ϕi(C) =
∑

B⊆C\{i}

|B|!(|C| − |B| − 1)!

|C|!
(u(B ∪ {i})− u(B)) , (7)

where the sum is over all subsetsB not containing i, including the empty set.
For thedefinition of the coalition formation process,weneed to define, for eachFIP i, a preference relation⪰i that theFIP i canuse to compare all

the possible coalitions it may join. This requires the definition of a complete, reflexive, and transitive binary relation over all the possible coalitions
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that the FIP i can form (see 29). In other words, for any FIP i, and for any pair of coalitions C1, C2 ⊆ N (with i ∈ C1 and i ∈ C2) the notation C1 ⪰i C2
denotes that player i prefers being a member of C1 over C2, or at least i prefers both coalitions equally. In the coalition formation game we define,
for any FIP iwe use the following preference relation:

C1 ⪰i C2 ⇐⇒ Φi(C1) ≥ Φi(C2) (8)
where C1 and C2 are any two coalitions that contain FIP i andΦi(·) is a preference function defined as follows:

Φi(C) =

{
ϕi(C) if C /∈ h(i)

−∞ otherwise, (9)

where h(i) is a history set where FIP i caches the identity of the coalitions that have been already evaluated so that we avoid generating twice the
same candidate coalition (this pruning strategy has been used in several papers, see for instance 33 and 24).
By replacing the relation≥with> in Eq. (8), we obtain the preference relation≻i that represents the strict counterpart of⪰i.

4.1 TheHedonic Coalition Formation Algorithm
In this section, we derive a coalition formation algorithm (see Algorithm 1) that, starting from the initial setting where there are no coalitions
(i.e., each FIP is alone) and the history set is empty, allows FIPs to make distributed decisions (asynchronously with respect to the other FIPs) for
choosing which coalitions to join at any time. To cope with the distributed nature of our algorithm, we assume the use of suitable distributed state
management algorithms (e.g., see 34,35).
Algorithm 1 is based on the hedonic shift rule “→” (introduced in 36). Given a coalition partition Π = {C1, . . . , Cl} on the setN and a preference

relation≻i, any FIP i ∈ N decides to leave its current coalition CΠ(i) to join another one Ck ∈ Π ∪ ∅ if and only Ck ∪ {i} ≻i CΠ(i). If the change of
coalition from CΠ(i) to Ck takes place, we refer to it as the hedonic shift from CΠ(i) to Ck andwe denote it by {CΠ(i), Ck} → {CΠ(i)\{i}, Ck ∪ {i}}.
In other words, player i leaves its current coalition if it receives a greater payoff in another coalition (note that i can decide to go alone, this is the

case where Ck = ∅). This rule captures the selfish behavior made by a FIP to move from its current coalition to a new one, regardless of the effects
of this move on the other FIPs.
The rationale of Algorithm1 is to let each FIP i search, asynchronouslywith respect to the other FIPs, the state space of possible coalitions itmay

join and, for each of them, check whether it is preferable (according to the corresponding≻i relation) to join it, or instead to remain in its current
coalition.When a FIP decides to leave a coalition to join another one, it inserts the coalition it is leaving into its history set h(i), so that it will not be
visited again during the coalition state-space search. A FIP repeats the steps of Algorithm 1 until nomore hedonic shift rules can be performed.
Algorithm 1 accepts as parameters the identity i of the calling FIP and the global state state , storing the current shared coalition partition Πc.

Initially, before the algorithm is invoked by any FIP, there are no coalitions, meaning thatΠc = Π0 =
{
{1}, {2}, . . . , {N}

}.
For each invocation of the algorithm, the calling FIP i initializes its history set h aswell as other auxiliary variables (lines 2–4), and then iteratively

applies the hedonic shift rules until nomore of them can be evaluated from the last coalition partition it considered.
Specifically, after acquiring a lock to get exclusive access to the shared state state (line 6) to ensure its atomic update (through a suitable dis-

tributed mutual exclusion algorithm 34), FIP i iteratively retrieves the current coalition partition Πc and evaluates (by means of the hedonic shift
rule) all the possible coalitions it can form fromΠc, to search for the onewith the higher payoff.
To this aim, given the current coalition partitionΠc, for each coalition C ∈ Πc ∪ ∅, not contained by its history set h and different from its current

one Cc, FIP i evaluates the hedonic shift rule to move to the new coalition Cn = C ∪ {i}, and assesses its preference to join the new coalition Cn
against the current coalition Cc (lines 10–17), according to Eq. (8) and Eq. (9).
If a coalition Cb with the higher payoff is found (lines 18–22), FIP i inserts into its history set h the coalition Cc \ {i} it is leaving, and changes the

shared coalition partition by updating both Cb (now containing also i) and Cc (now not containing i anymore).
After releasing the exclusive lock to the shared state state (line 23), FIP i repeats the above steps (lines 6–23) to search for a better coalition, in

case some other FIP hasmeantime changed the coalition partition stored in the shared state.
When no other more profitable coalition is found, FIP i terminates the execution of the algorithm (line 24), until a new invocation is performed

again.
Given that FIPs can work asynchronously and independently from each other, Algorithm 1 can be easily implemented as a distributed algorithm

by means of suitable distributed mechanisms for: i) state retrieval, and ii) atomic state update. The former mechanism ensures that any FIP is able to
obtain the current coalition partitionΠc; while the latter establishes that the current coalition partitionΠc does not changewhile FIP i is making its
decisions. The literature of distributed algorithms provides several proposals to address similar issues (see for instance 37,35 and 34).
Furthermore, the algorithmwe propose ensures two important properties, that are proved below, namely convergence and stability (in particular

we use the notion of Nash-stability 38). The convergence ensures that the algorithm always terminates in a finite number of steps, while the stability
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Algorithm 1 TheHedonic Coalition Formation Algorithm
1: procedureHEDONICCOALITIONFORMATION(i, state)
2: h← ∅ ▷History set
3: Cc ← ∅ ▷Current coalition
4: Cb ← ∅ ▷Best coalition
5: repeat
6: ACQUIRELOCK(state)
7: Πc ← GETCURRENTCOALITIONPARTITION(state)
8: Cc ← CΠc (i)

9: Cb ← Cc
10: for all C ∈ (

Πc \ {Cc}
)
∪ ∅ and C /∈ h do

11: Cn ← C ∪ {i}
12: ϕCb

← COMPUTESHAPLEYVALUE(Cb, i) ▷ See Eq. (7)
13: ϕCn ← COMPUTESHAPLEYVALUE(Cn, i) ▷ See Eq. (7)
14: if ϕCn > ϕCb

then ▷ See Eq. (8) and Eq. (9)
15: Cb ← Cn
16: end if
17: end for
18: if Cb ̸= Cc then
19: UPDATEHISTORY(h, Cc \ {i})
20: Πb ←

(
Πc \

{
Cc, Cb \ {i}

})
∪
{
Cc \ {i}, Cb

}
▷Hedonic shift: {Cc, Cb \ {i}}→ {

Cc \ {i}, Cb
}

21: SETCURRENTCOALITIONPARTITION(state,Πb)
22: end if
23: RELEASELOCK(state)
24: until Cb = Cc
25: end procedure

ensures that in a stable coalition partition no FIP can benefit from leaving the current coalition to join another one. More formally a partitionΠ =

{C1, . . . , Cl} isNash-stable if ∀i ∈ N , CΠ(i) ⪰i Ck ∪ {i} for all Ck ∈ Π ∪ ∅.
Although the proof of convergence and of the Nash-stability are classical results of hedonic games, for completeness we include them.

Proposition 1 (Convergence). Starting from any initial coalition structureΠ0 = {{1}, {2}, . . . , {N}}, the proposed algorithm always converges to
a final partitionΠf .
Proof. The coalition formation process can be mapped to a sequence of hedonic shift rule operations that transforms the current partition Π into
another partitionΠ′. Thus, starting from the initial step, the algorithms yields the following transformations:

Π0 → Π1 → · · · → Π→ Π′ (10)
where the symbol→ denotes the application of a shift operation. Every application of the shift rule generates two possible cases: (a) Ck ̸= ∅, so
it leads to a new coalition partition, or (b) Ck = ∅, so it yields a previously visited coalition partition with a single FIP (i.e., with a coalition of size
1). In the first case, the number of transformations performed by the shift rule is finite (at most, it is equal to the number of partitions, that is the
Bell number), and hence the sequence in Eq. (10) will always terminate and converge to a final partition Πf . In the second case, starting from the
previously visited partition, at certain point in time, the non-cooperative FIPmust either join a new coalition and yield a new partition, or decide to
remain non-cooperative. From this, it follows that the number of re-visited partitionswill be limited, and thus, in all the cases the coalition formation
stage of the algorithmwill converge to a final partitionΠf .
Proposition 2 (Nash-stability). Any final partitionΠf resulting fromAlgorithm 1 is Nash-stable.
Proof. We prove it by contradiction. Assume that the final partition Πf is not Nash-stable. Consequently, there exists a FIP i ∈ N and a coalition
Ck ∈ Πf ∪∅ such that Ck ∪{i} ≻i CΠf

(i). Then, FIP iwill perform a hedonic shift operation and henceΠf → Π′
f . This contradicts the assumption that

Πf is the final outcome of our algorithm.
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Hence, theNash stability is a fundamental guarantee for the convergence of the proposedmethod.Moreover, the introduction of players’ history

in the preference relation provides an easy way to prune the state space at each decision step of the algorithm. Indeed, at each step the number of
alternatives a player faces fades monotonically to eventually ends up in a stable coalition configuration. Obviously, the process of coalition forma-
tion may terminate in a specific configuration just because all further steps are restricted by the history. That is, our algorithm may stop in a local
minimum, hence not reaching the best coalition configuration for the specific scenario—whichmight also be unreachable for different reasons (e.g.,
coalition instability). However, any approach rising a Nash stable solution of the game would suffer from the local minima solutions. Furthermore,
it is worth to point out that Nash-stability also implies the so called individual-stability 38. A partitionΠ = {C1, . . . , Cl} is individually-stable if do not
exist a player i ∈ N and a coalition Ck ∈ Π∪∅ such that Ck∪{i} ≻i CΠ(i) and Ck∪{i} ⪰j Ck for all j ∈ Ck, i.e., if no player can benefit bymoving from
her/his coalition to another existing (possibly empty) coalitionwhile notmaking themembers of that coalitionworse of. Thus, we can conclude that
our algorithm always converges to a partitionΠf which is both Nash-stable and individually stable.

4.2 Computation of theOptimal Coalition Allocation Profit
In order to derive the payoffs that FIPs receive in a given coalition (see Eq. (7)), our coalition formation algorithm needs to compute the coalition
value u(C) (i.e., the coalition net profit rate) for any coalition C of FIPs that may form.
This requires solving amaximization problem that, given a coalition C of FIPs located in a specific geographic area g, looks for the best allocation

of the VMs V where to run instances of applications A =
∪

i∈C App(i) to host in this area onto the fog nodes F =
∪

i∈C FN (i, g), in order to
maximize the net profit rate u(C) of coalition C. The set V is obtained by merging the Nj,g(t) VMs needed by each application j ∈ A to achieve its
target QoS in the time interval t.
To this end, we propose theMixed Integer Linear Program (MILP) of Figure 2 to model the problem of allocating a set V of VMs onto a setF of fog

nodes so that the net profit rate u(C) of the coalition C is maximized.
In this figure, we adopt the same notation introduced in Section 2 and we denote by s(j) (where s : V → A) the instance of the application run

by VM j, and by p(i) (where p : F → C) the FIP which owns fog node i in the specific geographic area g. Furthermore, for readability purposes, we
remove from the model any dependence on the time interval t (e.g., we denote byNj,g , instead ofNj,g(t), the needed number of VMs to allocate so
as to achieve the target QoS of application j).
In the optimizationmodel,
• the binary decision variable xi is set to 1 if fog node i is turned on, and 0 otherwise;
• the binary decision variable yi,j is set to 1 if VM j is allocated on fog node i, and 0 otherwise;
• the non-negative real decision variable ui denotes the overall share of CPU capacity of fog node i that has been allotted to the hosted VMs;
• the non-negative integer decision variable nk,g represents the number of VMs allocated for executing instances of application k.
The objective function u(C) of the optimization model (defined by Eq. (11a)) represents the net profit rate obtained by the coalition C of FIPs,

which is computed as an extension to coalitions of the net profit rate Pi,g defined for a single FIP i (in fact, u({i}) = Pi,g; see Eq. (6)), that is as the
difference between the revenues earned by the allocation of VMs and the costs resulting from the energy consumed by the switched-on fog nodes
and from the violations (if any) of applications’ QoS. Its maximizationmust satisfy the following constraints:
• Constraints Eq. (11b) ensures that VMs are not allocated on fog nodes that will be switched off.
• Constraints Eq. (11c) guarantee that each VM is hosted at most on one fog node.
• Constraints Eq. (11d) define the value of variables ui as the sum of the CPU capacity demands of the VMs allocated on fog node i.
• Constraints Eq. (11e) assure that the allocated CPU capacity of a switched-on fog node is not exceeded.
• Constraints Eq. (11f) define the value of the variable nk,g as the number of allocated VMswhere to execute instances of application k.
• Constraints Eq. (11g) guarantee that for each application nomore VMs are allocated than required;
• Constraints Eq. (11h) to Eq. (11k) define the domain of decision variables xi, yi,j, ui and nk,g , respectively.
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maximize u(C) = ∑
k∈A

RRef (k),knk,g

−
[∑
i∈F

(
xiW

min
i + (Wmax

i −Wmin
i )ui

)
Ep(i),g

+
∑
k∈A

(
nk,g < Nk,g

)
LRef (k),k

]
(11a)

subject to∑
j∈V

yi,j ≤ |V|xi, ∀i ∈ F , (11b)
∑
i∈F

yi,j ≤ 1, ∀j ∈ V, (11c)

ui =
∑
j∈V

yi,jUi,j, ∀i ∈ F , (11d)

ui ≤ xi, ∀i ∈ F , (11e)
nk,g =

∑
i∈F

∑
j∈V,
s(j)=k

yi,j, ∀k ∈ S, (11f)

nk,g ≤ Nk,g, ∀k ∈ A, (11g)
xi ∈

{
0, 1

}
, ∀i ∈ F , (11h)

yi,j ∈
{
0, 1

}
, ∀i ∈ F , j ∈ V, (11i)

ui ∈ R∗, ∀i ∈ F , (11j)
nk,g ∈ N, ∀k ∈ A. (11k)

FIGURE 2 The optimizationmodel for maximizing the net profit rate u(C) of coalition C.

TABLE 1 Parameters used in the experimental scenarios. Subscripts i and j take values on the set {1, 2, 3, 4}.

Parameter Value
|App(i)| Number of applications associated to FIP i 1

Ei,j Electricity price charged to FIP i in area j 0.0001 $/Wh
|FN (i, j)| Number of fog nodes owned by FIP i in area j 4

Li,j Penalty rate paid by FIP i for violating QoS of application j 0.022 $/h
N Number of FIPs 4

M Number of applications 4

Qi Maximum request processing time defined by theQoS of application i 0.7 sec
Ri,j Revenue rate earned by FIP i for running instances of application j 0.0022 $/h
Uk,j CPU requirement of templateVM j on fog node k 0.05

Wmax
k Maximum power consumption of fog node k 200W

Wmin
k Idle power consumption of fog node k 100W
µj Request processing rate of templateVM j 2 req/sec

5 EXPERIMENTAL EVALUATION
In this section, we present the experimental evaluation we performed through simulation to assess the performance and the efficacy of our
algorithm to form profitable and stable coalitions of FIPs. To do so, we run Algorithm 1 for different scenarios, where we vary the workload of a
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set of applications. The results of this evaluation show that our algorithm is able to form coalitions of FIPs that are profitable and stable in all the
considered scenarios.
Toperformour experiments,we implemented a specific simulator inC++whichuses the IBM ILOGCPLEX solver12.8 39 to solve themaximization

problem of Section 4.2.
The remainder of this section is organized as follows. First, in Section 5.1, we provide the experimental settings we use in our scenarios. Then, in

Section 5.2, we present the results we obtain by running our coalition formation algorithm in these scenarios (Section 5.2).

5.1 Experimental Setup
In this section, we present the experimental settings and scenarios considered in our evaluation. To ease readability, they are summarized in Table 1,
Table 2, and Table 3.
In a specific geographic area g, we consider N = 4 identical FIPs, each of which is in charge of running instances of a different application

(i.e., App(i) = {Si}, for i = 1, . . . , 4). The physical infrastructure of each FIP consists of 4 identical fog nodes whose idle and maximum power
consumptionsWmin

k andWmax
k are set to 100Wand 200W, respectively (for k = 1, . . . , 4). This number of fog nodes ensures that, in the scenarios

we consider, each FIP,whenworking in cooperation, is able to accept on its fog nodes all theworkload of the other FIPs that aremember of the same
coalition. The template VMVM j of each application j is characterized by a request processing rate µj of 2 requests per second and, to achieve this
value, it needs a physical CPU capacity Uk,j of 0.05 for each fog node k (i.e., when allocated to a fog node k, every VM consumes 5% of its physical
CPU capacity).
We suppose that the electricity price Ei,g is charged hourly to every FIP i and we set it to 0.0001 $/Wh 40 for every FIP. Furthermore, we fix the

revenue rateRi,j that each FIP i receives for hosting aVMwhere to run an instance of application j to 0.0022 $/hour, which is 22 times the electricity
price Ei,g . We derived this value by assuming that each FIP reaches the break-even point when the load of one of its fog node (i.e., the total CPU
capacity of the fog node allocated to VMs) is 30%. This value depends on the specific parameters we set for our experimental evaluation, and such
parameters have been selected to study the formation of coalitions with different structures as function of the load. On the one hand, this value is
sufficiently large that each FIP is willing to cooperate with all the other FIPs at low loads (by hosting the VMs of all FIPs on a single fog node), but
on the other hand, it is sufficiently small that an FIP is willing to join a coalition only with some other FIP at medium loads or to not join at all at high
loads (to avoid paying energy consumption costs that it cannot amortize).
Finally, for every application j, we fix its QoS target Qj to 0.7 sec and the associated penalty rate Li,j to 0.022 $/hour for every FIP i (i.e., Li,j =

10Ri,j).We select this value for the penalty rate to ensure that an FIP always prefers allocating VMs for the applications it hosts than refusing them
for cutting down energy costs.
We study the impact of the workload on the coalition formation process by varying, in a controlled way (i.e., by considering each discretization

interval of the traffic load curve separately), the workload intensity of each application.
To this aim, we consider two set of scenarios, namely the homogeneous scenarios set and the heterogeneous scenarios set, respectively, whose

settings are given in Table 2 and Table 3.
In the homogeneous scenarios set, we vary the workload intensity λk,g of each application k (in the given area g) so that the induced load αi,

experienced by each FIP i (when it works alone) on the fog node where the required VMs have been allocated, ranges from 0.1 (i.e., only 10% of the
CPU capacity of the fog node is allocated to VMs) to 0.9 (i.e., the total allocated CPU capacity on the fog node is 90%), with increments of 10%. The
resulting scenarios are summarized in Table 2, where the first column represents the scenario name, the second column contains the load level of
each application k stated in terms of its workload intensity λk,g in the geographic area of interest g, the third column gives the minimum number
Nk,g of VMs required to satisfy theQoS parameterQk of application k in face of theworkload λk,g , and the last column contains the loadαi induced
on a fog node of FIP i by the workload intensity λk,g .
To better evaluate the game dynamics, we also consider the heterogeneous scenarios set, where the reference scenario for the experiments has

been changed but, in order to be able to compare different scenarios, the average load offered to all FIPs has been kept fixed and equal to the
previous set, as reported in Table 3. Specifically, fixed a given average load α̂ offered to all FIPs, we compute the load αi associated to each FIP i as
follows:α1 =

⌈
(3/2)α̂
U1,j

⌉
U1,j,α2 =

⌈
(5/4)α̂
U2,j

⌉
U2,j,α3 =

⌈
(1/2)α̂
U3,j

⌉
U3,j, andα4 =

⌈
(3/4)α̂
U4,j

⌉
U4,j, where ⌈·⌉ is the ceiling operator, and the use ofUi,j in

these equations is to assure that the resulting load is a multiple of the CPU demandUi,j ofVM j on a fog node of FIP i.
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λk,g Nk,g αi

2.1 2 0.1

5.7 4 0.2

9.4 6 0.3

13.3 8 0.4

17.2 10 0.5

21.1 12 0.6

25.0 14 0.7

28.9 16 0.8

32.8 18 0.9

α̂ FIP i λk,g Nk,g αi

0.2
1 9.4 6 0.30

2 7.6 5 0.25

3 2.1 2 0.10

4 3.9 3 0.15

0.5
1 26.9 15 0.75

2 23.0 13 0.65

3 7.6 5 0.25

4 13.3 8 0.40

0.8
1 44.7 24 1.20

2 36.8 20 1.00

3 13.3 8 0.40

4 21.1 12 0.60

TABLE 2 The experimental settings corresponding to the homo-
geneous scenarios set. Subscripts i and k take values on the set
{1, 2, 3, 4}.

TABLE 3 The experimental settings corresponding to the hetero-
geneous scenarios set. Subscripts i and k take values on the set
{1, 2, 3, 4}.

5.2 Experimental Results
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Region 1 Region 2 Region 3
α̂ FIP i u({i}) E[ϕi]

Normalised
∆(E[ϕi], u({i}))

Average Normalised
∆(E[ϕi], u({i}))

Formed
Coalition Partition

0.2
1 0.0002 0.0077 0.9740

0.9740 {1, 2, 3, 4}
2 -0.0015 0.006 0.9740
3 -0.0066 0.0009 0.9740
4 -0.0049 0.0026 0.9740

0.5
1 0.0155 0.0172 0.0971

0.1456 {1, 2, 3, 4}
2 0.01 0.0138 0.0971
3 -0.0015 0.0035 0.2913
4 0.0036 0.0053 0.0971

0.8
1 0.0208 0.0241 0.1381

0.1036 {2}, {1, 3, 4}2 0.024 0.024 0
3 0.0036 0.0069 0.1381
4 0.0104 0.0137 0.1381

FIGURE 3 Changes in the net profit rate of FIP i (with i = 1, . . . , 4)
for different values of load level αi when using the algorithm in a
homogeneous load scenario.

TABLE 4 The experimental scenarios corresponding for the heteroge-
neous loads scenario. Subscript i takes values on the set {1, 2, 3, 4}.
The symbol E[·] denotes the arithmetic mean operator.

The configuration summarised in Table 2 applies to all FIPs, smoothing the effect induced by the payoff allocation. Indeed, as stated before,
the Shapley value keeps into account the contribution each player brings to the coalition and compute rewards accordingly. The assumption of
homogeneous loads allows us to focus on the effects induced by the cooperation among FIPs, neglecting the dynamics leading to it – any player
joining a specific coalition brings the same contribution as the others. Specifically, Figure 3 depicts the ratio between the net profit rate – i.e., the
difference between payoff obtained applying the proposedmethodology and the case inwhich all FIPs act independently (i.e., without cooperation)
– and the maximum payoff the players can get among all scenarios. Clearly, such normalisation aims to provide a measure describing the benefits
induced by the methodology decoupling it from the specific costs and revenues in the scenario. Figure 3 shows three different regions, each one of
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which corresponds to a specific load range – from low to high traffic load. Furthermore, each region identifies different coalition configurations and
net profit rates – except for the pointαi = 0.3.
In Region 1 service requests arrive with a low rate to all FIPs allowing them to coalesce in a single coalition. Such configuration holds until the

point αi = 0.3 after which optimising the use of resources within the grand coalition it is not any longer possible. Hence, further increments of
loads generate scenarios in the Region 2. Here players autonomously organise themself in smaller coalitions to rationalise the use of resources.
Eventually, as the computational capacity available decreases also FIPs propensity to cooperate fades. Indeed, within Region 3 the cooperation
costs grow higher than benefits – i.e., FIPs would incur in penalties – and each one act selfishly. The step behaviour observed in Figure 3 is induced
by the discrete granularity of VMs allocation in themaximisation problem andwould smooth in case of smaller VMs scenarios.
In Table 4, we present the results of the heterogeneous scenarios setwhose configuration is summarized in Table 3. Here, only one point for each

region of load has been reported but is enough to observe the effects of heterogeneity. In the first place it is possible to notice that some of the
observations made in the previous case still hold: an increment in the loads decreases the benefits of cooperation — i.e., the number of fog nodes
switched off decreases as the incoming service requests increases. On the other hand, heterogeneous loads allow new coalitions to arise. Indeed,
inRegion 3 it is possible to notice that FIPs are now able to coalesce and obtain a non-zero payoff also where in the homogeneous scenario was not
possible.
This set of experiments allows to point out that the cooperation brings greater benefits in case of low loads. On the other hands, in case of

high loads the advantages decrease as load increases. This behaviour is due to the reduction of waste of resources that occurs in case of under
utilized FIPs. Eventually, evaluating the algorithm in amore realistic scenario— i.e., the onewith heterogeneous loads— it has been showed that the
cooperation is beneficial also in cases of biased traffic load,where overloadedFIPs take advantage of other FIPswith low traffic loads and vice versa.
Despite of its simplicity, the set of experiments summarized by Figure 3 and in Table 4, illustrates how to use the distributed coalition formation

algorithm. The FIPs, based on its own traffic profile estimates, can agree the timing and the activation frequency of the distributed algorithm. The
goal should be an appropriate trade-off between the benefits due to the algorithm (e.g., obtaining coalitions that allow the reduction of costs) and
the overhead derived from too frequent and not very effective activations.

6 RELATEDWORK
The idea of forming coalitions of different operators, using a game theoretical approach, with the aim of improving their net profit or to obtain
different benefits, has been already investigated in the past in various scenarios.
Profit maximization has been investigated both for cloud computing 41,25,42,43 and cellular networks 24. Coalition formation frameworks have

been used instead for femtocell networks for purposes different fromprofitmaximization, such as interferencemitigation, and resource and power
allocation 44,45,46.
Compared to these works, in our contribution we consider a much different system architecture, which is characterized by different properties

and, hence, requires a different solution.
Approaches based on game theory have also been used in the field of fog computing (or edge computing/femto-cloud) for resource optimiza-

tion 47,48, latency and/or the energy consumption reduction 49,50, computation offloading 51,52, and resource aggregation into a single distributed
system 53,54.
In this work we target a goal which is different from those addressed by the above papers. In particular, we focus on the problem of increasing

the profit of different FIPs in the presence of applications characterized by different QoS targets and time-varying workloads.
Last but not least, this paper extends our previous work 14 by introducing a different coalition formation allocation strategy that improves the

stability of the formed coalitions, guarantees the efficiency of the payoff allocation, and ensures fairness in the payoff allocation thanks to the use of
the Shapley value (note that a fair payoff allocation is amandatory property to convince autonomous agents (often competing) to adopt the solution
we propose).

7 CONCLUSIONS
In this paper we have considered the problem of studying under what conditions a set of FIPs, each one needing to allocate its fog nodes to a set of
IoT applications with the goal of meeting specific QoS targets in face of time-varying workloads, finds profitable to cooperate among them, and of
devising a suitable decision algorithm allowing each one of them to decide independently whether to join a coalition with other FIPs or not.
We addressed the above problems bymeans of game-theoretical framework, that allowed us to study the problem of forming coalitions of FIPs,

and by devising amathematical optimizationmodel for the computation of the allocation of IoT applications on the resources of the various FIPs so
as to improve their net profits.
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In the proposed scheme, we model the cooperation among FIPs as a cooperative game with transferable utility and we design a distributed
algorithm to form coalitions of FIPs. With the proposed algorithm, each FIP individually decides whether to leave the current coalition to join a
different one according tohis preference,meanwhile improving theperceivednet profit.Moreover,weproved that thedevised algorithmconverges
to a Nash-stable coalition partition which determines the resulting coalition structure. Numerical results demonstrate the effectiveness of our
approach.
As future work, we plan to proceed along different directions. First, we plan to explore ways to improve the coalition value function in order to

account for possible request losses due to lack of physical resources. Second, we plan to exploreways to improve the game-theoretic and optimiza-
tion models in order to include costs like the loss of revenues, as well as other aspects like the ones related to trustworthiness among FIPs. Finally,
we plan to implement and validate the proposed solution on a real testbed.

ACKNOWLEDGMENTS
This research is original and has a partial financial support of the Università del PiemonteOrientale.

References
1. Hassanalieragh M, Page A, Soyata T, et al. Health monitoring and management using Internet-of-Things (IoT) sensing with cloud-based
processing: Opportunities and challenges. In: Proc. of the 2015 IEEE International Conference on Services Computing (SCC). IEEE; 2015:
285–292

2. Perera C, Qin Y, Estrella JC, Reiff-Marganiec S, Vasilakos AV. Fog Computing for Sustainable Smart Cities: A Survey. ACM Computing Surveys
2017; 50(3): 32:1–32:43. doi: 10.1145/3057266

3. Vasisht D, Kapetanovic Z, Won J, et al. FarmBeats: An IoT Platform for Data-Driven Agriculture. In: Proc. of the 14th USENIX Symposium on
Networked SystemsDesign and Implementation (NSDI’17). USENIX Association; 2017: 515–529.

4. Byers CC. Architectural Imperatives for Fog Computing: Use Cases, Requirements, and Architectural Techniques for Fog-Enabled IoT Net-
works. IEEE Communications Magazine 2017; 55(8): 14–20. doi: 10.1109/MCOM.2017.1600885

5. Bonomi F, Milito R, Natarajan P, Zhu J. Fog Computing: A Platform for Internet of Things and Analytics. In: Bessis N, Dobre C., eds. Big Data and
Internet of Things: A Roadmap for Smart Environments. vol. 546 of Studies in Computational Intelligence. Springer. 2014 (pp. 169–186)

6. Bonomi F, Milito R, Zhu J, Addepalli S. Fog Computing and Its Role in the Internet of Things. In: 1st Workshop on Mobile Cloud Computing
(MCC). ACM; 2012; Helsinki, Finland: 13–16

7. Yousefpour A, Fung C, Nguyen T, et al. All One Needs to Know about Fog Computing and Related Edge Computing Paradigms: A Complete
Survey. arXiv preprint arXiv:1808.05283 2018.

8. Hu P, Dhelim S, Ning H, Qiu T. Survey on fog computing: architecture, key technologies, applications and open issues. Journal of Network and
Computer Applications 2017; 98(Supplement C): 27–42. doi: 10.1016/j.jnca.2017.09.002

9. Liu Y, Fieldsend JE, Min G. A Framework of Fog Computing: Architecture, Challenges, and Optimization. IEEE Access 2017; 5.
doi: 10.1109/ACCESS.2017.2766923

10. Weinman J. The Economics of the HybridMulticloud Fog. IEEE Cloud Computing 2017; 4(1): 16–21. doi: 10.1109/MCC.2017.13
11. 451 Research . Customer Insight: Future-proofing your colocation business. white paper, Schneider Electric; Rueil-Malmaison, France: 2017.
12. Peleg B, Sudhölter P. Introduction to the Theory of Cooperative Games. Springer-Verlag Berlin Heidelberg. 2nd ed. 2007
13. Drèze J, Greenberg J. Hedonic Coalitions: Optimality and Stability. Econometrica 1980; 48(4): 987–1003. doi: 10.2307/1912943
14. Anglano C, CanonicoM, Castagno P, GuazzoneM, SerenoM. A game-theoretic approach to coalition formation in fog provider federations. In:

2018 Third International Conference on Fog andMobile Edge Computing (FMEC). IEEE; 2018; Barcelona, Spain: 123–130

Page 14 of 16

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience



For Peer Review

C. Anglano ET AL. 15
15. Yi S, Li C, Li Q. A Survey of Fog Computing: Concepts, Applications and Issues. In: Proc. of the 2015Workshop onMobile Big Data (Mobidata).

ACM; 2015; Hangzhou, China: 37–42
16. BarhamP, Dragovic B, Fraser K, et al. Xen and the Art of Virtualization. In: Proc. of the 19th ACMSymposyum onOperating Systems Principles

(SOSP). ACM; 2003; Bolton Landing, NY, USA: 164–177
17. Albano L, Anglano C, CanonicoM, GuazzoneM. Fuzzy-Q&E: Achieving QoS Guarantees and Energy Savings for Cloud Applications with Fuzzy

Control. In: Proc. of the 2013 International Conference on Cloud and Green Computing. IEEE; 2013; Karlsruhe, Germany: 159–166
18. Anglano C, Canonico M, Guazzone M. FC2Q: exploiting fuzzy control in server consolidation for cloud applications with SLA constraints.

Concurrency and Computation: Practice and Experience 2015; 27(17): 4491–4514. doi: 10.1002/cpe.3410
19. Anglano C, Canonico M, Guazzone M. FCMS: A fuzzy controller for CPU and memory consolidation under SLA constraints. Concurrency and

Computation: Practice and Experience 2017; 29(5). doi: 10.1002/cpe.3968
20. Anglano C, CanonicoM, GuazzoneM. Prometheus: A flexible toolkit for the experimentation with virtualized infrastructures. Concurrency and

Computation: Practice and Experience; 30(11): e4400. doi: 10.1002/cpe.4400
21. Primate Labs, Inc. . GeekBench: Next-Generation Processor Benchmark. Available from: https://www.geekbench.com; 2018. Accessed: Sept.

27, 2018.
22. Rivoire S, Ranganathan P, Kozyrakis C. A Comparison of High-level Full-system Power Models. In: 2008 Conference on Power Aware

Computing and Systems (HotPower). USENIX Association; 2008; San Diego, CA, USA: 1–5.
23. Boiardi S, Capone A, Sansó B. Radio planning of energy-aware cellular networks. Computer Networks 2013; 57(13): 2564–2577.

doi: 10.1016/j.comnet.2013.05.003
24. Anglano C, Guazzone M, Sereno M. Maximizing profit in green cellular networks through collaborative games. Computer Networks 2014; 75,

Part A: 260–275. doi: 10.1016/j.comnet.2014.10.003
25. GuazzoneM, Anglano C, SerenoM. AGame-Theoretic Approach to Coalition Formation in Green Cloud Federations. In: 2014 14th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing (CCGrid). IEEE; 2014; Chicago, IL, USA: 618–625
26. Bahreini T, Grosu D. Efficient Placement of Multi-component Applications in Edge Computing Systems. In: Proc. of the 2nd ACM/IEEE

Symposium on Edge Computing (SEC). ACM; 2017; San Jose, CA, USA: 5:1–5:11
27. Anglano C, Canonico M, Guazzone M. Profit-aware Resource Management for Edge Computing Systems. In: Proc. of the 1st International

Workshop on Edge Systems, Analytics andNetworking (EdgeSys). ACM; 2018;Munich, Germany: 25–30
28. Harchol-BalterM. PerformanceModeling and Design of Computer Systems: Queueing Theory in Action. Cambridge University Press . 2013.
29. Bogomolnaia A, Jackson MO. The Stability of Hedonic Coalition Structures. Games Economic Behavior 2002; 38: 201–230.

doi: 10.1006/game.2001.0877
30. Aziz H, Savani R. Hedonic Games. In: Brandt F, Conitzer V, Endriss U, Lang J, Procaccia AD. , eds. Handbook of Computational Social

ChoiceCambridge University Press. 2016 (pp. 356–376)
31. Shapley LS. AValue for n-personGames. In: KuhnH, TuckerA., eds.Contributions to the Theory of Games (AM-28). Volume II. PrincetonUniversity

Press. 1953 (pp. 307–318)
32. Aumann R, Dréze J. Cooperative games with coalition structures. International Journal of Game Theory 1974; 3(4): 217–237.

doi: 10.1007/BF01766876
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