

UNIVERSITÀ DEGLI STUDI DI TORINO

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Ionic liquids as water-compatible GC stationary phases for the analysis of fragrances and essential oils: Quantitative GC-MS analysis of officially-regulated allergens in perfumes

This is the author's manuscript

Original Citation:

Availability:

This version is available http://hdl.handle.net/2318/1718193 since 2020-01-14T12:59:47Z

Published version:

DOI:10.1016/j.chroma.2019.460567

Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)

1	Ionic liquids as water-compatible GC stationary phases for the analysis of fragrances and essential oils:
2	quantitative GC-MS analysis of officially-regulated allergens in perfumes
3	
4	Maria Mazzucotelli ^{1\$} , Manuel A. Minteguiaga ^{1,3\$} , Barbara Sgorbini ¹ , Len Sidisky ² , Arianna Marengo ¹ , Patrizia
5	Rubiolo ¹ , Carlo Bicchi ¹ , Cecilia Cagliero ^{1*}
6	
7	¹ Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino,
8	Via P. Giuria 9, I-10125 Torino, Italy
9	² MilliporeSigma 595 N. Harrison Rd. Bellefonte, PA, 16823, USA
10	³ Laboratorio de Biotecnología de Aromas, Departamento de Química Orgánica, Facultad de Química,
11	Universidad de la República, General Flores 2124, Montevideo, 11800, Uruguay
12	
13	
14	
15	
16	
17	*Corresponding author
18	Cecilia Cagliero
19	Dipartimento di Scienza e Tecnologia del Farmaco
20	Università degli Studi di Torino
21	Via P. Giuria 9, I-10125 Torino, Italy
22	e-mail: cecilia.cagliero@unito.it
23	
24	$^{\$}$ Maria Mazzucotelli and Manuel A. Minteguiaga gave an equivalent contribution to this study
25	
26	

27 Abstract

28

29 Qualitative and quantitative determination of volatile markers in aqueous based fragrances assumes ever-30 increasing importance, because of both the need for quality control and the safety-regulatory limitations 31 introduced for several compounds. This study reports and critically discusses the results of applying new 32 water-compatible ionic-liquid (IL) GC stationary phases, based on phosphonium and imidazolium derivative 33 cations combined with trifluoromethanesulphonate (Watercol[™]) to the direct quantitative analysis of 34 aqueous samples in the perfume field with GC-MS. Narrow-bore columns of different lengths, especially 35 prepared for this study, were adopted to minimize the amount of water reaching the MS detector after GC 36 separation. All GC-MS analysis steps were investigated, to achieve results compatible with quality control 37 requirements for the volatiles of interest in this field, in terms of LODs, LOQs, and repeatability. Reliability of 38 the GC-MS results was demonstrated by determining volatile allergens in two commercial perfumes, as per 39 EU regulations concerning no-declaration limits for leave-on (0.001%) and rinse-off (0.01%) cosmetic 40 products. 41

Keywords - Ionic liquids; Water-compatible stationary phases; GC and GC-MS; Aqueous samples; Perfumes;
 Volatile allergens

44

46 **1. Introduction**

47 Quali-guantitative determination of volatile markers in aqueous products based on essential oils and, more 48 in general, on fragrances, is increasingly necessary. This is not only due to quality control requirements, but 49 also to regulatory limitations introduced for some compounds. An important example is the no-declaration 50 limits, at 0.01% for leave-on and 0.001% for rinse off products that the EU indicated for 24 volatile allergens 51 in cosmetics, in Directive 2003/15/EC and subsequently in Regulation (EC) No 1223/2009 on cosmetics, 52 following the opinion of the Scientific Committee on Consumer Safety (SCCS) published in 1999 [1-3]. More 53 recently, in 2011, the SCCS wrote to the European Commission with a further opinion, proposing an extended 54 list of "established contact allergens in humans" consisting of 54 chemicals and 28 natural extracts [4]. 55 Although gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) are the techniques 56 of choice for analyzing volatiles, it is well-known that water is poorly compatible with conventional GC 57 stationary phases (SPs), most of which are hydrophobic, and can therefore generate interferences in the 58 direct analysis of aqueous samples. This incompatibility produces phase degradation, peak broadening, 59 asymmetry, and adsorption, resulting in poor sensitivity and efficiency, and thus unsatisfactory limits of 60 detection and, especially, of quantitation [5,6]. Routine target analyte quantitation in water samples thus frequently requires a preliminary sample preparation step to be included in the method that, however, may 61 62 be time-consuming and/or affect recovery; it often produces discrimination among the components of a 63 sample.

64 The direct analysis of water as sample component has generally been achieved by using packed columns 65 filled with Porapak, or wall-coated PoraPLOT columns, but these methods are mainly for water as analyte, 66 and in general require further analyses with conventional columns to evaluate other target components in 67 the sample [5]. A possible solution to this problem was proposed by Armstrong et al. who, in 2012, introduced 68 new stationary phases (SPs) based on ionic-liquids (ILs); these showed high stability and compatibility with 69 water as analyte to be determined in a sample. These ILs consisted of phosphonium and imidazolium 70 derivatives as cations, combined with 2 or 3 units of trifluoromethanesulphonate as anions. The same group 71 also reported a number of applications concerning the determination of water as analyte in the 72 pharmaceutical and food fields with the same and other IL derivatives [7-9]. In 2016, a set of columns coated 73 with the above ILs with different retention properties were marketed by MilliporeSigma under the trade name Watercol[™] [10]. 74

In a previous article, Cagliero et al. reported the results of a study extending the use of commercially-available water-compatible IL columns for the direct analysis of aqueous samples in the fragrance and essential oil fields, by GC with thermal conductivity (TCD) and/or flame ionization detectors (FID) [11]. In particular the columns investigated were Watercol[™] 1460, i.e. coated with tri-(tripropyl-phosphoniumhexanamido)triethylamine trifluoromethanesulfonate (hereafter 1460), and Watercol[™] 1910, i.e. coated with 1,11-di-(3hydroxyethylimidazolium)-3,6,9-trioxaundecane trifluoromethane sulfonate (hereafter 1910). More

recently, Sgorbini et al. [12] successfully applied Watercol[™] in an experimental study comparing different 81 82 methods, to measure the transfer rate and human intake of volatile bioactive compounds, from herbal teas 83 prepared with medicinal and aromatic plants. These studies showed that water-compatible IL stationary 84 phases were very promising for qualitative and quantitative analysis of target analytes in aqueous or 85 hydroalcoholic samples of fragrances, herbal teas and essential oils. At the same time, the results emphasized 86 that, in view of their routine application in quality control, both the efficiency and inertness, as well as the 87 maximum operative temperature of the investigated IL columns, required further improvement, and that 88 mass spectrometry must be used as GC detector if their use is to be fully compatible with regulatory 89 requirements. The reliability of a MS system as detector for these applications might be affected by the 90 repeated introduction of relatively large amounts of water, due to the large number of samples processed in 91 a quality control laboratory (in particular, in quantitative analysis) since water at high temperature and under 92 high vacuum is highly reactive and abrasive, and can affect the filament, and more in general the performance 93 and stability of the ion source.

The present study aims to combine GC with water-compatible columns (Watercol[™]) with an electron 94 95 ionization quadrupole-MS (EI-MS) detector to analyse target analytes in aqueous or hydroalcoholic samples. 96 Column characteristics, injection conditions, and modality of introduction of water (vapor) in the MS detector 97 are discussed critically in-depth, focussing chiefly on quantitative analysis of volatile allergens in fragrances 98 for which regulatory organizations impose declaration limits, and allergen determination in two commercial 99 perfumes. This important quality-control problem for the perfume industry has already been dealt with in 100 official methods from professional organizations and research groups in this field [13-15]; the analysis of volatile allergens has here been taken as a case study for effectively testing Watercol[™] reliability for routine 101 102 applications, because of the widely differing structures of the compounds involved, and the high complexity 103 of aqueous perfume matrices.

104

105 2. Material and Methods

106 2.1 Samples and chemicals

107 Column performance was evaluated with the Grob Test [16] (Merck, Milan, Italy). Stock solutions of the 24 108 volatile allergens and 5 other related compounds, at 5000 mg/L in cyclohexane, and in a 1:1 ethanol/water 109 mixture (hereafter EtOH/H₂O), were prepared from pure standards (all from Merck, Milan, Italy). Deionized 110 water was obtained from a Milli-Q purification system, Millipore, Merck, Milan, Italy). The mixtures of volatile 111 allergens and related compounds included: 1. benzyl alcohol (CAS: 100-51-6), 2. phenylacetaldehyde (CAS: 122-78-1), 3. cinnamaldehyde (CAS: 104-55-2), 4. cinnamyl alcohol (CAS: 104-54-1), 5. limonene (CAS: 138-112 86-3), 6. anisyl alcohol (CAS: 105-13-5), 7. coumarin (CAS: 91-64-5), 8. estragole (CAS: 140-67-0), 9. vanillin 113 (CAS: 121-33-5), 10. geranial (CAS: 5392-40-5), 11. neral (CAS: 106-26-3), 12. methyl-2-octynoate (CAS: 111-114 115 12-6), **13.** geraniol (CAS: 106-24-1), **14.** linalool (CAS: 78-70-6), **15.** β-citronellol (CAS: 106-22-9), **16.** eugenol 116 (CAS: 97-53-0), **17.** hydroxycitronellal (CAS: 107-75-5); **18.** methyl eugenol (CAS: 93-15-2), **19.** α-ionone (CAS: 117 127-41-3), **20.** amyl cinnamaldehyde (CAS: 122-40-7), **21.** lilial (CAS: 80-54-6), **22.** α-pentyl cinnamyl alcohol 118 (CAS 101-85-9), 23. α-isomethyl ionone (CAS: 127-51-5), 24a. lyral isomer a (CAS: 51414-25-6) 24b. lyral 119 isomer b (CAS: 31906-04-4), 25. benzyl benzoate (CAS: 120-51-4), 26. hexyl cinnamaldehyde (CAS: 101-86-0), 120 27. farnesol isomers (CAS: 106-28-5), 28. benzyl salicylate (CAS: 118-58-1) and 29. benzyl cinnamate (CAS: 121 103-41-3). The working solutions (30 mg/L for each analyte) were prepared by suitable dilution of the stock 122 solution in the same solvents and directly injected into the GC systems. 123 Two commercial perfumes labelled as "eau de toilette" (perfume 1 and perfume 2) were obtained from a

- 124 local supermarket and injected into the GC and GC-MS systems after dilution at 1:10 or 1:20 in EtOH/H₂O 125 solution. Standard mixtures of the following compounds were prepared for the quantitation of allergens in 126 these perfumes: 1. benzyl alcohol, 4. cinnamyl alcohol, 7. coumarin, 13. geraniol, 14. linalool, 15. β -127 citronellol, **16.** eugenol, **17.** hydroxycitronellal, **21.** lilial, **23.** α -isomethyl ionone, **24a.** and **24b.** lyral isomers, 128 26. hexyl cinnamaldehyde and 30. linalyl acetate (CAS: 115-95-7). Linalyl acetate was also included because 129 it is comprised in the extended EU list of 54 compounds to be monitored [14]. Carvacrol (CAS: 499-75-29) was provided by Merck and was used as internal standard (ISTD) for quantitation because it does not co-130 131 elute with any other perfume component under the analysis conditions applied.
- 132
- 133 2.2 Analysis conditions
- 134 2.2.1 Instrumental set-up

A Shimadzu 2010 GC-FID-TCD system equipped with an autosampler AOC-20i and combined with GC Solution
 Version 2.30.00 SU6 software (Shimadzu Co., Kyoto, Japan) was adopted to optimize injection conditions for
 aqueous samples. The two detectors were used separately. GC-MS analyses were carried out on an Agilent
 6890N GC coupled to a 5975 MSD provided with a 7683B autosampler and a ChemStation Version
 E.02.02.1431 data processing system (Agilent Technologies, Santa Clara, CA).

140

141 2.2.2 Columns

Four non-bonded narrow-bore (NB) capillary Watercol[™] columns from MilliporeSigma (Bellefonte, PA, USA) 142 143 were used: two 1460 [Tri-(tripropylphosphoniumhexanamido)-triethylamine-trifluoromethane sulfonate; 144 T_{max}: 260°C] and two 1910 [1,11-Di-(3-hydroxyethylimidazolium)-3,6,9-trioxaundecane trifluoro methane sulfonate; T_{max} : 180°C]. Column characteristics: d_c : 0.10 mm; d_f : 0.08 µm; length: 10 and 15 m. The 145 146 investigated NB columns were specifically prepared for this study, and submitted to a dedicated property 147 deactivation procedure. The two types of column are characterized by different operative temperatures: 1460 operates from 60°C to 260°C, and 1910 between 40°C and 180°C. A NB OV-1701 column (length: 10 m, 148 149 d_c : 0.10 mm; d_f : 0.10 µm) was used as reference.

151 2.2.3. Optimization of injection conditions for aqueous samples

152 Injection conditions were optimized on GC-FID with 15 m capillary columns, on the standard mixture of the 153 29 allergens and related compounds (hereafter allergens) with hydrogen as carrier gas. The investigated 154 conditions were: i) liners without or with 0.5 or 1cm glass wool plug, and internal volume of about 800 µL for GC-FID-TCD (Agilent Crosslab P/N: 8001-0104); ii) injection pressure: 200 kPa or overpressurized from 250 to 155 450 kPa; and iii) split ratios: 50, 70 and 100. The optimized conditions were then adapted to GC-MS equipped 156 157 with 10 m columns and helium as carrier gas, and with a liner with internal volume about 900 µL (Agilent 158 P/N: 5190-2293). GC analyses were carried out with syringes for injection provided with 5.1 mm needles and liners filled with 1 cm glass wool plug, thus assuring for both GC-FID and GC-MS systems, a distance of at 159 160 least 3 cm between the needle tip and the glass wool plug.

161

162 2.2.4. GC-FID-TCD conditions

GC-FID-TCD analyses (with 15 m columns) were carried out under the following conditions: oven temperature
program 40°C (2 min) // 3°C/min // 200°C (5 min) for 1460; 40°C (2 min) // 3°C/min // 180°C (5 min) for 1910.
Injector temperature: 230°C for 1460; 200°C for 1910, detector temperature (FID or TCD): 230°C. Sampling
rate for both detectors: 40 msec. Carrier gas: H₂ (FID), He (TCD); column flow: 0.4 mL/min in both cases; initial
head pressure: 199 kPa for H₂ and 332 kPa for He. Split ratio: 1:100 (if not specified otherwise). TCD current:
60 mA, signal polarity: positive. TCD make-up flow: 8.0 mL/min.

169

170 2.2.5. GC-MS Conditions

171 GC-MS analyses (with 10 m columns) were carried out under the following conditions: oven temperature: 172 40°C (2 min)//3°C/min//200°C (5 min) for 1460; 40°C (2 min)//3°C/min//180°C (5 min) for 1910. Injector 173 temperature: 230°C for 1460; 200°C for 1910. MS interface temperature: 230°C in both cases. The 1910 174 column was connected to the MS through a post-column of deactivated fused silica (0.5 m x 0.10 mm d_c) 175 (Mega, Legnano, Italy) to make it compatible with the higher interface temperature. Injection mode: split; 176 ratio: 1:100; injection volume: 1.0 µL. Carrier gas: He; column flow: 0.4 mL/min. Initial head pressure (He): 177 240 kPa. An overpressure injection (pulsed split, He) of 350 kPa for 1.0 min was applied for the aqueous 178 samples. Ion source and analyzer (quadrupole) temperatures: 230°C and 150°C, respectively. Ionization 179 mode: electron impact at 70 eV; acquisition mode: scan (35-350 m/z). Solvent delay: 3.0 min for samples in cyclohexane. For aqueous samples, a solution 1/10 of the perfume 1 in EtOH/H₂O was injected once into 180 181 each Watercol[™] column, with MS scan range set between 17 and 350 m/z, to establish the elution time 182 interval of the H₂O peak. This value was then used to set the time point at which to switch off the ion-source 183 filament (as solvent delay) in routine quantitative analyses, resulting in a solvent delay of 5.00 min for 1460, 184 and 7.40 min for 1910.

186 2.2.6. Analyte identification and quantitation

187 The components of the commercial perfumes were identified by comparison of their mass spectra with those 188 of authentic standards, or stored in commercial or in-house libraries. The results were confirmed by those of 189 a previous publication of the authors' on commercial perfumes [11].

190 The volatile allergens identified in the perfumes were quantified by building up a calibration curve for each 191 of the 14 target components (1. benzyl alcohol, 4. cinnamyl alcohol, 7. coumarin, 13. geraniol, 14. linalool, 192 **15.** β-citronellol, **16.** eugenol, **17.** hydroxycitronellal, **21.** lilial, **23.** α-isomethyl ionone, **24a.** lyral isomers a, 193 24b. lyral isomers b, 26. hexyl cinnamaldehyde and 30. linalyl acetate), by injecting a set of analyte standard 194 solutions, containing 5, 10, 50, 100, 200, 500 and 1000 mg/L of each compound diluted in EtOH/H₂O. Stock 195 solutions of each analyte were therefore prepared at 10.0 mg/mL in 95% EtOH and suitably diluted to the 196 required levels for calibration. A stock solution of carvacrol (ISTD) at 100 mg/mL in EtOH/H₂O was used to 197 evaluate the instrumental repeatability, adding 5.0 µL of it to all samples to achieve a final concentration of 198 50 mg/L.

199 The analytes investigated were quantified through the area of one target ion, obtained in extract ion mode 200 (EIM) from the TIC-GC-MS data; two qualifiers, again obtained in EIM, were used for identification. Target 201 ion and qualifiers, selected from among the diagnostic fragments of each analyte, are reported in Table 1. 202 The method linearity was determined within the above concentration range, providing a determination 203 coefficient R² above 0.99. Limit of detection (LOD) and limit of quantitation (LOQ) of the method for each 204 analyte were obtained by injecting the quantitation standard mixture at 1, 5, and 10 mg/L solubilized in 205 EtOH/H₂O. LOD was calculated from the average "peak to peak" noise values sampled in the region of elution 206 of each analyte in the chromatogram, with a coverage factor of 3. LOQ was the lowest concentration for 207 which instrumental response integration reported an RSD%, across replicate analyses, below 20%. The 208 repeatability of the system was determined by 6 consecutive injections of a solution of all analytes at 50 209 mg/L, under the above conditions. Intermediate precision was determined by injecting the same solutions 210 every 3 weeks over a period of 3 months.

211

212 3. Results and discussion

213 Routine quantitative GC-MS analysis of target compounds in aqueous samples by direct injection entails re-214 evaluating and tuning the three main steps of the analytical procedure, since water as solvent can i) affect 215 column performance, ii) interfere with correct injection and iii) interfere with a reliable MS response. The 216 analytical procedure has therefore been adapted to aqueous samples to obtain reliable, linear, and 217 repeatable results. Analyses were carried out in 1:1 EtOH/H₂O solution chosen as a ratio of compromise 218 due to the widely variable composition of the products of the fragrance field, that range from a highly 219 predominant percentage of ethanol in perfumes (eau de parfum, eau de toilette etc) to high percentage of 220 water in the perfumed waters.

From this standpoint, narrow bore (NB) columns of different lengths, especially prepared for this study, were used because, thanks to their lower loadability, the amount of water introduced into the GC-MS system and, in particular, into the mass spectrometer is minimized and, simultaneously, analysis time is significantly reduced.

This section consists of two main parts: i) the first addresses tuning the optimal GC-MS conditions to obtain reliable results; and ii) the second reports the results obtained on applying the optimized conditions to quantifying volatile allergens in two commercial perfumes.

228

229 3.1 Evaluation of column performances and optimization of GC-MS conditions

230 3.1.1 Watercol[™] column performance

231 The performance stability to injection of aqueous samples, of columns coated with the two IL SPs 232 investigated, was already shown to be very high in previous work [11], by monitoring the consistency of water 233 retention indices after repeated injection (60) of EtOH/H₂O. These results were here confirmed, by analyzing 234 the above mixture consecutively for 15 times with the narrow-bore columns object of this study, by GC-TCD. 235 Water and ethanol retention times were confirmed to be very stable and repeatable (data not shown). The 236 standard mixture of 29 compounds of interest here, 24 of them included on the EU list [2], solubilized in 237 cyclohexane and in 1/1 EtOH/H₂O, was analyzed with both 1460 and 1910 columns, to evaluate column 238 performance. The consistency of analyte retention times, independently of the main solvent applied 239 (cyclohexane or EtOH/H₂O), offers a further indication of column stability (Table 2). Figure 1 reports the GC-FID patterns of the allergen standard mixture, analyzed with Watercol[™] 1460 and 1910. Table 2a and 2b 240 241 reports tailing factors and σ values of the peak width of each analyte (where the peak width at the base line 242 is 4 σ) [17], after injection of standard solutions in cyclohexane and EtOH/H₂O into the two columns, while 243 Figure 2 shows recovery, measured as the ratio of the area of each analyte of the standard mixture in the 244 two solvents analyzed with the two columns, versus those obtained with OV-1701. As a preliminary 245 consideration, the results indicate that efficiency and inertness of both columns are very satisfactory, while 246 component recovery shows that the two SPs adsorb some components.

247

248 *Watercol*TM 1460 – Table 2a reports the tailing factors (TF) and σ values of the components of the standard 249 mixture analyzed with this column. Cinnamyl alcohol (4), *p*-anisyl alcohol (6), vanillin (9), and α -pentyl 250 cinnamyl alcohol (22) were not detected, probably either because of irreversible adsorption, and/or of 251 retention outside the analysis time range (60 min), while phenylacetaldehyde (2) coeluted with neral (11), 252 and limonene (5), when injected in EtOH/H₂O, coeluted with water.

The 1460 performance with the standard mixture in cyclohexane was good. Most compounds presented tailing factors between 0.9 and 1.1, with the sole exceptions of benzyl alcohol (**1**) (TF 1.2) and lyral 1 (**24a**) and 2 (**24b**), which were 2.0 and 2.2 respectively. The corresponding σ values ranged from 0.021 min for 256 hydroxycitronellal (17) to 0.051 min for linalool (14). The high σ value (0.133 min) of limonene (5) was 257 probably due to its very low polarity, poorly compatible with the investigated SPs, together with its elution 258 within the solvent queue. Similar (and in some cases better) results were obtained with the same standard 259 mixture in EtOH/H₂O. Here, too, most peaks showed a tailing factor ranging between 0.9 and 1.1, but many 260 were perfectly symmetrical (TF 1.0), unlike the corresponding results with cyclohexane. The only exceptions were again benzyl alcohol (1) (TF 1.2) and lyral a (24a) and b (24b), although their TF values fell to 1.2 and 261 262 1.3, respectively. Peak widths were in general in line with those of cyclohexane (sometimes slightly better) 263 and σ values ranged from 0.021 min with hydroxycitronellal (17) to 0.051 min for linalool (14).

Lastly, recovery percentage vs. OV-1701 was measured using benzyl benzoate (**25**) as internal reference for normalization, its peaks with both 1460 and 1910 being of comparable intensity, as well as of similar symmetry and width. Very few components gave a recovery below 65% with the standard mixture in cyclohexane; those that did were hydroxycitronellal (**17**), eugenol (**16**), and farnesol isomers (**27**), whose recoveries were 55%, 42% and 56% respectively (Figure 2a). The case of the sample in EtOH/H₂O was similar: results were comparable or slightly better than in cyclohexane.

270

271 *WatercolTM 1910* – As reported elsewhere [11], the selectivity of 1910 differed from that of 1460. With 1910, 272 eugenol (16) and vanillin (24) were not detected, limonene (5) coeluted with both solvents (cyclohexane and 273 EtOH/H₂O), and the column failed to separate three pairs of compounds (i.e. phenylacetaldehyde (2)/ α -274 ionone (19), estragole (8)/methyl octynoate (12), and hydroxycitronellal (17)/farnesol isomer b (27b)) (Table 275 2b).

Analysis of the standard mixture in cyclohexane also revealed good column performance. Most components presented tailing factors between 0.8 and 1.2; the exceptions were neral (**11**) (TF 1.6) geraniol (**13**) (TF 1.9), β -citronellol (**15**) (TF 1.9) and lyral isomer a (**24a**) (TF 1.3) and lyral isomer b (**24b**) (TF 1.5). Peak widths, expressed as σ values, ranged from 0.023 min for α -pentyl cinnamyl alcohol (**22**) and benzyl benzoate (**25**) to 0.044 min for geranial (**10**), the sole exception being lilial (**21**) whose σ was 0.093 min.

The same standard mixture solubilized in $EtOH/H_2O$ and analyzed with 1910 column gave better results for most components. Most peaks were characterized by tailing factors ranging from 0.9 to 1.1, and some were perfectly symmetrical (TF 1.0). TF was equal or better for all components, baring neral (**11**), which had a higher TF (1.9) than in cyclohexane. Peak widths, expressed as σ values, ranged from 0.024 min for methyl eugenol (**18**) to 0.055 min for geranial (**10**), again with the exception of lilial (**21**) (0.111 min).

Again for 1910, percentage recovery vs. OV-1701 was measured using benzyl benzoate (**25**) as internal reference (Figure 2b). This column provided recoveries above 65% for all components with the standard mixture in cyclohexane, with the exception of lyral isomer a (**24a**) (25%), lyral isomer b (**24b**) (28%), farnesol isomer a (**27a**) (59%), and benzyl cinnamate (**29**) (53%). The standard mixture in EtOH/H₂O gave recoveries 290 below 65% only for neral (11) (62%), benzyl cinnamate (29) (53%), and lyral isomers a (24a) (29%) and b (24b)

291 (37%).

292

293 3.1.2 Tuning the injection modality

294 The previous paragraph showed that both 1460 and 1910 columns performed correctly on the reference test 295 mixture, with either cyclohexane or $EtOH/H_2O$ as solvent. The main drawback was the rather poor 296 repeatability with the EtOH/H₂O mixture, compared to that with cyclohexane (Table 3). The results indicate 297 that the cause of this inconsistency is injection. Repeatable and non-discriminative split injection, in particular 298 for quantitative analysis, requires the correct transfer of the sample, fully vaporized, into the injector body 299 at the head of the column, where a narrow band must be generated. This step not only entails selecting the 300 correct temperature, but also applying a suitable injector head pressure that is compatible with both the 301 nature of the solvent and the liner volume and shape [18, 19]. When applied to aqueous samples, the 302 injection conditions adopted with conventional solvents can lead to non-homogeneous sample transfer at 303 the head of the column. This is because of the physico-chemical characteristics of water, which, under the 304 same conditions used for conventional solvents, requires more heat and a longer time to vaporize, produces 305 a large volume of steam and, importantly, slows the transfer to the head of the column because of its 306 viscosity. For instance, 1.0 µL of water in the liquid state, injected at 200 kPa at 200°C, produces a volume of 307 steam of 722 µL, while at 230°C the volume is 768 µL, whereas, under the same conditions, cyclohexane gives 308 120 μ L and 128 μ L, respectively [20]. The volume of a conventional liner with a 5 mm plug of silanized glass 309 wool is about 800 µL, i.e. very close to the volume of steam at the two temperatures, while that of 310 cyclohexane is within the optimal range for correct transfer.

311 These large steam volumes can induce randomized sample and analyte discrimination, and irregular transfer 312 to the column, in particular affecting the quantitative performance of the injection step. Injection 313 performance can be improved by acting on both the steam volume at the applied temperature and the liner 314 characteristics. The volume can be reduced by increasing the pressure inside the injector, i.e. by operating in an over-pressurized split injection mode. The volume of water vapor phase produced at 350 kPa at 200°C in 315 316 the injector body falls to 482 µL, thus providing better compatibility with the liner volume. In this study, most 317 samples were solubilized in EtOH/H₂O, giving a final vapor nominal volume of 353 μL at 350 kPa and 200°C, and of 377 µL at 230°C calculated for each solvent with the dedicated Agilent calculator and mediated for 318 319 the solvent mixture [20]. The liner was also adapted to the volume of steam, which was in any case above 320 that of conventional solvents (e.g. cyclohexane), by including a double layer of silanized glass wool plug (i.e. 321 ca 1 cm). Injection pressure of 350 kPa was chosen as it gave the best results in a series of experiments carried 322 out with pressure ranging from 250 to 450 kPa. This pressure, applied to the 1460 and 1910 columns, with 323 hydrogen as carrier gas, led to a very marked improvement of repeatability of the components of the allergen 324 test mixture in EtOH/H₂O, making correct quantitative analysis possible (Table 3). The standard mixture in

325 cyclohexane, injected in 1460 under conventional injection conditions (200°C/200 kPa), presented RSD% 326 calculated on six replicates ranging from 0.2% for benzyl salicylate (28) and benzyl cinnamate (29) to 6.8% 327 for hydroxycitronellal (17). The same mixture in these conditions in EtOH/H₂O ranged from 11.9% for 328 estragole (8) to 52.8% for lyral isomer a (24a) whereas when injected at high pressure (230°C/350 kPa), it 329 gave RSD% ranging from 3.6% for α -ionone (19) and amyl cinnamaldehyde (20) to 6.2% for α -isomethyl 330 ionone (23). Similar results were obtained with 1910 with the same standard mixture at 230°C/200 kPa; in 331 cyclohexane, RSD% ranged from 1.0% for cinnamaldehyde (3) to 10.8% for benzyl cinnamate (29). In 332 EtOH/H₂O, it ranged from 6.3% for cinnamaldehyde (**3**) to 38.0% for lyral isomer b (**24b**). The RSD% of the 333 same sample in EtOH/H₂O, but at 200°C/350 kPa, ranged from 0.2% for linalool (14) and β-citronellol (15) to 334 5.5 % for lyral isomer b (**24b**).

The method was then applied to GC-MS, where helium must be used as carrier gas. To achieve the same separation, a significantly higher initial pressure (320 kPa) had to be applied to GC-MS to maintain the same performance as GC-FID, owing to helium's physico-chemical characteristics. This requirement would have implied over-pressurization of the injection chamber to at least 450 kPa, which would affect peak shape and repeatability.

The high efficiency and selectivity of both the Watercol[™] columns investigated assure good results, even 340 341 with the usual 10 m NB columns, which required the applied helium pressures to be reduced to values 342 comparable to those previously optimized, i.e. 240 kPa at the head of the column, with over-pressurization 343 at 350 kPa for one minute during injection. The results indicated a maximum RSD% of 9.4% for benzyl 344 salicylate (28) with 1460, and of 6.6% for neral (11) with 1910. The difference of repeatability between GC-345 MS and GC-FID, although always acceptable, are probably justified by the different nature of the gas carrier 346 and overpressure/pressure ratio. For both columns, the EtOH/H₂O results were often better than those with 347 cyclohexane as main solvent.

A further consideration concerns the application of high split ratios (usually 1:100), again in view of reducing the amount of water reaching the MS detector. This can of course affect method sensitivity; however, even at high split ratios, with the applications here discussed LOD and LOQ were, in all cases, compatible with the no-declaration limits set by the EU (see tables 1 and 4).

Under these conditions, more than 700 GC runs were carried out with each of the investigated columns, with highly repeatable results, in line with the requirements of quantitative analysis (see next paragraph). The liner had to be replaced more frequently (every 200 injections) because the steam made the silanized glass wool and inner glass walls reactive towards the investigated analytes.

356

357 3.1.3 Mass spectrometry and water injection

The performance of MS detection was maintained by adopting narrow-bore columns, to limit the amount of water transferred, as well as by operating in *no-ionization* mode, during the time range of water elution as determined by GC-MS (see 2.2.5.).

361

362 3.2 Direct quantitation of suspected allergens and markers in commercial perfumes

The performance of the NB 1460 and 1910 columns on real-world samples was tested on two commerciallyavailable perfumes. The first step entailed selecting a column that would separate and identify as many suspected allergens as possible in the test perfumes in a single run. Figure 3 reports the GC-MS patterns of the two perfumes analyzed with the two columns under study; GC-MS analyses showed that 1910 provided the most effective separation of the allergens in the investigated perfumes (Table 1 and 4), although 1460 was complementary, enabling eugenol, not detected with 1910, to be quantified, as necessary to confirm the quantitative results (table 4).

The following suspected allergens were identified: *perfume 1*: benzyl alcohol (1), cinnamyl alcohol (4), coumarin (9); geraniol (13), linalool (14), β -citronellol (15), eugenol (16), hydroxycitronellal (17), lilial (21), α isomethyl ionone (23), lyral isomer a (24a), lyral isomer b (24b), hexyl-cinnamaldehyde (26), linalyl acetate (30); *perfume 2*: geraniol (13), linalool (14), β -citronellol (15), and linalyl acetate (30). Although not on the original list of allergens, linalyl acetate (30) was also studied, since it was included in the 2011 recommendation of the Scientific Committee on Consumer Safety, containing 54 compounds and isomers and some extracts [4].

377 Table 1 reports the figures of merit of the quantitative method of the investigated allergens for both Watercol[™] columns; they are representative of the method's analytical performance. All compounds were 378 379 quantified by external calibration with pure standards, using carvacrol as internal standard. The linearity of 380 the method for all analytes was investigated over a wide range of concentrations (5-1000 mg/L) chosen in 381 consideration of the widely differing compositions of commercial perfumes, as is indeed shown by the two 382 investigated. In spite of the very wide concentration range considered, linearity, measured in terms of regression coefficients (R²), was very good for all analytes with both columns, the minimum R² in all cases 383 384 being above 0.9917 (linalyl acetate (30)) for 1460, and 0.9969 (lilial (21) and linalyl acetate (30)) for 1910. 385 Similar consideration can be made for area repeatability: the maximum RSD% values (n=6) were 7.5% for 386 lyral isomer b (24b) for 1460, and 7.3% for lyral isomer a (24a) with 1910; likewise, maximum intermediate 387 precision was 12.4% for geraniol (13) for 1460, and 11.9% for lyral isomer a (24a) with 1910. The high values 388 for lyral isomers may partly be due to their tailed peak shape, which might interfere with correct area determination. With both Watercol[™] columns, LODs and LOQs of all components of the perfumes, diluted 389 390 1:10, were in conformity with the leave-on allergen declaration (0.01%). LODs ranged between 1.1 mg/L for 391 coumarin (7) and 2.8 mg/L for geraniol (13) for 1460, and 1.1 mg/L for benzyl alcohol (1) and 2.5 mg/L for 392 hydroxycitronellal (17) for 1910. LOQs were between 3.1 mg/L for hexyl cinnamaldehyde (26) and 7.3 mg/L

393 for lyral isomer a (24a) with 1460, and 3.2 mg/L for coumarin (7) and 7.2 mg/L again for lyral isomer a (24a) 394 with 1910. Table 4 reports quantitative data and repeatability of the allergens identified in the two 395 commercial perfumes investigated, by direct injection in GC-MS with both Watercol[™] columns; perfume 1 396 was diluted 1:10 and *perfume 2* 1:20, so as to fall within the range of linearity (5-1000mg/L) of linalyl acetate 397 (30). The results with the two columns were highly consistent, the percent result differences for all analytes 398 being in all cases below 9%, with the exception of lyral isomer a (24a) (11.2%). These results were confirmed 399 by their full agreement with those obtained on the same perfumes analyzed with the reference IFRA method 400 (data not reported).

401

402

403 4. Conclusions

404 The results show that both 1460 and 1910 narrow bore Watercol[™] columns can reliably be used for the GC-405 MS analysis of samples in which water is the main solvent, with methods easy to apply with relatively-recent 406 instrumentation. These columns were here successfully used for the determination of EU-regulated volatile 407 allergens in commercial perfumes, and showed complementary selectivity; this can be very useful in cases of 408 co-elution(s) of target analytes, which are quite frequent when analyzing complex samples. The results also 409 indicate that the chromatographic performance of both 1910 and 1460 columns is in line with those of 410 narrow-bore columns coated with conventional SPs, and is not affected by the direct injection of water 411 samples. This consistency of column performance was found to be stable throughout the study, amounting 412 to some 700 injections of water samples for each column; performance remained unvaried without affecting 413 MS results. This reliability derives from the careful tuning of the analysis conditions, aiming to minimize the 414 amount of water reaching columns and MS detector; this was achieved by adopting high split ratios, narrow-415 bore columns, and dedicated MS conditions. These developments resulted in figures of merit meeting the 416 required sensitivity, accuracy and repeatability, and comparable to those of the methods proposed by 417 international organization(s) [1, 2].

418 Watercol[™] columns applied to aqueous samples comply with all specifications characteristic of routine 419 quality control analysis of perfumes, while reducing total analysis time by a factor of about 2; they also 420 eliminate intermediate sample preparation steps, which may be a source of discrimination between analytes, 421 while increasing analysis time and cost. Conversely, the main limitation of direct injection of aqueous samples 422 is the reduction of method sensitivity compared to conventional methods, involving sample preparation with 423 high concentration capacity techniques (e.g. SPME), because of the lack of a concentration step of target 424 analyte(s). The relatively high LOQs can be a limit for quantitation of minor components in leave-on products, 425 although the direct injection procedure can be used as analytical decision maker [21] in these cases, for fast 426 screening to decide which sample(s) need to be analyzed with methods providing better sensitivities.

428 Acknowledgements

- 429 The authors are indebted to MilliporeSigma (Bellefonte, PA, USA) for providing the ionic liquid columns and
- 430 to Robertet SA (Grasse, France) for financial support to the laboratory. M. Minteguiaga thanks Organizzazione
- 431 Internazionale Italo-Latino Americana (IILA) for providing a research fellowship in Italy

432 **Compliance with ethical standards**

433 Len Sidisky is an employee of MilliporeSigma (Bellefonte, PA, USA)

- 435 References
- 436
- 437 [1] DIRECTIVE 2003/15/EC of the European Parliament and of the Council of 27 February 2003.
- 438 [2] Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on439 cosmetic products.
- 440[3] Scientific Committee on Cosmetic Products and Non-Food Products intended for Consumers. Fragrance441AllergyinConsumers.1999.Availablefrom
- 442 http://ec.europa.eu/health/ph_risk/committees/sccp/documents/out98_en.pdf Assessed: June, 2019.
- [4] Scientific Committee on Consumer Safety. Opinion on Fragrance allergens in cosmetic products. 2011.
- Available from: http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_073.pdf.
 Accessed: June, 2019.
- 446 [5] D.A. Jayawardhana, R.M. Woods, Y. Zhang, C.L. Wang, D.W. Armstrong, Rapid, Efficient Quantification of
- Water in Solvents and Solvents in Water Using an Ionic Liquid-Based GC Column, LCGC North Am., 30 (2012)142-158.
- [6] E. R. Kuhn, Water injections in GC how wet can you get?, LCGC North Am. 20 (2002) 475-478
- [7] L.A. Frink, D.W. Armstrong, The utilisation of two detectors for the determination of water in honey using
 headspace gas chromatography, Food Chem., 205 (2016) 23-27.
- [8] L.A. Frink, D.W. Armstrong, Water Determination in Solid Pharmaceutical Products Utilizing Ionic Liquids
 and Headspace Gas Chromatography, J. Pharm. Sci-Us., 105 (2016) 2288-2292.
- [9] L.A. Frink, C.A. Weatherly, D.W. Armstrong, Water determination in active pharmaceutical ingredients
 using ionic liquid headspace gas chromatography and two different detection protocols, J. Pharmaceut.
 Biomed., 94 (2014) 111-117.
- 457 [10] https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Supelco/General_Information/1/
- 458 T415156 -watercol -capillary-gc-columns.pdf. Accessed: June, 2019.
- [11] C. Cagliero, C. Bicchi, C. Cordero, E. Liberto, P. Rubiolo, B. Sgorbini, Ionic liquids as water-compatible GC
 stationary phases for the analysis of fragrances and essential oils, Anal. Bioanal. Chem., 410 (2018) 46574668.
- 462 [12] B. Sgorbini, C. Cagliero, S. Acquadro, A. Marengo, C. Cordero, E. Liberto, C. Bicchi, P. Rubiolo, Evaluation
- 463 of volatile bioactive secondary metabolites transfer from medicinal and aromatic plants to herbal teas:
- 464 Comparison of different methods for the determination of transfer rate and human intake, J. Chromatogr. A,
- 465 1594 (2019) 173-180.
- 466 [13] IFRA (International Fragrance Association). GC/MS quantitation of potential fragrance allergens in467 fragrance compounds. 2007.

- 468 [14] IFRA (International Fragrance Association) Analytical Working Group Analytical method to quantify 57
- 469 suspected allergens (and isomers) in ready to inject fragrance materials by Gas Chromatography and Mass
 470 Spectrometry November 15th, 2016.
- [15] E. Belhassen, D. Bressanello, P. Merle, E. Raynaud, C. Bicchi, A. Chaintreau, C. Cordero, Routine
 quantification of 54 allergens in fragrances using comprehensive two-dimensional gas chromatographyquadrupole mass spectrometry with dual parallel secondary columns. Part I: Method development, Flavour
- 474 Frag. J., 33 (2018) 63-74.
- [16] K. Grob, G. Grob, K.J. Grob, Testing capillary gas chromatographic columns, J. Chromatogr., 219 (1981)
 13-20.
- 477 [17] L.M. Blumberg, M.S. Klee, Metrics of separation in chromatography, J. Chromatogr. A 933 (2001) 1-11
- 478 [18] K. Grob, Split and Splitless Injection for Quantitative Gas Chromatography, Wiley VCH Weinheim479 (Germany), 2001.
- 480 [19] M. Biedermann, Inlet system and sample introduction, in: K. Dettmer-Wilde, W. Engewald (Eds.) Practical
- 481 Gas Chromatography A Comprehensive Reference, Springer-Verlag Berlin Heidelberg, 2014, pp. 161-204.
- 482 [20] https://www.agilent.com/en/support/gas-chromatography/gccalculators. Accessed: June, 2019.
- 483 [21] P. Sandra, F. David, B. Tienpont, From CGC-MS to MS-based analytical decision makers,
 484 Chromatographia, 60 (2004) S299-S302.
- 485
- 486

487 Captions to figures:

Figure 1 - GC-FID patterns of the allergen standard mixture diluted in 1:1 EtOH/H₂O analyzed with Watercol[™] 489 490 1460, and 1910. For analysis conditions see text. Peak identification: 1. benzyl alcohol, 2. 491 phenylacetaldehyde, 3. cinnamaldehyde, 4. cinnamyl alcohol, 5. limonene, 6. anisyl alcohol, 7. coumarin, 8. 492 estragole, 9. vanillin, 10. geranial, 11. neral, 12. methyl-2-octynoate, 13. geraniol, 14. linalool, 15. β -493 citronellol, **16.** eugenol, **17.** hydroxycitronellal; **18.** methyl eugenol, **19.** α -ionone, **20.** amyl cinnamaldehyde, 494 21. lilial, 22. α-pentyl cinnamyl alcohol, 23. α-isomethyl ionone, 24a. lyral isomer a, 24b. lyral isomer b, 25. 495 benzyl benzoate, 26. hexyl cinnamaldehyde, 27. farnesol isomers, 28. benzyl salycilate, and 29. benzyl 496 cinnamate.

497

488

Figure 2 - Recovery of suspected allergens, calculated from the normalized absolute area of each analyte,

Figure 3 - GC-MS patterns of perfume 1 (a) and perfume 2 (b) on Watercol[™] 1460 and 1910. For analysis
conditions see text. Peak identification: 1. benzyl alcohol, 4. cinnamyl alcohol, 7. coumarin, 13. geraniol, 14.

- 506 linalool, **15.** β-citronellol, **16.** eugenol, **17.** hydroxycitronellal, **21.** lilial, **23.** α-isomethyl ionone, **24a.** and **24b.**
- 507 lyral isomers, **26.** hexyl cinnamaldehyde and **30**. linalyl acetate

512 Captions to tables

513

		1460					1910					
N	Compound	Compound Selected ions		LOD	LOQ	Rep.	I.P.	Lin.	LOD	LOQ	Rep.	I.P.
	-		R ²	mg L⁻¹	mg L ⁻¹	%RSD	%RSD	R ²	mg L ⁻¹	mg L⁻¹	%RSD	%RSD
1	Benzyl alcohol	79(Q) 65/91/108	0.9931	1.8	6.9	4.7	7.8	0.9982	1.1	3.4	2.2	6.6
4	Cinnamyl alcohol	92(Q) 105/115/134	ND	ND	ND	ND	ND	0.9976	1.3	4.1	7.1	11.6
7	Coumarin	118(Q) 63/89/146	0.9992	1.1	3.8	1.3	4.3	0.9994	1.4	3.2	1.0	8.3
13	Geraniol	69(Q) 93/123/136	0.9935	2.8	7.1	7.4	12.4	0.9973	2.1	6.6	5.7	9.8
14	Linalool	71(Q) 93/121/136	0.9959	1.7	6.4	2.3	4.6	0.9979	2.1	6.6	5.7	9.2
15	β-Citronellol	69(Q) 81/95/109	0.9980	2.1	6.6	2.0	5.5	0.9980	1.7	5.7	2.8	7.4
16	Eugenol	164(Q) 91/131/149	0.9973	1.3	4.7	2.5	6.3	ND	ND	ND	ND	ND
17	Hydroxycitronellal	59(Q) 71/81/95	0.9975	2.6	6.6	4.3	8.7	0.9974	2.5	7.3	4.3	10.2
21	Lilial	189(Q) 131/147/204	0.9944	2.3	7.1	2.6	4.8	0.9969	1.8	6.3	2.4	7.4
23	α-i-Methyl ionone	135(Q) 123/150/191	0.9978	2.1	6.6	1.2	5.3	0.9979	1.3	4.2	1.6	5.9
24a	Lyral isomer a	105(Q) 118/136/163	0.9932	2.6	7.3	6.7	9.6	0.9971	2.5	7.2	7.3	11.9
24b	Lyral isomer b	136(Q) 93/149/192	0.9938	2.4	7.1	7.5	10.2	0.9977	2.3	6.7	5.1	9.7
26	C ₆ Cinnamaldehyde	129(Q) 117/145/216	0.9980	1.4	3.1	1.4	4.8	0.9988	1.7	3.4	3.7	7.6
30	Linalyl acetate	93(Q) 80/121/136	0.9917	2.1	6.8	1.0	6.5	0.9969	2.3	6.6	6.8	9.8

Table 1 - Figures of merit of the method applied to quantitation of the allergens in perfumes 1 and 2. Lin.:

515 linearity, R²: regression coefficient; LOD: limit of detection; LOQ: limit of quantitation; ND: not detected; Rep.:

⁵¹⁶ repeatability, calculated at 50 mg L⁻¹ (n= 6); I.P.: Intermediate Precision calculated at 50 mg L⁻¹

517

Table2 - Figures of merit (retention time, tailing factor and σ of the peak width) of the two WatercolTM columns investigated, calculated from the analysis of the allergen standard mixture in cyclohexane and EtOH/H₂O with; *ND*: not detected, *NM*: not measurable (partial coelutions); a) 1460 NB column 15 m, detector FID, carrier: H₂; coelutions: *coel 1*: phenylacetaldehyde (2)/neral (11); b) 1910 NB column 15 m, detector FID, carrier: H₂; coelutions: *coel 2*: phenylacetaldehyde (2)/ α -ionone (19); *coel 3*: estragole (8)/methyl octynoate (12); *coel 4*: hydroxycitronellal (17)/farnesol isomer a (27a)

2a	1460	Cyclohexane	EtOH/H2O 1:1

N	Compounds	Ret. time (min)	Tailing factor	σ (min)	Ret. Time (min)	Tailing factor	σ (min)
1	Benzyl alcohol	32.54	1.2	0.027	32.52	1.2	0.027
2	Phenylacetaldehyde	21.14	coel 1	coel1	21.12	coel 1	coel 1
3	Cinnamaldehyde	37.92	1.0	0.023	37.90	1.0	0.025
4	Cinnamyl alcohol	ND	ND	ND	ND	ND	ND
5	Limonene	3.09	1.1	0.133	NM	NM	NM
6	Anisyl alcohol	ND	ND	ND	ND	ND	ND
7	Coumarin	47.59	1.0	0.028	47.58	1.0	0.028
8	Estragole	18.51	1.0	0.039	18.47	1.0	0.035
9	Vanillin	ND	ND	ND	ND	ND	ND
10	Geranial	22.57	0.9	0.040	22.56	0.9	0.037
11	Neral	21.14	coel 1	coel 1	21.12	coel 1	coel 1
12	Methyl 2-octynoate	18.22	1.0	0.044	18.18	1.0	0.042
13	Geraniol	27.36	1.0	0.027	27.34	1.0	0.027
14	Linalool	17.22	1.0	0.051	17.19	1.0	0.051
15	β-Citronellol	25.29	NM	NM	25.26	NM	NM
16	Eugenol	39.21	NM	NM	39.17	NM	NM
17	Hydroxycitronellal	37.36	1.1	0.021	37.32	1.0	0.021
18	Methyl eugenol	31.74	1.1	0.026	31.76	1.1	0.026
19	α-lonone	27.81	0.9	0.036	27.78	1.0	0.038
20	Amyl cinnamaldehyde	38.11	NM	NM	38.09	NM	NM
21	Lilial	31.18	1.0	0.025	31.16	1.1	0.026
22	α-Pentyl cinnamyl alcohol	ND	ND	ND	ND	ND	ND
23	α-Isomethyl Ionone	25.16	NM	NM	25.13	NM	NM
24a	Lyral isomer a	44.37	2.0	0.043	44.35	1.2	0.028
24b	Lyral isomer b	44.72	2.2	0.043	44.69	1.3	0.029
25	Benzyl benzoate	47.05	1.0	0.023	47.03	1.0	0.023
26	Hexyl cinnamaldehyde	40.03	1.0	0.023	40.00	1.0	0.024
27a	Farnesol isomer a	38.67	1.1	0.22	38.64	1.1	0.023
27b	Farnesol isomer b	00107		0.22	00101		0.020
28	Benzyl salycilate	49.83	1.0	0.024	49.82	0.9	0.024
29	Benzyl cinnamate	58.67	1.0	0.030	58.67	0.9	0.031
2b	1910	C	clohexar/	ne	Et	OH/H2O (L:1
N	Compounds	Ret. time (min)	Tailing factor	σ (min)	Ret. time (min)	Tailing factor	σ (min)
1	Benzyl alcohol	28.59	1.1	0.028	28.62	1.1	0.028
2	Phenylacetaldehyde	20.57	coel 2	coel 2	20.56	coel 2	coel 2
3	Cinnamaldehyde	31.82	NM	0.040	31.96	NM	0.040
4	Cinnamyl alcohol	40.05	1.1	0.026	40.07	1.0	0.027

5	Limonene	ND	ND	ND	ND	ND	
6	Anisyl alcohol	41.02	1.1	0.026	41.04	1.1	
7	Coumarin	44.52	1.0	0.028	44.52	1.0	
8	Estragole	12.88	coel 3	coel 3	12.58	coel 3	
9	Vanillin	ND	ND	ND	ND	ND	
10	Geranial	19.43	NM	0.044	19.60	NM	
11	Neral	18.03	1.6	0.042	18.15	1.9	
12	Methyl 2-octynoate	12.88	coel 3	coel 3	12.58	coel 3	
13	Geraniol	22.05	1.9	0.038	22.15	1.5	
14	Linalool	11.98	1.2	0.038	12.01	1.1	
15	β-Citronellol	19.23	1.9	0.043	19.37	1.9	
16	Eugenol	ND	ND	ND	ND	ND	
17	Hydroxycitronellal	31.66	coel 4	coel 4	31.82	coel 4	
18	Methyl eugenol	27.59	1.1	0.026	27.59	1.0	
19	α-lonone	20.58	coel 2	coel 2	20.56	coel 2	
20	Amyl cinnamaldehyde	29.58	1.0	0.027	29.58	0.9	
21	Lilial	24.93	1.2	0.093	24.90	1.2	
22	α -Pentyl cinnamyl alcohol	38.68	1.1	0.023	38.71	1.1	
23	α-Isomethyl Ionone	18.70	1.2	0.035	18.69	1.1	
24a	Lyral isomer a	41.86	1.3	0.029	41.88	1.2	
24b	Lyral isomer b	42.11	1.5	0.032	42.13	1.5	
25	Benzyl benzoate	40.48	1.0	0.023	40.48	1.1	
26	Hexyl cinnamaldehyde	31.01	0.8	0.030	31.02	1.1	
27a	Farnesol isomer a	31.49	1.2	0.036	31.60	1.2	
27b	Farnesol isomer b	31.66	coel 4	coel 4	31.82	coel 4	
28	Benzyl salycilate	52.14	0.9	0.031	52.14	1.0	
29	Benzyl cinnamate	48.45	1.0	0.026	48.45	1.0	

525

526

Table 3 - GC-FID and GC-MS injection repeatability (RSD%) of the Watercol[™] columns, calculated through analysis of the allergen standard mixture (n=6). Solvents: cyC_6 : cyclohexane, Et-H₂O: ethanol/water 1:1; CI: conventional injection, OpIn: overpressurized injection (H₂: 350 kPa, He: 350 kPa); *ND*: not detected, *NM*: not measurable (co-elutions)

RSD%			col. len	GC gth: 15	C -FID m; carrie	er gas: I	C	GC-MS col. length: 10 m; carrier gas: He						
Compounds			1460				1460			1910				
		cyC ₆ EtOH/H ₂ O			cyC ₆	cyC ₆ EtOH/H ₂ O			cyC ₆ EtOH/H ₂ O			cyC ₆ EtOH/H ₂ O		
		CI	CI	OpIn	CI	CI	OpIn		CI	OpIn	CI	OpIn		
1	Benzyl alcohol	4.3	42.2	5.0	3.6	11.2	0.8	1	3.6	7.1	6.8	1.9		
2	Phenylacetaldehyde	NM	NM	NM	NM	NM	NM	٨	IM	NM	NM	NM		

3 Cinnamaldehyde	0.5	23.9	4.1	1.0	6.3	0.8	3.1	0.7	8.9	2.1
4 Cinnamyl alcohol	ND	ND	ND	2.4	22.8	0.4	ND	ND	4.6	3.4
5 Limonene	1.2	NM	NM	ND	ND	ND	NM	NM	ND	ND
6 Anisyl alcohol	ND	ND	ND	2.8	34.6	0.8	ND	ND	5.4	3.8
7 Coumarin	1.6	48.8	5.3	2.5	27.7	0.6	5.6	0.8	4.3	0.3
8 Estragole	0.3	11.9	5.0	NM	NM	NM	9.8	9.2	NM	NM
9 Vanillin	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
10 Geranial	5.4	18.8	4.7	6.5	18.2	1.3	4.3	7.6	10.0	6.5
11 Neral	NM	NM	NM	2.6	34.0	0.9	NM	NM	3.3	6.6
12 Methyl 2-octynoate	0.6	20.0	4.6	NM	NM	NM	10.7	8.6	NM	NM
13 Geraniol	0.4	28.4	4.2	3.3	10.7	0.7	2.8	4.7	4.1	5.3
14 Linalool	2.6	17.9	5.0	4.6	24.8	0.2	3.6	4.3	5.4	5.6
15 β-Citronellol	0.9	22.6	3.8	3.9	14.9	0.2	3.6	7.8	7.7	4.4
16 Eugenol	0.2	36.6	4.2	ND	ND	ND	NM	NM	ND	ND
17 Hydroxycitronellal	6.8	24.5	4.2	NM	NM	NM	5.1	10.5	NM	NM
18 Methyl eugenol	4.3	32.8	4.9	2.7	9.4	0.7	2.9	2.0	6.0	3.3
19 α-lonone	4.0	19.9	3.6	NM	NM	NM	2.7	5.6	NM	NM
20 C ₅ cinnamaldehyde	5.5	30.0	3.6	1.9	11.2	0.8	2.6	3.7	4.8	4.0
21 Lilial	0.7	27.5	4.0	2.8	10.5	2.2	1.1	5.0	3.8	1.1
22 α -C ₅ cinnamyl alcohol	ND	ND	ND	1.8	11.8	1.2	ND	ND	2.2	5.5
23 α -Isomethyl Ionone	4.6	16.4	6.2	2.5	17.1	0.6	3.2	6.4	2.5	6.0
24a Lyral isomer a	6.0	52.8	4.6	4.1	28.9	4.5	9.1	7.5	2.9	5.9
24b Lyral isomer b	1.2	46.0	4.8	8.7	38.0	5.5	1.7	2.7	3.9	3.9
25 Benzyl benzoate	0.9	34.9	3.8	1.1	8.3	1.3	6.2	5.4	2.1	3.5
26 C ₆ -cinnamaldehyde	0.3	24.8	4.5	1.2	10.3	1.2	1.7	1.9	4.1	3.5
27a Farnesol isomer a	0 5	20.0	1 2	1.9	12.4	2.3	20	0.1	13.2	3.6
27b Farnesol isomer b	0.5	50.9	4.5	NM	NM	NM	3.9 9.1	9.1	NM	NM
28 Benzyl salicylate	0.2	36.8	3.9	5.3	12.2	2.8	6.5	9.4	5.8	4.7
29 Benzyl cinnamate	0.2	42.5	4.5	10.8	11.4	3.4	0.6	3.5	5.0	5.9

531

Table 4 - Quantitative results and repeatability of analysis of allergens in the two investigated commercial perfumes, by direct injection in GC-MS with the two WatercolTM columns. Abs. am.: absolute amount; repeatability (SD, RSD%): n = 6, Perfume 1*: dilution 1:10; Perfume 2**: dilution 1:20; *NM*: not measurable; *ND*: not detectable. Δ %: (Q₁₉₁₀ – Q₁₄₆₀/Q₁₉₁₀)%

			1910				1460					
		Analyte	Abs. am. mg/L (ppm)	SD	RSD%	Abs. am. mg/L (ppm)	SD	RSD%	Δ%			
Per fu	1	Benzyl alcohol	2195	47	2.1	2280	114	5.0	-3.7			

	4	Cinnamyl alcohol	1169	14	1.2	ND	ND	ND	NM
	7	Coumarin	182	3	1.8	168	9	6.2	7.7
	13	Geraniol	3870	62	1.6	3628	145	4.0	6.7
	14	Linalool	4820	84	1.7	4883	231	4.7	-1.3
	15	β-Citronellol	8110	145	1.8	7507	553	7.4	8.0
	16	Eugenol	ND	ND	ND	1349	93	6.9	NM
	17	Hydroxycitronellal	1998	17	0.9	ND	ND	ND	NM
	21	Lilial	1966	14	0.7	1860	69	3.7	5.7
	23	α- <i>i</i> -Methyl ionone	485	4	0.9	527	48	9.0	7.9
	24a	Lyral isomer a	1624	32	2.0	1492	102	7.3	8.9
	24b	Lyral isomer b	1267	15	1.1	1146	62	5.4	10.5
	26	C ₆ -cinnamaldehyde	5172	67	1.3	5114	292	5.7	1.1
	30	Linalyl acetate	860	50	5.8	896	63	7.1	-4.0
*	13	Geraniol	1743	7	0.4	ND	ND	ND	NM
ne 2	14	Linalool	6748	129	1.9	6174	286	4.6	9.3
rfun	15	β-Citronellol	649	13	2.0	689	49	7.2	-5.8
Pel	30	Linalyl acetate	14558	247	1.7	15717	683	4.3	-7.4