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A trivariate near-best blending quadratic

quasi-interpolant

D. Barrera, C. Dagnino, M. J. Ibáñez, S. Remogna∗

Abstract

In this paper, we construct a new trivariate spline quasi-interpolation operator.

It is expressed as blending sum of univariate and bivariate C
1 quadratic spline

quasi-interpolants and it is of near-best type, i.e. it has a small infinity norm and

the coefficients functionals defining it are determined by minimizing an upper bound

of the operator infinity norm, derived from the Bernstein-Bézier coefficients of its

Lebesgue function.

Keywords: B-spline; Box spline; Quasi-interpolation; Blending operator

1 Introduction

A quasi-interpolant Q is a linear operator of the type Q : C (Rs) −→ S (φ), where S (φ)
is the space spanned by the integer translates of a non-negative compactly supported
function φ. It is supposed that they form a convex partition of unity. These operators
are constructed to be exact on the space P (φ) of polynomials of maximal total degree
included in S (φ) and have the following form

Qf =
∑

i∈Zs

λ (f (·+ i))φ (· − i) ,

λ being a general linear functional, usually a point, derivative or integral linear func-
tional. Operators defined in this way (or modified to approximate functions defined on
an interval, from uniform or irregularly spaced knots) have been used to solve problems in
many different areas, like science and engineering, and also to develop numerical schemes
useful in practice (see e.g. [24, 25, 26] and [10, 16], respectively).

Furthermore, approximating noisy data requires the use of adapted methods. Specific
types of quasi-interpolants have been proposed in the literature to diminish as much as
possible the increase of noise present in the data. They are based on the minimization
of the infinity norm ‖Q‖∞ of the operator Q. If λ is the linear functional given by

λf =
∑

j∈J

cjf (· − j) ,

J being a finite subset of Zs, then, for ‖f‖∞ ≤ 1

‖Q‖∞ ≤
∑

j∈J

|cj | =: ‖c‖1 ,

where c := {cj , j ∈ J}. Then, the upper bound ‖c‖1 is minimized instead of ‖Q‖∞,
subject to the linear constraints yielding the exactness of Q on the space P (φ) and
the quasi-interpolant associated with the solution of this minimization problem is called
near best quasi-interpolant. As far as the authors know, the first systematic study on
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the construction of such operators appears in [4], where univariate quasi-interpolants
are based on a point or derivative linear functional (see [5] for the nonuniform case).
The bivariate case was considered in [1, 3, 6] by using C2-quartic B-splines on the four-
direction mesh, H-spline and a Ω-spline, respectively (the case of quadratic box spline
appears in [17] and the use of cubic multi-box spline is considered in [19]). The extension
to the three-dimensional case is done in [8, 13, 18, 20].

In order to obtain a better upper bound to be minimized it is possible to bound the
Lebesgue function associated with Q from the Bernstein-Bézier coefficients of φ. This
approach has been considered in [2, 9].

In this paper, we deal with the construction of a new near-best trivariate spline quasi-
interpolation operator by blending 1D and 2D C1 quadratic spline quasi-interpolants and
minimizing an objective function constructed from the Bernstein-Bézier coefficients of
the Lebesgue function of the resulting operator. In particular, in Section 2, we introduce
the univariate and bivariate spline spaces, quasi-interpolation operators in such spaces
and we define the blending trivariate operator. In Section 3, we study the problem
of the construction of near-best quasi-interpolants, by defining the objective function
characterizing the minimization problem and providing the explicit solution. Finally, in
Section 4, some conclusions are presented.

2 Spline spaces and quasi-interpolation operators

Let B be the quadratic B-spline supported on the interval
[
− 3

2 ,
3
2

]
. It is a C1 quadratic

B-spline on the real line having knots at the half-integers. Its Bernstein-Bézier (BB-)
coefficients in every sub-interval of its support appear in Figure 1 (see e.g. [12]).

LetM be the quadratic box spline on the four-directional triangulation τ of the plane
generated by the directions d1 := (1, 0), d2 := (0, 1), d3 := d1 + d2, d4 := d2 − d1. It
is a C1

(
R

2
)
function whose restriction to every triangle in τ is a quadratic polynomial

(see e.g. [11, 12]). Figure 1 shows the support of the box spline and provides the BB-
coefficients of 8 · M in the triangles of τ included in the polygon with vertices (0, 0),
(1,−1),

(
3
2 ,−

1
2

)
,
(
3
2 ,

1
2

)
, and (1, 1). The BB-coefficients relative to the other triangles in

the support of M are determined by the symmetries of the octagon.
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Figure 1: (Left) BB-coefficients of the quadratic B-spline B. (Right) BB-coefficients of
the box spline 8 ·M .

From the B-splineB and the box splineM , we consider the spaces B1 := span {B (· − k) : k ∈ Z}
and B2 := span

{
M (· − i1, · − i2) : (i1, i2) ∈ Z

2
}
. They contain the spaces of univariate

and bivariate quadratic polynomials, respectively (cf. [11, p. 53], [12, p. 19]).
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The main goal is to construct a near-best trivariate quasi-interpolation operator (QIO)
from some univariate and bivariate QIOs properly chosen. Firstly, we consider the uni-
variate Schoenberg QIO S defined by

Sf(z) :=
∑

k∈Z

f (k)B (z − k) , (2.1)

and the operator Q defined by

Qf (z) :=
∑

k∈Z

(
2∑

ℓ=−2

aℓf (k − ℓ)

)
B (z − k) , (2.2)

where the coefficients aℓ are chosen to produce an operator exact on P2 (R), the space
of univariate quadratic polynomials. The operator S given in (2.1) is exact only on
P1 (R), the space of univariate linear polynomials. Regarding Q, it is well-known that it
is possible to define a QIO exact on P2 (R) using only three coefficients instead of five
like in (2.2) (see e.g. [21]). Explicitly, a−2 = a2 = 0, a−1 = a1 = 1

8 , and a0 = − 5
2 .

However, some oversampling is allowed in order to be able to reduce the infinity norm of
the operator. We have introduced the minimum number of freedom degrees and suppose
that a−2 = a2 and a−1 = a1 to produce an even fundamental function. For the sequence
of coefficients we will write a := (a0; a1; a2).

Lemma 1 The quasi-interpolant (QI) Qf (z) given by (2.2) can be written as

Qf (z) =
∑

k∈Z

f (k)LB (z − k) ,

where the fundamental function LB is the linear combination of integer translates of the
B-spline B given by the expression

LB (z) :=

2∑

ℓ=−2

aℓB (z − ℓ) . (2.3)

Moreover, the operator Q is exact on P2 (R) if and only if

a0 + 2a1 + 2a2 = 1 and a1 + 4a2 = −
1

8
.

Proof. The first claim is derived easily. Regarding the exactness, we will use a general
result in [7, p. 274] that implies in the quadratic case the exactness on P2 (R) of the
differential operator D3 given by

D3f :=
∑

k∈Z

(
f (k)−

1

8
f ′′ (k)

)
B (· − z) .

It is obvious to prove that Q reproduces the monomial m0 (z) := 1 if and only if
a0 + 2a1 + 2a2 = 1. This constraint on the coefficients defining Q also yields that Q
reproduces the monomial m1 (z) := z. As far as monomial m2 (z) := z2 is concerned, Q
provides equality

Qm2 (z) =
∑

k∈Z

k2B (z − k) + 2 (a1 + 4a2) .

Since

D3m2 (z) =
∑

k∈Z

k2B (z − k)−
1

4
,

then Q will reproduce m2 if and only if a1 + 4a2 = − 1
8 , and the proof is complete.
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Now, let S be the Schoenberg QIO associated with the box spline M (see e.g. [22]),
which is defined by

Sf (x, y) :=
∑

(i1,i2)∈Z2

f (i1, i2)M (x− i1, y − i2) . (2.4)

It is exact on the space of bilinear polynomials. Once again, in order to obtain a trivariate
operator with small infinity norm, we consider the QIO Q defined by

Qf (x, y) :=
∑

(i1,i2)∈Z2




∑

(j1,j2)∈J

cj1,j2f (i1 − j1, i2 − j2)


M (x− i1, y − i2) , (2.5)

where

J := {(0, 0) , (1, 0) , (0, 1) , (−1, 0) , (0,−1) , (2, 0) , (0, 2) , (−2, 0) , (0,−2) , (1, 1) , (−1, 1) , (−1,−1) , (1,−1)} ,

and c := {(cj1,j2) , (j1, j2) ∈ J} is a lozenge sequence [2] such that Q is exact on P2

(
R

2
)
,

the space of bivariate polynomials of total degree two, i.e.

c0,1 = c−1,0 = c0,−1 = c1,0, c0,2 = c−2,0 = c0,−2 = c2,0, c−1,1 = c−1,−1 = c1,−1 = c1,1.

We will write c = (c0,0; c1,0; c2,0, c1,1).

Lemma 2 The spline Qf in (2.5) can be written as

Qf (x, y) =
∑

(i1,i2)∈Z2

f (i1, i2)LM (x− i1, y − i2) ,

where the fundamental function LM is expressed as the linear combination of the integer
translates of M given by

LM (x, y) :=
∑

(j1,j2)∈J

cj1,j2M (x− j1, y − j2) . (2.6)

Moreover, Q is exact on P2

(
R

2
)
if and only if

c0,0 + 4c1,0 + 4c2,0 + 4c1,1 = 1 and c1,0 + 4c2,0 + 2c1,1 = −
1

8
.

Proof. As in the proof of Lemma 1, it is straightforward to prove the first claim. With
respect to the exactness of Q, we will use a method similar to that described in Lemma 1.
Now the starting point is the differential operator D exact on P2

(
R

2
)
given by

Df :=
∑

i∈Z2

(
f (i)−

1

8
∆f (i)

)
M (· − i) ,

where ∆ stands for the Laplacian of f . It is obtained from a general method described in
[14]. As in the univariate case, the operator Q reproduces the monomial m0,0 (x, y) := 1
if and only if c0,0 + 4c1,0 + 4c2,0 + 4c1,1 = 1, and under this constraint the monomials
m1,0 (x, y) := x and m0,1 (x, y) := y are automatically reproduced since for α equal to
(1, 0) or (0, 1) it holds

Qmα (x, y) =
∑

(i1,i2)∈Z2

mα (i1, i2)M (x− i1, y − i2) = Dmα (x, y) = mα (x, y) .

Moreover, after some calculations, for m2,0 (x, y) := x2 it follows that

Qm2,0 (x, y) =
∑

(i1,i2)∈Z2

(
i21 + 2 (c1,0 + 2c1,1 + 4c2,0)

)
M (x− i1, y − i2) .
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Therefore, it is equal to

x2 = Dm2,0 (x, y) =
∑

(i1,i2)∈Z2

(
i21 −

1

4

)
M (x− i1, y − i2)

if and only if c1,0 + 2c1,1 + 4c2,0 = − 1
8 .

Once again, both equalities imply that also the monomials m0,2 (x, y) := y2 and
m1,1 (x, y) := xy are automatically reproduced, and the proof is complete.

Now, we define trivariate extensions of the operators above.

Definition 3 Once defined in (2.1) and (2.4) the univariate and bivariate Schoenberg
operators and the QIOs Q and Q in (2.4) and (2.5), we consider the trivariate extensions
of these operators. They are given by

Sf (x, y, z) =
∑

k∈Z

f (x, y, k)B (z − k) , (2.7)

Qf (x, y, z) =
∑

k∈Z

(
2∑

ℓ=−2

aℓf (x, y, k − ℓ)

)
B (z − k) =

∑

k∈Z

f (x, y, k)LB (z − k) , (2.8)

Sf (x, y, z) =
∑

(i1,i2)∈Z2

f (i1, i2, z)M (x− i1, y − i2) , (2.9)

Qf (x, y, z) =
∑

(i1,i2)∈Z2




∑

(j1,j2)∈J

cj1,j2f (i1 − j1, i2 − j2, z)


M (x− i1, y − i2) (2.10)

=
∑

(i1,i2)∈Z2

f (i1, i2, z)LM (x− i1, y − i2) .

We are now in position to define the type of operator we are interested in (see [9, 15,
20]).

Definition 4 From the operators given by (2.7), (2.8), (2.9) and (2.10), the trivariate
blending operator R is defined as

R := SQ+QS − SS. (2.11)

The operator R is a linear map into the tensor product spline space spanned by
the trivariate piecewise polynomial functions M (· − i1, · − i2)B (· − k), (i1, i2, k) ∈ Z

3.
The QI Rf provided by the operator in (2.11) can be expressed from the fundamental
functions relative to the operators Q and Q given in (2.3) and (2.6).

Lemma 5 It holds

Rf (x, y, z) =
∑

(i1,i2)∈Z2

∑

k∈Z

f (i1, i2, k)L (x− i1, y − i2, z − k) ,

where

L (x, y, z) :=M (x, y)LB (z) + LM (x, y)B (z)−M (x, y)B (z) (2.12)

= LM (x, y)B (z) +M (x, y) (LB (z)−B (z)) . (2.13)

Moreover, R reproduces the monomials 1, x, y, z, x2, y2, z2, xy, xz, yz, x2z, xz2, y2z,
yz2, xyz, and xyz2.

Proof. The proof of the first statement is trivial. For the second one, see [20, Theo-
rem 4].
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Figure 2: The supports Ω and ω of LM and M , respectively, the T -like triangles Ti,
1 ≤ i ≤ 31, and the points associated with the lozenge sequence c.

3 Near-best trivariate quadratic quasi-interpolation

The infinity norm of the QIO R is provided by the maximum of the associated Lebesgue
function

Λ (x, y, z) :=
∑

(i1,i2)∈Z2

∑

k∈Z

|L (x− i1, y − i2, z − k)| . (3.1)

Since we are dealing with a uniform partition of the three dimensional space, Λ is a
1-periodic function, so that to determine its maximum value it is sufficient to consider

its restriction to the cube
[
− 1

2 ,
1
2

]3
. Moreover, due to the symmetries of B and M and

those of the coefficients in (2.2) and (2.5), the maximum is attained in a subset of the
prism P := T × I with triangular horizontal sections, where T is the triangle defined in
Section 2 and I is the interval

[
− 1

2 ,
1
2

]
(see [2, Lemma 3]).

Considering the complex structure of Λ, which also depends on a and c, it is very
difficult to determine its maximum in P and the points at which it is reached. Therefore,
we look for a good upper bound of ‖R‖∞ by examining carefully the contribution of
every term L (x− i1, y − i2, z − k) to Λ (x, y, z), (x, y, z) ∈ P .

According to (2.13), the fundamental function L in (2.12) is decomposed into two
terms. The first one, LM (x, y)B (z), is supported on Ω×

[
− 3

2 ,
3
2

]
, Ω being the octagon

with vertices
(
7

2
,
1

2

)
,

(
1

2
,
7

2

)
,

(
−
1

2
,
7

2

)
,

(
−
7

2
,
1

2

)
,

(
−
7

2
,−

1

2

)
,

(
−
1

2
,−

7

2

)
,

(
1

2
,−

7

2

)
and

(
7

2
,−

1

2

)
.

However, the second term, M (x, y) (LB (z)−B (z)), is supported on ω×
[
− 7

2 ,
7
2

]
, where

ω is the octagon included in Ω with vertices

(
3

2
,
1

2

)
,

(
1

2
,
3

2

)
,

(
−
1

2
,
3

2

)
,

(
−
3

2
,
1

2

)
,

(
−
3

2
,−

1

2

)
,

(
−
1

2
,−

3

2

)
,

(
1

2
,−

3

2

)
and

(
3

2
,−

1

2

)
.

Both octagons are represented in Figure 2, where also the points associated with the
lozenge sequence c and the T -like triangles involved in (3.1) are shown.

To facilitate the calculation of the upper bound to the Lebesgue function, we will
consider the polynomials defining the B-spline B on

[
− 7

2 ,
7
2

]
and the box spline M on Ω

instead of
[
− 3

2 ,
3
2

]
and ω, respectively.

It is straightforward to prove the following result (see Figure 1).
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Proposition 6 The restrictions bk of the B-spline B to the sub-intervals
[
k − 9

2 , k −
7
2

]
,

1 ≤ k ≤ 7, are given by b1 (z) = b2 (z) = 0, b3 (z) = 1
8 (3 + 2z)

2
, b4 (z) = 3

4 − z2,

b5 (z) =
1
8 (3− 2z)

2
, b6 (z) = b7 (z) = 0. Moreover, those of LB (z)−B (z) are

Q1 (z) = a−2b1 (z + 2)− b1 (z) , Q2 (z) = a−1b1 (z + 1) + a−2b2 (z + 2)− b2 (z) ,

Q3 (z) = a0b1 (z) + a−1b2 (z + 1) + a−2b3 (z + 2)− b3 (z) ,

Q4 (z) = a1b1 (z − 1) + a0b2 (z) + a−1b3 (z + 1)− b4 (z) ,

Q5 (z) = a2b1 (z − 2) + a1b2 (z − 1) + a0b3 (z)− b5 (z) ,

Q6 (z) = a2b2 (z − 2) + a1b3 (z − 1)− b6 (z) , Q7 (z) = a2b3 (z − 2)− b7 (z) .

A similar result is easily stated regarding the restrictions of M and LM to the T -like
triangles.

Proposition 7 The nonzero restrictions pi ofM to the triangles Ti, i ∈ {9, 10, 15, 16, 17, 22, 23},
are given by the following polynomials:

p9 (x, y) =
1

4

(
4 + 4x+ x2 − 4y − 2xy + y2

)
, p10 (x, y) =

1

8

(
7− 4x− 2x2 − 8y + 4xy + 2y2

)
,

p15 (x, y) =
1

8

(
5 + 4x− 4y2

)
, p16 (x, y) =

1

2

(
1− x2 − y2

)
, p17 (x, y) =

1

8

(
9− 12x+ 4x2

)
,

p22 (x, y) =
1

4

(
4 + 4x+ x2 + 4y + 2xy + y2

)
, p23 (x, y) =

1

8

(
7− 4x− 2x2 + 8y − 4xy + 2y2

)
.

If qi stands for the restriction of LM to Ti, then it holds

q1 (x, y) = c0,2p1 (x, y − 2) , q2 (x, y) = c0,2p2 (x, y − 2) , q3 (x, y) = c−1,1p1 (x+ 1, y − 1) ,

q4 (x, y) = c0,1p1 (x, y − 1) + c−1,1p2 (x+ 1, y − 1) + c0,2p3 (x, y − 2) ,

q5 (x, y) = c1,1p1 (x− 1, y − 1) + c0,1p2 (x, y − 1) + c0,2p4 (x, y − 2) ,

q6 (x, y) = c1,1p2 (x− 1, y − 1) + c0,2p5 (x, y − 2) , q7 (x, y) = c−2,0p1 (x+ 2, y) ,

q8 (x, y) = c−1,0p1 (x+ 1, y) + c−2,0p2 (x+ 2, y) + c−1,1p3 (x+ 1, y − 1) ,

q9 (x, y) = c0,0p1 (x, y) + c−1,0p2 (x+ 1, y) + c0,1p3 (x, y − 1) + c−1,1p4 (x+ 1, y − 1) + c0,2p6 (x, y − 2) ,

q10 (x, y) = c1,0p1 (x− 1, y) + c0,0p2 (x, y) + c1,1p3 (x− 1, y − 1) + c0,1p4 (x, y − 1) + c−1,1p5 (x+ 1, y − 1)

+ c0,2p7 (x, y − 2) ,

q11 (x, y) = c2,0p1 (x− 2, y) + c1,0p2 (x− 1, y) + c1,1p4 (x− 1, y − 1) + c0,1p5 (x, y − 1) ,

q12 (x, y) = c2,0p2 (x− 2, y) + c1,1p5 (x− 1, y − 1) , q13 (x, y) = c−2,0p3 (x+ 2, y) ,

q14 (x, y) = c−1,−1p1 (x+ 1, y + 1) + c−1,0p3 (x+ 1, y) + c−2,0p4 (x+ 2, y) + c−1,1p6 (x+ 1, y − 1) ,

q15 (x, y) = c0,−1p1 (x, y + 1) + c−1,−1p2 (x+ 1, y + 1) + c0,0p3 (x, y) + c−1,0p4 (x+ 1, y) + c−2,0p5 (x+ 2, y)

+ c0,1p6 (x, y − 1) + c−1,1p7 (x+ 1, y − 1) ,

q16 (x, y) = c1,−1p1 (x− 1, y + 1) + c0,−1p2 (x, y + 1) + c1,0p3 (x− 1, y) + c0,0p4 (x, y) + c−1,0p5 (x+ 1, y)

+ c1,1p6 (x− 1, y − 1) + c0,1p7 (x, y − 1)

q17 (x, y) = c1,−1p2 (x− 1, y + 1) + c2,0p3 (x− 2, y) + c1,0p4 (x− 1, y) + c0,0p5 (x, y) + c1,1p7 (x− 1, y − 1) ,

q18 (x, y) = c2,0p4 (x− 2, y) + c1,0p5 (x− 1, y) , q19 (x, y) = c2,0p5 (x− 2, y) , q20 (x, y) = c−2,0p6 (x+ 2, y) ,

q21 (x, y) = c−1,−1p3 (x+ 1, y + 1) + c−1,0p6 (x+ 1, y) + c−2,0p7 (x+ 2, y) ,

q22 (x, y) = c0,−2p1 (x, y + 2) + c0,−1p3 (x, y + 1) + c−1,−1p4 (x+ 1, y + 1) + c0,0p6 (x, y) + c−1,0p7 (x+ 1, y) ,

q23 (x, y) = c0,−2p2 (x, y + 2) + c1,−1p3 (x− 1, y + 1) + c0,−1p4 (x, y + 1) + c−1,−1p5 (x+ 1, y + 1)

+ c1,0p6 (x− 1, y) + c0,0p7 (x, y) ,

q24 (x, y) = c1,−1p4 (x− 1, y + 1) + c0,−1p5 (x, y + 1) + c2,0p6 (x− 2, y) + c1,0p7 (x− 1, y) ,

q25 (x, y) = c1,−1p5 (x− 1, y + 1) + c2,0p7 (x− 2, y) , q26 (x, y) = c−1,−1p6 (x+ 1, y + 1) ,

q27 (x, y) = c0,−2p3 (x, y + 2) + c0,−1p6 (x, y + 1) + c−1,−1p7 (x+ 1, y + 1) ,

q28 (x, y) = c0,−2p4 (x, y + 2) + c1,−1p6 (x− 1, y + 1) + c0,−1p7 (x, y + 1) ,
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P7,k

P8,k

P9,k

P10,k

P11,k

P12,k

P13,k

P14,k

P15,k

P16,k

P17,k

P18,k

P19,k

P20,k

P21,k

P22,k

P23,k

P24,k

P25,k

P26,k

P27,k

P28,k

P29,k
P30,k

P31,k

Figure 3: Prisms Pj,k of the k-th level of the set Ω×
[
− 7

2 ,
7
2

]
.

q29 (x, y) = c0,−2p5 (x, y + 2) + c1,−1p7 (x− 1, y + 1) , q30 (x, y) = c0,−2p6 (x, y + 2) ,

q31 (x, y) = c0,−2p7 (x, y + 2) .

Once determined the polynomial structure of B, LB −B, M and LM , it only remains
to restrict the fundamental function of the operator R to every P -like prism Pj,k, 1 ≤ j ≤
31, 1 ≤ k ≤ 7 (see Figure 3) and to translate the resulting functions as indicated below
to produce the terms whose supports contain the prism P . Concerning the translation
in the z-direction, we go through the set Ω×

[
− 7

2 ,
7
2

]
from interval

[
− 7

2 ,−
5
2

]
to interval[

5
2 ,

7
2

]
. Regarding the translation in the x and y− directions, the centers γi := (γi,1, γi,2)

form the subset Γ := {γi, 1 ≤ i ≤ 31} given by

Γ = {(1,−3) , (0,−3) , (2,−2) , (1,−2) , (0,−2) , (−1,−2) , (3,−1) , (2,−1) , (1,−1) , (0,−1) ,

(−1,−1) , (−2,−1) , (3, 0) , (2, 0) , (1, 0) , (0, 0) , (−1, 0) , (−2, 0) , (−3, 0) , (3, 1) , (2, 1) ,

(1, 1) , (0, 1) , (−1, 1) (−2, 1) , (2, 2) , (1, 2) , (0, 2) , (−1, 2) , (1, 3) , (0, 3)} .

For every 1 ≤ j ≤ 31 and 1 ≤ k ≤ 7, the trivariate function

Sj,k (x, y, z) := qj (x− γj,1, y − γj,2) bk (z + k − 4) + pj (x− γj,1, y − γj,2)Qk (z + k − 4)

is the restriction of L (· − γj,1, · − γ,j,2) to the prism P . Therefore, we get

Λ (x, y, z) ≤
∑

1≤j≤31
1≤k≤7

|Sj,k (x, y, z)| =: U (x, y, z) , (x, y, z) ∈ P. (3.2)

Now, we decompose the prism P into the following three tetrahedra. If the vertices
of P are V1,1 =

(
0, 0, 12

)
, V1,2 =

(
1
2 ,−

1
2 ,

1
2

)
, V1,3 =

(
1
2 ,

1
2 ,

1
2

)
, V2,1 =

(
0, 0,− 1

2

)
, V2,2 =(

1
2 ,−

1
2 ,−

1
2

)
and V2,3 =

(
1
2 ,

1
2 ,−

1
2

)
, the tetrahedra are T1 := [V1,1, V2,1, V2,2, V2,3], T2 :=

[V1,1, V1,2, V2,2, V2,3] and T3 := [V2,3, V1,1, V1,2, V1,3] (see Figure 4).
Let T := [V1, V2, V3, V4] be one of the tetrahedra above, and let λ := (λ1, λ2, λ3, λ4)

be the barycentric coordinates of a point (x, y, z) with respect to T, i.e. it holds

(x, y, z) =
4∑

v=1

λvVv, |λ| :=
4∑

v=1

λv = 1.

Since every function Sj,k (x, y, z) in the upper bound (3.2) is a trivariate quartic polyno-
mial on T that can be represented in terms of the Bernstein polynomials

B
4,T
α (λ) :=

4!

α!
λα =

4!

α1!α2!α3!α4!
λα1

1 λα2

2 λα3

3 λα4

4 ,
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V2,3

V2,1

V2,3

V1,1 V1,1

V1,2

V1,3

V2,3

V1,1

V2,3

V2,2

V1,2

V2,2

Figure 4: Decomposition of prism P into tetrahedra.

where the length |α| := α1 + α2 + α3 + α4 of the multi-index α := (α1, α2, α3, α4) ∈

(N ∪ {0})
4
is equal to four. Therefore, there exist coefficients gTα,j,k := gTα,j,k (a, c) such

that
Sj,k (x, y, z) =

∑

|α|=4

gTα,j,kB
4,T
α (λ) .

Thus, since
(
B
4,T
α

)
|α|=4

is a non-negative partition of unity, for all (x, y, z) ∈ T, it follows

from (3.2) that

U (x, y, z) ≤
∑

1≤j≤31
1≤k≤7

∑

|α|=4

∣∣gTα,j,k
∣∣B4,T

α (λ) =
∑

|α|=4



∑

1≤j≤31
1≤k≤7

∣∣gTα,j,k
∣∣


B

4,T
α (λ) ≤ max

|α|=4

∑

1≤j≤31
1≤k≤7

∣∣gTα,j,k
∣∣ .

When this construction is carried out for T1, T2 and T3, the following result is obtained.

Proposition 8 Under the conditions above, the function

F (a, b) := max
1≤ℓ≤3

max
|α|=4

∑

1≤j≤31
1≤k≤7

∣∣∣gTℓ

α,j,k (a, c)
∣∣∣ (3.3)

is an upper bound to the infinity norm of the trivariate blending QIO R.

Hence, we state the following minimization problem in order to determine a near-best
blending QIO.

Problem 9 Minimize the objective function F (a, c) given in (3.3) on

A :=
{
c | Q is exact on P2

(
R

2
)}

×
{
a | Q is exact on P2 (R)

}

Every coefficient ga,j,k is a linear function of a and c, hence |ga,j,k| is also a convex
function. Thus, F is a convex function on A since it is the maximum of a set of convex
functions, and the existence of a solution for Problem 9 is guaranteed (see e.g. [23]). If
the minimum value of F is attained at a point (c, a) ∈ A, then corresponding operator
R is said to be a near-best QIO.

The nonlinear minimization Problem 9 can be solved by converting it into a linear
programming one with inequality and equality constraints.

An arduous work that uses the symbolic computation software Mathematica allows
to prove the following result.
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Proposition 10 The minimum value of F (a, c) on A is equal to 532653
393376 ≈ 1.35406. It is

attained uniquely at a =
(
12907
12293 ;

823
98344 ;−

3279
98344

)
and c =

(
50881
49172 ;

441
12293 ;−

441
12293 ,−

1709
196688

)
.

Proof. By replacing the solutions (a0, a1, a2) =
(

1
16 (17− 24x) , x,− 1

32 (1 + 8x)
)
and

(c0,0, c1,0, c2,0, c1,1) =
(
y, z, 1

16 (−5 + 4y + 8y) , 1
16 (9− 8y − 24z)

)
of the linear systems

in Lemmas 1 and 2 into the objective function of Problem 9, we get an unconstrained
minimization problem with objective function

F̃ (x, y, z) = max
1≤ℓ≤3

max
|α|=4

∑

1≤j≤31
1≤k≤7

∣∣∣GTℓ

α,j,k (x, y, z)
∣∣∣ ,

where

GTℓ

α,j,k (x, y, z) := gTℓ

α,j,k

(
1

16
(17− 24x) , x,−

1

32
(1 + 8x) , y, z,

1

16
(−5 + 4y + 8y) ,

1

16
(9− 8y − 24z)

)

Function F̃ has been constructed from the BB-coefficients relative to the three tedra-
hedra in which the prism P has been decomposed of the integer translates of the funda-
mental function associated with the operator R. A large number of BB-coefficients are
equal to zero because the B-spline B is nonzero only on the interval

[
− 3

2 ,
3
2

]
, and the box

spline M is zero on Ω \ ω. It is also possible to eliminate the repetitions of coefficients

that occur in the three tetrahedra. An explicit calculation shows that F̃ is defined from
34 expressions depending on a maximum of 121 terms, so

F̃ (x, y, z) = max
1≤p≤34

1

c̃p

121∑

n=1

d̃p,n

∣∣∣φ̃p,nx+ ϕ̃p,ny + ψ̃p,nz
∣∣∣ ,

for integers φ̃p,n, ϕ̃p,n, ψ̃α,n, and c̃p, d̃p,n ∈ N. Therefore, the minimization of F̃ is
equivalent to the following linear programming problem:

Minimize µ

such that





121∑

n=1

d̃p,n (up,n + vp,n)− c̃pµ ≤ 0, 1 ≤ p ≤ 34,

φ̃p,n (X1 −X2) + ϕ̃p,n (Y1 − Y2) + ψ̃p,n (Z1 − Z2)− up,n + vp,n = 0, 1 ≤ n ≤ 121,
up,n, vp,n, X1, X2, Y1, Y2, Z1, Z2, µ ≥ 0.

The solution of this problem is then determined with the symbolic calculation software,
and the minimum value µ = 532653

393376 is reached at

X1 =
823

98344
, X2 = 0, Y1 =

50881

49172
, Y2 = 0, Z1 =

441

12293
and Z2 = 0,

i.e. x = 823
98344 , y = 50881

49172 and z = 441
12293 . Analyzing the F̃ function in a neighbourhood

of
(

823
98344 ,

50881
49172 ,

441
12293

)
it is concluded that it is the unique point at which the minimum

is attained.
If Qa,c denotes the operator given by the solution of Problem 9, then the evaluation of

its Lebesgue function at the points resulting in dividing the subset
[
0, 12

]
×
[
0, 12

]
×
[
0, 12

]

into 20×20×20 equal parts provides the value 1.34899 as a lower bound to ‖Qa,c‖∞. This
shows that the proposed construction has allowed to improve the result in [9], where the
near-best blending QIO is obtained by minimizing an objective function also established
from the BB-coefficients of the B-spline and the box spline, and has a uniform norm
equal to 11

8 ≃ 1.375.

4 Conclusions

In this paper, we have constructed a new trivariate near-best spline quasi-interpolation
operator by blending 1D and 2D C1 quadratic spline quasi-interpolants and minimizing
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an upper bound of its infinity norm. It is derived from the Bernstein-Bézier coefficients of
its Lebesgue function. In particular, the new operator has a smaller norm with respect to
the blending quasi-interpolant obtained in [9]. Such a technique can also be generalized
by considering different spline spaces.
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[11] C. de Boor, K. Höllig, S. Riemenschneider, Box Splines, Springer-Verlag, New York,
1993.

[12] C.K. Chui, Multivariate Splines, CBMS-NSF Regional Conference Series in Applied
Mathematics, vol. 54, SIAM, Philadelphia, 1988.

11



[13] C. Dagnino, P. Lamberti, S. Remogna, Near-best C2 quartic spline quasi-
interpolants on type-6 tetrahedral partitions of bounded domains, Calcolo 52 (2015)
475–494.

[14] W. Dahmen, C.A. Micchelli, Translates of Multivariate Splines, Linear Algebra
Appl. 52/53 (1983) 217–234.

[15] F.J. Delvos, W, Schempp, Boolean methods in interpolation and approximation,
Longman Scientific & Technical, 1989.
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