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POLYNOMIAL APPROXIMATION WITH POLLACZEK–TYPE WEIGHTS. A SURVEY

G. MASTROIANNI AND I. NOTARANGELO
DEPARTMENT OF MATHEMATICS, COMPUTER SCIENCES AND ECONOMICS,

UNIVERSITY OF BASILICATA, VIALE DELL’ATENEO LUCANO 10, 85100 POTENZA, ITALY

Abstract. The paper deals with weighted polynomial approximation for functions defined on (−1, 1),

which can grow exponentially both at −1 and at 1. We summarize recent results on function spaces with
new moduli of smoothness, estimates for the best approximation, Lagrange interpolation, Fourier sums and

Gaussian rules with respect to weights of the form w(x) = (1− x2)βe−(1−x2)−α
.

Keywords: weighted polynomial approximation; orthogonal polynomials; Lagrange interpolation at
Pollaczek–type zeros; Fourier sums w.r.t. Pollaczek–type polynomials; Gaussian quadrature rules w.r.t.

exponential weights; bounded intervals.

MCS classification (2000): 41A05, 41A10, 41A17, 41A25, 42C10, 42A20, 65D05, 65D32.

1. Introduction

There is an extensive literature concerning the trigonometric approximation of periodic
functions. These results have been extended to the algebraic approximation on (−1, 1) , w.r.t.
“doubling” weights (for instance, Jacobi or generalized Jacobi weights). These processes are
useful in the approximation of locally continuous functions, having algebraic singularities at
the endpoints ±1 and at some inner points. Nevertheless, these processes are not suitable
in order to approximate functions having exponential growth close to ±1.

In this paper we are going to propose a further extension, i.e., we will consider the algebraic
approximation of functions defined on (−1, 1), which can grow exponentially both at −1 and
at 1. To this aim we consider weight functions of the form

(1.1) w(x) = (1− x2)βe−(1−x2)−α , α > 0, β ≥ 0, x ∈ (−1, 1).

We are going to present the main results concerning function spaces with new moduli of
smoothness, estimates for the best polynomial approximation with respect to weights of the
form (1.1), Lagrange interpolation, Fourier sums and Gaussian rules.

For reader’s convenience and for a simpler comparison with the new results, we recall some
basic facts on the trigonometric approximation of 2π-periodic functions. Let us denote by
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C0 = L∞ the space of all continuous 2π-periodic functions, with the norm

‖f‖C0 = ‖f‖∞ = sup
x∈[0,2π]

|f(x)| ,

and by Lp, 1 ≤ p <∞, the space of integrable functions, with

‖f‖pp =

∫ 2π

0

|f(x)|p dx .

For smoother functions, we consider the Sobolev spaces

W p
r =

{
f ∈ Lp : f (r−1) ∈ AC and

∥∥f (r)
∥∥
p
<∞

}
,

with r ≥ 1 and
‖f‖W p

r
= ‖f‖p +

∥∥f (r)
∥∥
p
.

For any f ∈ Lp, 1 ≤ p ≤ ∞, the K−functional

K(f, tr)p = inf
g∈W p

r

{
‖f − g‖p + tr

∥∥g(r)
∥∥
p

}
and the r−th modulus of smoothness

ωr(f, t)p = sup
0<h≤t

‖∆r
hf‖p

∆hf = f(x+ h)− f(x), ∆r
h = ∆h∆

r−1
h

fulfill

(1.2) lim
t→0

ω(f, t)p = 0

and

(1.3) ωr(f, t)p ∼ K(f, tr)p ,

where the constants in “∼” are independent of f and t.
Further subspaces of Lp, 1 ≤ p ≤ ∞, are the Zygmund spaces

Zp
s =

{
f ∈ Lp : sup

t>0

ωr(f, t)p
ts

<∞
}
, r > s ∈ R+ ,

with

‖f‖Zps = ‖f‖p + sup
t>0

ωr(f, t)p
ts

.

The error of best approximation of f ∈ Lp, 1 ≤ p ≤ ∞,

E∗m(f)p = inf
Tm
‖f − Tm‖p

by trigonometric polynomials of the form

Tm(x) =
a0

2
+

m∑
k=1

[ak cos(kx) + bk sin(kx)] ,
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can be estimated in terms of the r−th modulus of smoothness, i.e. the Jackson inequality

(1.4) E∗m(f)p ≤ Cωr
(
f,

1

m

)
p

holds with C independent of m and f . Moreover, applying the Bernstein inequality

‖T ′m‖p ≤ m‖Tm‖p ∀Tm ,
one can deduce the Stechkin inequality

(1.5) ωr
(
f,

1

m

)
p

≤ C
mr

m∑
k=1

(1 + k)r−1E∗k(f)p, m > r ,

where C is independent of m and f . It follows that the order of convergence of the best
approximation characterizes the above defined function spaces, since

lim
m
E∗m(f)p = 0 ⇔ f ∈ Lp

and
sup
k≥1

ksE∗k(f)p <∞ ⇔ f ∈ Zp
s .

Now, let us recall some approximation processes. For f ∈ L1, the Fourier sums are given
by

Sm(f, x) =
a0

2
+

m∑
k=1

[ak cos(kx) + bk sin(kx)]

=

∫ 2π

0

Km(x− t)f(t) dt ,

where Km is the Darboux kernel and

ak =
1

π

∫ 2π

0

f(t) cos(t) dt, bk =
1

π

∫ 2π

0

f(t) sin(t) dt .

Denoting by
‖Sm‖p := ‖Sm‖Lp→Lp

the associated operator norm, it is well known that

(1.6) ‖Sm‖1 = ‖Sm‖∞ ∼ logm

and

(1.7) ‖Smf‖p ≤ C‖f‖p , 1 < p <∞ ,

where C and the constants in “∼” are independent of f and m.
While for the Lagrange interpolating polynomial

L∗m(f, x) =
2

2m+ 1

2m∑
k=0

Km(x− tk)f(tk) , tk =
2πk

2m+ 1
,
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denoting by ‖L∗m‖∞ the norm of the associated operator Lm : C0 → C0, one has

‖Sm‖∞ ≤ ‖L∗m‖∞ ≤ (1 + π)‖Sm‖∞
and so the Lagrange intepolation converges with the order of the best approximation times
logm, as well as the Fourier sums. Moreover, from the Marcinkiewicz equivalence

(1.8) ‖L∗m(f)‖p ∼

(
2π

2m+ 1

2m∑
k=0

|f(tk)|p
) 1

p

, 1 < p <∞ ,

we can deduce that the Lagrange interpolation converges with the order of the best
approximation for functions belonging to W p

r or Zp
s , with r ≥ 1, s > 1/p and 1 < p <∞.

The results briefly exposed above can be found in every approximation theory book,
among others we recall [32, 36]. Our aim is to extend these results to the case of weighted
polynomial approximation of functions defined on (−1, 1), growing exponentially at−1 and 1.

In the sequel c, C will stand for positive constants which can assume different values in
each formula and we shall write C 6= C(a, b, . . .) when C is independent of a, b, . . . or Ca when
C depends on a. Furthermore A ∼ B will mean that if A and B are positive quantities
depending on some parameters, then there exists a positive constant C independent of these
parameters such that (A/B)±1 ≤ C. Finally, we will denote by Pm the set of all algebraic
polynomials of degree at most m. As usual N, Z, R, will stand for the sets of all natural,
integer, real numbers, while Z+ and R+ denote the sets of positive integer and positive real
numbers, respectively.

2. Weighted function spaces and best approximation

In the last two decades E. Levin and D.S. Lubinsky have extensively studied orthogonal
polynomials related to exponential weights. Among other topics, they have considered weight
functions of the form e−Q(x), |x| ≤ 1, where Q is an even function which satisfies suitable
assumptions. The reader can find their numerous results in the monograph [9] (see also [8]).

In [10, 11] D.S. Lubinsky considered the polynomial approximation in [−1, 1] with this class
of weights. He proved the Jackson inequality using the modulus of smoothness ωrΦt(f, t)u,p,
whose definition involves the finite difference ∆r

Φt
, where the step function Φt depends not

only on x but also on t. Namely

Φt(x) =

√∣∣∣∣1− |x|a1/t

∣∣∣∣+
1√

T (a1/t)

where a1/t is the Mhaskar–Rahmanov–Saff number related to u, T (x) = Q′(x)/Q(x) and the
second summand tends to 0 as t→ 0. However, since

ωrΦt(f, t)u,p ≤ Ct
r‖f (r)Φr

tu‖p, C 6= C(t, f),
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in order to prove the equivalence between this modulus of smoothness and some
K−functional, one is bound to define Sobolev spaces with seminorms containing a parameter
t extraneus w.r.t. the class of functions. Moreover, a Bernstein inequality of the form

‖P ′mΦ1/mu‖p ≤ Cm‖Pmu‖p ∀Pm ∈ Pm, C 6= C(m,Pm),

is also needed. But the function Φt creates some further difficulties in iterating this last
inequality and in proving the Stechkin inequality.

Subsequently, in [21], extending the ideas of Z. Ditzian–V. Totik and B. Della Vecchia–
G. Mastroianni–J. Szabados in [7, 6], we introduced different moduli of smoothness involving
the step function ϕ(x) =

√
1− x2, equivalent to suitable K-functionals, and proved the

Jackson theorem, also in its weaker form.

2.1. Function spaces and moduli of smoothness. Let us consider the weight function

(2.1) u(x) = (1− x2)γe−
1
2

(1−x2)−α ,

where α > 0, γ ≥ 0, x ∈ (−1, 1).
We point out that the weight u does not satisfy the doubling condition and, for α ≥ 1/2,

does not belong to the Szegő class (see [30] and [34]). Nevertheless, the weight u belongs
to a wide class of exponential weights defined by Levin and Lubinsky in [8] and [9], as it
was checked in [21]. In particular, setting Q(x) = − log u(x), we can define the Mhaskar–
Rakhmanov–Saff number āτ = āτ (u), 1 ≤ τ ∈ R, as the positive root of

τ =
2

π

∫ 1

0

āτ tQ
′(āτ t)

dt√
1− t2

.

The number āτ is an increasing function of τ , with limτ→+∞ āτ = 1 and

C1τ
− 1
α+1/2 ≤ 1− āτ ≤ C2τ

− 1
α+1/2 ,

where C1 and C2 are positive constants independent of τ and α is fixed (see [9, pp. 13,31]).
We can associate to the weight u the following function spaces. For 1 ≤ p <∞, by Lpu we

denote the set of all measurable functions f such that

‖f‖Lpu := ‖fu‖p =

(∫ 1

−1

|fu|p(x) dx

)1/p

<∞ .

For p =∞, by a slight abuse of notation, we set

L∞u := Cu =

{
f ∈ C0(−1, 1) : lim

x→±1
f(x)u(x) = 0

}
,

and we equip this space with the norm

‖f‖L∞u := ‖fu‖∞ = sup
x∈(−1,1)

|f(x)u(x)| .

Note that the limit conditions in the definition of Cu are necessary and sufficient for the
validity of the Weierstrass theorem in Cu.
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We emphasize that the functions belonging to the spaces Lpu can grow exponentially at

the endpoints ±1. For instance, the function f(x) = e

1

(1−x)1/2
√

1+x
sin(x) belongs to the spaces

Cu, with parameters α, γ > 1
2
.

The Sobolev-type subspaces of Lpu are given by

W p
r (u) =

{
f ∈ Lpu : f (r−1) ∈ AC(−1, 1), ‖f (r)ϕru‖p <∞

}
, 1 ≤ r ∈ N ,

where 1 ≤ p ≤ ∞, ϕ(x) :=
√

1− x2 and AC(−1, 1) denotes the set of all functions which
are absolutely continuous on every closed subinterval of (−1, 1). We equip these spaces with
the norm

‖f‖W p
r (u) = ‖fu‖p + ‖f (r)ϕru‖p .

The K− functional, connecting Lpu and W p
r (u), is defined as

K(f, tr)u,p = inf
g∈W p

r

{
‖(f − g)u‖p + tr

∥∥g(r)ϕru
∥∥
p

}
.

In order to introduce some further subspaces of Lpu, for 1 ≤ p ≤ ∞, r ≥ 1 and for
all sufficiently small t > 0 (say t < t0), we define the main part of the r−th modulus of
smoothness as

Ωr
ϕ(f, t)u,p = sup

0<h≤t

∥∥∆r
hϕ (f)u

∥∥
Lp(Ih)

,

where Ih = [−h∗, h∗], h∗ = 1− Ah1/(α+1/2), A > 0 is a fixed constant, and

∆r
hϕf(x) =

r∑
i=0

(
r
i

)
(−1)if

(
x+ (r − 2i)

hϕ(x)

2

)
.

Then the complete r−th modulus of smoothness is given by

ωrϕ(f, t)u,p = Ωr
ϕ(f, t)u,p + inf

P∈Pr−1

‖(f − P )u‖Lp[−1,−t∗] + inf
P∈Pr−1

‖(f − P )u‖Lp[t∗,1]

with t∗ = 1 − A t1/(α+1/2) and A > 0. We emphasize that the behavior of ωrϕ(f, t)u,p is
independent of the constant A.

We also remark that
lim
t→0

ωϕ(f, t)u,p = 0 ⇔ f ∈ Lpu
and

(2.2) ωrϕ(f, t)u,p ∼ K(f, tr)u,p ,

by analogy with (1.2) and (1.3). Moreover, for any f ∈ W p
r (u), with r ≥ 1 and 1 ≤ p ≤ ∞,

we have

Ωr
ϕ(f, t)u,p ∼ sup

0<h≤t
inf
g∈W p

r

{
‖(f − g)u‖Lp(Ih) + hr

∥∥g(r)ϕru
∥∥
Lp(Ih)

}
≤ C sup

0<h≤t
hr
∥∥f (r)ϕru

∥∥
Lp(Ih)
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where C 6= C(f, t).
By means of the r−th modulus of smoothness, for 1 ≤ p ≤ ∞, we can define the Zygmund

spaces

Zp
s (u) := Zp

s,r(u) =

{
f ∈ Lpu : sup

t>0

ωrϕ(f, t)u,p

ts
<∞, r > s

}
, 0 < s ∈ R,

equipped with the norm

‖f‖Zps,r(u) = ‖f‖Lpu + sup
t>0

ωrϕ(f, t)u,p

ts
.

In the sequel we will denote these subspaces briefly by Zp
s (u), without the second index r

and with the assumption r > s. We note that Ωr
ϕ(f, t)u,p ∼ ωrϕ(f, t)u,p for any f ∈ Zp

s (u),
r > s.

It is useful to observe that the spaces Lpu, W
p
r (u) and Zp

s (u) are analogous to Lp, W p
r and

Zp
s used in the trigonometric approximation of periodic functions, whereas the moduli of

smoothness have a different nature, since the step of the finite difference ∆r
hϕ is variable.

2.2. Error of best weighted approximation. Let us denote by Pm the set of all algebraic
polynomials of degree at most m and by

Em(f)u,p = inf
P∈Pm

‖(f − P )u‖p

the error of best polynomial approximation in Lpu, 1 ≤ p ≤ ∞. A polynomial realizing the
infimum in the previous definition is called polynomial of best approximation for f ∈ Lpu.

The next theorem collects the Jackson and Stechkin type inequalities and it can be deduced
from the results proved in [21] for the weight σ(x) = e−(1−x2)−α , taking into account that the
weight u has a similar behaviour (see also [22, Proposition 2.3, p. 627]).

Theorem 2.1. (cfr. [21, Theorems 3.4, 3.5 and 3.6, p. 175] and [29, Theorems 4.1 and 4.2,

p. 297]) Let u(x) = (1−x2)γe−
1
2

(1−x2)−α, with α > 0 and γ ≥ 0. For any f ∈ Lpu, 1 ≤ p ≤ ∞,
the inequalities

(2.3) Em(f)u,p ≤ C ωrϕ
(
f,

1

m

)
u,p

,

(2.4) Em(f)u,p ≤ C
∫ 1

m

0

Ωr
ϕ(f, t)u,p

t
dt

and

(2.5) ωrϕ

(
f,

1

m

)
u,p

≤ C
mr

m∑
i=0

(1 + i)r−1Ei(f)u,p ,

hold with C independent of m and f .
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Note that (2.3) and (2.5) are analogues to (1.4) and (1.5), respectively, while (2.4) is a
weak form of the Jackson inequality. By analogy with the trigonometric case, the proof of
Stechkin-type inequality (2.5) is based on the Bernstein inequality (see [29])

‖P ′mϕu‖p ≤ Cm‖Pmu‖p .
With the help of Theorem 2.1, we can characterize the weighted function spaces Lpu, namely

by

lim
m
Em(f)u,p = 0 ⇔ f ∈ Lpu .

Moreover, from (2.3) and (2.2) we deduce the following estimates for the error of best ap-
proximation

(2.6) Em(f)u,p ≤
C
mr
‖f‖W p

r (u) , ∀f ∈ W p
r (u) , r ≥ 1 ,

and

(2.7) Em(f)u,p ≤
C
ms
‖f‖Zps (u) , ∀f ∈ Zp

s (u) , s > 0 ,

where C 6= C(m, f) and 1 ≤ p ≤ ∞.

In [29], using the Nikolskii inequalities

‖Pmu‖q ≤ C
(

m√
1− am

) 1
p
− 1
q

‖Pmu‖p , C 6= C(m,Pm),

and

‖Pmϕ
1
p
− 1
qu‖q ≤ Cm

1
p
− 1
q ‖Pmu‖p , C 6= C(m,Pm),

for any Pm ∈ Pm and for 1 ≤ p < q ≤ ∞, some embedding theorems among the function
spaces related to u have been proved, extending the results proved by P.L. Ul’yanov in [37]
for the periodic case.

Theorem 2.2. (see [29, Theorem 4.3 and Corollary 4.5, p. 298–299]) If f ∈ Lpu, 1 ≤ p <∞,
is such that ∫ 1

0

Ωr
ϕ(f, t)u,p

t1+1/p
dt <∞ , r ≥ 1 ,

then f is continuous on (−1, 1), while if∫ 1

0

Ωr
ϕ(f, t)u,p

t1+ν/p
dt <∞ , r ≥ 1 ,

where ν = (2α + 2)/(2α + 1) then f ∈ Cu.

Finally, the following equivalence holds

ωrϕ

(
f,

1

m

)
u,p

∼ inf
Pm

{
‖(f − Pm)u‖p +

1

mr

∥∥P (r)
m ϕru

∥∥
p

}
.
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3. Approximation operators

For α = 0 then u and w are Jacobi weights and the results related to Fourier sums and
Lagrange interpolation are known since over twenty years and can be found for instance in [15,
4]. These approximation processes are useful in the (weighted) polynomial approximation
of locally continuous functions, having algebraic singularities at the endpoints ±1 and at
some inner points. Nevertheless, these processes are not suitable in order to approximate
functions having exponential growth close to ±1 . This last topic has received few attention
and, as far as we know, we recall [2, 12, 13, 31, 35].

Let us denote by Sm(w, f) the m−th Fourier sum of f ∈ L1
w in the orthonormal system

pm(w)m w.r.t. the weight w in (1.1), and by Lm(w, f) the Lagrange interpolation polynomial
of f ∈ C0(−1, 1) based on the zeros of pm(w). Unfortunately, as in the case of exponential
weights on unbounded intervals (see, e.g., [19, 20, 15, 26, 27]), the sequence Sm(w, f)m
converges to f in Lpu for a restricted class of functions (see [22, 23]). Therefore, we cannot
expect good approximation properties for the polynomial Lm(w, f), which is the discrete
version of Sm(w, f). In fact, the associated Lebesgue constants in Lpu are “big” (see [2, 12]).
On the other hand, bounded projectors, or projectors having the minimal order logm, are
required in several contexts. So, in this Section we are going to consider some modified
Lagrange-type and Fourier-type operators having optimal convergence order.

3.1. Lagrange interpolation. Let us consider w defined as in (1.1), i.e.,

w(x) = (1− x2)βe−(1−x2)−α , β ≥ 0 , α > 0 ,

and the related sequence of orthonormal polynomials {pm(w)}m with positive leading coef-
ficient. The zeros of pm(w) are ordered as

−am < x1 < . . . < xm < am

where am = am(
√
w) is the Mhaskar–Rahmanov–Saff number and 1− am ∼

(
1
m

) 1
α+1/2 .

We want to study the Lagrange interpolation based on the zeros of pm(w) in the spaces
related to the weight u defined in (2.1), i.e.,

u(x) = (1− x2)γe−
1
2

(1−x2)−α , γ ≥ 0 , α > 0 .

First of all we recall that, denoting by Lm(w, f) the Lagrange polynomial interpolating
f ∈ Cu at zeros of pm(w), the related Lebesgue constant is not optimal. For instance, if w

and u are replaced by σ(x) = e−(1−x2)−α and
√
σ,

‖Lm(σ)‖∞ = ‖Lm(σ)‖C√σ→C√σ ∼ m
1
6( 2α+3

2α+1) ,

as can be deduced from a result of S.B. Damelin in [2]. On the other hand, using an idea of

J. Szabados in [33], if we consider L̃m+2(w, f), interpolating f in the additional nodes ±am,
we obtain (see [24])

‖L̃m+2(w)‖∞ = ‖L̃m+2(w)‖Cu→Cu ∼ logm.
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Now, with a procedure used for different exponential weights (see, e.g., [17, 19, 25, 26,
27]), we are going to introduce a “truncated” interpolation process. Namely, we define the
Lagrange–type polynomial

L∗m+2(w, f, x) =
∑

|xk|≤aθm

`k(x)f(xk) ,

with

`k(x) =
(a2
m − x2)pm(w, x)

(a2
m − x2

k)p
′
m(w, xk)(x− xk)

|xk| ≤ aθm .

The polynomial L∗m+2(w, f) does not interpolate the function f at all the nodes, but

L∗m+2(w, f, xk) =

{
f(xk) |xk| ≤ aθm
0 |xk| > aθm

.

So the operator L∗m+2(w) does not preserves all polynomials of Pm+1. Indeed,

L∗m+2(w,1, x) 6= 1 .

Nevertheless, if we introduce the polynomial space

P∗m+1 = {Q ∈ Pm+1 : 0 = Q(±am) = Q(xk), |xk| > aθm}

we have

P∗m+1 = L∗m+2(w) (Pm+1)

and, moreover,

E∗m(f)u,p = inf
Q∈P∗m+1

‖(f −Q)u‖p ≤ C
[
EM(f)u,p + e−cM

η‖fu‖p
]
,

whereM =
⌊(

θ
θ+1

)
m
s

⌋
∼ m, s > 1 fixed, and η = 2α/(2α+1), as shown in [24, formula (2.17),

p. 71].
Now, let us investigate the convergence of the sequence of operators {L∗m+2(w)}m in the

weighted spaces associated with u.

Theorem 3.1. (see [24, Theorem 3.7, p. 75]) We have∥∥L∗m+2(w, f)u
∥∥
∞ ≤ C(logm)‖χfu‖∞ ∀f ∈ Cu ,

where C 6= C(m, f) and χ is the characteristic function of [−aθm, aθm], if and only if

(3.1) 0 ≤ γ − β

2
+

3

4
≤ 1 .

Moreover, under the assumptions (3.1), we have∥∥[f − L∗m+2(w, f)
]
u
∥∥
∞ ≤ C

[
(logm)EM(f)u,∞ + e−cM

η‖fu‖∞
]

for any f ∈ Cu, where M =
⌊(

θ
θ+1

)
m
s

⌋
∼ m, s > 1 fixed, η = 2α/(2α+ 1), C 6= C(m, f) and

c 6= c(m, f) in both cases.
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To study the operator L∗m+2(w) in some subspaces of Lpu, with p <∞, we set

v(x) = 1− x2 .

So we can state the following

Theorem 3.2. (see [24, Theorem 3.8, p. 75]) Let 1 ≤ p <∞. We have∥∥L∗m+2(w, f)u
∥∥
p
≤ C‖χfu‖∞ ∀f ∈ Cu ,

with C 6= C(m, f) if and only if

vγ+1√
vβϕ

∈ Lp and

√
vβϕ

vγ+1
∈ L1 .

In order to show a more complete result, we consider the Dini-type spaces

Dp
u =

{
f ∈ Lpu :

Ωϕ(f, t)u,p
t1+1/p

∈ L1(0, 1)

}
1 < p <∞ ,

with the norm

‖f‖Dpu = ‖fu‖p +

∫ 1

0

Ωϕ(f, t)u,p
t1+1/p

dt .

We remark that, by Theorem 2.2 if f ∈ Dp
u then f is continuous on (−1, 1). Moreover,

the space Dp
u is a wide subspace of Lpu, since it includes the Sobolev spaces W p

r (u) and the
Zygmund spaces Zp

s (u) for s > 1/p.

Theorem 3.3. (see [24, Theorem 3.8, p. 75]) Let 1 < p <∞. Then, with ∆xk = xk+1− xk,
we have

(3.2)
∥∥L∗m+2(w, f)u

∥∥
p
∼

 ∑
|xk|≤aθm

∆xk|fu|p(xk)

1/p

∀f ∈ Dp
u ,

with the constants in “∼” independent of f and m if and only if

(3.3)
vγ+1√
vβϕ

∈ Lp and

√
vβϕ

vγ+1
∈ Lq , 1

p
+

1

q
= 1 .

Moreover, under the assumptions (3.3), we have∥∥[f − L∗m+2(w, f)
]
u
∥∥
p
≤ C
m1/p

∫ 1/m

0

Ωr
ϕ(f, t)u,p

t1+1/p
dt+ Ce−cMη‖fu‖∞

for any f ∈ Dp
u, where M =

⌊(
θ
θ+1

)
m
s

⌋
∼ m, s > 1 fixed, η = 2α/(2α+ 1), C 6= C(m, f) and

c 6= c(m, f).
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We note that inequality (3.2), if f = Q ∈ P∗m+1 is the analogue to the Marcinkiewicz
equivalence (1.8), holding for trigonometric polynomials.

For example, if f ∈ W p
r (u), by Theorem 3.3, we have∥∥[f − L∗m+2(w, f)

]
u
∥∥
p
≤ C
mr
‖f‖W p

r (u) ,

for m sufficiently large, as in the periodic case.
Moreover, the operators L∗m+2(w) are uniformly bounded in Sobolev and Zygmund spaces,

under the assumptions (3.3). More in general, from the results in [24] we can deduce

Corollary 3.4. Under the assumptions (3.3), we have

sup
m
‖L∗m+2(w, f)‖Dpu ≤ C‖f‖Dpu

for any f ∈ Dp
u, 1 < p <∞, where C 6= C(f).

To conclude this section, we want to emphasize that Theorem 3.3 is false if we replace

L∗m+2(w) by L̃m+2(w), since the constant C depends on the parameter θ, and in particular on

log−1(1/θ). So, the “truncation” is crucial in our results, since parameter θ cannot assume
the value 1 (for further details see [24]).

3.2. Fourier sums. By analogy with the Lagrange interpolation, the behaviour of the clas-
sical Fourier sums in the orthonormal system associated with the weight w

Sm(w, f, x) =
m−1∑
k=0

ckpk(w, x) , ck =

∫ 1

−1

f(t)pk(w, t)w(t) dt ,

is not optimal. For instance, with σ(x) = e−(1−x2)−α , we have (see [22, Proposition 3.1,
p. 628]) ∥∥Sm(σ, f)

√
σ
∥∥
p
≤ C‖f

√
σ‖p ∀f ∈ Lp√

σ
∀m ∈ N ⇒ 4

3
< p < 4 ,

and so the Fourier sums converge for a restricted class of functions.
Here, we want to discuss whether bounds of the form

‖Sm(w, f)u‖p ≤ C‖fu‖p
hold with

w(x) = vβ(x)e−(1−x2)−α , u(x) = vγ(x)e−
(1−x2)−α

2

and v(x) = 1− x2.
We point out that, since w does not belong to the Szegő class, it would seem that the

Pollard decomposition could not hold. Neverthless, in [22, Proposition 2.2, p. 627, and
formula (27) p. 632] we proved that this decomposition holds true. Namely, the Christoffel–
Darboux kernel

Km(w, x, t) :=
m−1∑
k=0

pk(w, x)pk(w, t)
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can be written as

Km(w, x, t) = −αmpm(w, x)pm(w, t)

+ βm
pm(w, x)pm−1(wϕ2, t)ϕ2(t)− pm−1(wϕ2, x)ϕ2(x)pm(w, t)

x− t
,

where ϕ2(t) = 1− t2 and αm ∼ 1 ∼ βm.
Denoting by χ the characteristic function of [−aθm, aθm] we obtain the following

Theorem 3.5. (see [22, Theorem 3.2, pp. 628-629]) Let 1 < p <∞. Then

‖χSm(w, χf)u‖p ≤ Cθ‖χfu‖p ∀f ∈ Lpu ,

with Cθ = O(1
θ
, 1

1−θ ), if and only if

(3.4)
vγ√
vβϕ

∈ Lp, 1

vγ

√
vβ

ϕ
∈ Lq, 1

p
+

1

q
= 1.

Moreover, under the assumptions (3.4), we have

‖[f − χSm(w, χf)]u‖p ≤ Cθ
{
EM(f)u,p + e−cM

η‖fu‖p
}

for any f ∈ Lpu, where M =
⌊(

θ
θ+1

)
m
s

⌋
∼ m, s > 1 fixed, η = 2α/(2α + 1), Cθ and c are

independent of f and m.

If we truncate only the function f , we obtain

Theorem 3.6. (see [22, Theorem 3.3, p. 629]) For 1 < p < 4, the conditions

(3.5)
vγ√
vβϕ

∈ Lp, 1

vγ

√
vβ

ϕ
∈ Lq, 1

p
+

1

q
= 1,

are equivalent to
‖Sm(w, χf)u‖p ≤ Cθ‖χfu‖p ∀f ∈ Lpu .

Moreover, under the assumptions (3.5), we have

‖[f − Sm(w, χf)]u‖p ≤ Cθ
{
EM(f)u,p + e−cM

η‖fu‖p
}
,

for any f ∈ Lpu, where M =
⌊(

θ
θ+1

)
m
s

⌋
∼ m, s > 1 fixed, η = 2α/(2α+ 1), C 6= C(m, f) and

c 6= c(m, f).

While, for p =∞ and p = 1, we get

Theorem 3.7. (see [23, Theorem 1.1, p. 1677]) The inequality

‖χSm(w, χf)u‖∞ ≤ Cθ(logm)‖χfu‖∞
holds for any f ∈ Cu if and only if

(3.6)
1

4
≤ γ − β

2
≤ 3

4
.
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Moreover, under the assumptions (3.6), we have

‖[f − χSm(w, χf)]u‖∞ ≤ Cθ
{

(logm)EM(f)u,∞ + e−cM
η‖fu‖∞

}
for any f ∈ Cu, where M =

⌊(
θ
θ+1

)
m
s

⌋
∼ m, s > 1 fixed, η = 2α/(2α+ 1), C 6= C(m, f) and

c 6= c(m, f) in both cases.

Theorem 3.8. (see [23, Theorem 1.2, pp. 1677–1678]) The inequality

‖χSm(w, χf)u‖1 ≤ Cθ(logm)‖χfu‖1

holds for any f ∈ L1
u if and only if

(3.7)
vγ√
vβϕ

∈ L1,
1

vγ

√
vβ

ϕ
∈ L∞ .

Moreover, under the assumptions (3.7), we have

‖[f − χSm(w, χf)]u‖1 ≤ Cθ
{

(logm)EM(f)u,1 + e−cM
η‖fu‖1

}
for any f ∈ L1

u, where M =
⌊(

θ
θ+1

)
m
s

⌋
∼ m, s > 1 fixed, η = 2α/(2α+ 1), C 6= C(m, f) and

c 6= c(m, f) in both cases.

We note that, Theorems 3.5, 3.7 and 3.8 are only partially analogous to the inequalities
(1.7) and (1.6), since the elements of the sequence {χSm(w, f)}m are not polynomials on
the whole interval (−1, 1), but are “truncated” polynomials, in contrast to {L∗m+2(w, f)}m
which is a sequence of polynomials on (−1, 1).

Nevertheless, as in the trigonometric case, under proper assumptions on the weights w and
u, the sequence {χSm(w, f)}m converges essentially with the order of the best approximation
in Lpu, 1 < p <∞, and with the order of the best approximation times an extra factor logm
for p = 1,∞.

4. Gaussian quadrature rules

In this Section we are going to consider the Gaussian quadrature rule related to the
weight w in (1.1), in order to approximate integrals on (−1, 1) containing functions dacaying
exponentially at the endpoints. This topic has received attention in the literature only
recently, although being of interest in several contexts (see [3, 18]).

First of all, we are going to show that the Gaussian rule has not an optimal behavior in
order to approximate integrals of the form∫ 1

−1

f(x)w(x) dx ,

where f ∈ W 1
1 (w). This phenomenon occurs also in the case of exponential weights on

unbounded intervals and in this regard the reader can consult, for instance, [5, 17, 19, 16]
and the references therein. On the other hand, this fact contrasts with what happens on
bounded intervals for Jacobi weights: in such a case, the error of the Gaussian rule converges
to zero with the same order of the best approximation in weighted L1−Sobolev spaces (see



POLYNOMIAL APPROXIMATION WITH POLLACZEK–TYPE WEIGHTS. A SURVEY 15

[15, p. 338]). Therefore, also following an idea in [17], we are going to propose a quadrature
rule that is as simple as the Gaussian rule but requires a lower computational cost and
converges with the order of the best polynomial approximation if f ∈ W 1

1 (w). We point
out that the results in this section can be deduced from those proved in [3] for the weight

σ(x) = e−(1−x2)−α , taking into account that the weight w has a similar behaviour (see also
[22, Proposition 2.3, p. 627]).

Let us consider w defined as in (1.1), i.e.

w(x) = (1− x2)βe−(1−x2)−α β ≥ 0 , α > 0 ,

and the related sequence of orthonormal polynomials {pm(w)}m with positive leading coef-
ficient.

The Gaussian rule related to w is defined as∫ 1

−1

f(x)w(x) dx =
m∑
k=1

λk(w)f(xk) + em(f) =: Gm(f) + em(f) ,

where xk are the zeros of pm(w) and λk(w) are the Christoffel numbers.

We note that the considered weights w are nonclassical and the coefficients of the three-
term recurrence relation of the corresponding orthonormal polynomials are unknown. There-
fore, we computed the moments

µk =

∫ 1

−1

xkw(x)dx, k = 0, 1, . . . ,

in variable-precision arithmetic to approximate these coefficients and then we have calculated
the zeros of pm(w) and the Christoffel numbers, using the functions “aChebyshevAlgorithm”
and “aGaussianNodesWeights” of the Mathematica package “OrthogonalPolynomials”
(see [1, 28]).

It is useful to remark that applying a Gauss–Legendre formula to approximate integrals
of the form ∫ 1

−1

f(x)w(x) dx

is a bad idea, since the distance between −1 and the first Legendre zeros is ∼ m−2, while for

the Pollaczek-type zeros we have ∼ m−
1

α+1/2 . For example, let us consider (see [3, Example
1]) ∫ 1

−1

f(x)w(x) dx =

∫ 1

−1

cos(πx) e−(1−x2)−50

dx .

In Table 1, we compare the Gauss–Legendre formula applied to fw and the Gauss–Pollaczek-
type rule applied to f with the weight w. We write only the correct digits and the symbol
“–” means that the required precision has been achieved. In Figure 1 we show the graph of
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m Legendre rule Pollaczek-type rule
4 0.0 0.07236909
8 0.0 0.072369091024665
16 0.07 –
32 0.07 –
64 0.07236 –
128 0.07236909 –
256 0.07236909102466 –
512 0.072369091024665 –

Table 1. Comparison with the Gauss–Legendre rule

the integrand function fw.

Figure 1. Graph of fw

Another comparison between the Gauss–Legendre and the Gauss–Pollaczek-type rule has
been given by M. Masjed-Jamei and G.V. Milovanović in [14, Example 4.1, p. 187] for the
integral ∫ 1

−1

f(x)w(x) dx =

∫ 1

−1

3e
− 1√

1−x2 − 2 sin(3x)− x2

(1− x2)2
e−(1−x2)−αdx ,

with α = 1/2 and α = 10. In Tables 2 and 3, we rewrite the relative errors they ob-
tained in the Gauss–Legendre formula applied to fw and the Gauss–Pollaczek-type rule
applied to f with the weight w In Figure 2 we show the graphs of the integrand func-

tions fw. We note that in this case f contains e
− 1√

1−x2 and for α = 1/2 the two Gaussian
rules behave similarly, while for α = 10 the Gauss–Pollaczek-type rule converges much faster.
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m Legendre rule Pollaczek-type rule
10 1.01 1.66
20 1.43 · 10−1 2.38 · 10−1

30 1.12 · 10−2 4.54 · 10−2

40 4.87 · 10−3 1.04 · 10−2

50 7.09 · 10−4 2.71 · 10−3

Table 2. Relative errors for α = 1/2

m Legendre rule Pollaczek-type rule
10 3.52 · 10−2 4.32 · 10−13

20 1.21 · 10−3 2.94 · 10−24

30 1.57 · 10−5 5.27 · 10−35

40 2.93 · 10−6 1.86 · 10−45

50 1.82 · 10−7 1.09 · 10−55

Table 3. Relative errors for α = 10

Figure 2. Graph of fw for α = 1/2 (left) and α = 10 (right)

Naturally, if f ∈ C0[−1, 1] the error of the associated Gaussian rules satisfies the estimate

|em(f)| ≤ 2‖w‖1E2m−1(f)∞ ,

where Em(f)∞ denotes the unweighted error of best polynomial approximation. Moreover,
if f ∈ Cw, it is easily seen that (cfr. [3, p. 439])

|em(f)| ≤ CE2m−1(f)w,∞ , C 6= C(m, f) .

So, by (2.3), the error of the Gaussian rule converges to zero with the order of the best
approximation in Cw. Moreover, using arguments analogous to those in [16], for infinitely
differentiable functions we obtain



18G. MASTROIANNI AND I. NOTARANGELO DEPARTMENT OF MATHEMATICS, COMPUTER SCIENCES AND ECONOMICS, UNIVERSITY OF BASILICATA, VIALE DELL’ATENEO LUCANO 10, 85100 POTENZA, ITALY

Theorem 4.1. (cfr. [16, Theorem 3.2, p. 1660]) Let u(x) = [w(x)]δ, with 0 < δ < 1. For
any infinitely differentiable function f such that

K(f) := sup
m
‖f (m)u‖∞ <∞ ,

we have

lim
m

m

√
|em(f)|
K(f)

= 0 .

Nevertheless, if we want to estimate the error of this quadrature rule for functions f ∈
W 1

1 (w), we obtain only

|em(f)| ≤ Cm
2α

2α+3

m
‖f ′ϕw‖1 ,

and this estimate cannot be improved (see [3, Theorem 2, p. 440]). So the error of the rule
does not converge with the order of best approximation for f ∈ W 1

1 (w) and this is in contrast
with what happens for Jacobi weights (see [15, pp. 170, 338]). This phenomenon has led
many authors to consider “truncated” Gaussian rules.

Now, let us fix 0 < θ < 1 and consider the interval

Aθm := [−aθm, aθm] ⊂ [−am, am] =: Am .

So, introducing the “truncated” Gaussian rule∫ 1

−1

f(x)w(x) dx =
∑

|xk|≤aθm

λk(w)f(xk) + e∗m(f) .

This is the ordinary Gaussian formula, in which we drop the terms related to zeros closest to
the endpoint of the interval of integration. This produces a reduction of the computational
cost, in terms of evaluation of the integrand function, which became more evident in the
numerical treatment of integral equations (see [3]).

With the “truncated” Gaussian rule we obtain the required error estimate for f ∈ W 1
1 (w),

as shown in the next theorem.

Theorem 4.2. (cfr. [3, Theorem 3, p. 443]) We have

|e∗m(f)| ≤ C
M
‖f ′ϕw‖1 + Ce−cMη‖fw‖1 ∀f ∈ W 1

1 (w) ,

and

|e∗m(f)| ≤ C
M

∫ 1/M

0

ωrϕ(f, t)w,1

t2
dt+ Ce−cMη‖fw‖1 ∀f ∈ Z1

s (w) , r > s > 1 ,

where in both cases M =
⌊(

2θ
θ+1

)
m
⌋
, η = 2α

2α+1
, C, c do not depend on m and f.

In particular, from Theorem 4.2, for m sufficiently large, we deduce the estimates

(4.1) |e∗m(f)| ≤ C
mr
‖f‖W 1

r (w), ∀f ∈ W 1
r (w), r ≥ 1,
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and

(4.2) |e∗m(f)| ≤ C
ms
‖f‖Z1

s (w), ∀f ∈ Z1
s (w), s > 1 (s ∈ R),

where C is independent of m and f in both cases. Therefore, in these function spaces, e∗m(f)
converges to 0 with the order of the best polynomial approximation, taking into avccount
by (2.6) and (2.7). As a consequence, inequalities (4.1) and (4.2), which are not true for the
error of the ordinary Gaussian rule, cannot be improved from the order point of view.

Finally, we want to give the main idea that justifies the ‘truncation”. For any Pm ∈ Pm
1 ≤ p ≤ ∞, the restricted range inequalities

‖Pmu‖p ≤ C‖Pmu‖Lp(Am)

and
‖Pmu‖Lp(A′sm) ≤ Ce−cm

η‖Pmu‖p, A′sm = [−1, 1] \ [−asm, asm], s > 1,

hold with c, C independent of m and Pm, η = 2α/(2α + 1). From the second inequality, for
any f ∈ Lpu, we deduce

‖fu‖p ≤ C‖fu‖Lp(Aθm) + EM(f)u,p .

So, the main part of ‖fu‖p is ‖fu‖Lp(Aθm) = ‖χfu‖p. This suggests to apply the Gaussian
rule only to χf , χ is the characteristic function of Aθm.
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Mathématiques de la SMC, 4. Springer-Verlag, New York, 2001.
[10] D.S. Lubinsky, Forward and converse theorems of polynomial approximation for exponential weights on [−1, 1]. I, J.

Approx. Theory 91 (1997), 1–47.

[11] D S. Lubinsky, Forward and converse theorems of polynomial approximation for exponential weights on [−1, 1]. II, J.

Approx. Theory 91 (1997), 48–83.
[12] D S. Lubinsky, Mean convergence of Lagrange interpolation for exponential weights on [−1, 1], Canad. J. Math. 50 (1998),

no. 6, 1273–1297.



20G. MASTROIANNI AND I. NOTARANGELO DEPARTMENT OF MATHEMATICS, COMPUTER SCIENCES AND ECONOMICS, UNIVERSITY OF BASILICATA, VIALE DELL’ATENEO LUCANO 10, 85100 POTENZA, ITALY

[13] D S. Lubinsky, On converse Marcinkiewicz–Zygmund inequalities in Lp, p > 1, Constr. Approx. 15 (1999), 577–610.
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