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ABSTRACT  

Aflatoxin (AF) B1, a widespread food and feed contaminant, is bioactivated by drug metabolizing 

enzymes (DME) to cytotoxic and carcinogenic metabolites like AFB1-epoxide and AFM1, a dairy 

milk contaminant. A number of natural antioxidants have been reported to afford a certain degree of 

protection against AFB1 (cyto)toxicity. As the mammary gland potentially participates in the 

generation of AFB1 metabolites, we evaluated the role of selected natural antioxidants (i.e. 

curcumin, quercetin and resveratrol) in the modulation of AFB1 toxicity and metabolism using a 

bovine mammary epithelial cell line (BME-UV1). Quercetin and, to a lesser extent, resveratrol and 

curcumin from Curcuma Longa (all at 5 µM) significantly counteracted the AFB1-mediated 

impairment of cell viability (concentration range: 96-750 nM). Moreover, quercetin was able to 

significantly reduce the synthesis of AFM1. The quantitative PCR analysis on genes encoding for 

DME (phase I and II) and antioxidant enzymes showed that AFB1 caused an overall 

downregulation of the detoxifying systems, and mainly of GSTA1, which mediates the GSH 

conjugation of the AFB1-epoxide. The negative modulation of GSTA1 was efficiently reversed in 

the presence of quercetin, which significantly increased GSH levels as well. It is suggested that 

quercetin exerts its beneficial effects by depressing the bio-transformation of AFB1 and 

counterbalancing its pro-oxidant effects. 
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1. Introduction 

 

Aflatoxin (AF) B1 is a natural occurring difuranocoumarin-based mycotoxin, mainly 

synthesized by Aspergillus flavus and parasiticus as a secondary metabolite. The distribution of 

AFB1 is especially abundant in areas with high temperature and humidity, although fungal growth 

and toxinogenesis may also occur in conditions of drought stress (Gilbert et al., 2016). A wide 

variety of food and feed commodities, including cereals and oil-rich agricultural crops, can be 

contaminated both pre- and post-harvest (Abrar et al., 2013; Rodrigues and Naehrer, 2012). AFB1 

exposure has been associated with various diseases and health problems in humans, livestock and 

domestic animals, such as growth impairment and immune suppression (Wild and Gong, 2010). 

According to sufficient evidence of potent genotoxicity and carcinogenicity, AFs as a group have 

been classified as a class 1A human carcinogenic agents by the International Agency for Research 

on Cancer (IARC, 2012). 

Bioactivation by hepatic microsomal cytochrome P450 (CYP) enzymes is essential for AFB1 

toxicity in all species (Dohnal et al., 2014). Oxidative phase I metabolism, mainly mediated by 

CYP1A and CYP3A but also CYP2A, generates several water-soluble metabolites including AFB1-

exo-8,9-epoxide (AFBO), AFM1, AFB2a, AFQ1 and AFP1. AFBO, a highly reactive intermediate, 

may bind guanine residues in DNA or RNA to form adducts, inducing DNA mutations, and 

inhibiting transcription and translation (Kuilman et al., 1998; Wogan et al., 2012). Hydrolysis of 

AFBO, either spontaneously or enzymatically through epoxide hydrolases (EPHX), leads to the 

generation of AFB1-dihydrodiol, which can bind lysine residues leading to protein damage and 

subsequent necrosis (Kuilman et al., 2000; McLean and Dutton, 1995). Toxic outcomes are also 

associated with intracellular reactive oxygen species (ROS) generation (Marchese et al., 2018; 

Zhang et al., 2015). AFBO can be readily detoxified by GSH through glutathione S-transferases 

(GST), mainly GSTA1, that produce polar and less toxic metabolites excreted in the urine as 

mercapturic acid derivatives. CYP1A mediates also the generation of AFM1, which may be 
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conjugated to glucuronic acid through uridine 5'-diphospho-glucuronosyltransferases (UGT), and 

subsequently excreted via the bile. Alternatively, it may enter the systemic circulation being 

excreted unmodified in the urine or milk of healthy women, dairy cows and other mammals dietary 

exposed to AFB1 (Diaz and Sánchez, 2015; Fink-Gremmels, 2008; Shuib et al., 2017). The notable 

hepatic CYP1A constitutive expression in cattle is expected to lead to a relatively higher rate of 

AFM1 generation compared to other animal species (Nebbia et al., 2003). As a consequence, milk 

and dairy products may represent a significant source of AFs for humans. Although AFM1 

carcinogenic potency is approximately 2–10% with respect to AFB1 in mammalian species, its 

toxic hazard is generally comparable to that of the parent compound (Marchese et al., 2018). Thus, 

in the European Union, very low limits have been set for AFM1 in dairy milk (0.050 µg/kg, 

lowered to 0.025 µg/kg in infant formulae) to protect consumer's health (EC Regulation 

1881/2006).  

Factors capable of modulating enzymes involved in AFB1 metabolism (e.g. dietary 

constituents, environmental pollutants, etc.) may dictate the sensitivity to toxic effects by affecting 

the generation/inactivation of toxic metabolites. A number of natural antioxidant compounds (e.g. 

curcuminoids and flavonoids) may have the potential to reduce the generation and/or increase the 

inactivation of AFB1 metabolites through the inhibition of CYP enzyme activity and/or through the 

induction of phase II (GST and UGT) and antioxidant enzymes (catalase - CAT, glutathione 

peroxidase - GPx, quinone oxidoreductase - NQO1, and superoxide dismutase - SOD) (Bisht et al., 

2010; Limaye et al., 2018; Miron et al., 2017). The in vivo protective effects of natural antioxidants 

against AFB1 toxicity have already been shown in laboratory animals, mainly rats, and in broilers 

(Eftekhari et al., 2018; Mohajeri et al., 2018; Sridhar et al., 2015) but not in cattle or in dairy cows. 

In the last years the possible change in patterns of AF occurrence in food and feed crops due to 

climate change has become a matter of concern, especially in Southern Europe, where the 

contamination of maize has reached alarming levels (Battilani et al., 2016). Among the various 

approaches to reduce the risk of AF ingestion by livestock, one of the most employed is the use of 
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binders (e.g. clays and zeolites) that complex the mycotoxins in the gastrointestinal tract and reduce 

their bioavailability (Kabak et al., 2006). However, the prolonged administration of high dosages 

may reduce the utilization of vitamins and minerals (Chestnut et al., 1992). Hence, there is an 

increasing interest towards the possible use of natural compounds to both counteract the negative 

effects of AFs on animal health and reduce the contamination risk of animal products (i.e. milk). 

Beside liver, extra-hepatic organs may play a role in AFB1 biotransformation. A study performed in 

a bovine mammary epithelial cell line (BME-UV1) indicates that also the mammary gland may 

participate in the generation of AFM1, and possibly of other AFB1 metabolites (Caruso et al., 

2009). The goal of this study was to evaluate the role of selected natural antioxidants (i.e. curcumin, 

quercetin and resveratrol) in the modulation of AFB1 toxicity and metabolism in the bovine species. 

Such an issue has been addressed in vitro using the above mentioned BME-UV1 cell line, as a 

model for the bovine mammary gland.  

 

2. Materials and methods 

 

2.1. Materials and chemicals 

 

AFB1, quercetin hydrate (Q), resveratrol (R), curcumin (≥ 94% purity, C), curcumin from 

Curcuma longa (containing curcumin ≥ 65%, bisdemethoxycurcumin and demethoxycurcumin, 

CL), Dimethylsulfoxide (DMSO), and all cell culture reagents were purchased from Sigma–Aldrich 

(St. Louis, MO, USA). The Cell Proliferation Reagent WST-1 was from Roche Diagnostics 

(Mannheim, Germany). HPLC-grade acetonitrile was purchased from Sigma-Aldrich (Taufkirchen, 

Germany), MS-grade formic acid from Fisher Chemical (Thermo Fisher Scientific Inc., San Jose, 

CA, USA) and bidistilled water was obtained using Milli-Q System (Millipore, Bedford, MA, 

USA). All the materials for the quantitative RT-PCR (q-PCR) analysis (including RNA extraction 

and cDNA synthesis) were supplied by Bio-Rad (Valencia, CA, USA). The BCA Protein Assay Kit 
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was obtained from Thermo Fisher Scientific. If not specified otherwise, all other chemicals were 

from Sigma–Aldrich. 

 

2.2. Cell culture and treatments 

 

The BME-UV1 bovine mammary epithelial cell line (kindly provided by Prof. Mario Baratta, 

Dept. of Veterinary Sciences, University of Torino, Italy) was grown in DMEM medium 

supplemented with 10% heat-inactivated FBS, 2 mM L-glutamine, 1000 units/mL penicillin, 100 

μg/mL streptomycin, and 0.25 μg∕mL amphotericin B. Cells were maintained at 37 °C in an 

atmosphere of 95% relative humidity and 5% CO2. Cells were trypsinized every 3–4 days for sub-

culturing. 

For the viability assays, cells were seeded in 96-well culture plates at a density of 5×103 

cells/well and treated at the conditions described below, after reaching approximately 60% 

confluency. Six replicates for each experimental condition were included. To determine the 

concentrations to be used in the co-incubation experiments, cells were treated with increasing 

concentrations of AFB1 (12-3000 nM), C (0.15-20 μM), CL (0.15-20 μM), Q (0.12-50 μM) or R 

(0.12-50 μM) for 24 and 48 h. To evaluate the protective effects of the antioxidants against AFB1-

cytotoxicity, cells were pre-incubated with or without each antioxidant (5 μM) for 16 h, and 

subsequently exposed to increasing concentrations of AFB1 (96-750 nM) in the presence or absence 

of each antioxidant for 24 and 48 h.  

For the assessment of gene expression, GSH level and GST activity, cells were seeded in 10-cm 

dishes at a density of 3×106 cells/dish and, after reaching approximately 60% confluency, treated at 

the following conditions: pre-incubation with or without C or Q (5 μM) for 16 h followed by 

exposure to AFB1 (375 nM) in presence or absence of C or Q. Then, gene expression and GST 

activity were assessed after 24 h; GSH level was measured after 2, 6 and 24 h. The effects of the 
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either antioxidant were evaluated incubating cells with C or Q (5 μM) alone for the corresponding 

time-points.  

For the analytical investigations, cells were seeded in 10-cm dishes at a density of 

3×106cell/dish and, after incubation at the conditions described below, growth media were collected 

for the measurement of AFM1. To test the capability of BME-UV1 cells to metabolize AFB1, cells 

were exposed to increasing concentrations of AFB1 (188-375-750 nM) for 8 and 24 h. To evaluate 

the effects of the antioxidants on AFM1 synthesis, cells were pre-incubated with each antioxidant 

(5μM) for 16 h and subsequently co-exposed to AFB1 (375nM) and each antioxidant for 24 h.  

For all experiments, chemicals were dissolved in DMSO (used as control), whose final 

concentration in the growth medium did not exceed 0.1% (v/v). Due to the possibility that a 

considerable proportion of AFB1 may bind to serum albumin (Caruso et al., 2009), all the 

incubations with the mycotoxin were performed in cell culture medium containing 1% FBS. 

 

2.3. Cell viability assays 

 

Viability of cells exposed to all the tested substances, except Q, was investigated using the Cell 

Proliferation Reagent WST-1 (Roche) according to the manufacturer's instructions. Taking into 

account the ability of Q to reduce tetrazolium salts (Peng et al., 2005), viability of cells exposed to 

such antioxidant was evaluated by the Neutral Red Uptake (NRU) assay, according to the protocol 

outlined by Repetto et al. (2008). The absorbance values were measured at 450nm and 540 nm for 

the WST-1 and NRU tests, respectively, with a microplate reader. Cell viability was expressed as 

percent relative to control cells (0.1% DMSO).  

 

2.4. Analytical investigations 

 



8 

 

The presence of AFB1 and AFM1 in growth media was assessed by means of LC/MS-MS 

analysis using a UHPLC (Dionex Ultimate 3000) system coupled with a triple quadrupole mass 

spectrometer (TSQ Vantage) (Thermo Fisher Scientific Inc., San Jose, CA, USA) equipped with an 

ESI interface. All the analyses were performed on a reverse-phase C18 Sunshell column (particle 

size 2.6 µm, inner diameter of 2.1 µm and a length of 100 mm; ChromaNik Technologies Inc., 

Osaka, Japan) using bi-distilled water (A) and acetonitrile (B) both acidified with 0.2% of formic 

acid as eluents. The injection volume was 3 µL. The gradient started at 5% B and it was kept for 1 

minute, reaching 95% B in 11 min with a flux of 0.35 mL/min (12 min). Then it was kept isocratic 

for 5 min (17 min), reaching the initial conditions in the next 1 minute (i.e. 95% A and 5% B; 18 

min). The initial conditions were kept 8 minutes before running a new analysis, with a total run time 

for each sample of 26 min. 

Compounds under investigation were monitored under positive ionization mode (spray voltage 

= 3500 V), with the capillary temperature at 270 °C, while the vaporizer temperature was kept at 

200 ° C. The sheath gas flow was set at 40 units and the auxiliary gas pressure at 5 units. 

Detection was carried out using multiple reactions monitoring (MRM) mode. The following 

transitions were used for the compounds monitoring: 313.10 / 241.20 (CE 42 eV), 313.10 / 270.10 

(CE 28 eV) and 313.10 / 285.10 (CE 25 eV) for AFB1, and 329.07 / 229.00 (CE 42 eV), 329.07 / 

259.00 (CE 25 eV) and 329.07 / 273.00 (CE 25 eV) for AFM1. 

 

2.5. RNA extraction and Quantitative RT-PCR (q-PCR) 

 

Total RNA was isolated using the PureZOL™ RNA Isolation Reagent, according to the 

manufacturer's protocol. RNA purity and quantity was evaluated by absorbance readings using the 

NanoDrop ND-2000 spectrophotometer (Thermo Fisher Scientific, Illkirch Cedex, France). The 

ratio of the optical densities measured at 260 and 280 nm were >1.9 for all RNA samples. One mg 

of total RNA was reverse transcribed into cDNA using ISCRIPT cDNA SYNTHESIS KIT 
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according to the manufacturer’s instructions, in a final volume of 20 µL. Sufficient cDNA was 

prepared in a single run to perform the q-PCR experiments for all the selected genes. Primers for 

CYP1A1, GSTA1, GSTA2, NQO1, UGT1A1, UGT1A6, and GAPDH were from Girolami et al., 

(2015), whereas primers for CYP2A13, CYP3A28, CAT, EPXH1, EPXH2, EPXH3, EPXH4, 

GSTM1, GPx, and SOD were designed on Bos Taurus GenBank and Ensembl mRNA sequences 

using Primer 3 Software (version 3.0, Applied Biosystems, Foster City, CA). Oligonucleotides were 

designed to cross the exon/exon boundaries to minimize the amplification of contaminant genomic 

DNA and were analysed with the NetPrimer tool (available at http://www.premierbiosoft. 

com/netprimer/index.html) for hairpin structure and dimer formation. Primer specificity was 

verified with BLAST analysis against the genomic NCBI database. Table 1 summarizes primer 

information, including sequences, gene accession numbers and amplicon sizes. Each primer set 

efficiency was comprised between 95% and 100%. GAPDH was selected as the reference gene 

since its expression was not affected by any of the treatments. q-PCR reactions were performed on 

500 ng of cDNA, in a final volume of 20 μl consisting of the 1× iTaq SYBR Green Supermix with 

ROX and an optimized concentration of each primer set (150–900 nM range). PCR amplification 

was run on an ABI 7500 Real-time PCR System (Applied Biosystems) using 96-well optical plates 

under the following conditions: 30 s at 95 °C for polymerase activation, and 40 cycles of 15 s at 95 

°C and 60 s at 60 °C. Each reaction was run in triplicate, and a no-template control was included 

using water instead of cDNA. The modulation of gene expression was calculated with the 2−ΔΔCt 

method and data were expressed as fold-change compared to control samples (Livak and 

Schmittgen, 2001); a 2.0 fold-change cut-off was selected. 
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Table 1 

Primers for quantitative RT-PCR analysis. 

Gene Accession no. Sequence 
Amplicon size  

(bp) 

CAT NM_001035386.2 
F: ATTTGAAAGTGCTGAATGAGGAG 

R: TGGACATCGCTGAAGTTCTT 
118 

CYP1A1 XM_588298 
F: CGAGAATGCCAATATCCAGC 

R: TGCCAATCACTGTGTCCAG 
173 

CYP2A13 XM_024979093.1 
F: TCGCAGAGTCACCAAGGATA 

R: AGAACTTGGGGTCTCTCAGC 
128 

CYP3A28 NM_174531 
F: CGTCCCGAAAGGTTCAGTAA 

R: GCAGGATTCTGACAAGAGCA 
139 

EPHX1 NM_001034629 
F: CCTGGGGCAAGTCAATAAGC 

R: TCACCCACTTTTCTGGCAAG 
101 

EPHX2 NM_001075534 
F: CGCGGAGAAGGACTTGGT 

R: TGTCCAGTGTCCACAATCCT 
103 

EPHX3 NM_001193176.1 
F: TCGAAACATCTTCAGGACCTTC 

R: CCTTGCTCAAAATAGGGGTCC 
96 

EPHX4 NM_001075855 
F: GCCCAGCTGTTCAAATCCAG 

R: TCCTTTTCTTCCAATGCCAGTG 
138 

GPx NM_174076.3 
F: GCATCAGGAAAACGCCAAGA 

R: CTTCTCGCCATTCACCTCG 
118 

GSTA1 NM_001078149 
F: AGAGGGTGTGGCAGATTTGG 

R: TGGCTCTTCAGCACATTTTCA 
141 

GSTA2 NM_177515 
F: TTACCACTGTGCCCACCTGAT 

R: CTTGTCCGTGATTCTTCAGCAC 
112 

GSTM1 NM_175825.3 
F: TTTCCTGGTTTATGACGTCCTT 

R: AAGCGGCTGGACTTCATGTA 
138 

NQO1 NM_001034535 
F: CGGAATAAGAAGGCAGTGCT 

R: AGCCACAGAAGTGCAGAGTG 
130 

SOD NM_174615.2 
F: GAGAGGCATGTTGGAGACCT 

R: TCTGCCCAAGTCATCTGGTT 
153 

UGT1A1 NM_001105636 
F: TGGGTCTGTCTGGATTCTCA 

R: GGAATCTCCGAGACCATTGA 
195 

UGT1A6 NM_174762.1 
F: CAACACGGTCCTCATCGGA 

R: GCCCAAAGAGAAAACCACAA 
115 

GAPDH NM_001034034 
F: GGAGAAACCTGCCAAGTATGAT 

R: GAGTGTCGCTGTTGAAGTCG 
125 
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2.6. GSH content determination and GST activity assay  

 

Cells were collected using a rubber tipped cell scraper and centrifuged at 200 x g for 5 minutes 

at room temperature. After pellet suspension in 0.1 M phosphate buffer pH 7.4 (0.1 M Tris acetate, 

0.1 M KCl, 1 mM EDTA, and 18 μM butylated hydroxytoluene), cells were lysed by four cycles of 

freezing–thawing (fresh frozen in liquid nitrogen and thawed at 37 °C), followed by ten cycles of 10 

s of sonication on ice. The homogenate was centrifuged at 17000 x g for 15 min at 4 °C and the 

supernatant stored at −80 °C until analysis. Protein concentrations were measured by BCA Protein 

Assay Kit. 

GSH content was determined with dithio-bis-nitrobenzoic acid (DTNB) on deproteinized 

samples as described elsewhere (Ugazio et al., 1993). Results were expressed as μg of GSH per mg 

of protein. 

Total GST was assayed using 1-chloro-2,4-dinitrobenzene (CDNB) 1 mM as described by 

Habig et al. (1974). Results were expressed as nmoles conjugated GSH per min per mg of protein.  

 

2.7. Statistical analysis 

 

All data are shown as mean ± SEM of at least three independent experiments. In case data were 

normally distributed according to the D’Agostino and Pearson normality omnibus test, significant 

differences among groups were evaluated by one-way analysis of variance (ANOVA), followed by 

the Dunnett’s or Bonferroni’s post-hoc tests. Otherwise, the non-parametric Kruskall-Wallis 

ANOVA test followed by the Dunn's test was used. Differences were considered statistically 

significant when the two-sided P value was < 0.05. Analyses were performed with the GraphPad 

Prism 7.03 software (Graph Pad Software, San Diego, CA, USA).  
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3. Results 

 

3.1. Effects of natural antioxidants on AFB1-induced cytotoxicity 

The natural antioxidants (curcumin, quercetin and resveratrol) were selected based on their 

ability to ameliorate aflatoxicosis upon dietary supplementation in different species (Eftekhari et al., 

2018; Mohajeri et al., 2018; Sridhar et al., 2015). Since the most commonly used, curcumin, is 

typically administered in the form of turmeric powder, we tested both the high purity compound (C) 

and the extract from Curcuma longa (CL) that contains also the main metabolites 

(bisdemethoxycurcumin and demethoxycurcumin).  

To investigate the capacity of the antioxidants to counteract the impairment of cell viability 

induced by AFB1 in an in vitro model of bovine mammary epithelium, BME-UV1 cells were first 

exposed to each individual compound at different concentration ranges (AFB1, 12 nM - 3 μM; C 

and CL, 0.15 - 20 μM; R and Q, 0.125 - 50 μM) for 24 h and 48 h. The concentration response 

curves showed that AFB1 reduced cell viability in a time- and concentration dependent manner 

compared to control cells (LC50 at 24 h and 48 h equal to 687 and 180 nM, respectively) (Fig. 1). 

Conversely, all the antioxidants exhibited significant cytotoxic effects (P < 0.05 or less) only at 

very high concentrations (from 10 μM for CL, from 20 μM for C and R, and from 50 μM Q) (Fig. 

S1). Based on the dose-response results, the optimal experimental conditions for the co-incubation 

assays were set. In accordance with the protocol adopted in several studies investigating the 

protective effects of antioxidants against oxidative stress in vitro (Qin et al., 2015; Ramyaa and 

Padma, 2013), cells were pre-treated for 16 h with each antioxidant individually (5 μM), followed 

by a co-incubation with AFB1 (concentration range: 96 - 750 nM) and C, CL, R, or Q for 24 and 48 

h.  

C did not affect the reduced cell viability triggered by AFB1 at any experimental conditions 

(Fig. S2), while all the other antioxidants were able to afford some protection against AFB1-

cytotoxicity albeit to a different extent (Fig. 2). CL and R were significantly (P < 0.05 or less) 
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effective against AFB1 (from 96 to 375 nM) only at 48 h (Fig. 2 B and F), increasing cell viability 

up to 40% and 50%, respectively. Conversely, Q significantly (P < 0.05 or less) protected cells 

from AFB1 at both 24 h (from 188 to 750 nM) and 48 h (at all the tested concentrations) (Fig. 2 C 

and D). Moreover, Q enhanced the viability of AFB1-treated cells up to 62% (AFB1 375 nM at 48 

h), resulting the most effective compound. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Impairment of cell viability induced by AFB1 (12-3000 nM) in BME-UV1 cells after 24 

and 48 h exposure, measured with the WST-1 assay. Results are expressed as percentage of 

viability compared to the solvent control (0.1% DMSO). Data are represented as mean ± SEM of 

three independent experiments and analysed by one-way ANOVA followed by Dunnett's test. 

Statistical differences with respect to the controls are indicated (**P < 0.01, ***P < 0.001).  
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Fig. 2 Protective effects of CL (A-B), Q (C-D) and R (E-F) against AFB1-induced toxicity in 

BME-UV1 cells, measured with the WST-1 (for CL and R) or NRU (for Q) assays. Cells were pre-

incubated for 16 h with or without each antioxidant (5 μM) and then exposed to AFB1 (96-750 nM) 

in the presence or absence of each antioxidant for 24 and 48 h. Results are expressed as percentage 

of viability compared to the solvent control (0.1% DMSO). Data are represented as mean ± SEM of 

three independent experiments and analysed by one-way ANOVA followed by Bonferroni’s test. 

Statistical differences with respect to the controls (**P < 0.01, ***P < 0.001), and with respect to 

the cells treated with the corresponding concentration of AFB1 alone (#P < 0.05, ##P < 0.01, ###P < 

0.001) are indicated.  
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3.2. Effects of natural antioxidants on AFM1 synthesis 

The ability of the selected natural antioxidants to modulate the synthesis of AFM1 in BME-

UV1 cells was then investigated. First, the metabolic capacity of cells was assessed by the 

incubation with increasing concentrations of AFB1 (188, 375 and 750 nM) and the measurement of 

AFM1 in culture media after 8 and 24 h. Analytical results showed that AFM1 was synthetized by 

BME-UV1 cells proportionally to both AFB1 concentrations and incubation time (Table 2). For the 

co-incubation assays, cells were treated with a single AFB1 concentration (375 nM) using the same 

conditions as in the cell viability experiments. Media were collected after 24 h. Q significantly (P < 

0.001) reduced the rate of AFM1 synthesis by approximately 70% compared to the cells treated 

with AFB1 alone. All the other antioxidants did not significantly affect AFM1 concentration in 

culture media, although a trend in declining AFM1 synthesis could be appreciated in cells co-

exposed to AFB1 and CL or R (Fig.3).  

 

Table 2 

AFM1 synthesis by BME-UV1 cells treated with AFB1 (188 - 750 nM) for 8 h and 24 h, as 

measured by LC/MS-MS in culture media. 

 
AFM1 (nM) 

8 h 24 h 

AFB1 (188 nM) 14.43 ± 0.07 27.91 ± 0.74 

AFB1 (375 nM) 28.18 ± 0.16 44.75 ± 0.91 

AFB1 (750 nM) 39.72 ± 5.93 75.43 ± 5.54 

Data are expressed as mean ± SEM of three independent experiments.  
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Fig. 3. Effects of C, CL, Q, and R on the synthesis of AFM1 in BME-UV1 cells, measured by 

LC/MS-MS in culture media. Cells were pre-incubated for 16 h with each antioxidant individually 

(5 µM) and then co-exposed to AFB1 (375 nM) and each antioxidant for 24 h. Data are represented 

as mean ± SEM of three independent experiments and analysed by Kruskall-Wallis ANOVA test 

followed by the Dunn's test. Statistical differences with respect to cells treated with AFB1 alone are 

indicated (***P < 0.001).   
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3.3. Modulation of gene expression by AFB1 and natural antioxidants 

In order to study the possible mechanisms responsible for both the protective effects against 

AFB1 cytotoxicity and the modulation of AFM1 synthesis exerted by the natural antioxidants in 

BME-UV1 cells, the modulation of genes encoding for enzymes involved in AFB1 metabolism (i.e. 

CYP1A1, CYP2A13, CYP3A4, EPHX 1-2-3-4, GSTA1-2, GSTM1, and UGT1A1-6) and in the 

antioxidant defence (i.e. CAT, NQO1, SOD and GPx) was evaluated. Based on the results of both 

the viability assays and the analytical investigations, we decided to compare the effects of C and Q 

that correspond to the least and the most effective antioxidant compound, respectively. BME-UV1 

cells were exposed individually to AFB1, C and Q, or co-exposed to AFB1 and either antioxidant at 

the same conditions used in the viability and biotransformation experiments. 

The q-PCR results showed that BME-UV1 cells do not express some of the investigated genes, and 

namely CYP2A13, CYP3A28, GSTM1, EPHX isoforms 2 and 4, and UGT1A6. In addition, 

although expressed, CYP1A1 and UGT1A1 were not modulated by any of the treatments, i.e. 

neither by the single molecules nor under co-incubation conditions (data not shown). The remaining 

tested genes (i.e. the antioxidant enzymes CAT, GPx, NQO1 and SOD, and biotransformation 

EPHX1-3 and GSTA1-2) were all significantly (P < 0.05 or less) down-regulated by AFB1 to a 

variable extent, while their mRNA levels were not affected by C or Q alone (Fig. 4). The exposure 

to AFB1 alone decreased the expression of CAT, GPx and SOD by approximately 2-fold, and those 

of NQO1 and EPHX3 up to 5-fold. The most down-regulated genes were EPHX1 (10-fold change), 

GSTA1 (43-fold change) and GSTA2 (16-fold change). The co-incubation of AFB1 with C or Q did 

not counteract the negative modulation of both the antioxidant and detoxifying enzymes elicited by 

the mycotoxin, with the exception of GSTA1, whose downregulation was alleviated by 

approximately 80% in the presence of Q.  
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Fig. 4. Gene expression modulation in BME-UV1 cells treated with AFB1 (375 nM), C (5 μM), or 

Q (5 μM ), or co-exposed to AFB1 (375 nM) + C (5 μM) and AFB1 (375 nM) + Q (5 μM). The 

mRNA expression levels of CAT (A), GPx (B), SOD (C), NQO1 (D), EPHX1 (E), EPHX3 (F), 

GSTA1 (G) and GSTA2 (H) were determined by quantitative RT-PCR. Results are expressed as 

fold change compared to the solvent control (0.1% DMSO). Data are represented as mean ± SEM of 

three independent experiments and analysed by Kruskall-Wallis ANOVA test followed by the 

Dunn's test. Statistical differences with respect to the controls (* P < 0.05, **P < 0.01), and with 

respect to the cells treated with the corresponding concentration of AFB1 alone (##P < 0.01) are 

indicated.  
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3.4. Modulation of GST activity and GSH content by AFB1 and natural antioxidants  

Based on the results of the gene expression analysis and since the conjugation with GSH 

catalysed by GST enzymes is the main detoxifying pathway of AFBO, total GST activity and GSH 

content were assayed in BME-UV1 cells incubated at the same conditions used for the gene 

expression analysis. The total GST activity assayed with CDNB as the substrate after 24 h did not 

vary irrespective of the tested compounds and the incubation conditions (data not shown). Table 3 

depicts the effects of the different treatments on GSH levels at 2, 6 and 24 h. The GSH content was 

not affected by the exposure to either antioxidant alone compared to untreated cells at all time-

points. AFB1 produced a limited but statistically significant (P < 0.05) depletion of GSH compared 

to control cells at 6 h, which was then compensated at 24 h. The AFB1-mediated decrease in 

intracellular GSH at 6 h was fully counterbalanced by either C or Q (P < 0.05), which also caused 

the GSH levels to outweigh those of control cells and of AFB1-treated cells at 24 h (up to 

approximately 50%). 
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Table 3 

GSH content in BME-UV1 cells treated with AFB1 (375 nM), C (5 μM), or Q (5 μM), or co-

exposed to AFB1 (375 nM) + C (5 μM) and AFB1 (375 nM) + Q (5 μM) after 2, 6 and 24 h. 

 

 

 

 

 

 

Data are expressed as mean ± SEM of three independent experiments and analysed by Kruskall-

Wallis ANOVA test followed by the Dunn's test; *P < 0.05 as compared to DMSO, #P < 0.05 as 

compared to AFB1. 

  

 GSH content (µg GSH/mg protein) 

 2h 6h 24h 

DMSO 53.12 ± 0.73 72.43 ± 1.35 81.58 ± 3.23 

AFB1 55.03 ± 1.09 50.19 ± 2.87* 95.36 ± 1.50 

C 64.69 ± 2.23 82.21 ± 3.61# 97.63 ± 2.65 

AFB1 + C 56.89 ± 2.56 78.22 ± 0.98# 122.38 ± 2.19*# 

Q 63.25 ± 1.23 83.81 ± 2.15# 94.31 ± 3.25 

AFB1 + Q 52.16 ± 0.89 77.03 ± 1.84# 127.22 ± 4.23*# 
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Discussion 

The risk associated with AFB1 exposure has recently increased due to the climate change that is 

influencing the geographical pattern of both fungal growth and toxinogenesis. In the last decade the 

unusual contamination of maize in Southern Europe led in some cases to the exceeding of AFM1 

maximum limits in dairy milk (Assuncao et al., 2018). Some natural phenolic and flavonoid 

compounds have already proved to counteract some of the negative effects of AFB1 in laboratory 

species and broilers (Eftekhari et al., 2018; Mohajeri et al., 2018; Sridhar et al., 2015); however, 

research in the bovine species is still lacking, and no data are available on the ability of such 

molecules to modulate AFM1 synthesis. Due to the potential role played by the mammary gland in 

the generation of AFB1 metabolites (Caruso et al., 2009), resulting in possible damage of the 

mammary tissue and in health concerns for the milk consumers, our study was performed in the 

BME-UV1 cell line, as a model for the bovine mammary gland.  

The concentration and time-dependent cytotoxicity of AFB1 observed in the present work has 

been detected in several cell lines with different degree of sensitivity according to the cell type 

(Clarke et al., 2014; Sun et al., 2015). Caruso et al (2009) described such effect also in BME-UV1 

cells, using higher concentrations compared to ours (2-16 μM). However, in a human breast cancer 

cell line (MCF-7), AFB1 was found to impair cell viability at concentrations of the same order of 

magnitude employed in our study (Yip et al., 2017). In cultured bovine hepatocytes the LC50 of 

AFB1 at 24 h was higher compared to our model (4 µM vs 0.7 µM) (Kuilman et al., 2000). The 

lower sensitivity of liver cells might be explained by a more competent metabolic system, resulting 

in a more efficient detoxification of AFB1 metabolites. Moreover, although no data are available 

about cattle, it is noteworthy that the serum AFB1 levels measured in naturally exposed populations 

from different countries are in the range of the concentrations used in the present study (nM) 

(Hassan et al., 2006; Aydin et al., 2014). 

In our study the co-incubation experiments revealed that, with the exception of C, the selected 

antioxidants (i.e. CL, Q and R) counteracted the AFB1-mediated impairment of cell viability. 
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Besides, Q resulted the most effective compound, increasing cell viability up to more than 60%. To 

the best of our knowledge, this is the first report that compares the effects of the above natural 

antioxidants against AFB1 cytotoxicity. More to the point, no in vitro data are available about the 

modulation of cell viability by C, CL and R in the presence of AFB1. As regards Q, it effectively 

lowered AFB1-induced cell death in primary cultures of rat hepatocytes by approximately 30%, 

albeit at a higher concentration (100 µM) compared to that employed in our study (5 µM) (Eftekhari 

et al., 2018). Although they did not check for cell viability, Barcelos et al. (2011) reported a lower 

AFB1-mediated DNA damage in human hepatoma cells in the presence of Q (16 µM). Similar 

positive effects were triggered by Q against ochratoxin A, which is also reported to act as a pro-

oxidant like AFB1 (Tao et al., 2018). The pre-treatment with Q (10 μM) significantly was found to 

restore cell viability to 95% in a monkey kidney cell line (Ramyaa and Padma, 2013) and in human 

peripheral blood mononuclear cells (Periasamy et al., 2016). On the other hand, R did not protect 

intestinal Caco-2 cells against both ochratoxin A and deoxynivalenol cytotoxicity (Cano-Sancho et 

al., 2015), while it slightly reduced the inhibition of cell viability induced by zearalenone (Sang et 

al., 2016). Taken together, such results point to a higher protective ability of Q against mycotoxin 

cytotoxicity compared to R, in accordance with what has been recorded in our study.  

Taking into consideration the studies reporting on the possible autoxidation of Q under cell 

culture conditions (Xiao et al. 2015, Xiao et al. 2018), the actual Q concentration in cell culture 

medium with or without BME-UV1 cells was monitored over 24 hours of observation (data 

reported as Supplementary Material). Although a decrease in concentration was observed over time 

both in the presence or absence of cells, it must be noticed that the antioxidative properties of Q 

could be retained by its metabolites and/or degradation products, as reported in the literature (Xiao 

et al. 2015, Aragones et al. 2017). 

As far as C and CL are concerned, the only in vitro study published so far showed that C was 

not effective in modulating the AFB1-DNA adduct formation in cultured human primary 

hepatocytes in comparison with other phytochemicals (i.e. diindolylmethane and xanthohumols) 
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(Gross-Steinmeyer et al., 2009). Conversely, most of the in vivo experiments involving the dietary 

supplementation of turmeric powder (containing CL) demonstrated its efficiency in reducing the 

liver damage, as well as in improving the serum antioxidant status (Mohajeri et al., 2018). Thus, it 

would appear that C and CL have different effect on AFB1 toxicity, as observed in BME-UV1 cells. 

Such discrepancy suggests that C metabolites contained in the CL mixture might play a role in the 

recorded protective effects. 

As reported earlier (Caruso et al., 2009), also in our study BME-UV1 cells were able to 

biotransform AFB1 to AFM1. It is therefore confirmed the potential additional role of the 

mammary gland in the generation of this compound, which is a major hepatic AFB1 metabolite in 

the bovine species (Kuilman et al., 1998). With the exception of C, a trend in the reduction of 

AFM1 biosynthesis was observed upon the co-incubation with the other examined antioxidants, 

substantially matching their protective effects against AFB1 cytotoxicity. In this respect it should be 

noted that not only AFBO but also AFM1 displays cytotoxic properties (Caloni et al., 2006), even if 

with a less potent effect (Marchese et al., 2018), that could also participate in the tissue damage of 

the mammary gland. 

As outlined above, liver CYP1A, CYP3A, and, to a lesser extent, CYP2A are believed to carry 

out the generation of AFB1 metabolites, including AFM1 and AFBO (Dohnal et al., 2014; 

Marchese et al., 2018). Kuilman et al. (2000) reported that the oltipraz-mediated depression of 

AFM1 synthesis in primary cultures of bovine hepatocytes was mostly attributable to the inhibition 

of a number of CYP1A and CYP3A-dependent activities. According to the results of the gene-

expression analysis, however, neither CYP3A28 nor CYP2A13 transcripts were expressed in the 

employed BME-UV cell line, pointing to CYP1A(1) as the sole CYP subfamily responsible for 

AFB1 metabolism in our cell system. Surprisingly, in our study CYP1A1 was not depressed by Q, 

the most effective antioxidant in limiting AFM1 synthesis. Although the mechanism(s) by which Q 

affects AFB1 biotransformation remain(s) to be established, it is worth noting that Q was found to 

strongly inhibit CYP1A-mediated 7-ethoxyresorufin O-deethylase (EROD) activity in liver 
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microsomes from mice (Pilipenko et al., 2017), rats (Kuo et al., 2004) and pigs (Ekstrand et al., 

2015). We found that EROD activity was also strongly inhibited by Q (10, 8, 4, 2 or 1 µM) in 

bovine liver microsomes (data not shown). In the bovine species this enzyme activity is specifically 

mediated by CYP1A1 (Sivapathasundaram et al., 2001), which is also well expressed in our test 

system. This suggests that the Q-related reduction in both AFM1 synthesis and cytotoxicity 

observed in the present study might involve the inhibition of CYP1A1 catalytic activity. 

It is generally accepted that antioxidants can afford protection against AFB1 mainly by 

positively modulating the natural detoxification mechanisms (El-Bahr, 2015; El-Nekeety et al., 

2014). Thus, we investigated the transcriptional response of biotransformation and antioxidant 

enzymes to AFB1 with or without C and Q, representing the least and the most efficacious 

compound in our test system, respectively. In our model AFB1 produced an overall downregulation 

of the detoxifying enzymes (i.e. CAT, GPx, SOD, NQO1, EPHX1-3 and GSTA1-2), while the 

bioactivating pathway (i.e. CYP1A1) was not affected. Such results are mostly in accordance to 

what has been already reported in several in vitro and in vivo studies. Recently, Wang et al. (2018) 

demonstrated that the dietary exposure to AFB1 (5.0 mg/kg diet for 28 days) decreased both GST 

and EPHX mRNA levels in broiler liver. Likewise, though no data are available about the 

modulation of NQO1 by AFB1, the antioxidant enzymes CAT, GPx and SOD were 

transcriptionally down-regulated by the mycotoxin in rat and broiler liver after the exposure to 

comparable AFB1 dosage (Abdel-Wahhab et al., 2015; Yarru et al., 2009); the same effects were 

reported in cultured bovine peripheral blood mononuclear cells exposed to much higher mycotoxin 

concentrations compared to our study (Bernabucci et al., 2011).  

When dealing with CYP1A1, the scenario is more complex. As regards AFB1, opposed 

outcomes have been described, possibly indicating a species- and even individual-dependent ability 

to modulate CYP1A transcription. In primary cultures of rabbit hepatocytes AFB1 significantly 

decreased CYP1A1 mRNA (Guerre et al., 2000), yet in human ones the effect varied between 

individuals, ranging from gene induction to lack of regulation (Ayed-Boussema et al., 2012). 
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Moreover, AFB1 exposure produced a significant CYP1A1 increase in a rat hepatoma cell line 

(Mary et al., 2015), but this was not the case for the human counterpart (Smit et al., 2017). To the 

best of our knowledge no data are available about the AFB1-mediated regulation of CYP1A1 in 

tissues other than liver and our results in mammary cells would also suggest a cell type-dependent 

variability. In our study, either antioxidant (C or Q) alone or under co-incubation conditions also 

failed to modulate CYP1A1. Even if several reports stated that both C and Q up-regulate CYP1A1 

(Jin et al., 2018; Mohammadi-Bardbori et al., 2012), some others demonstrated that such molecules 

did not influence CYP1A1 at transcriptional level but rather attenuated its induction in response to 

known activators (e.g. 2,3,7,8-tetrachlorodibenzo-p-dioxin and benzo[a]pyrene) (Choi et al., 2008; 

Perepechaeva et al., 2017).  

As already reported for hepatocytes (Abdel-Wahhab et al., 2015; El-Bahr, 2015; Gross-

Steinmeyer et al.), the gene expression profile of detoxifying enzymes in BME-UV1 cells treated 

with either antioxidant (C or Q) individually did not differ compared to controls; this further 

supports the hypothesis that such molecules typically exert their protective effects only in the 

presence of an oxidative damage/stress. In keeping with this, in our study Q decreased the 

remarkable GSTA1 downregulation induced by AFB1 (40 fold-change). The protective effect 

triggered by Q in our cell system is in accordance with the gene expression modulation detected in 

liver from rats orally treated with AFB1 and Q (Abdel-Wahhab et al., 2015).  

Surprisingly, the AFB1-mediated mRNA down-regulation of GSTA1-2 was not paralleled by a 

decrease in GST activity assayed with CDNB, making therefore possibly unnoticeable also the 

positive modulation of GSTA1 mRNA caused by the co-incubation with Q. In this respect, the use 

of an unspecific GST substrate like CDNB might partly explain this apparent discrepancy. 

Pro-oxidants like AFB1 typically trigger a biphasic response consisting in an acute GSH-

depletion followed by a later restoration toward or even over the baseline levels (“rebound effect”), 

with antioxidants like C and Q being active, in vitro or in vivo, (positively affecting) during both 

phases (Choi, 2010; Eftekhari et al., 2018; El-Agamy, 2010; Zhang et al., 2016). This was also the 
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case in our study, thus reinforcing the key role of GSH in the natural antioxidant- mediated 

protection against AFB1 cytotoxicity and oxidative damage.  

In conclusion, data from this investigation suggest that, among the different tested natural 

antioxidants (C, CL, R, and Q), Q proved the most effective not only in counteracting the cytotoxic 

effects of AFB1 in a bovine mammary gland cell line, but also in reducing the synthesis of the main 

milk metabolite AFM1. Remarkably, these positive features were observed at antioxidant 

concentrations in the low micromolar range. Although additional work is needed to unravel the 

mechanisms by which Q affects AFB1 biotransformation, and hence the generation of toxic 

metabolites, the protective effects seem to be at least partly mediated by the enhancement of the 

antioxidant defense. Further investigations are ongoing to test the effects of the examined 

antioxidants on cultured bovine liver cells, as well as to verify their in vivo ability in reducing 

AFM1 excretion in dairy cows. 
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