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Abstract

I study bankruptcy problems under the assumption that claimants have reference-

dependent preferences. I consider different specifications for claimants’ reference

points and show how perceived gains and losses impact on aggregate welfare. I can

thus rank the four most prominent rules (Proportional, Constrained Equal Awards,

Constrained Equal Losses, and Talmud) on the basis of the level of utilitarian and

maxmin welfare that they generate. I also identify the welfare-maximizing rules and
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1. Introduction

In a bankruptcy problem, an arbitrator must allocate a finite and perfectly divisible re-

source among several claimants whose claims sum to a greater amount than what is avail-

able. Situations that match this description include the liquidation of a bankrupted firm

among its creditors, the division of an estate among heirs, or the allocation of time to the

completion of projects assigned by different clients.

The formal analysis of bankruptcy problems started with O’Neill (1982) and has flour-

ished since that time (see Moulin, 2002 and Thomson, 2003, 2015 for detailed surveys).

The research question that underlies the literature is as follows: how shall the arbitrator

adjudicate conflicting claims? The answer usually takes the form of an allocation rule,

i.e., a procedure that processes the data of the problem (namely, the endowment of the re-

source and the list of individual claims) and then prescribes an allocation for the arbitrator

to implement. The analysis is pursued under the assumption that claimants have mono-

tonically increasing preferences. However, the specific functional form of these prefer-

ences is usually left unspecified. As Thomson puts it (2015, p. 57): “In the base model,

preferences are not explicitly indicated, but it is implicit that each claimant prefers more

of the dividend to less”.

In this paper, I study bankruptcy problems when claimants’ preferences have an ex-

plicit formulation. More precisely, I consider the case of reference-dependent preferences

(RDPs), as introduced by Kőszegi and Rabin (2006). Building upon the main insights

of prospect theory (Kahneman and Tversky, 1979), RDPs acknowledge the fact that an

agent’s perception of a given outcome is determined not only by the outcome per se but

also by how this outcome compares with a certain reference point. In other words, the

agent’s utility is influenced by perceived gains and losses. RDPs thus seem particularly

appropriate for use in capturing the preferences of claimants in bankruptcy problems.

These are, in fact, typical situations in which agents form expectations about what they

will get and then inevitably compare the actual outcome with the expected one.

The idea that reference points might play a role in bankruptcy problems is not new.

Chun and Thomson (1992) studied a bargaining problem with claims and interpret the
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disagreement point as a reference point from which agents measure their gains when

evaluating a proposal. Herrero (1998) adopts a similar framework but endogenizes the

reference point as a function of the agents’ claims and the set of feasible allocations.

Pulido et al. (2002, 2008) study bankruptcy problems with reference points in the context

of university budgeting procedures. Finally, Hougaard et al. (2012, 2013a, 2013b) con-

sider a more general model of rationing in which agents have claims as well as baselines,

which can also be interpreted as reference points. All these papers, however, analyze the

role of reference points in a context in which claimants have standard preferences.

I instead embed the analysis of reference points into the framework of RDPs and fo-

cus on the welfare implications that such a setting generates. I consider different spec-

ifications for claimants’ reference points. This reflects the role that expectations have in

determining reference points (Abeler et al., 2011; Ericson and Fuster, 2011) and the fact

that in a bankruptcy problem there are multiple allocations that can catalyze claimants’

expectations. I thus let the vector that collects agents’ reference points to coincide with

the claims vector, the zero awards vector, the minimal rights vector, and with their beliefs

about the awards vector that the arbitrator will implement.

The actual feasibility of these reference points paired with some specific features of

RDPs impact on how different rules perform in terms of (utilitarian and maxmin) wel-

fare. For instance, when reference points are not feasible and claimants display dimin-

ishing marginal sensitivity to losses, the rules that achieve higher welfare are those that

most asymmetrically allocate perceived losses across agents. In the opposite scenario,

diminishing marginal sensitivity to gains implies that, when agents’ reference points are

mutually feasible, the best rules are those that implement the most equal distributions of

perceived gains.

Given any specification of agents’ reference points, I can thus rank the four most com-

mon rules (Proportional, Constrained Equal Awards, Constrained Equal Losses, and Tal-

mud) in terms of welfare. The Constrained Equal Awards rule often outperforms other

rules. It may, however, fail to select the first-best allocation. When this is the case, I define

the rule that maximizes welfare and discuss its properties. The Small Claims First rule

maximizes utilitarian welfare when claimants use their claims as reference points (Propo-
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sition 1) and always selects the less unequal awards vector in case of multiple solutions

(Proposition 2). By relying on some new axioms, I am able to fully characterize the set

of rules that lead to a welfare-maximizing solution (Proposition 3) and, in particular, the

Small Claims First rule (Proposition 4). The Minimal Utility Gap rule instead maximizes

maxmin welfare when reference points are given by agents’ claims (Proposition 5) or by

their minimal rights (Proposition 8). The Constrained Equal Gains rule is optimal when

agents use as reference points their minimal rights and the arbitrator cares about utilitar-

ian welfare (Proposition 7). And, as said, there are scenarios in which the optimal rule is

the Constrained Equal Awards rule. This is the case when claimants’ reference points co-

incide with the zero awards vector (Proposition 6) or are determined by their expectations

about what the arbitrator will do (Proposition 9).

The analysis highlights the existence of a trade-off between the goal of welfare maxi-

mization and the equity of the resulting award vector. This is most evident when agents

use their claims as reference points, as in this case at least some of the claimants must nec-

essarily receive less than what they were expecting. The optimal rule (the Small Claims

First rule) then prescribes the arbitrator to satisfy as many claimants as possible (i.e., to

allocate them what they claim) while heavily disappointing the remaining ones. I show

that the rule fails Equal Treatment of Equals, although it satisfies a weaker notion of equity,

as embedded in a property that I label Ex-Ante Equal Treatment of Equals. Giving up Bound-

edness further amplifies the tension between welfare maximization and equity. Because

losses loom larger than gains, welfare maximization may in fact require the arbitrator to

allocate to some of the claimants more than their claims. This would, however, lead to an

even more skewed distribution of the endowment. In particular, it may hinder some of

the claimants from obtaining their minimal rights.
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2. The Model

2.1 A Bankruptcy Problem

Let E ∈ R+ denote the endowment of the resource to be allocated and N = {1, ..., n}

be the set of claimants. Each claimant i ∈ N has a claim ci ∈ R+ on E. The vector

c = (c1, ..., cn) collects individual claims. Define C = ∑i ci. A bankruptcy problem (or

claims problem) is a pair (c, E) ∈ RN
+ ×R+ where c is such that C ≥ E. I denote with BN

the class of all such problems. By defining as L = C − E the aggregate loss, (c, L) is the

dual of (c, E). In other words, one can interpret a bankruptcy problem as a problem of

allocating what is available (i.e., shares of E), or as a problem of allocating what is missing

(i.e., shares of L).1

A rule R is a function that associates to any problem (c, E) ∈ BN a unique awards

vector R (c, E) = (R1 (c, E) , ..., Rn (c, E)). The awards vector R(c, E) must satisfy 0 ≤

Ri (c, E) ≤ ci for any i ∈ N (Boundedness) and ∑i Ri (c, E) = E (Balance).

The literature has characterized a large number of rules that respond to different ethi-

cal or procedural criteria (see Thomson, 2015, for a review). I first introduce the four most

prominent rules (Herrero and Villar, 2001; Bosmans and Lauwers, 2011):

- The Proportional (P) rule allocates the endowment proportional to claims:

P (c, E) = λc with λ = E/C. (1)

- The Constrained Equal Awards (CEA) rule assigns equal awards to all claimants subject

to the requirement that no one receives more than his claim:

CEAi (c, E) = min {ci, λ} for all i ∈ N with ∑i min {ci, λ} = E. (2)

- The Constrained Equal Losses (CEL) rule assigns an equal amount of losses to all claimants

1The (c, L) formulation is particularly appropriate when the problem consists in allocating tax burdens,
as the vector c can be thought as collecting agents’ gross incomes and L is the tax to be levied (Young, 1988;
Chambers and Moreno-Ternero, 2017), or in deciding how to finance a public good, as c can describe agents’
benefits from the usage of the good and L is the cost to be shared (Moulin, 1987).
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subject to the requirement that no one receives a negative amount:

CELi (c, E) = max {0, ci − λ} for all i ∈ N with ∑i max {0, ci − λ} = E. (3)

- The Talmud (T) rule, as introduced by Aumann and Maschler (1985), foresees two dif-

ferent solutions depending upon the relationship between the half-sum of the claims and

the endowment:

T(c, E) = CEA
(

1
2

c, E
)

if
C
2
≥ E,

T(c, E) =
1
2

c + CEL
(

1
2

c, E− C
2

)
if

C
2
< E.

(4)

I then introduce four new rules whose properties I will explore in the course of the

analysis. The first two rules belong to the family of sequential priority rules (Moulin,

2000, Thomson, 2015). Let � denote an order on the set of claimants, i.e., a complete and

transitive binary relation on N. The strict relation≺ associated with� is defined as usual:

i ≺ j iff i � j but not j � i. The sequential priority rule associated with � assigns to each

agent the minimum between his claim and what remains of the endowment. The rules

that I propose are based on the strict order ≺c that orders claimants according to their

claims and starting from the lowest (ties are broken randomly).

- The Small Claims First (SCF≺c) rule assigns to each agent the minimum amount between

his claim and what remains of the endowment, starting from the first:

SCF≺c
i (c, E) = min

{
ci, max

{
E− ∑

j≺ci
cj, 0

}}
for all i ∈ N. (5)

- The Large Claims First (LCF≺c) rule assigns to each agent the minimum amount between

his claim and what remains of the endowment, starting from the last:

LCF≺c
i (c, E) = min

{
ci, max

{
∑
j�ci

cj − L, 0

}}
for all i ∈ N. (6)
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The third rule combines the order ≺c with the notion of agents’ minimal rights. The

minimal right of agent i (mi) is given by what remains of the endowment (if anything)

after all other agents get their claims fully honored. Formally, mi = max
{

E−∑j 6=i cj, 0
}

.

- The Constrained Equal Gains (CEG≺c) rule assigns to each agent i ∈ N the amount:

CEG≺c
i (c, E) = min

{
ci, mi +

E−∑j�ci mj −∑j≺ci CEG≺c
j

n− i + 1

}
for all i ∈ N.2 (7)

The fourth rule (actually, a family of rules) relies instead on claimants’ utility func-

tions. Let u = (u1(R1(c, E)), ..., un(Rn(c, E))) denote a utility profile (I will introduce and

discuss a more precise functional form for ui(·) in Section 2.2).

- The Minimal Utility Gap (MUGu) rule allocates the endowment such as to make agents’

utility as equal as possible:

MUGu(c, E) = argmin{max{ui(MUGu
i (c, E))}i −min{ui(MUGu

i (c, E))}i}. (8)

Example 1 shows how the rules works in practice.

EXAMPLE 1. Let c = (30, 50, 80) and E = 100. The rules select the following awards vectors:

P(c, E) CEA(c, E) CEL(c, E) T(c, E)
= = = =

(18.75, 31.25, 50) (30, 35, 35) (10, 30, 60) (15, 27.5, 57.5)

SCF≺c(c, E) LCF≺c(c, E) CEG≺c(c, E) MUGu(c, E)
= = = =

(30, 50, 20) (0, 20, 80) (26.67, 26.67, 46.66) (54.55, 27.27, 18.18)

Table 1: The awards vectors.3

2The CEG≺c
i rule and the CEA rule thus have a similar structure. However, in (7), the second term of the

set is not a constant but rather a function of claimants’ minimal rights. As such, it can differ across agents.
3The MUGu(c, E) solution refers to the case u = (R1(c, E), 2R2(c, E), 3R3(c, E)).
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Figure 1 instead illustrates the path of awards of the rules. The path of awards is the

locus of allocations that a rule selects as, holding fixed the claim vector c, the endowment

E grows from 0 to C.

R2

R1

c2
c

c1

(a) P(c, E)

R2

R1

c2
c

c1

45◦

(b) CEA(c, E)

R2

R1

c2
c

c1

45◦

(c) CEL(c, E)

R2

R1

c2
c

c1

45◦

45◦

c
2

(d) T(c, E)

R2

R1

c2
c

c1

(e) SCF≺c(c, E)

R2

R1

c2

c1

c

(f) LCF≺c(c, E)

R2

R1

c2
c

c1

45◦

45◦

c
2

(g) CEG≺c(c, E)

R2

R1

c2
c

c1

(h) MUGu(c, E)

Figure 1: Paths of awards with n = 2.4

Next, I introduce four axioms that I will later use to describe the properties of the new

rules. The first axiom is a weaker form of Equal Treatment of Equals. It says that agents

with identical claims should get identical awards in expectations.

Ex-Ante Equal Treatment of Equals: For all (c, E) ∈ BN and all i, j ∈ N, if ci = cj then

4When n = 2 the T(c, E) and the CEG≺c(c, E) solutions coincide. However, this is not generally the case
(see Example 1). The MUGu(c, E) solution refers to the case u = (R1(c, E), 3R2(c, E)).
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E (Ri (c, E)) = E
(

Rj (c, E)
)
.

The next three axioms use instead the notion of claimants i’s Cumulative Aggregate Loss,

which measures the amount by which the sum of the claims of i and of all his predecessors

exceeds the endowment.

DEFINITION 1. Given the order ≺c defined on N, the Cumulative Aggregate Loss of claimant

i ∈ N is given by L̃i = max
{

∑j�ci cj − E, 0
}

.

The Large Losers axiom states that if the Cumulative Aggregate Loss of an agent is

larger or equal than his claim, then the agent should get nothing.

Large Losers: For all (c, E) ∈ BN if L̃i ≥ ci then Ri (c, E) = 0.

The Unique Residual Loser axiom states that if the Cumulative Aggregate Loss of agent

i is positive but smaller than his claim, then a unique agent (either agent i or one of his

predecessors) must suffer that loss in full.

Unique Residual Loser: For all (c, E) ∈ BN, if there exists a claimant i ∈ N such that

0 < L̃i < ci then there exists a claimant j �c i such that Rj (c, E) = cj − L̃i.

Finally, Unique Residual Loser Is The Last strengthens Unique Residual Loser by requiring

that if the Cumulative Aggregate Loss of agent i is positive but smaller than his claim, it

is actually agent i the unique agent who suffers that loss in full.

Unique Residual Loser Is The Last: For all (c, E) ∈ BN, if there exists a claimant i ∈ N

such that 0 < L̃i < ci then Ri (c, E) = ci − L̃i.

2.2 Claimants’ Preferences and Social Welfare

I deviate from the baseline model of a bankruptcy problem by assuming that claimants

have reference-dependent preferences (RDPs). I adopt the specification originally pro-

posed by Kőszegi and Rabin (2006) (see Shalev, 2000, for an alternative approach).

Let ri ∈ [0, ci] denote agent i’s reference point, whose nature I will shortly discuss. The

gain-loss function µ(Ri (c, E)− ri) then captures the (psychological) effects of perceived
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gains and losses when an agent who was expecting to get ri receives the amount Ri (c, E).

In line with the original formulation of prospect theory (Kahneman and Tversky, 1979),

the function µ(·) is assumed to be continuous, strictly increasing and such that µ(0) = 0.

It is is strictly convex in the domain of losses (µ′′(z) > 0 for any z < 0) and strictly

concave in the domain of gains (µ′′(z) > 0 for any z < 0). Finally, losses loom larger than

gains: |µ(−z)| > µ(z) for any z > 0.

Claimants’ utility function thus reads as follows:

u(Ri (c, E) | ri) = Ri (c, E) + µ(Ri (c, E)− ri), (9)

The utility that the agent enjoys from the possession/consumption of Ri (c, E) is thus

linear, as it is usually assumed in the baseline model.5 However, his overall utility is also

influenced by the µ(·) function.6

I rely on the two most common notions of welfare (see Moulin, 2003, and Gravel and

Moyes, 2013): utilitarian welfare (10) and maxmin welfare (11).

Wut (R) = ∑i (Ri (c, E) + µ(Ri (c, E)− ri)) = E + ∑i µ(Ri (c, E)− ri), (10)

Wmm (R) = min {Ri (c, E) + µ(Ri (c, E)− ri)}i . (11)

Both notions explicitly take into account the “behavioral” part of claimants’ utility

functions, namely the gain-loss function µ(·). The approach is in line with the recent

literature on behavioral welfare economics (see Bernheim and Rangel, 2007 and 2009,

and Fleurbaey and Schokkaert, 2013, for a general discussion of the issue; see Gruber

and Kőszegi, 2004, and O’Donoghue and Rabin, 2006, for more specific applications) and

5Thomson (2015, p. 57) writes that the baseline model amounts to “... assuming that the utilities that
claimants derive from their assignments are linear, or to ignoring utilities altogether”. Exceptions to this
approach include Mariotti and Villar (2005) and Herrero and Villar (2010) that explicitly set up the problem
in a utility space.

6The properties of µ(·) drive most of the results in the paper. Indeed, the alternative utility specification
u(Ri (c, E) | ri) = µ(Ri (c, E)− ri) would lead to similar insights. I use (9) because it explicitly disentangles
consumption utility from the utility that stems from perceived gains and losses (see Kőszegi and Rabin,
2006 and 2007). I consider the possibility of heterogeneity in µ(·) in Section 4.3.
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fits the situations that motivate the paper. For instance, a politician who must distribute

a limited amount of public funds to different associations and cares about his chances

of being reelected will certainly take into account how different allocations impact on

claimants’ degree of satisfaction/disappointment. Similarly, an agent who must allocate

his time to the completion of different projects and cares about future collaborations with

his clients must carefully consider which are the ones to please and the ones to disappoint.

Clearly, the four standard rules are welfare equivalent when all agents have identical

claims (ci = cj for all i, j ∈ N). All rules in fact select the egalitarian allocation, Ri(c, E) =

E/n for all i ∈ N. Therefore, in what follows I mainly focus on the more interesting case

in which claimants are asymmetric, i.e., the vector of claims c is such that ci 6= cj for some

i, j ∈ N.

3. Reference Points

Claimants’ utility function is given by equation (9). Here I discuss the nature of agents’

reference points r = (r1, ..., rn). I consider different specifications for r. In Section 3.1, I

study the case in which agents’ reference points coincide with their claims, r = c. In Sec-

tion 3.2, I consider the opposite case where agents set as reference points the zero awards

vector, r = 0. As a third possibility (Section 3.3), I let r = m where m = {m1, ..., mn} is

the vector that collects agents’ minimal rights. Finally (Section 3.4), I study a setting in

which reference points are given by claimants’ beliefs about the awards vector that the

arbitrator will implement. Formally, r = F where F is a probability distribution defined

over the set of possible allocations.

The four specifications can be classified according to different criteria. For instance,

one may focus on the relation between reference points and claims. This can be direct

(r = c), indirect (r = m and r = F, as claims influence agents’ minimal rights and beliefs),

or non existing (r = 0). Alternatively, one may describe the various reference points

according to the level of optimism embedded in claimants’ expectations. The case r = c is

thus maximally optimistic, r = F can be classified as neutral, r = m is mildly pessimistic,

and r = 0 is maximally pessimistic.
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Finally, one may consider the feasibility of the vector r and its implications on the re-

sulting allocations and on agents’ perceived gains and losses. If r = c, awards vectors will

inevitably generate some losses at the individual level; if instead r = 0 or r = m, awards

vectors that lead all claimants to perceive some gains are feasible; and both gains and

losses are possible when r = F. RDPs then imply that the welfare-maximizing allocations

are such that no agent receives an amount larger than ri when reference points cannot

be matched (unless one is willing to give up Boundedness, see Section 4.2), whereas each

agent receives at least ri when reference points are feasible.7

3.1 Claims as Reference Points

Let agents’ reference points be determined by their claims. Formally, let r = c. The use

of claims as reference points can be rationalized in different ways. For instance, agents

may not be fully aware that they are involved in a bankruptcy problem and that rationing

must thus necessarily take place. Alternatively, they may know that the endowment is

not enough to satisfy aggregate demand, yet they may think, perhaps erroneously, that

they have or deserve priority with respect to others. Claims are thus interpreted as an

expression of agents’ rights, needs, demands, or aspirations (Mariotti and Villar, 2005).

UTILITARIAN WELFARE ANALYSIS

Proposition 1 ranks the Proportional rule, the Constrained Equal Awards rule, the Con-

strained Equal Losses rule, and the Small Claims First rule on the basis of the level of util-

itarian welfare that they generate. The ranking holds because the rules differ on how they

allocate the aggregate loss across claimants. Since agents display diminishing marginal

sensitivity to losses, differences in the allocation of individual losses lead to differences in

7The baselines first operator proposed by Hougaard et al. (2012, 2013a, 2013b) also satisfies this property.
A baseline b is an exogenously given or endogenously generated vector that serves as reference point. An
operator is a mapping that associates with each rule another one. The baseline first operator maps rule R
into rule R′ where R′ tackles the problem (c, E) in two stages. If b is feasible, R′ first allocates bi to each
claimant and then allocates what remains of E according to R and the vector of adjusted claims c′ = c− b.
Thus, b is a lower bound for R′(c, E). If b is unfeasible, R′ first adjusts the claims vector to c′ = b and then
uses R to solve the problem (c′, E). Thus, b is an upper bound for R′(c, E). In my setting, reference points
do not necessarily affect award vectors, although, because of RDPs, they do affect claimants’ utility and
thus aggregate welfare.
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welfare.

PROPOSITION 1. The ranking Wut(SCF≺c) ≥ Wut(CEA) > Wut(P) > Wut(CEL) holds in

any bankruptcy problem (c, E) ∈ BN in which claimants have RDPs, r = c, and ci 6= cj for some

i, j ∈ N. In particular, the SCF≺c rule achieves maximal utilitarian welfare.

Since the Talmud rule is a combination of the CEA and the CEL rules and the lat-

ter achieves minimal welfare (see the proof of Proposition 1 in the Appendix), its per-

formance in terms of utilitarian welfare falls in the middle. In particular, Wut(T) ∈

[Wut(CEL), Wut(P)] when C
2 < E, whereas Wut(T) ∈ [Wut(P), Wut(CEA)] when C

2 ≥ E.

The following example illustrates all these results.

EXAMPLE 2. Let claimant i ∈ {1, 2} have utility function

u(Ri (·) | ri = ci) =

 Ri (·) +
√

Ri (·)− ci if Ri (·) ≥ ci

Ri (·)− 3
√
|Ri (·)− ci| if Ri (·) < ci,

and consider the bankruptcy problems: (a) c = (60, 90), E = 100; and (b) c = (60, 90), E = 70.

(a) Awards vectors are P(c, E) = (40, 60), CEA(c, E) = (50, 50), CEL(c, E) = T(c, E) =

(35, 65), and SCF≺c(c, E) = (60, 40). Therefore, Wut(SCF≺c) > Wut(CEA) > Wut(P) >

Wut(CEL) = Wut(T). See Figure 2(a).

(b) Awards vectors are P(c, E) = (28, 42), CEA(c, E) = (35, 35), CEL(c, E) = (20, 50),

T(c, E) = (30, 40), and SCF≺c(c, E) = (60, 10). Therefore, Wut(SCF≺c) > Wut(CEA) >

Wut(T) > Wut(P) > Wut(CEL). See Figure 2(b).

The SCF≺c rule thus dominates standard rules in terms of utilitarian welfare.8 Indeed,

claimants’ diminishing sensitivity to losses implies that, from a purely utilitarian point

of view, it is more efficient to largely disappoint a subset of agents rather than to slightly

disappoint all of them. By construction, the SCF≺c rule does exactly that: it matches the
8The dominance relation holds no matter if claimants are symmetric or asymmetric. The relation is

always strict with the only exception being the case in which there exist n − 1 claimants with ci < E/n
and one claimant j with cj > E−∑i 6=j ci, in which case SCF≺c(c, E) = CEA(c, E) and thus Wut(SCF≺c) =

Wut(CEA).
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(b) Wut with c = (60, 90), E = 70.

Figure 2: Utilitarian welfare when r = c.

claims of as many claimants as possible and disappoints the remaining ones as much as

possible.

The awards vector SCF≺c(c, E) may not be the sole allocation that maximizes welfare.9

For instance, when there are only two claimants and max {c1, c2} ≤ E then there always

exist two optimal allocations (see Figure 2(a)). However, when multiple solutions exist,

the SCF≺c rule selects a specific welfare-maximizing allocation.

PROPOSITION 2. Whenever there exist multiple awards vectors that maximize utilitarian wel-

fare, the SCF≺c rule selects the one with the lowest level of inequality.

The SCF≺c rule satisfies a number of standard axioms: Endowment Monotonicity, Scale

Invariance, Path Independence, Consistency, Composition, and Order Preservation in Losses.10

It fails Claims Monotonicity and Order Preservation in Gains. More importantly, it fails Equal

Treatment of Equals.

The analysis thus highlights a tension between the maximization of utilitarian welfare

and the equity of the resulting awards vector.11 As such, the SCF≺c rule may not be palat-

9When this is the case, any rule that mixes among different welfare-maximizing rules will also maximize
welfare. More in general, there exist additional welfare-maximizing rules that still belong to the family of
priority rules but order claimants differently in different problems.

10See Thomson (2015) for a detailed description of all the properties that a rule may or may not satisfy.
11This is evident when agents are symmetric: SCF≺c(c, E) =

(
ci, ..., E−∑j≺ci cj, 0, ..., 0

)
if ci = cj for all
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able to an arbitrator who wants to be impartial and treat symmetric claimants in the same

way. The SCF≺c rule is, however, procedurally fair (Bolton et al., 2005). In determining

the priority order, ties among agents with the same claims are broken randomly so that

the rule allocates the same expected award to identical claimants.12 Indeed, the SCF≺c rule

satisfies Ex-Ante Equal Treatment of Equals. Furthermore, there are situations in which an

arbitrator should indeed discriminate across agents, even though their claims are sym-

metric. For instance, there may be differences among agents that are not captured by

their claims but rather stem from individual characteristics (e.g., age, gender), exogenous

rights, or merits (Moulin, 2000). In these circumstances, the SCF≺c rule may be appro-

priate to guide the choice of an arbitrator who wants to minimize the aggregate level of

disappointment (i.e., the negative impact that perceived losses have on welfare).

The new axioms that I introduced in Section 2 allow for a characterization of the set of

rules that maximize utilitarian welfare (Proposition 3) and, specifically, of the SCF≺c rule

(Proposition 4). Example 3 then illustrates the bite of the axioms.

PROPOSITION 3. In any bankruptcy problem (c, E) ∈ BN in which claimants have RDPs and

r = c, a rule maximizes utilitarian welfare if and only if it satisfies Large Losers and Unique

Residual Loser.

PROPOSITION 4. In any bankruptcy problem (c, E) ∈ BN in which claimants have RDPs and

r = c, the SCF≺c rule is the only rule that satisfies Large Losers and Unique Residual Loser Is

The Last.

EXAMPLE 3. Consider the problem (c, E) with c = (10, 20, 40, 50, 60, 80) and E = 100. The

vector of Cumulative Aggregate Losses is given by L̃ = (0, 0, 0, 20, 80, 160). Large Losers thus

selects all the awards vectors such that (·, ·, ·, ·, 0, 0). Unique Residual Loser further refines the

set of awards vectors to R(c, E) = (10, 20, 40, 30, 0, 0), R′(c, E) = (10, 20, 20, 50, 0, 0), and

R′′(c, E) = (10, 0, 40, 50, 0, 0). These are the vectors that maximize utilitarian welfare with

Wut(·) = 100 + µ(−20) + µ(−60) + µ(−80). By substituting Unique Residual Loser with

i, j ∈ N.
12Analogously, one can also imagine a larger game in which the arbitrator chooses the specific order of

priority to use by uniformly randomizing among all the orders that respect the condition i ≺ j iff ci < cj.
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Unique Residual Loser Is The Last one gets the unique vector R(c, E) = (10, 20, 40, 30, 0, 0),

which is the SCF≺c solution.

MAXMIN WELFARE ANALYSIS

If the arbitrator adopts a maxmin welfare specification, the optimal allocation is the one

that maximizes the utility of the worst-off individual. With no constraints on the awards

vector, this allocation would then be the one that equalizes claimants’ utility. However,

Boundedness may sometimes make such an allocation unfeasible, so that it is the Minimal

Utility Gap rule (see (8)) the rule that maximizes maxmin welfare.13

PROPOSITION 5. The MUGu rule maximizes maxmin welfare in any bankruptcy problem

(c, E) ∈ BN in which claimants have RDPs and r = c.

The MUGu rule satisfies Equal Treatment of Equals (assuming that agents are identical

also in terms of utility functions), Endowment Monotonicity, Claims Monotonicity, and Con-

sistency. It fails Scale Invariance, Order Preservation in Gains, Order Preservation in Losses,

Path Independence, and Composition.

Although the awards vector MUGu(c, E) depends on the utility profile u, it is anyway

possible to infer some of its general features. Since claimants use their claims as reference

points, their utility is given by

u(MUGu
i (c, E)) = MUGu

i (c, E) + µ(MUGu
i (c, E)− ci),

so that utility depends positively on the amount of the endowment that the claimant re-

ceives, and negatively on his claim. The optimal allocation trades off these two effects

across agents. With respect to the egalitarian allocation, the MUGu rule thus assigns

more of the endowment to agents who have higher claims. The size of these distortions

increases with the relevance that perceived losses have on claimants’ overall utility. If

13When Boundedness indeed impedes the equalization of claimants’ utility, the MUGu rule may not be
the unique rule that maximizes welfare, as other awards vectors that also maximize the well-being of the
worst-off individual may exist. The MUGu rule then selects the allocation that generates the less unequal
utility profile.
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perceived losses have limited effects (i.e., the agent’s well-being is mainly determined by

the actual amount of the endowment that he receives from the arbitrator) then the CEA

rule, by allocating the endowment across agents as equally as possible, will outperform

other standard rules.14 If instead perceived losses have a large effect on individual util-

ities, distortions become sizable and can modify the ranking between the CEA rule and

the other rules. The following example illustrates these results.

EXAMPLE 4. Let claimant i ∈ {1, 2} have utility function

u(Ri (·) | ri = ci) =

 Ri (·) +
√

Ri (·)− ci if Ri (·) ≥ ci

Ri (·)− 3
√
|Ri (·)− ci| if Ri (·) < ci,

and consider the bankruptcy problems: (a) c = (60, 90), E = 100 and (b) c = (60, 90), E = 70.

(a) Awards vectors are P(c, E) = (40, 60), CEA(c, E) = (50, 50), CEL(c, E) = T(c, E) =

(35, 65), and MUGu(c, E) ≈ (46.5, 53.5). Thus, Wmm(MUGu) > Wmm(CEA) > Wmm(P) >

Wmm(CEL) = Wmm(T). See Figure 3(a).

(b) Awards vectors are P(c, E) = (28, 42), CEA(c, E) = (35, 35), CEL(c, E) = (20, 50),

T(c, E) = (30, 40), and MUGu(c, E) ≈ (32.1, 37.9). Therefore, Wmm(MUGu) > Wmm(T) >

Wmm(CEA) > Wmm(P) > Wmm(CEL).15 See Figure 3(b).

3.2 Zero Awards as Reference Point

Let agents have null reference points (r = 0). The setting is appropriate to describe all

those situations in which agents do have claims on the endowment E but still consider

them to be worthless, perhaps because they think that there is nothing to share (i.e., E =

0). Examples include the case of creditors who expect the bankrupted firm not to have

any asset left, or heirs who are not aware of the deceased’s net worth. Claimants are then

14With respect to the first-best solution (i.e., MUGu(c, E)), the CEA rule allocates less (more) of the en-
dowment to agents that have higher (lower) claims.

15As usual, T(c, E) is bounded by CEA(c, E) and CEL(c, E). However, because of the shape of function
Wmm, in problem (b) the T rule achieves higher welfare than the CEA and the CEL rules.
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Figure 3: Maxmin welfare when r = c.

pleasantly surprised whenever they receive an award Ri(c, E) > 0. The relevant part of

the µ(·) function is thus the domain of gains as each agent experiences a perceived gain

of size gi = Ri(c, E)− 0 ≥ 0.

UTILITARIAN AND MAXMIN WELFARE ANALYSIS

Since agents are now perfectly symmetric (they all have the same reference point) and

RDPs postulate diminishing marginal sensitivity to gains, the rules that select the most

egalitarian awards vectors achieve higher levels of welfare. Proposition 6 ranks the P,

CEA, and CEL rules. The CEA rule not only dominates the other rules, it actually imple-

ments the first-best solution under both welfare specifications.

PROPOSITION 6. The ranking Ww(CEA) > Ww(P) > Ww(CEL) with w ∈ {ut, mm} holds

in any bankruptcy problem (c, E) ∈ BN in which claimants have RDPs, r = 0, and ci 6= cj for

some i, j ∈ N. In particular, the CEA rule achieves maximal (utilitarian and maxmin) welfare.

The performance of the Talmud rule is such that Ww(T) ∈ [Ww(CEL), Ww(CEA)] for

any w ∈ {ut, mm}, with Ww(T) < Ww(P) if C
2 < E and Ww(T) ≥Ww(P) if C

2 ≥ E.
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3.3 Minimal Rights as Reference Points

Consider now the case in which agents’ reference points are determined by their minimal

rights. A claimant’s minimal right is given by what remains of the endowment (if any-

thing) after all other agents get their claims fully honored. The minimal right of agent i can

thus be interpreted as the minimum amount that i can reasonably expect to get (Thomson

and Yeh, 2008). Formally, let r = m where m = (m1, ..., mn) and mi = max
{

E−∑j 6=i cj, 0
}

for any i ∈ N. Clearly, if m = 0 the problem is analogous to the one analyzed in Section

3.2 and thus Proposition 6 applies. I thus focus on the situation in which the vector m is

such that mi > 0 for some i ∈ N.

UTILITARIAN WELFARE ANALYSIS

It is always possible for the arbitrator to implement an allocation that matches (and pos-

sibly trespasses) the minimal rights of all the claimants.16 Because of the properties of the

µ(·) function (losses loom larger than gains), such an allocation will be welfare superior

to any allocation in which Ri(c, E) < mi for some i ∈ N.

Every claimant i ∈ N will thus experience a perceived gain of size gi = Ri(c, E)−mi ≥

0. The diminishing marginal sensitivity to gains of µ(·) then implies that the optimal

utilitarian allocation is the Constrained Equal Gains rule (see (7)), since this is the rule that

minimizes the variance of the vector g = (R(c, E)−m). No clear ranking of the P, CEA,

CEL, and T rules instead exists.

PROPOSITION 7. The CEG≺c rule maximizes utilitarian welfare in any bankruptcy problem

(c, E) ∈ BN in which claimants have RDPs and r = m ≥ 0.

The CEG≺c rule satisfies Equal Treatment of Equals, Endowment Monotonicity, Claims

Monotonicity, Order Preservation in Gains, Order Preservation in Losses, Scale Invariance, and

Path Independence. It fails Consistency and Composition.

16To see this, assume first that all claimants have strictly positive minimal rights: mi > 0 for all i ∈ N.
Then, ∑i mi = nE − (n − 1)C such that E − ∑i mi = (n − 1)(C − E) ≥ 0. Therefore, E ≥ ∑i mi (which
obviously also holds if mi = 0 for some i ∈ N) and an awards vector R(c, E) ≥ m is thus feasible.
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MAXMIN WELFARE ANALYSIS

If the arbitrator follows maxmin welfare, the Minimal Utility Gap (MUGu) rule (see (8)) is

the optimal rule.

PROPOSITION 8. The MUGu rule maximizes maxmin welfare in any problem (c, E) ∈ BN in

which claimants have RDPs and r = m.

With respect to the egalitarian allocation, the MUGu rule allocates more of the endow-

ment to claimants who have higher minimal rights. The intuition is that these agents will

experience lower perceived gains and must thus be compensated with a relatively higher

allocation of the endowment. As it was the case in Section 3.1, if the relevance of per-

ceived gains is limited then the awards vector MUGu(c, E) will be close to the egalitarian

allocation. Thus, the CEA rule will outperform other standard rules. Different rankings

can instead emerge when the impact of perceived gains on claimants’ total utility is siz-

able.17

3.4 Expected Awards as Reference Points

As a last specification, I let claimants’ reference points be determined by their expectations

about what the arbitrator will do. Say that claimants hold (common) beliefs about final

outcomes, i.e., about the awards vector (analogously, the rule) that the arbitrator will

select. These beliefs are described by the probability distribution F defined over the set of

vectors V = {P(c, E), CEA(c, E), CEL(c, E), T(c, E)} and with density f .

Following Kőszegi and Rabin (2007), I let claimants’ reference points coincide with

their beliefs. Formally, r = F. A claimant’s evaluation of a given award Ri (c, E) ∈ V is

thus given by:

U(Ri (c, E) | r = F) =
∫

u(Ri (c, E) | vi) dF(v), (12)

where v ∈ V and u(Ri (c, E) | vi) is as defined in (9). The formulation thus considers how

17The situation resembles the one described in Section 3.1 for the case r = c (see Example 4 and Figure 3).
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Ri (c, E) compares with all the possible alternatives in V.18

I first consider the case of F being a degenerate probability distribution, so that f (v) =

1 for some v ∈ V. Claimants thus expect the arbitrator to implement a specific awards

vector, perhaps because the latter publicly announced the rule that he intends to use or

built a reputation for always using a certain rule. I then let F be a non-degenerate distri-

bution, so that claimants are indeed uncertain about what the arbitrator will do.19

UTILITARIAN WELFARE ANALYSIS

If agents expect the arbitrator to implement the award vector R(c, E), then it is indeed R

the rule that maximizes utilitarian welfare. The intuition is that if claimants have correct

expectations about what the arbitrator will do they will experience no perceived gains

or losses. Because of the properties of the µ(·) function, the award vector R(c, E) thus

dominates any alternative allocation that does not match claimants’ expectations. It is

thus welfare improving for the arbitrator to communicate (or to build a reputation for)

which rule he will adopt.

If the distribution F is non-degenerate results are less clear-cut. By continuity, generic

rule R ∈ {P, CEA, CEL, T} remains the optimal rule when claimants are reasonably con-

fident that the arbitrator will use it (i.e., f (R(c, E)) is high enough). When instead agents’

beliefs are more diffuse, the rule that maximizes welfare varies depending on the param-

eters of the problem. To see this, note that rules R and R′ generate utilitarian welfare:

Wut(R) = E + ∑i∈N

(∫
µ(Ri (c, E)− v) dF(v)

)
, (14)

18A claimant’s expected utility instead evaluates all possible outcomes in light of all possible reference
points (see again Kőszegi and Rabin, 2007). Since both random variables are distributed according to F,
expected utility is given by:

U(F | r = F) =
∫ ∫

u(Ri (c, E) | vi) dF(v) dF(Ri (c, E)). (13)

However, as aggregate welfare is determined by the actual utility that claimants experience, the arbitrator
uses agents’ ex-post evaluations (as defined in (12)) as inputs of the social welfare functions.

19Claimants thus face uncertainty about the arbitrator’s type. Habis and Herings (2013) study bankruptcy
problems that are instead stochastic in the value of the endowment and in the value of agents’ claims. Habis
and Herings (2013) associate to any stochastic bankruptcy problem a state-dependent transferable utility
game and then test the stability of standard rules to uncertainty. Interestingly, they also find that the CEA
rule is “superior” to other rules, as in their setting the CEA rule emerges as the only stable rule.
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Wut(R′) = E + ∑i∈N

(∫
µ(R′i (c, E)− v) dF(v)

)
, (15)

where v ∈ V and µ(·) = 0 for v = Ri(c, E) and v = R′i(c, E) respectively. Because of

the properties of the gain-loss function the last term in both equations is strictly nega-

tive. However, a clear ranking of Wut(R) and Wut(R′) does not exist as it depends on the

specific numerical values of the awards vectors in V and on the distribution of beliefs.

MAXMIN WELFARE ANALYSIS

Contrary to the previous section, when F is such that f (R(c, E)) = 1 for some R(c, E) ∈ V,

a deviation by the arbitrator from the announced policy R may increase welfare when this

takes the maxmin specification and the deviation improves the well-being of the worst-off

individual. As such, rule R does not necessarily maximize welfare when claimants expect

the arbitrator to use it.

However, standard rules satisfy Order Preservation in Gains. The order of awards thus

reflects the order of claims such that the worst-off individual is the agent with the lowest

claim. By construction, the CEA rule is the most generous one towards the claimant with

the lowest claim as it allocates him the award CEAi(c, E) = min{ci, E/n}. Then, if agents

expect the arbitrator to implement the CEA allocation, the CEA rule indeed maximizes

welfare. Any deviation to a different rule decreases the utility of the worst-off individual:

not only the alternative rule assigns to the agent less of the endowment, it also inflicts

him a loss as the actual amount that the agent gets falls short of his expectations.

PROPOSITION 9. The CEA rule maximizes maxmin welfare in any problem (c, E) ∈ BN in

which claimants have RDPs, r = F, and f (CEA(c, E)) = 1.

The result of Proposition 9 partly extends to the setting in which F is non-degenerate.

As said, the CEA rule is the rule that allocates the largest amount to the agent who gets the

least. Moreover, the actual realization of CEA(c, E) generates some additional pleasant

feelings of perceived gains as the agent compares CEAi(c, E) with all other (less favorable)

awards he could have got. As such, the CEA rule maximizes welfare for a wide range of

parameters.
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4. Extensions

In this section I discuss some additional topics of interest and extensions of the baseline

model.

4.1 Duality

How do standard duality results get affected when claimants have RDPs? To answer

this question I define as a Bankruptcy Problem with Reference Points a triplet (c, E, r). With

respect to the notation (c, E) that I used so far, the new notation highlights the role that

agents’ reference points may play in determining the awards vectors that different rules

select.20 I can then immediately define the notions of dual problems and dual rules.

DEFINITION 2. The dual of problem (c, E, r) is given by problem (c, L, c− r) and two rules R

and R∗ are said to be dual if R(c, E, r) = c− R∗(c, L, c− r).

The vector (c − r) thus collects agents’ Dual Reference Points. The interpretation is

that if in problem (c, E, r) a claimant expects to get ri units of the endowment E, then in

the dual problem (c, L, c − r) the agent expects to bear (ci − ri) units of the loss L. The

definition of dual rules embeds standard duality results. Agents’ reference points in fact

do not affect the awards vectors that classical rules select. Thus, the Proportional rule and

the Talmud rule are still self-dual, whereas the Constrained Equal Awards rule and the

Constrained Equal Losses rule remain dual of each other.

The analysis, however, showed that reference points influence the awards vectors that

some other rules select. When this is the case, Definition 2 leads to novel duality results.

For instance, when claimants use their claims as reference points, the dual of the Small

Claims First rule is the Large Claims First rule (see (6)).

EXAMPLE 5. Consider the bankruptcy problem (c, E, r) = ((30, 50, 80), 100, (30, 50, 80)). It

follows that SCF≺c(c, E, r) = (30, 50, 20) and LCF≺c(c, E, r) = (0, 20, 80).

20The notation resembles the notation (c, E, b) as introduced by Hougaard et al. (2012, 2013a, 2013b) in
the context of bankruptcy problems with baselines.
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In the dual problem (c, L, c− r) = ((30, 50, 80), 60, (0, 0, 0)) the two rules instead lead to the

awards vectors SCF≺c(c, L, c− r) = (30, 30, 0) and LCF≺c(c, L, c− r) = (0, 0, 60).

Similarly to the SCF≺c rule, the LCF≺c rule fails Equal Treatment of Equals but satisfies

its weaker version, Ex-Ante Equal Treatment of Equals. The LCF≺c rule also satisfies Endow-

ment Monotonicity, Claims Monotonicity, Order Preservation in Gains, Scale Invariance, Path

Independence, and Consistency. It fails Order Preservation in Losses and Composition. Duality,

however, has no implications on how a rule performs in terms of welfare. The SCF≺c rule

maximizes utilitarian welfare when r = c (see Proposition 1). Still, it is not true that the

LCF≺c rule achieves minimal welfare.21

4.2 No Boundedness

Boundedness may sometimes act as a constraint toward the goal of welfare maximization.

The (utilitarian or maxmin) social welfare function may in fact achieve a global maximum

outside of the domain defined by this condition. Example 6 illustrates the situation.22

EXAMPLE 6. Let claimant i ∈ {1, 2} have utility function

u(Ri (·) | ri = ci) =

 Ri (·) + k
√

Ri (·)− ci if Ri (·) ≥ ci

Ri (·)− 3
√
|Ri (·)− ci| if Ri (·) < ci,

and consider the problem c = (60, 90) and E = 100 in two different settings: (a) k = 1; and

(b) k = 2. In (a) the allocations that maximize utilitarian welfare are R∗ = (4, 96) and R∗∗ =

(66, 34) – see Figure 4(a) –, whereas in (b) the unique maximizing allocation is R∗ = (100, 0) –

see Figure 4(b).

Figure 4(a) shows that welfare gets maximized by two allocations that fail Boundedness,

as both of them assign to one of the claimant more than his claim. Figure 4(b) shows

that in some circumstances welfare is maximal when the arbitrator allocates the entire
21For instance, LCF≺c(c, E, r) = (10, 90) in Figure 2(a), whereas LCF≺c(c, E, r) = (0, 70) in Figure 2(b).
22In the example claimants use their claims as reference points and the arbitrator cares about utilitarian

welfare. In particular, problem (a) in Example 6 is analogous to problem (a) in Example 2. Similar examples
can be constructed for maxmin welfare and for other specifications of claimants’ reference points.
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Figure 4: Utilitarian welfare when r = c and Boundedness does not necessarily hold.

endowment to a single claimant, in this case claimant 1. However, all these allocations

assign to some of the claimants less than their minimal rights, m = (10, 40). As such,

it would be hard for the arbitrator to actually implement them as some agents would

perceive these solutions as extremely unfair. The compliance to allocate to each claimant

(at least) his minimal rights thus provides a welfare rationale for Boundedness.

4.3 Heterogeneous Gain-Loss Functions

The utility function defined in Section 2.2 postulates that agents have a symmetric gain-

loss function: µi(·) = µ(·) for any i ∈ N. Here I study the implications of assuming

heterogeneous gain-loss functions. I thus adopt the following utility specification:

ui(Ri (c, E) | ri) = Ri (c, E) + µi(Ri (c, E)− ri), (16)

where µi(·) is now idiosyncratic to agent i ∈ N but still obeys the general properties

defined in Section 2.2.

How different rules perform in terms of aggregate welfare continues to be driven by

agents’ diminishing sensitivity to gains and losses. However, the strength of these effects

now differs across claimants and this can affect some of the results. The implications
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on maxmin welfare are minimal. By construction, the MUGu rule (see (8)) maximizes

the well-being of the worst-off individual and thus achieves maximal welfare even when

claimants have different gain-loss functions. The only difference is that when claimants

have a null reference point (i.e., r = 0) the CEA rule (which in Section 3.2 coincided with

the MUGu rule) does not necessarily achieve the first-best solution and is thus dominated

by the MUGu rule.

The implications on utilitarian welfare are more substantial. Consider for instance the

case r = c so that award vectors fall in the domain of losses. Diminishing sensitivity still

leads to a strictly convex social welfare function. This in turn implies that award vectors

that heavily punish a subset of claimants achieve higher welfare with respect to more

egalitarian vectors. Heterogeneity in claimants’ gain-loss functions may affect the iden-

tity of the agents that should bear the loss. In the main analysis this set simply consisted

of those with the largest reference points. With heterogeneous gain-loss functions, it in-

stead comprises those who have the “best” combination of reference point and gain-loss

function, i.e., a combination that allows the arbitrator to attribute them large perceived

losses without their disappointment impacting on aggregate welfare that much. Depend-

ing on how these two effects combine, this new channel may either reinforce or overturn

the ranking of standard rules and the optimality of the SCF≺c rule.

The logic is similar when awards vectors fall in the domain of gains (the cases r = 0

and r = m). The social welfare function is strictly concave and diminishing sensitivity

makes egalitarian allocations achieve higher levels of welfare. The optimal awards vector,

however, is no longer the vector that makes claimants’ awards (the case r = 0, see Section

3.2) or perceived gains (the case r = m, see Section 3.3) as equal as possible, but rather the

vector that makes their marginal benefits as equal as possible.

5. Conclusions

I studied bankruptcy problems when claimants have reference-dependent preferences.

The setting is natural and leads to important welfare implications that I explored under

different specifications of claimants’ reference points and different measures of welfare.
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Within the class of standard rules that satisfy Equal Treatment of Equals, the Constrained

Equal Awards rule often outperforms other rules. Focusing on utilitarian welfare, this

happens when agents’ reference points coincide with their claims or with the zero awards

vector. Focusing on maxmin welfare, this happens when agents’ reference points coincide

with the zero awards vector or with their beliefs about the awards vector that the arbitra-

tor will implement. It also verifies when perceived losses have second order effects and

claimants use as reference points their claims or their minimal rights.

It is, however, often the case that none of the standard rules maximize welfare. I thus

introduced some new rules (the Small Claims First, Minimal Utility Gap, and Constrained

Equal Gains rules) that implement the first-best allocations, discussed their properties,

and highlighted a tension between the goal of welfare maximization and the equity of the

resulting awards vectors. The findings shed further light on the welfare implications of

reference-dependent preferences that can be relevant also beyond the realm of bankruptcy

problems.
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6. Appendix

Proof of Proposition 1
Let (c, E) ∈ BN and r = c. Generic rule R selects the awards vector R(c, E) and gener-
ates utilitarian welfare Wut(R) = E + ∑i µ(−li(R)), where li(R) = ci − Ri(c, E) ≥ 0 is
claimant i’s loss. Aggregate loss is L = ∑i li(R) = C − E and mean loss is l̄(R) = L

n for
any R. Therefore, rules only differ in how they allocate individual losses, holding fixed
aggregate loss and mean loss. Let R and R′ be two rules, l(R) and l (R′) be the vectors
of individual losses, and σ2(l(R)) and σ2 (l (R′)) be the variance of the elements of l(R)
and l (R′). Without loss of generality, let σ2(l(R)) > σ2 (l (R′)). Then l(R) is a mean-
preserving spread of l (R′) given that ∑i li(R) = ∑i li (R′) = L and l̄(R) = l̄ (R′) = L

n .
Because of the strict convexity of the µ(·) function in the domain of losses, it follows that
∑i µ (−li (R′)) < ∑i µ (−li(R)) < 0 and thus Wut(R) > Wut (R′). It is thus sufficient to
show that σ2(l(R)) > σ2 (l (R′)) to prove that Wut(R) > Wut (R′).
Consider now the P, CEA, and CEL rules. By construction, the CEL rule allocates L as
equally as possible. Given that CEL(c, E) 6= R(c, E) for R ∈ {P, CEA} whenever ci 6= cj

for some i, j ∈ N, it follows that l(CEL) 6= l(R). It then must be the case that σ2(l(R)) >
σ2(l(CEL)) for any R ∈ {P, CEA}. Therefore, min {Wut(P), Wut(CEA)} > Wut(CEL).
Now compare the CEA and the P rules. Assume first that the condition ci ≥ E

n for all i
holds. Then, CEA(c, E) =

(E
n , ..., E

n
)
. Therefore, l(CEA) is such that li(CEA)) = ci − E

n for
all i. As such, σ2(l(CEA)) = σ2(c). Instead, P(c, E) = λc with λ = E

C such that λ ∈ (0, 1).
Therefore, li(P) = (1− λ) ci for all i. It follows that σ2(l(P)) = (1− λ)2σ2(c) and thus
σ2(l(CEA)) > σ2(l(P)). If instead ci <

E
n for some i, then l(CEA) is such that li(CEA) = 0

for some i, whereas l(P) is such that li(P) > 0 for all i. The relation σ2(l(CEA)) >

σ2(l(P)) thus still holds. Therefore, Wut(CEA) > Wut(P). Since we already showed that
min {Wut(P), Wut(CEA)} > Wut(CEL), we can conclude that Wut(CEA) > Wut(P) >

Wut(CEL).
Now consider the problem maxl Wut = E + ∑i µ(−li) where l = (l1, ..., ln). If C = E

then l = (0, ..., 0) and the SCF≺c rule (as any other rule) trivially maximizes welfare. If in-
stead C > E then l is such that li > 0 (and thus µ(−li) < 0) for ξ(l) ∈ {1, ..., n} claimants.
Let R and R′ be two rules and denote with l(R) and l (R′) the vectors of individual losses.
Given that ∑i li(R) = ∑i∈N li (R′) = L, the diminishing marginal sensitivity to losses of
µ(·) implies that if ξ(l(R)) < ξ (l (R′)) then Wut (R) > Wut (R′). By construction the
SCF≺c rule minimizes ξ(l(R)) and thus maximizes utilitarian welfare. It follows that
Wut(SCF≺c) ≥Wut(CEA) > Wut(P) > Wut(CEL). �
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Proof of Proposition 2
With no loss of generality, let the problem (c, E) ∈ BN be such that ci ≤ ci+1 for any
i ∈ {1, ..., n− 1}. The SCF≺c rule selects the awards vector

SCF≺c(c, E) =

c1, c2, ...,

SCF≺c
k (c,E) with k∈{1,...,n}︷ ︸︸ ︷

E−
k−1

∑
j=1

cj , 0, ..., 0

 ,

where claimant k ∈ {1, ..., n} is such that ∑k−1
j=1 cj < E ≤ ∑k

j=1 cj. The awards vector can
be analogously expressed as

SCF≺c(c, E) =

(
c1, c2, ..., ck −

(
L−

n

∑
j=k+1

lj

)
, 0, ..., 0

)
,

where lj = cj − SCF≺c
j (c, E) ≥ 0 is claimant j’s loss. The SCF≺c rule thus achieves utili-

tarian welfare

Wut(SCF≺c) = E +

perceived loss of k︷ ︸︸ ︷
µ

(
−
(

L−
n

∑
j=k+1

lj

))
+

perceived losses of j>k︷ ︸︸ ︷
n

∑
j=k+1

µ
(
−cj
)

.

By Proposition 1, this is the maximum level of utilitarian welfare that any rule can achieve.
Consider now the awards vector

R̂(c, E) =

(
c1, ..., ck̂ −

(
L−

n

∑
j=k+1

lj

)
, ck̂+1, ..., ck, 0, ..., 0

)
,

with k̂ ∈ {1, ..., k− 1} and ck̂ −
(

L−∑n
j=k+1 lj

)
≥ 0. Rule R̂ achieves utilitarian welfare

Wut(R̂) = E +

perceived loss of k̂︷ ︸︸ ︷
µ

(
−
(

L−
n

∑
j=k+1

lj

))
+

perceived losses of j>k︷ ︸︸ ︷
n

∑
j=k+1

µ
(
−cj
)

.

Therefore, Wut(R̂) = Wut(SCF≺c) and rule R̂ also maximizes utilitarian welfare.23 To

compare the two rules in terms of inequality, let σ2 (R) = ∑n
i=1((Ri(c,E)−E/n))2

n be the vari-
ance of R(c, E). Then, the condition σ2 (SCF≺c) ≤ σ2 (R̂) holds if and only if

23The vector R̂(c, E) may not exist, i.e., there might be no agent k̂ such that ck̂ −
(

L−∑n
j=k+1 lj

)
≥ 0. If

this is the case, the SCF≺c rule is the unique rule that maximizes utilitarian welfare.
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(
ck̂ − E/n

)2
+

(
ck −

(
L−

n

∑
j=k+1

lj

)
− E/n

)2

≤

(
ck̂ −

(
L−

n

∑
j=k+1

lj

)
− E/n

)2

+ (ck − E/n)2 ,

since all other terms cancel out. This simplifies to

−2

(
L−

n

∑
j=k+1

lj

) (
ck − ck̂

)
≤ 0,

which is always true given that
(

L−∑n
j=k+1 lj

)
≥ 0 and ck ≥ ck̂. �

Proof of Proposition 3
I first show that if a rule R maximizes utilitarian welfare, then the awards vector R(c, E)
satisfies Large Losers and Unique Residual Loser. By the proof of Proposition 3, we know
that the rules that maximize utilitarian welfare are those that select an awards vector

R̂(c, E) =

(
c1, ..., ck̂ −

(
L−

n

∑
j=k+1

lj

)
, ck̂+1, ..., ck, 0, ..., 0

)
,

where claimant k ∈ {1, ..., n} is such that ∑k−1
j=1 cj < E ≤ ∑k

j=1 cj, and k̂ ∈ {1, ..., k} is such

that ck̂ −
(

L−∑n
j=k+1 lj

)
≥ 0. I now show that L̃i < ci for all i ∈ {1, .., k}, whereas L̃i ≥ ci

for all i ∈ {k + 1, .., n}, where L̃i is claimant i’s Cumulative Aggregate Loss (see Definition 1
in the main text).
Consider claimant k. Then, L̃k = ∑k

i=1 ci − E ≥ 0 because k is the first agent for which the
condition ∑k

i=1 ci ≥ E holds. However, L̃k < ck since L̃k − ck = ∑k−1
i=1 ci − E < 0. Since the

condition L̃i < ci holds for claimant k, it also holds for all i ∈ {1, .., k− 1}. Consider now
claimant k + 1. Then, L̃k+1 = ∑k+1

i=1 ci − E > 0 because ck+1 ≥ ck > 0. However, it is now
the case that L̃k+1 ≥ ck+1 since L̃k+1 − ck+1 = ∑k

i=1 ci − E = L̃k ≥ 0. Since the condition
L̃i ≥ ci holds for claimant k + 1, it also holds for all i ∈ {k + 2, .., n}.
The awards vector R̂(c, E) thus satisfies Large Losers, since it assigns R̂i(c, E) = 0 to each
claimant i ∈ {k + 1, ..., n} and these are the agents for which the condition L̃i ≥ ci holds.
The vector R̂(c, E) also satisfies Unique Residual Loser since claimant k ∈ {1, ..., n} is the
agent for which 0 < L̃k < ck and claimant k̂ ∈ {1, ..., k} is the agent that fulfills the
condition Rk̂ (c, E) = ck̂ − L̃k ≥ 0.
I now prove that if an awards vector R(c, E) satisfies Large Losers and Unique Residual
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Loser, then rule R maximizes utilitarian welfare. Consider the generic awards vector:

R(c, E) = (R1(c, E), ..., Rn(c, E)) ,

with Ri(c, E) ∈ [0, ci] for any i ∈ N. Large Losers implies:

R(c, E) = (R1(c, E), R2(c, E), ..., Rk(c, E), 0, ..., 0) ,

since claimants j ∈ {k + 1, ..., n} are those for which the condition L̃j ≥ cj holds. Unique
Residual Loser then implies that there exists a claimant k̂ ∈ {1, ..., k} such that:

R(c, E) =
(

R1(c, E), ..., ck̂ − L̃k, Rk̂+1(c, E), ..., Rk(c, E), 0, ..., 0
)

.

By construction, L̃k + ∑n
j=k+1 L̃j = L. Balance implies ∑k

i=1 Ri(c, E) = E. Boundedness then
necessarily leads to:

R(c, E) =

(
c1, ..., ck̂ −

(
L−

n

∑
j=k+1

lj

)
, ck̂+1, ..., ck, 0, ..., 0

)
,

which is a vector that maximizes utilitarian welfare (see the proof of Proposition 2). �

Proof of Proposition 4
It is immediate to verify that the SCF≺c rule satisfies Large Losers and Unique Residual Loser
Is The Last. I now prove that the converse also holds true. As in the proof of Proposition
3, Large Losers implies:

R(c, E) = (R1(c, E), R2(c, E), ..., Rk(c, E), 0, ..., 0) ,

where k ∈ {1, ..., n} is such that 0 < L̃k < ck. Unique Residual Loser Is The Last then implies:

R(c, E) =
(

R1(c, E), R2(c, E), ..., ck − L̃k, 0, ..., 0
)

.

Since L̃k + ∑n
j=k+1 L̃j = L, Boundedness and Balance then necessarily require:

R(c, E) =

(
c1, c2..., ck −

(
L−

n

∑
j=k+1

lj

)
, 0, ..., 0

)
,

and given that ck −
(

L−∑n
j=k+1 lj

)
= E−∑k−1

j=1 cj, the awards vector can be rewritten as

R(c, E) =

(
c1, c2, ..., E−

k−1

∑
j=1

cj, 0, ..., 0

)
,
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which is the SCF≺c solution. �

Proof of Proposition 5
The utility function of any claimant i ∈ N is continuous and strictly increasing in Ri(c, E)
and the awards vector satisfies Balance. Then, if feasible, maxmin welfare gets maximized
by the vector R(c, E) such that min{u(Ri(c, E) | ri = ci)}i∈N = max{u(Ri(c, E) | ri =

ci)}i∈N. If instead Boundedness makes such a vector unfeasible, then maxmin welfare gets
maximized by any vector R(c, E) with Rj(c, E) = cj where agent j ∈ N is the agent for
which u(cj | rj = cj) = cj = min{u(Ri(c, E) | ri = ci)}i∈N. By construction, the MUGu

rule selects these award vectors in both cases and thus it always maximizes welfare. �

Proof of Proposition 6
Let (c, E) ∈ BN and r = 0. Generic rule R generates utilitarian welfare Wut(R) = E +

∑i µ(gi(R)), where gi(R) = Ri(c, E) − 0 = Ri(c, E) is claimant i’s perceived gain. It
follows that gi(R) ≥ 0 for all i ∈ N and ∑i gi(R) = E.
Because of the strict concavity of µ(·) in the domain of gains, the lower is the variance of
g(R) = (R1(c, E), ..., Rn(c, E)), the higher is the welfare that R generates. Since the CEA
rule allocates E as equally as possible, the awards vector CEA(c, E) maximizes welfare
and thus Wut(CEA) > max {Wut(P), Wut(CEL)} whenever ci 6= cj for some i, j ∈ N.
Now compare the P and the CEL rules. Assume first that ci ≥ L

n for all i ∈ N. Then,
gi(P) = λci (with λ ∈ (0, 1)) and gi(CEL) = ci− L

n for all i. Thus, σ2(g(P)) < σ2(g(CEL))
since σ2(g(P)) = λ2σ2(c) whereas σ2(g(CEL)) = σ2(c). If instead ci <

L
n for some i ∈ N,

then gi(CEL) = 0 for some i ∈ N whereas gi(P) > 0 for all i ∈ N such that the relation
σ2(g(P)) < σ2(g(CEL)) still holds. Therefore, Wut(CEA) > Wut(P) > Wut(CEL). �

Proof of Proposition 7
Let (c, E) ∈ BN and r = m. Then Wut(R) = E + ∑i µ(gi(R)) where gi(R) = Ri(c, E)−
mi ≥ 0 for all i ∈ N. The strict concavity of µ(·) in the domain of gains implies that
the lower is the variance of g(R), the higher is Wut(R). The CEG≺c rule implements the
awards vector

CEG≺c(c, E) =
(
c1, ..., cj−1, mj + ξ, ..., mn + ξ

)
,

where ξ =
E−∑i�c j mi−∑i≺c j CEG≺c

i
n−j+1 and claimant j ∈ {1, ..., n} is the first agent for which the

condition mj + ξ ≤ cj holds. Therefore, the vector of perceived gains is

g(CEG≺c) =
(
c1 −m1, ..., cj−1 −mj−1, ξ, ...ξ

)
,

such that gi(CEG≺c) < ξ for all i ∈ {1, ..., j − 1} and the last n − j + 1 terms are equal.
Boundedness implies that there are no awards vector R(c, E) such that gi(R) > gi(CEG≺c)
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for some i ∈ {1, ..., j − 1}. Balance implies that if an awards vector R(c, E) is such that
gi(R) < ξ for some i ∈ {j, ..., n} then it must be the case that gk(R) > ξ for some k ∈
{j, ..., n} with k 6= i. Therefore, σ2(g(CEG≺c)) < σ2(g(R)) for any R 6= CEG≺c so that the
CEG≺c rule maximizes utilitarian welfare. �

Proof of Proposition 8
The proof replicates the proof of Proposition 5 with the condition ri = mi instead of
ri = ci. �

Proof of Proposition 9
Let (c, E) ∈ BN. Let r = F and F be such that f (CEA(c, E)) = 1. Define agent 1 as an
agent for which c1 ≤ ci for any i ∈ N. Then, Wmm(CEA) = CEA1(c, E) since, for any
i ∈ N, u(CEAi(C, E) | (CEAi(c, E)) = CEAi(C, E) and CEA1(c, E) ≤ CEAi(c, E) because
the CEA rule satisfies the property of Order Preservation in Gains. Any rule R 6= CEA
leads instead to Wmm(R) = R1(c, E) + µ(R1(c, E) − CEA1(c, E)). Given that R1(c, E) ≤
CEA1(c, E) and µ(R1(c, E)− (CEA(c, E)) ≤ 0, it follows that Wmm(CEA) ≥ Wmm(R) for
any R 6= CEA. �
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