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Abstract 

 

Rheumatoid Arthritis (RA) is a complex systemic autoimmune disease in which various cell 

types are involved. Among them, neutrophils have been recognized as important players in 

theonset and the progression of RA. The pathogenic role of neutrophils in RA lies in the 

alteration of several processes, including increased cell survival and migratory capacity, 

abnormal inflammatory activity, elevated oxidative stress and an exacerbated release of 

neutrophil extracellular traps. Through these mechanisms, neutrophils can activate other 

immune cells, thus perpetuating inflammation and leading to the destruction of the cartilage and 

bone of the affected joint. 

Given the considerablecontribution of neutrophils to the pathophysiology of RA, several studies 

have attempted to clarify the effects of various therapeutic agents on this subtype of leukocyte. 

To date, recent studies have envisaged the role of new molecules on the pathogenic profile 

ofneutrophils in RA, which could represent novel targets in future therapies. 

In this review, we aim to review the pathogenic role of neutrophils in RA, the effect of 

conventional treatments and biologic therapies, and the new, potential targets of neutrophil-

derived molecules for the treatment of RA. 
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1. Introduction 

Rheumatoid Arthritis (RA) is a systemic autoimmune disease mainly characterized by chronic 

joint inflammation, which can promote progressive cartilage and bone damage, thereby leading 

to increased morbidity and disability. 

RA is a multifactorial disorder involving impaired function of both the innate and adaptive 

immune systems. Moreover, its exact pathogenesis is still unclear. 

RA affectsthe joints directly, since the synovium is the first site of the inflammatory cascade. 

Synovitis occurs when leukocytes infiltrate the synovial compartment, causingthe interaction of 

synoviocytes with the immune cells [1]. These interactions promote the release of several 

cytokines, including tumor necrosis factor-α (TNF-α), and interleukin (IL-) -1,IL-6, IL-17 and IL-

23 which directly affect the cartilage [2]. In addition, synoviocytes can activate 

osteoclastogenesisthereby promoting the release of IL-10, of transforming growth factor β 

(TGF-β), and of IL-6 by osteoclasts, which can act as antigen-presenting cells and activate 

CD4+ and CD8+ T cells, thus perpetuating the inflammatory process [3,4].  

Among the various cell types involved in the pathogenesis of RA, neutrophils have been 

acknowledged as important players in the onset and progression of the disease. In fact, 

neutrophil depletion or functional inhibition have been shown to reduce inflammation and bone 

damage in experimental models of arthritis [5]. In this review, we describe the pathogenic role of 

neutrophils in RA, and discuss the effects of various therapies, both conventional and biological 

agents, on their inflammatory profile and functions. Then we show a number of neutrophil-

derived molecules that might serve as novel, potential targets for therapeutic agents.  

 

2. Pathogenic role of neutrophils in RA 

The pathogenic role of neutrophils in RA involves an alteration of various processes, including 

increased migratory capacity and cell survival, abnormal inflammatory activity, enhanced 

oxidative stress processes, and an exacerbated release of neutrophil extracellular traps (NETs) 

(Figure 1). 
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2.1 Migration 

Several molecules are involved in the massive recruitment of neutrophils into RA joints, 

including P-selectin, E-selectin, CXC chemokine receptor 2 (CXCR2), IL-6, CXCL5 and integrin 

2b among others [36].  

In addition, the effect of the leukotriene (LTB4) receptor BLT1 and the chemokine receptors 

CCR1 and CCR2 in favoring neutrophil infiltration is well known. At inflammatory sites, 

neutrophils can modify their receptor patterns by altering their expression of chemokine 

receptors and promoting migration into the joint [6]. Moreover, RA neutrophils can induce their 

own recruitment through the increased synthesis of LTB4 and IL1- [7].  

In addition, the Cyr61 pro-inflammatory factor is a protein produced by fibroblast-like 

synoviocytes, that has been shown to promote neutrophil infiltration through the up-regulation of 

IL-8 in fibroblasts via the AKT, JNK, ERK1/2 and NF-kB signaling pathways. Treating collagen-

induced arthritis (CIA) mice with anti-Cyr61 has been found to reduce disease activity [8]. 

2.2 Cell survival 

Activated RA neutrophils, especially infiltrated neutrophils, are characterized by a delayed 

apoptotic process thus increasing the inflammatory status and promoting tissue damage [9]. 

Neutrophils from synovial fluid have higher levels of the anti-apoptotic protein, Mcl-1 [10]. In 

addition, a number of studies have reported the role of various molecules and conditions which 

can regulate neutrophilsurvival, including leukotriene B4, granulocyte-colony stimulating factor 

(G-CSF), granulocyte macrophage-colony stimulating factor (GM-CSF), interferon-γ (IFN-γ), IL-

1β, IL-15, TNF-α, and the local oxygen tensions within the joint [9][11][12]. 

 

2.3 Inflammation 

Upon activation by the autoantibodies and inflammatory mediators that are present in RA, 

neutrophils release diverse cytokines, chemokines, prostaglandins (PGs) and leukotrienes, 
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leading to an increase in their inflammatory profile. A recent study showed that anti-citrullinated 

protein antibodies (ACPAs) can act as direct inductors of the inflammatory and pro-oxidative 

status in circulating neutrophils, which is demonstrated by the increased levels of reactive 

oxygen species (ROS) and the overexpression of MIP-1, MCP-1, IL-8 and IL-23 after in vitro 

treatment of healthy neutrophils with ACPAs isolated from RA patients [13]. Resident 

neutrophils at synovial sites strongly express IL-17b, therefore enhancingthe effects of other 

cytokines, such as TNF-α, on neutrophil inflammatory function and immune cell migration [14]. 

IL-22, which seems to promote neutrophil migration through the production of IL-1 in the 

affected joints, also playsan important role in the pathogenesis of RA since high levels of this 

molecule have been found in the synovial tissue ofantigen-induced arthritis (AIA) mice at initial 

stages [15]. Additionally, IL-20 has recently been described as a pro-inflammatory cytokine with 

a pathogenic role in RA, and its increased expression in macrophages, neutrophils, synovial 

fibroblasts and lymphocytes has been correlated with Disease Activity Score 28 (DAS28) and 

ACPAs positivity [16].Finally, peripheral and synovial neutrophils from RA patients can produce 

the B lymphocyte stimulator (BLyS) protein upon TNF-α activation. BLyS is a protein that 

regulates several features of B-cell physiology, and it has been suggested that it may be akey 

player in the development of RA since BLyS levels are elevated in RA patients. It has been 

hypothesized that the release of BLyS from neutrophils can lead to B cell autoimmunity in RA 

[17]. 

2.4 The pathogenic intracellular components of neutrophils 

A number of the intracellular components of neutrophils have been directly linked to the 

pathophysiology of RA. Thus, myeloperoxidase (MPO) is the most abundant cytotoxic enzyme 

found in the azurophilic granules of neutrophils. MPO plays a well-known role in immune 

responses, since itparticipates in the activation of T-cells and the elimination of pathogens 

[18].Abnormal MPO activity has been reported in several inflammatory conditions, including RA. 

In fact, depleting MPO in a mouse model with arthritis reducesthe severity of the disease [5,19]. 

In the RA context, high levels of MPO are present in both plasma and synovia, mostly due to 

the greatergeneration of NETs [20,21].MPO triggersthe production of inflammatory cytokines 

and can interact with the endothelial cells, thereby increasing endothelial permeability and 
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activating dendritic cells, both of which are mediated by the consumption of nitric oxide (NO) 

and the generation of nitrite anion (NO2
-) [34,35]. Neutrophil elastase (NE) is a serine-

proteinase enzyme which plays an important role in RA as it is specific for many substrates 

such as elastin, collagen, and fibronectin [24]. NE can activate proteinase-activated receptors 

(PARs), leading to the inflammatory response and contributing to the destruction of cartilage 

[25,26]. A recent study published by Muleyand and colleagues demonstrated that NE can 

promote damage in the knee joints of mice via PAR2-dependent and activating p44/42 MAPK 

pathways [27]. Moreover, the enzymatic complex nicotinamide adenine dinucleotide phosphate 

(NADPH) oxidase is able to cause cellular stress, and its presence has been linked to 

inflammatory and autoimmune conditions [28]. RA synovial neutrophils can show increased 

NADPH oxidase activity by phosphorylation of p47phox (NCF1 or neutrophil cytosolic factor 1). 

This enzyme may release superoxide anion (O2-) thus contributing to excessive ROS 

concentrations, amplifying inflammatory reactions and promoting tissue damage [29]. 

2.5 Neutrophil extra-cellular traps 

NETsare extracellular fibrous networks composed of nuclear and granular proteins which 

protrude from the membrane of activated neutrophils [30]. NETs are found in a wide range of 

pathologic conditions, and they have recently been implicated in the pathogenesis of many 

autoimmune and rheumatic diseases, including RA [31,32]. Several studies have demonstrated 

a high degree of spontaneous NETs formation in circulating and synovial RA neutrophils, 

showing a strong correlation between free circulating DNA levels and inflammatory markers 

such as C-reactive protein (CRP), erythrocyte sedimentation rate, ACPAs titers, and levels of IL-

17 [33–35]. In addition, animpairment in the NETs degradation machinery is found in RA 

patients mainly due to a decrease in the DNase activity [35,36].  

It has been demonstrated that the formation of NETs can accelerate disease progression 

[33,37]. Specifically, the release of NETs can contribute to the generation of ACPAs, leading to 

the production of inflammatory molecules such as IL-6, IL-8, chemokines and adhesion proteins 

[33,38]. ACPAs can also promote the release of peptidylarginine deiminases (PADIs) from 

neutrophils, which in turn can catalyze the modification of arginine to citrulline, creating a vicious 

circle of autoantibody production [39]. Moreover, NETs contain an important deposit of PADIs 
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that can be accumulated in the synovial fluid thus promoting the formation of citrullinated 

products in RA [40]. Furthermore, RA patients have elevated levels of low-density granulocytes 

(LDGs) in the peripheral blood, a newly discovered subset of cells with a phenotype of CD14dim 

and CD15bright that are more prone to suffer NETosis [41,42].  

Given this evidence, NETs have been proposed as apotential novel biomarker since the plasma 

levels of cell-free nucleosomes show high specificity (92%) and sensitivity (91%) for the 

diagnosis of RA [35] and, even more interestingly, for the diagnosis of “early arthritis” [34].  

3. Effect of therapies on neutrophils in the RA setting  

The outcome and management of RA have greatly improved over the last 30 years due to the 

availability of a wide range of new therapeutic tools, combined with the systematic use of non-

pharmacological approaches, earlier diagnosis, and close follow-up. Nowadays, the treatment 

of RA aims to achieve long-lasting remission or at least low levels of disease activity.  

The pharmacological management of RA includesthe cautious use of glucocorticoids (GCs), the 

use of non-steroidal anti-inflammatory drugs (NSAIDs), and of disease-modifying anti-rheumatic 

drugs (DMARDs), including conventional synthetic DMARDs (csDMARDs), biological 

(bDMARDs), and targeted synthetic DMARDs (tsDMARDs) [43–45]. Considering the 

relevantcontribution of neutrophils in the pathophysiology of RA, several studies have tried to 

clarify at least the indirect effects of the various therapeutic agents on this subtype of leukocyte 

(Table 1).  

3.1 NSAIDs 

NSAIDs are effective -chooseat relieving pain and improving stiffness in RA patients, but they 

are not able to prevent structural damage of the cartilage and bone. The main mechanism of 

action of all NSAIDs is the inhibition of prostaglandins (PGs) production from arachidonic acid 

(AA) through the blockade of the two main isoforms of cyclooxygenase (COX), COX-1 and 

COX-2 [46]. Interestingly, recent studies have brought to light the existence of various non-PGs-

mediated anti-inflammatory effects [47-49].  

NSAIDs have the ability to inhibit the adhesion process of neutrophils, which represents a 

crucial step in the inflammatory cascade. In detail, a number of NSAIDs are able to interfere 

with the function of adhesion molecules such as L-selectin, both in vitro and in vivo, or through 

the modulation of the function of integrin CD11b/CD18 [50][51][52][53] [9], resulting in the 
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reduction of the adhesive properties of these cells, and consequently increasing the anti-

inflammatory effects of this class of therapeutic agents.In addition, NSAIDs prevent 

neutrophilchemotaxis and migration [55], inhibit degranulation [56], decrease the levels of 

elastase and production [57], and promote neutrophil apoptosis [58].  

A recent study by Lapponi and colleagues further demonstrated that treating neutrophils with 

acetylsalicylic acid inhibits NETs formation through the phosphorylation of NF-κB [59].  

However, several aspects of the effects of NSAIDs on neutrophils remain unclear,especially in 

the RA setting. 

3.2 Glucocorticoids 

Despite the serious concerns regarding the long-term safety of GCs, their use proved to be 

effective at low doses in the early stages of RA, as a short-term therapy when added to 

csDMARDs, and as an essential therapeutic option in case of disease flares.  

Several studies have provided insight into the effectsof GCs on immune cells, and specifically 

on neutrophils. In general, GCs increase the number of circulating neutrophils mainly through 

the mobilization of the marginated pool [61], inhibit chemotaxis [62][63][64], decrease the 

adherence capacity [65][66][67] even if some studies have shown contradictory results [68], 

delayapoptosis in circulating neutrophils [69][70], and reducethe production of ROS 

[71][72],degranulation, and  the release of inflammatory mediators.  

Very little is known about the relationship between the use of GCs and NETs formation, but a 

recent study showed no effect of treatment with dexamethasone on cultured neutrophils isolated 

from healthy donors (HDs) stimulated either with phorbol 12-myristate 13-acetate (PMA) or 

withTNF-α [59].  

In the specific RA setting, low doses of prednisone donot seem to have a significant impact on 

the circulating neutrophil count, however methylprednisolone decreases their adhesion capacity 

and impairs trafficking into inflamed joints [73][74][75].  

Despite the widespread use of GCs in the treatment of RA, their mechanism of action on 

neutrophils is not fully understood, mainly due to the high complexity of the physio-pathologic 

role exerted by this subtype of leukocyte in the disease.   

3.3 Leflunomide 
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Leflunomide (LFN) is one of the main therapeutic agents recommended by both the American 

College Of Rheumatology in 2008 and by the European League Against Rheumatism (EULAR) 

for the treatment of RA [76][77].  

LFN is a synthetic isoxazole-derivative oral pro-drug with multiple therapeutic 

possibilities[78][79][80][81]. Its active metabolite A-771726 (teriflunomide) inhibits the pyrimidine 

synthesis and several cellular protein kinases, resulting in an immunomodulatory effect. 

However, the exact underlying mechanism of action is largely unknown.  

LFN mainly acts by decreasing the activity and proliferation of lymphocytes both in in vitro and 

in in vivo studies [82][83], and lowering the concentration of inflammatory mediators blocking 

the production of ROS from leukocytes [84]. To date, the specific effect of LFN on neutrophils 

has been poorly investigated. To our knowledge, only one previous study reported that LFN is 

able to reduce neutrophil adhesion and oxidative burst, in addition to a rapid effect on neutrophil 

chemotaxis, resulting in decreased migration of these cells into the affected joints [85].  

3.4 Methotrexate 

Methotrexate (MTX) is considered a cornerstoneand the main starting therapy for RA.  

Growing evidencesuggests that one of the main mechanisms by which MTX exerts its anti-

inflammatory effect is by increasing the level of adenosine through the up-regulation of its 

receptors on neutrophils. This leads to a decrease in the production of cytokines, especially 

TNF-α and IL-1β, thesuppression of NF-kB activation, and to a diminished accumulation of 

leukocytes at inflamed sites in in vivo experiments [86][87][88].  

As described for LFN, previous in vitro, ex vivo and in vivo studies demonstrated that MTX 

significantly inhibits neutrophil chemotaxis in RA patients through a reversible mechanism 

[89][90], which leads to a decrease in cell trafficking into the inflamed joints. 

MTX has proven to be effective in inducing apoptosis of circulating neutrophils from polyarthritis 

patients with less than 6 weeks of disease duration [91], as both circulating and synovial 

neutrophils show a delay in spontaneous apoptosis in RA patients when compared with HDs 

[92][93].Using an adjuvant induced arhthritis (AIA) animal model, Novaes and co-workers 

proved that a low dose of MTX (0.25 mg/kg) decreases the intra-articular levels of PG-E2 and 

thromboxane B2 ascompared to the saline-treated controls [94]. 
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Moreover, Richard and colleagues demonstrated that MTX is effective in decreasing, ex vivo, 

the synthesis of LTB4 by neutrophils from patients with active RA before 6-8-weeks of disease 

duration with a parallel inhibition of the 5-lipoxygenase (5-LO) [95].   

 

3.5 Anti-TNF-α  

The prominent role of TNF-α in the pathogenesis and progression of RA is well established. 

This evidence has led to the development of a new class of bDMARDs which represent a 

breakthrough in the treatment of this disease.Despite their heterogeneity, the main mechanism 

of action of these drugs relies on the ability to block the biologic activity of TNF-α. As previously 

described, this cytokine has pleiotropic effects on inflammation and neutrophil functions, such 

as priming the neutrophil respiratory burst, increasing the expression levels of other cytokines, 

chemokines and adhesion molecules, and stimulating ROS production [96][97][98][99].  

Indeed, TNF-α-blockade agents proved to be effective in deactivating the proinflammatory 

cytokine cascade with chemotactic function, such as IL-8 and IL-33, decreasing the expression 

of adhesion molecules, and lowering cell-trafficking into inflamed joints in the specific setting of 

RA [100][101]. Clinical responders to TNF-α-inhibitors display a decrease in the expression of 

adhesion molecules and chemotaxis, along with a reduction in the concentration of chemokines 

[102]. In line with these results, the beneficial effect of anti-TNF-α agents on the 

neutrophilinflammatory profile was further confirmed in 2005 when Wittkowski and co-workers 

demonstrated that RA patients who were clinical responders to infliximab showed a decrease in 

neutrophil activation during synovial inflammation. This was reflected by the lower serum 

concentration and synovial expression of the pro-inflammatory calcium-binding protein 

S100A12, which is part of the group of damage-associated molecular pattern molecules [103].  

A subsequent study proved that a fully human anti-TNF-α monoclonal antibody canactually 

decrease leukocyte influx from the peripheral blood into inflamed joints, but ex vivo chemotaxis 

and superoxide production did not decrease significantly after anti-TNF-α administration [104].  

Moreover, a few studies have provided novel insight intothe modulation of NETs formation in 

RA patients in response to treatment. In detail, a recent paper by Pérez-Sánchez et al. 

demonstrated that along with an improvement in disease activity and a decrease of 
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inflammatory mediators, after 6 months of therapy with infliximab RA patients showed a parallel 

reduction in the generation of NETs [35].  

In conclusion, several studies have shown the numerous effects of anti-TNF-α agents on 

neutrophil functions, even if they do not represent the specific target of this group of monoclonal 

antibodies.Indeed, the precise effect of TNF-α-inhibitors has not yet been fully elucidated and 

further studies are needed in order to assess the mechanisms through which these therapeutic 

agents can modulate neutrophilfunctions and change their inflammatory profile.  

3.6 Anti-IL6 receptor 

Tocilizumab (TCZ) is a humanized monoclonal antibody of the IgG1 subclass that targets the 

soluble and membrane-bound IL-6 receptor (IL-6R), therefore inhibiting the proinflammatory 

cascade driven by IL-6. It proved to be effective in controlling disease activity and radiography-

provenprogression of RA patients, as monotherapy and in combination with other 

csDMARDs [67]. 

IL-6 is a pro-inflammatory cytokine that is implicated in a wide range of chronic conditions, and it 

shows an extensive range of effects in the RA context associated both with systemic and local 

manifestations of the disease. Together with T-cells and macrophages, neutrophils (especially 

when they are activated) release IL-6R, resulting in trans-signaling in other immune cells that do 

not express this receptor [68]. Despite this evidence, the specific effect of TCZ on neutrophil 

functions has been poorly investigated. 

A number of clinical trials showed that TCZ in vivo can cause acute but transient dose-

dependent neutropenia [69], which might represent a marker of response to treatment [70],but it 

does not seem to be associated with the occurrence of severe infections [71]. 

The mechanism through which TCZ is able to induce a decrease in neutrophil count is unclear, 

and several studies have provided contradictory results regarding the ability of the IL-6 blockade 

to induce apoptosis [72][73][74][75]. 

TCZ has also been found to reduce ROS generation and phagocytosis under hypoxic conditions 

as can be observed in inflamed joints. Furthermore, the IL-6 blockade modulates the neutrophil 

production of cytokines and chemokines in a divergent way based on the presence or absence 

of hypoxia, which induces neutrophil recruitment in inflamed joints without enhancing their 

survival [76]. 
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TCZ also proved to be effective in inhibiting NETs formation in parallel with clinical and 

serological improvements in RA patients [66] [77]. 

3.7 Rituximab 

Rituximab (RTX) was licensed for the treatment of RA patients who are refractory/intolerant to at 

least one TNF-α-inhibitor, and thereafter it was found to be effective in bDMARDs-naïve 

patients and in theearly stages of the disease [71] [72]. RTX is a chimeric anti-CD20 

monoclonal antibody which, in vivo, mainly induces an acute but transient B-cell depletion in the 

blood and partially in the bone marrow and synovial tissue [73] [74] [75]. A retrospective 

analysis performed by Tesfa and colleagues demonstrated that the incidence of neutropenia in 

autoimmune diseases seems to be less frequent than in onco-hematologic disorders, since it is 

3% for RA [77]. One of the possible mechanisms through which RTX causes this dangerous 

adverse effect is the indirect arrest of the maturation at the promyelocytic stage of 

granulopoiesis [78]. Other possible mechanisms have been suggested, including an immune-

mediated effect, a delayed efflux of neutrophils from the bone marrow due to the change in 

homeostasis.  

3.8 Tofacitinib 

Tofacitinib is an oral Janus-Kinase Inhibitor (JAK3/JAK1) that has been approved for useboth as 

monotherapy or in combination with csDMARDs for the treatment of RA patients with moderate 

to severe disease activity who are refractory to DMARDs [105]. The mechanism of action of 

Tofacitinib is different compared to other DMARDs as it works at the intracellular level. 

Tofacitinib is a reversible, competitive inhibitor of phosphorylation and therefore of the activation 

of JAK, and it is known to exert its effect directly on T-cellproliferation and functions. On the 

contrary, the specific effect of Tofacitinib on neutrophils has been poorly investigated. A limited 

number of clinical trials have reported that Tofacitinib can moderately affect the absolute 

neutrophilcount [114, 116, 117] in a dose-dependent way, usually remaining in the range of 

normality, reaching a plateau within 3 months of therapy and then recovering after drug 

discontinuation [109]. This phenomenon may represent the consequence of the 

overallmodulation of inflammation, and therefore can be useful for monitoring the therapeutic 

response to the treatment. More recently, a study by Mitchell and colleagues tried to better 

define the direct effect of Tofacitinib on neutrophil functions. As a matter of fact, a number of 
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studies have reported an increased rate of infections in RA patients treated with this agent 

compared to patients treated with anti-TNF-α or placebo [110][111][108][112]. 

Tofacitinibinhibited the anti-apoptotic effect of GM-CSF and IFN-γ on neutrophils from HDs. In 

addition, after incubating Tofacitinib for 20 hours at thehighest concentration (200 ng/ml) with 

neutrophils from RA patients stimulated with GM-CSF, this therapeutic agent significantly 

inhibited apoptosis. Tofacitinib was also found to significantly prevent ex-vivorandom migration 

of the neutrophils isolated from RA patients. No inhibitory effect of Tofacitinib on ROS 

production by neutrophils of RA patients was reported[113]. In summary, recent findings 

showed the effects of the JAK-inhibitor, Tofacitinib on neutrophil functions and number, which is 

the result of a complex system of interactions between immune-cells, chemokines and 

cytokines.  

4. Neutrophil-derived molecules as emerging therapies for RA 

Despite the great progress that has been made in the last decades on the treatment and 

management of RA, especially with the introduction of biological agents, only two thirds of RA 

patients achieve a satisfactory response. The development of new drugs whose mechanisms of 

action not relyonly on TNF-α inhibition and autoantibody production and which could fillthe lack 

of effectiveness of the standard therapeutic regimens, represents an urgent,unmet clinical need 

and it must be addressed.   

Therefore, neutrophils and their functions represent appealing potential targets for future 

therapeutic strategies (Table 2). 

4.1 Leukotriene B4 

Leukotrienes are a family of lipid mediators that play a key role in the pathogenesis of 

inflammation. They are synthesized in the leukocytes from arachidonic acid (AA) via the action 

of 5-lipoxygenase (5-LO). Among them, leukotriene B4 (LTB4) is recognized as the most potent 

chemoattractant of leukocytes. High levels of LTB4 are present in the serum of RA patients thus 

leading to neutrophil activation and recruitment at inflammation sites,correlating with the 

severity of the disease [114][115][116]. 

The importance of LTB4 in arthritis has been demonstrated by the fact that genetic ablation of 

its receptor BLT1 is able to prevent the arthritis in collagen induced arthritis (CIA) mice 
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[117][118]. In addition, antagonists of the LTB4 receptor can reduce clinical symptoms and 

histological changes in murine CIA [119][120].  

Several LO inhibitors are being tested as potential candidates for effective therapies in RA. To 

date, only one drug, named zileuton, has been testedfor clinical use [121]. However, its efficacy 

and medical acceptance have been compromised by a suboptimal pharmacokinetic and 

pharmacodynamic profile [122] and possible hepatotoxicity [123]. Thus, there is a need for a 

more potent, better tolerated, non-hepatotoxic 5-LO inhibitor that could maximize the benefits of 

inhibiting the leukotriene pathway and provide greater efficacy than what was obtained with 

zileuton and leukotriene receptor antagonists. In this sense, PF-41911834 is a novel 5-LO 

inhibitor [124] which was found to reduce arthritis-associated pain and inflammation in a rat 

model [124] through the TNF-α pathway [125]. 

Other inhibitors of LO such as esculetin are being studied in preclinical models, and have 

shownthat esculetin is a powerful chemotactic agent influencing neutrophil migration and 

reducing neutrophil infiltration in animal models of inflammation [126]. Esculetin may effectively 

modulate the LTB4 levels in adjuvant-induced arthritis in rats and thus may be considered an 

interesting drug candidate for patients with RA [127]. 

4.2 CC chemokine receptor type 2  

CC chemokine receptor type 2 (CCR2) is a chemokine receptor expressed on monocytes, T 

and B cells and immature dendritic cells. Under physiological conditions it is not present on the 

surface of neutrophils, but its expression is induced in inflammatory conditions. 

Several data from human and animal models support the role of CCR2 in the development of 

RA. Thus, CCR2 genetic polymorphisms modulate the risk of developing arthritis in patients with 

psoriasis [128]. In mice, the administration of anti–CCL2 monoclonal antibodies before disease 

onset in an MRL/lpr model was found to prevent the onset of arthritis [129]. Thereafter, the 

blockade of CCR2 ameliorated disease activity during theonset of CIA thus supporting the 

therapeutic benefits in the early stages of RA [130]. 

RA neutrophils, both peripheral and infiltrated, highly express CCR2) [131][6]. In addition, 

modulation of the expression of CCR2 by pharmacological blockade inhibited the migration of 

these cells into the inflamed tissue in mice, demonstrating a novel chemokine responsiveness 

at inflammation sites[6].Likewise, high concentrations of CCL2, a CCR2 ligand, are found in the 
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synovial fluid of RA patients [132], and neutrophils from RA patients express high amounts of 

this molecule [13].In RA patients, CCR2 inhibitors (anti-CCL2 monoclonal antibody) failed to 

show any beneficial effects in patients with established disease during phase II trials [133][134]. 

This lack of efficacy might be explained by the impairment of immunosuppressive mechanisms 

related to the role of CCR2 on regulatory T-cells. All the studies that have been performed so 

far show the importance of CCR2 for recruiting neutrophils into the joints during the acute phase 

of RA. These findings could reinforce the possibility that CCR2 inhibitors might be tested as a 

potential adjuvant therapy in RA patients at early stages and in case of disease flare. 

4.3 CXCR1/CXCR2 

CXCR1/CXCR2 are chemokine receptors that mediate neutrophil accumulation and activation 

at the site of inflammation and infection. CXCR1 is specific for CXCL8, whereas CXCR2 also 

interacts with CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, and CXCL7 [135].It has been shown 

that CXCL1 and CXCL5 mediate LTB4-dependent recruitment of neutrophils to inflamed joints 

in AIA mice [136]. Moreover, levels of CXCL1 and CXCL5 are elevated in the synovial fluid of 

RA patients indicating its role in inflammatory joint disease.  

The relevance of the function of these chemokinereceptors in RA was first shown when 

treatment with DF2162, a novel, orally-active, non-competitive allosteric inhibitor of CXCR1 and 

CXCR2, significantly ameliorated AIA in rats. The effects of this inhibitor were considered by the 

authors to be quantitatively and qualitatively similar to those observed after anti-TNFα antibody 

treatment [137].  In addition, this treatment greatly decreased the influx of neutrophils into the 

knee joint and the periarticular tissue after antigen challenge in immunized mice [138].  

Targeting neutrophil migration with the CXCR2/CXCR1 antagonist, SCH563705, led to a dose-

dependent decrease in clinical disease assessment scores, paw thickness measurements and 

clearly reduced inflammation,and bone and cartilage degradation[139].To date, no clinical trials 

have been developed. 

4.4 Interleukins 

4.4.1 IFNLR1-IL28RA 

IFN-1, -2, and -3 (or IL-29, IL-28A, and IL-28B, respectively) are members of the class II 

cytokine family evolutionarily related to both IL-10 and type I IFNs (IFN-α/β), and collectively 

referred to as type III IFNs. Recently, it has been shown that neutrophils can express elevated 
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levels of IFN-receptor 1 (IFNLR1)-IL-28 receptor (IL-28RA), a specific receptor of IL-28, also 

known as IFN-2 [140].  

Despite the use of a different receptor complex, IFNLR1–IL28RA activates similar signaling 

pathways to thoseof the type I IFN receptor [141] [142]. IFN-s have immunomodulatory effects, 

such as proliferation of regulatory T-cells [143] and down-regulation of Th2 cell-mediated 

inflammation [144]. 

Of note, synovial neutrophils from the joints of CIA mice display high levels of IL-28RA 

mRNA[140]. Treatment with IL-28A reduced the levels of LTB4 receptor in neutrophils, 

restricting their recruitment into the joint and inhibiting the local neutrophil migratory capacity in 

mice. In addition, it reduced the levels of IL-1 producedproduced by neutrophils, but not byother 

cell types, suggesting the specificity of IL-28A to target neutrophils. 

IL-1 secretion by neutrophils is believed to be critical for the amplification of the arthritic process 

through the induction of neutrophil-active chemokines by synovial cells [118].  These data 

indicate that agonistsof IFNLR1-IL-28 can have potential as novel therapeutics, since treatment 

with IL-28A specifically targetsIL-1-expressing neutrophils, inhibiting both their migratory 

capacity to the joint and amplification of the inflammation. 

4.4.2 Interleukin-33 

IL-33 (or IL1F11) is the most recently described cytokine of the IL-1 family, which includes 11 

members classified as IL-1F1 to IL-1F11[145][146]. It is a chromatin-associated nuclear 

cytokine that ismainly produced by fibroblast-like synoviocytes and macrophages. IL-33 

transduces its signal through the heterodimeric receptor, the α-chain IL-33R2 and the β-chain 

IL-1RAcP4, promoting the activation of a number of intracellular kinases such as MAP kinases 

p38, ERK1/2, JNK1/2 and the transcription factor NF-kB[146][147]. 

The relevant role of the IL-33-IL-33R pathway in RA has been highlighted by the fact that 

soluble IL-33R was found to be a potent inhibitor of arthritis development in CIA mice [148]. IL-

33 contributes to the development of local inflammation in a murine model of RA via 

IFN [149]. 

The specific role of IL-33 on neutrophils has recently been observed using various models of 

arthritis. Thus, IL-33R knockdown mice showed reduced neutrophil migration to the knee joint.  

In addition, local and systemic treatment of AIA mice with sIL-33R (the decoy receptor of IL-33) 
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inhibited neutrophil migration. In vitro experiments performed on purified neutrophils 

demonstrated the direct effect of IL-33 in inducing neutrophil chemotaxis [150]. The authors 

suggested that IL-33 can promote the influx of neutrophils to the site of antigen challenge by 

two mechanisms:an indirect one, through the activation of synoviocytes and macrophages to 

produce TNF-α, IL-1β, CXCL1 and CCL3 which induce the recruitment of neutrophils to the 

joint, and the other by directly attracting neutrophils to the site of inflammation [150].  

Thereafter, it was demonstrated that IL-33 activity could be increased by neutrophil proteases 

that are released during the inflammation process. Thus, through in vivo and in vitro studies, it 

was shown that serine proteases cathepsin G and elastase could cleave full-length IL-33, 

generating mature forms with higher activity in human activated neutrophils [151]. 

Thus, targeting IL-33 may represent a novel strategy against RA by inhibiting neutrophil 

accumulation. 

4.4.3 Peptidylarginine deiminase 4 

PADI genes encode PAD proteins that convert arginine residues to citrulline. Specifically, PADI 

type 4 (PADI4) plays a major role in epigenetic regulation via the citrullination of histones and 

transcription factors. It is mainly expressed in myeloid lineage cells, including neutrophils, and 

its expression is inducible under inflammatory conditions. The multifaceted role of PADI4 in the 

immune function inducing cytokine production, activating pro-inflammatory Th1 and Th17 

responses and inhibiting Th2 functions and promoting the maturation of dendritic cells is well-

known [152][153][154][155]. Moreover, it was shown that knockout PADI4 mice had a reduced 

number of neutrophils and monocytes, while the number of B- or T-cells remained unchanged, 

suggesting that PADI4 controls the survival of myeloid lineage cells[156].  

The increased and uncontrolled production of citrullinated antigens results in the development 

of ACPAs in RA. Thus, PADI4 has been identified as an RA susceptibility gene in a large-scale, 

case-control association study using a gene based genome-wide association study method 

[157]. The relevance of the PADI4 gene on arthritis was demonstrated by a recent study which 

showed that PADI4 knockdown CIA mice had a lower clinical disease activity score [158].   

With regard toneutrophils, PADI4 may also influence the immune response and inflammation by 

triggering the release of NETs. Thus, PADI activity is critical for NETs formation [159][160]. As 

NETs formation is a process that is exacerbated in RA, PADI4 is released extracellularly by the 
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activated neutrophils in the joints thereby increasing cell activation and cytokine production, and 

eventually perpetuating inflammation [161].  

In recent preclinical studies, the treatment of CIA mice using a selective, small molecule 

inhibitor of PADI4 (GSK199) prevented the worsening of clinical and histological disease 

severity[162]. PAD4 inhibitors further represent an anti-NET target that may be an effective, 

novel therapy for the treatment of RA. To date, clinical trials have not been conducted in RA 

patients. 

 

Take-home messages 

1- Neutrophils are not only involved in the innate immune response, but they are also key 

playersin the pathogenesis and progression of RA, perpetuating systemic inflammation 

thus leading to joint destruction and patient disability. 

2- To date, there is no treatment that specifically targets neutrophils, but the current 

standard therapeutic approaches show an indirect beneficial effect on their pathogenic 

profile. Although limited, previous studies showed that NSAIDs and csDMARDs are 

able to prevent neutrophil chemotaxis and migration, decrease degranulation and ROS 

production, while the main ability of bDMARDsis tolowerthe production of inflammatory 

mediators and prevent the release of NETs. Further studies focused on the specific 

effect of these therapies, especially bDMARDs, on RA neutrophils are necessary. 

3- There are a number of novel molecules involved in several neutrophil functions, 

including cell-activation and trafficking, such as LTB4, chemokine receptors (CCR2, 

CXCR1/CXCR2), interleukins (IFNLR1-IL28RA, IL-33) and PADI4, which represent 

relevant potential targets for future treatment of RA.  
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Figure legends 

Figure 1. Pathogenic mechanisms of neutrophils in RA. In the RA setting, neutrophils express 

diverse chemokine receptors (BLT1, CXCR2, CCR1 and CCR2), release high levels of a 

number of inflammatory mediators (TNF-, IL-1, IL-6, IL-8, IL-17β, IL-20, IL-22, LTB4 and 

CXCL5) and express anti-apoptotic proteins (Mcl-1, G-CSF, GM-CSF, IFNand IL-15). These 

molecules act by increasing the migratory capacity of neutrophils, which results in the massive 

infiltration to the synovium, and prolonging cellsurvival within the joint. Under TNF- activation, 

RA neutrophils can also express BLyS which is a potent activator of B-lymphocytes. The 

inflammatory cytokines alongside the autoantibodies are also able to induce NETosis in 

neutrophils (N) and LDGs at both the systemic and synovial levels. NETs containing numerous 

enzymes (MPO, NE and NADPH oxidase) and citrullinated proteins, as well as PADs, represent 

a source of new autoantibodygeneration that will activate B-cells to produce new 

autoantibodies. In addition, NETs can induce the expression of IL-8 and IL-6 in fibroblasts. 

Activated fibroblasts in RA jointsalso produce Cyr61, that mediates the expression of IL-8. 

These cytokines, in turncan induce the infiltration of neutrophils to the synovium and the 

formations of NETs, thus promoting bone damage. 

RA indicates rheumatoid arthritis; TNF-, tumor necrosis factor α; IL-1, interleukin 1β; IL-6, 

interleukin 6; IL-8, interleukin 8; IL-17, interleukin 17β; IL-20, interleukin 20; IL-22, interleukin 

22; LTB4, leukotriene B4; CXCL5, chemokine (C-X-C motif) ligand 5; BLT1, leukotriene B4 

receptor; CXCR2, IL8 receptor B; CCR1, CC chemokine receptor type 1; CCR2,  CC chemokine 

receptor type 2; BLyS,  B-lymphocyte stimulator; LDGs, low-density granulocytes; Mcl-1, 

Induced myeloid leukemia cell differentiation protein; G-CSF,  granulocyte-colony stimulating 

factor; GM-CSF, Granulocyte-Macrophage colony stimulating factor, IFN interferon ; IL-15,  
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interleukin 15; ACPAs,  anti-citrullinated protein antigens antibodies; RF, rheumatoid factor; 

NADPH, reduced nicotine adenine dinucleotide phosphate; ROS,  reactive oxygen species; 

PAD, peptidyl arginine deiminase; NE, neutrophil elastase; MPO, myeloperoxidase; NETs, 

neutrophil extracellular traps. 

 
 


