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Abstract  36 

Particulate matter (PM) is considered an atmospheric pollutant that mostly affects human health. The 37 

finest fractions of PM (PM2.5 or less) play a major role in causing chronic diseases.  38 

The aim of this study was to investigate the genotoxic effects of PM0.5 collected in five Italian towns 39 

using different bioassays. The role of chemical composition on the genotoxicity induced was also 40 

evaluated. 41 

The present study was included in the multicentre MAPEC_LIFE project, which aimed to evaluate 42 

the associations between air pollution exposure and early biological effects in Italian children. 43 

PM10 samples were collected in 2 seasons (winter and spring) using a high-volume multistage cascade 44 

impactor. The results showed that PM0.5 represents a very high proportion of PM10 (range 10-63%). 45 

PM0.5 organic extracts were chemically analysed (PAHs, nitro-PAHs) and tested by the comet assay 46 

(A549 and BEAS-2B cells), MN test (A549 cells) and Ames test on Salmonella strains (TA100, 47 

TA98, TA98NR and YG1021).   48 

The highest concentrations of PAHs and nitro-PAHs in PM0.5 were observed in the Torino, Brescia 49 

and Pisa samples in winter. The Ames test showed low mutagenic activity. The highest net 50 

revertants/m3 were observed in the Torino and Brescia samples (winter), and the mutagenic effect 51 

was associated with PM0.5 (p<0.01), PAH and nitro-PAH (p<0.05) concentrations. The YG1021 strain 52 

showed the highest sensitivity to PM0.5 samples. No genotoxic effect of PM0.5 extracts was observed 53 

using A549 cells except for some samples in winter (comet assay), while BEAS-2B cells showed 54 

light DNA damage in the Torino, Brescia and Pisa samples in winter, highlighting the higher 55 

sensitivity of BEAS-2B cells, which was consistent with the Ames test (p<0.01).  56 

The results obtained showed that it is important to further investigate the finest fractions of PM, which 57 

represent a relevant percentage of PM10, taking into account the chemical composition and the 58 

biological effects induced. 59 

 60 

 61 
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1. Introduction  70 

Atmospheric pollution poses a serious threat to human health and airborne particulate matter (PM) is 71 

one of the major contributors (Anderson et al. 2012; Cohen et al., 2017; WHO, 2016). 72 

The causal relationship between exposure to airborne PM2.5 and acute and/or chronic diseases is well 73 

reported in literature (EEA, 2017; Kim et al., 2015; Pope and Dockery, 2006). Moreover, the 74 

International Agency for Research on Cancer (IARC) has recently classified air pollution and fine 75 

PM as carcinogenic to humans (1 Group) (IARC, 2016).  76 

In recent years, researcher interest in the health effects of smaller particles, the sub-micrometer 77 

particles (fine), including ultrafine particles (UFPs, PM0.1), has considerably increased as these 78 

fractions are the most abundant particulate pollutants in urban and industrial areas (Keogh et al., 2009; 79 

Morawska et al., 2008; Schilirò et al., 2016). The greater toxicity of UFPs is related to their potential 80 

to be retained in the pulmonary alveoli, to diffuse into the blood stream and reach other organs 81 

(Nemmar et al., 2002; Peters et al., 2006) and to their greater capacity to adsorb chemicals (Wichmann 82 

et al., 2009).  83 

The current air quality guidelines are based on the mass concentration of particles of a given 84 

aerodynamic diameter (PM10 or PM2.5), but it is clear that the structure and composition of PM can 85 

also influence the biological effects (Landkocz et al., 2017. Moreover, the chemical composition of 86 

PM varies with sources of emissions, season and region of sampling and photochemical-87 

meteorological conditions (Perrone et al., 2010; Pey et al., 2010; Pongpiachan et al., 2015; Topinka 88 

et al., 2015).  89 

The effects of exposure to mixtures of chemicals, such as PM, are difficult to evaluate because the 90 

different chemical compounds can interact with synergistic, antagonistic or additive effects (USEPA, 91 

2008). For a more complete evaluation of the health risk of human exposure, short-term bioassays 92 

were used to study the biological effects of chemical pollutants in urban PM (Ceretti et al., 2015; de 93 

Brito et al., 2013; Dumax-Vorzet et al., 2015; Lemos et al., 2012; Lepers et al., 2014; Palacio et al., 94 

2016; Traversi et al., 2015). PM1, quasi-ultrafine particles (PM0.5; PM0.4 and PM0.3) and UFPs (PM0.1) 95 

have been less extensively studied than fine (PM2.5) and coarse (PM10-2.5) particles. Besides the 96 

increasing epidemiological data on particles with a diameter less than 1 µm, there are still few studies 97 

on the biological effects of these fractions. Some studies have shown that UFPs are able to induce 98 

oxidative stress (Gasparotto et al., 2013), inflammation (Muller et al., 2010), apoptosis and necrosis 99 

(Sydlik et al., 2006). Moreover, cytotoxic effects (Borgie et al., 2015), release of cytokine/interleukin 100 

release (Longhin et al., 2013) and dioxin-like activity (Wichmann et al., 2009) have also been reported 101 

for quasi-ultrafine particles. However, only a few recent studies investigated the genotoxic or 102 

mutagenic effects of these finest fractions, and only some endpoints were taken into account with a 103 
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limited number of short-term assays (Landkocz et al., 2017; Topinka et al., 2015; Velali et al., 2016). 104 

Then, further studies are needed to better understand their mechanisms of action of UFPs and their 105 

involvement in the occurrence of many diseases. 106 

The present study was included in the MAPEC_LIFE project (LIFE12 ENV/IT/000614), a 107 

multicentre Italian cohort study funded by the European Union’s LIFE+ Programme that aims to 108 

evaluate the associations between air pollution (including PM) and early biological effects in 6-8-109 

year-old Italian children. Details of the study design have been described elsewhere (Feretti et al., 110 

2014). Briefly, oral mucosa cells of 1149 children recruited from first grade schools were collected 111 

to evaluate the frequency of MN and DNA damage. Some results on subject characteristics, diet in 112 

particular, and frequency of MN in their buccal cells have already been published (Bagordo et al., 113 

2017; Grassi et al., 2016; Villarini et al., 2018; Zani et al., 2016). The study was conducted in different 114 

schools of five Italian towns (Figure S1) characterized by different levels of air pollution. In 115 

particular, Torino and Brescia are located in the Padana Plain in the north of Italy (one of the most 116 

polluted areas in Europe), Pisa and Perugia in central Italy (medium-low pollution area) and Lecce in 117 

southern Italy (low pollution area) (EEA, 2017; ISPRA, 2015). To evaluate children’s exposure to 118 

urban air pollution, PM0.5 was collected near each school on the same days as the biological sampling.  119 

The purpose of this work was to investigate the in vitro mutagenic and genotoxic effects of PM0.5 120 

collected in the MAPEC_LIFE study using different short-time bioassays (Ames test, comet assay, 121 

micronucleus test). The spatial and seasonal variations of the genotoxicity induced by the organic 122 

extracts of PM0.5 were evaluated, and the role of chemical composition on the mutagenic and 123 

genotoxic effect of PM0.5 samples was also investigated. 124 

 125 

2. Materials and methods 126 

 127 

2.1 Airborne particulate sampling and gravimetric analysis 128 

PM10 fractions were collected in 18 sites located in the five towns involved in the MAPEC_LIFE 129 

study. The description of the sampling sites is reported in Figure S1. The sampling was performed in 130 

3 consecutive 24-hour periods, for a total of 72 sampling hours, using a Sierra-Andersen high-volume 131 

multistage cascade impactor (AirFlow PM10-HVS sampler, AMS Analitica Srl, Pesaro, Italy) at a 132 

flow of 1160 L/min. The particle size fractions collected were as follows: 10.0-7.2, 7.2-3.0, 3.0-1.5, 133 

1.5-0.95, 0.95-0.49, and <0.49 µm (PM0.5). All filters were pre- and post-conditioned and weighed at 134 

controlled temperature and humidity, as previously reported (Schilirò et al., 2016). 135 
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The samplings were performed during two seasons, winter (November 2014/March 2015-winter I) 136 

and late spring (April/June 2015). Air sampling was repeated the following winter (November 137 

2015/January 2016-winter II) only in Brescia. 138 

 139 

2.2 Extraction of PM0.5 components 140 

After gravimetric analyses, the PM0.5 filters (three for each site) were pooled to obtain a total of 40 141 

samples. Particles were Soxhlet extracted with 200 mL of n-hexane-acetone (4:1) for 6 h to recover 142 

organic extractable compounds. Each extract was separated into different aliquots destined for 143 

chemical analysis and biological tests. The organic extracts were concentrated by rotary evaporation. 144 

For the biological tests, the samples were re-suspended in dimethyl sulfoxide (DMSO) (2 m3/µL).  145 

 146 

2.3 Chemical analysis of PM0.5  organic extracts 147 

PAH and nitro-PAH concentrations in the organic extracts of PM0.5 were evaluated according to the 148 

EPA TO-134 1999 method. An Agilent 7690B gas chromatograph (Agilent Technologies Italia SPA) 149 

with a Rxi-17 Sil MS column (Restek) (30 m x 0.25 mm x 0.25 µm) and an Agilent 5977A mass 150 

spectrometer (single ion monitoring) were used for PAH analysis.  151 

The following PAHs were analysed: naphthalene, acenaphthylene, acenaphtene, fluorene, 152 

phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, 153 

benzo(b)fluoranthene, benzo(j)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, benzo(e)pyrene, 154 

perylene, dibenz(a,h)acridine, dibenz(a,j)acridine, indeno(1,2,3-cd)pyrene, dibenzo(a,h)anthracene, 155 

benzo(g,h,i)perylene, dibenzo(a,e)pyrene, dibenzo(a,h)pyrene, dibenzo(a,i)pyrene, 156 

dibenzo(a,l)pyrene, 7Hbenzo(c)fluorene, 5-methylchrysene, 7,12-dimethylbenz(a)anthracene, 3-157 

methylcholanthrene, anthanthrene, dibenz(a,e)fluoranthene, 7Hdibenzo(c,g)carbazole. 158 

Nitro-PAH concentration was evaluated by means of GC-MS-TQ8030 (Shimadzu Europe GMBH) 159 

(multiple reaction monitoring mode) using a HP5-MS ultrainert column (Agilent) (30 m x 0.25 mm 160 

x 0.25 µm). 161 

The nitro-PAHs analysed were 1-nitronaphthalene, 2-nitronaphthalene, 5-nitroacenaphtene, 2-162 

nitrofluorene, 9-nitroanthracene, 1-nitropyrene, and 6-nitrochrysene.  163 

The information about the QA/QC was reported in Supporting Information. 164 

The comparison of the retention times and mass spectra of the different compounds with those of 165 

reference standards was used to their identification.  166 

 167 

2.4 Salmonella/microsome (Ames) test on PM0.5  organic extracts 168 
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The Ames test (Maron and Ames, 1983) was used to evaluate the mutagenicity of PM0.5 organic 169 

extracts collected in all towns. The organic extracts were tested in duplicate at increasing doses (10, 170 

25 and 50 m3 of air equivalent/plate) with different S. typhimurium strains (TA100, TA98, TA98NR, 171 

YG1021). The TA100 and TA98 strains specifically detect base-substitution and frameshift mutations 172 

(Claxton et al., 2004). The YG1021 strain shows efficient detection of mutagenic nitroarenes and the 173 

TA98NR strain shows a reduced mutagenicity, proportional to the amount of nitroarenes present in 174 

the extract (Traversi et al., 2011).  175 

The Ames test was performed with and without metabolic activation (±S9) to detect direct and 176 

indirect mutagens (Ceretti et al., 2015). The test was described in detail in Supporting Information. 177 

In each assay session, positive controls (10 µg/plate of 2-nitrofluorene for TA98, TA98NR and 178 

YG1021 and 10 µg/plate of sodium azide for TA100 without S9; 20 µg/plate of 2-aminofluorene for 179 

all strains with S9) and negative controls (DMSO and extracts of filter blanks) were included. The 180 

Ames test was performed by the same laboratory on all samples. 181 

 182 

2.5 Cell culture 183 

Two cell lines were used to evaluate the genotoxic potential of PM extracts. The human A549 cells 184 

(non-small cell lung cancer) from Interlab Cell Line Collection (Genova, IT) was used as a model for 185 

human epithelial lung cells. Human BEAS-2B cells (ATCC CRL-9609; non-cancerous cells isolated 186 

from bronchial epithelium) was used as surrogates for toxicological studies in bronchial mucosa 187 

(Courcot et al., 2012).  A459 cells and BEAS-2B cell lines were cultured as previously reported 188 

(Bonetta et al. 2009; Zhang et al., 2017). The metabolic characteristics of the cells were described in 189 

detail in Supporting Information. 190 

 191 

2.6 Comet assay on PM0.5  organic extracts 192 

The genotoxicity of PM0.5 organic extracts collected in all towns in the different seasons was 193 

evaluated using the comet test on A549 cells. The samples of winter seasons (winter I and II) were 194 

also tested with BEAS-2B cell lines. The cells were cultured for 18 h in 6-well plates; then they were 195 

exposed (4 h at 37°C) to increasing doses (from 10 to 50 m3 of air equivalent/mL) of PM0.5 organic 196 

extracts.  Cells untreated, treated with DMSO (2.5%) and treated with blank filter extracts were used 197 

as negative controls. After exposure, cell viability was assessed using the staining with trypan blue. 198 

The comet assay was performed under alkaline conditions (pH > 13) (Tice et al., 2000) as described 199 

in detail in Supporting Information. The mean percentage of DNA in the comet tail (tail intensity, TI) 200 

was used as DNA damage metric. The results obtained from control cells (DMSO) were compared 201 

with those from cells exposed to PM extracts. Statistical analyses were performed by ANOVA 202 
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combined with a post hoc Dunnett’s test (SPSS Statistics 24.0) (IBM Corporation, Armork, NY, 203 

USA). Statistically significant differences were reported with a p value ≤0.05. The Fpg-modified 204 

comet assay was carried out as previously reported (Bonetta et al., 2009). The comet assay was 205 

performed by the same laboratory on all samples. 206 

 207 

2.7 Cytokinesis-block MN (CBMN) test on PM0.5  organic extracts 208 

The CBMN test was used to evaluate the genotoxicity of PM0.5 organic extracts collected in the five 209 

towns. The test was performed in accordance with the original method by Fenech (2000) as described 210 

in detail in Supporting Information. A549 cells were treated (24 h at 37°C with 5% CO2) with 211 

increasing doses (10, 25 and 50 m3 of air equivalent/mL) of the PM0.5 organic extracts, then the 212 

viability was assessed by the trypan blue dye exclusion technique.  Cells treated with DMSO (0.5%) 213 

and blank filter extracts were used as negative controls. Ethyl methanesulfonate (EMS) was used as 214 

a positive control (1.5 and 2 mM EMS). The results are expressed as the mean MN/1000 cells from 215 

two independent evaluations. Data from cell cultures exposed to control (DMSO) were compared 216 

with those from PM extracts. Statistical analyses were performed by ANOVA combined with a post 217 

hoc Dunnett’s test (SPSS Statistics 24.0) (IBM Corporation, Armork, NY, USA). The MN test was 218 

performed by the same laboratory on all samples. 219 

 220 

2.8 Statistical analysis 221 

The statistical analysis was performed with the statistical package IBM SPSS Statistics 24.0 (IBM 222 

Corporation, Armork, NY, USA). Significant differences between the concentrations of PM10, PM0.5 223 

PAHs, B(a)P and nitro-PAHs in the five towns were assessed by ANOVA and Tukey’s multiple 224 

comparison tests. The differences in PM10, PM0.5 PAHs, B(a)Pyrene, nitro-PAH concentrations and 225 

genetic endpoints between winter and spring seasons were performed by Student’s t-test. Significance 226 

was evaluated within 95% confidence intervals (p ≤ 0.05). The Spearman correlation coefficient 227 

(Spearman’s r) was used to assess the relationship among air pollution parameters (PAHs, B(a)pyrene 228 

and nitro-PAHs), PM0.5 concentration and genotoxicity results.  229 

 230 
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3 Results and discussion 231 

 232 

3.1 Size distribution of PM mass concentrations 233 

The mass of PM samples (pooled filters) and total cubic meters of air sampled were reported in detail in 234 

Supporting Information (Table S1). The mean concentrations of PM10 and the other PM fractions 235 

obtained in the samples of the five towns in winter and spring seasons are reported in Figure 1.  236 

The results of the gravimetric analysis showed that in winter samples, the mean PM10 concentrations 237 

were lower than the daily target of 50 µg/m3 set by the European Air Quality Directive 2008/50/EU, 238 

except for some samples from Torino and Brescia. Often, in Italy, high PM10 values are observed 239 

during winter in towns located in the north of Italy, particularly in the Padana Plain, given the 240 

widespread air pollution and the general weak dispersion rate due to the territory conformation 241 

(Cadum et al., 2009; EEA, 2017). 242 

The ANOVA underlined a significant difference in PM10 concentration among the samples of the five 243 

towns (F = 6.336, p < 0.001). In particular, the highest PM10 mass concentration values were observed 244 

in the Torino samples (winter I) (p = 0.001 vs the Perugia and Lecce samples and p<0.01 vs the Pisa 245 

samples, post hoc Tukey’s test) and the Brescia samples (winter I and II). Conversely, as expected, 246 

the lowest value of PM10 was observed in the samples from Lecce. Comparing the results obtained in 247 

the Brescia samples, the PM10 concentration in winter I was lower than in winter II. This result could 248 

be due to the lower level of air pollution observed in winter 2014 with respect to winter 2015, which 249 

was related to the high atmospheric instability present in that season (RSA, 2017).  250 

Although our sampling reflects only spot daily situations (3 days for each season) and does not 251 

represent long-term monitoring, the results obtained highlighted a north to south PM10 trend, in 252 

accordance with the Regional Agencies for Environmental Protection (ARPA) routine measurements 253 

performed in all towns during the sampling period (November 2014 – June 2015; November 2015- 254 

January 2016).  255 

With respect to winter 2014, a significant decrease in PM10 concentration was observed in spring 256 

samples (spring vs winter p < 0.001, t-test). A different trend was observed only for some samples of 257 

Brescia (winter I vs spring). The decrease of PM10 in the warm season has been generally observed 258 

in urban environments (Schilirò et al., 2016).  259 

Considering the distribution of the size fractions of PM10 mass in winter (Figure 1), a high particle 260 

concentration was present, especially for PM0.5, which represented a very high proportion of PM10, 261 

accounting from a minimum of 20% to a maximum of 63% of the different samples. Additionally, 262 

the fraction 0.49-0.95 represented a considerable fraction of PM10 although it generally showed a 263 
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lower percentage with respect to PM0.5.  264 

Analysing the value of the PM0.5 concentration, the ANOVA test showed a significant difference 265 

among the samples of five towns in winter (F = 7.277, p < 0.001). As reported for PM10, the highest 266 

level was found in the Torino samples (p = 0.001 vs the Perugia and Lecce samples, p < 0.05 vs the 267 

Pisa samples and p < 0.01 vs the Brescia samples, post hoc Tukey’s test). However, the PM0.5 level 268 

was also very high in the Brescia and Pisa samples.  269 

The results of the statistical analyses showed a significant correlation between PM10 and PM0.5 270 

concentration in both seasons (rS = 0.80, p < 0.001 and rS = 0.63, p < 0.001 in winter and spring 271 

respectively).  272 

Although a significant reduction in PM0.5 concentration was observed from winter to spring in all 273 

samples (p = 0.001, t-test), PM0.5 in spring also represented a considerable fraction of PM10, 274 

accounting for a minimum of 10% to a maximum of 56% in the different samples. 275 

Moreover, analysing the concentration of PM0.5 by sampling sites (n=18), a high variability of PM0.5 276 

percentage was observed in the same sampling site in both seasons and from the samples of the same 277 

town.   278 

In comparison with the few studies published on the PM0.5 fraction, the concentrations of PM0.5 279 

observed in the Torino and Brescia samples in winter were similar to those observed in La Plata 280 

(Argentina) (21 µg/m3) (Wichmann et al., 2009). Otherwise, the PM0.5 values recorded in the samples 281 

of the other towns were similar to those found in the urban site of Prague (9.1 µg/m3) (Topinka et al., 282 

2013). However, the levels of PM0.5 found in this study were generally lower than those found in 283 

other highly polluted European sites (Topinka et al., 2015) or other urban sites (Monarca et al., 1997, 284 

Velali et al., 2016).   285 

The highest concentration of PM0,5 during winter in comparison to spring summer was reported also 286 

in other studies for ultrafine or quasi-ultrafine fractions (Perrone et al., 2010; Perrone et al.,  2013; 287 

Jalava et al., 2015; Velali et al., 2016). This trend confirmed that also this fraction was strongly 288 

influenced by seasonal meteorology in the north of Italy, where condition of atmospheric stability 289 

cause high concentrations of atmospheric pollutants (Perrone et al., 2010; Perrone et al., 2013). 290 

As observed in our results, various studies confirmed that the finest fractions of PM are the most 291 

abundant in the atmosphere because the finest particulate pollution is homogeneously diffused (Perez 292 

et al., 2010). The high contribution of the finest fractions to the PM10 mass determination observed 293 

in this study was also reported in recent studies in other urban sites and has been related to traffic 294 

emissions by many authors (Topinka et al., 2015; Velali et al., 2016). Moreover, the variability of 295 

PM0.5 percentage reported in our samples suggested, as in the study of Topinka et al. (2015), the 296 

crucial effect of the meteorological conditions. In particular, Topinka et al. (2015) highlighted the 297 
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day-to-day variability of PM10 and ultrafine particles in association with the inversion episodes. 298 

Moreover, the different contributions of the most important PM sources, depending on meteorological 299 

conditions, could be responsible for the relatively different amount of PM size fractions.  300 

 301 

3.2 Chemical analysis of PAHs and nitro-PAHs in PM0.5 302 

The chemical analysis of the PM0.5 organic extracts for both seasons is described in Table 1.  303 

In winter I, the highest concentrations of PAHs (total and carcinogenic) and benzo(a)pyrene were 304 

found in all Torino samples, in some samples from Brescia (BS2 and BS4) and in 1 sample from Pisa 305 

(PI3). Considering the nitro-PAHs, out of seven nitro-PAHs analysed, only 9-nitroanthracene and 1-306 

nitropyrene were recorded in PM0.5 samples, and the highest concentrations were found in the Pisa 307 

(PI3 and PI4) and Torino samples followed by the Brescia samples (BS3 and BS4) and the Perugia 308 

samples (PG2). The highest values recorded in these samples were probably related to the high 309 

concentration of PM0.5 (µg/m3), as confirmed by the statistical analyses that indicated a linear 310 

correlation between PM0.5 levels and PAH, B(a)P and nitro-PAH concentrations in the winter season 311 

(rS = 0.86, p<0.001). The results expressed as ng/µg of PM0.5 confirmed the higher quantity of PAHs 312 

(total and carcinogenic), B(a)P and nitro-PAHs in most of these samples. However, an increase in the 313 

PM0.5 level does not always correspond to a greater quantity of pollutants for µg of PM0.5, as noted 314 

by the comparison of the chemical contamination of PM0.5 in winter I and winter II in some of the 315 

Brescia samples. 316 

In the spring season, as observed for PM0.5 concentration, a significant decrease in PAH and nitro-317 

PAH concentration in PM0.5 was reported in all samples (ten times lower than in winter for PAHs) (p 318 

< 0.001, t-test). The results expressed as ng/µg of PM0.5 confirmed the lower level of chemical 319 

contaminants in spring than in the winter season, although no specific differences in this season 320 

among the samples from different towns were revealed.  321 

The level of PAHs observed in PM0.5 samples of the five Italian towns was similar to that observed 322 

in ultrafine particles of other European urban sites (Topinka et al., 2013; Wichmann et al., 2009). In 323 

particular, PAH contamination detected in the Torino and Brescia samples was analogous to that 324 

reported by Longhin et al. (2013) for PM0.4 in another town of the Padana Plain (Milano). Considering 325 

the presence of nitro-PAHs in the PM0.5 fraction, no specific comparison with other data is possible 326 

given the absence of data from other urban sites. However, the two compounds recorded in PM0.5 327 

samples (9-nitroanthracene and 1-nitropyrene) have been frequently reported in PM extracts of urban 328 

environments in the literature (Carreras et al., 2013; Ladji et al., 2009; Ringuet et al., 2012).  329 

The decrease in chemical contamination in spring is not surprising because of the emission decrease 330 

in this season (e.g., home heating); the presence of contaminants in the PM finest fractions is also 331 
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related to the variability of atmospheric conditions between these seasons (Landlocz et al., 2017; 332 

Longhin et al., 2013). In particular, winter atmospheric conditions may promote accumulation of 333 

primary pollutants and the condensation of atmospheric pollutants in the particle phase due to the low 334 

temperature (Ebi and McGregor, 2008; Sisovic et al., 2008). The importance of atmospheric 335 

conditions on the level of chemical pollutants in the PM0.5 fraction was also confirmed by the 336 

comparison of PAHs and nitro-PAHs for µg of PM0.5 in Brescia in the two winter samples (winter I 337 

vs winter II). 338 

  339 

3.3 Mutagenicity of PM0.5 samples    340 

In Table 2, the mutagenic effect of PM0.5 extracts on bacteria is reported, expressed as net 341 

revertants/m3 of air sampled in the TA98, TA100, TA98NR and YG1021 strains, with (+S9) and 342 

without (-S9) metabolic activation.  343 

Overall, considering the four S. typhimurium strains, low mutagenic activity was observed with 344 

respect to the results obtained in other studies performed on PM0.5 or PM2.5 fractions in Torino and 345 

Brescia (Monarca et al., 1997; Traversi et al., 2009; Traversi et al., 2011).  346 

In winter, the highest mutagenic activity was generally observed in the Torino and Brescia samples 347 

followed by the Pisa, Perugia and Lecce samples. The ANOVA, performed assuming mutagenicity 348 

observed with YG1021+S9 and YG1021-S9 as dependent variables and the towns as independent 349 

variables, underlined a significant difference in the mutagenic effects among the samples of the five 350 

towns (F = 18.201 and F = 13.331, p < 0.001, respectively). Post hoc Tukey’s test confirmed the 351 

highest values of mutagenicity in the Torino samples (YG1021 ±S9 Torino samples vs 352 

Pisa/Perugia/Lecce samples p < 0.001 and p < 0.01 vs Brescia samples). This trend was probably 353 

related to the PM0.5 concentration as confirmed by the positive correlation between mutagenic 354 

response and PM0.5 level (YG1021 +S9 rS = 0.87, YG1021 -S9 rS = 0.76 p < 0.001; TA98 +S9 rS = 355 

0.75, TA98 -S9 rS = 0.76 p < 0.01). The highest mutagenicity reported for the Torino and Brescia 356 

samples was also confirmed by adjusting the data for the particle mass unit (Table S2), highlighting 357 

the worse quality of the particles—in terms of mutagenic compounds (e.g., PAHs in PM0.5 samples) 358 

—and not only the higher level of PM0.5 concentration for each volume unit (m3).  359 

Comparing the results obtained with Brescia samples collected in winter I and winter II, despite the 360 

increase of PM0.5 concentration in some samples of winter II, a similar or reduced mutagenicity was 361 

observed in winter II with respect to winter I. The lower level of chemical contamination (PAHs and 362 

nitro-PAHs) of the particles sampled in winter II was also confirmed by the lower mutagenic effect 363 

recovered after adjustment for particle mass unit. 364 
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Considering the response of the different strains, almost all PM0.5 winter extracts (16/22) induced 365 

point mutations in the S. typhimurium TA98 strain (±S9). These results indicated the presence of 366 

indirect and direct mutagens. In particular, the statistical analysis used to study the associations 367 

between air pollutants and mutagenic effects confirmed a relationship between TA98 response and 368 

PAHs (TA98 +S9 rS = 0.63, p < 0.05) and nitro-PAHs (TA98 -S9 rS = 0.60, p < 0.05).  369 

Except for two Torino samples (TO1 and TO2), the winter PM0.5 extracts did not induce any 370 

mutagenic effects in the TA100 strain, suggesting the presence of contaminants causing frame-shift 371 

mutations, predominantly. Similar results were also found in previous studies performed in Torino 372 

and Brescia for PM0.5 or other PM fractions (e.g., PM10) (Ceretti et al., 2015; Gilli et al., 2007; 373 

Monarca et al., 1997).  374 

As reported in other studies performed on PM2.5 samples (Traversi et al., 2009; Traversi et al., 2015), 375 

the YG1021 strain showed the highest sensitivity to airborne pollutants. The comparison of the over 376 

producing nitroreductase strain, YG1021, with the reference TA98 strain allows quantification of the 377 

mutagenicity linked to the amplified nitroreductase activity. The PM0.5 winter extracts determined a 378 

clear increase in the response due to amplified nitroreductase activity, which was probably related to 379 

the presence of nitroaromatic compounds, as confirmed by the significant correlation with nitro-PAH 380 

concentrations (YG1021 -S9 rS = 0.63, p < 0.01; YG1021 +S9 rS = 0.77, p < 0.001). The decrease in 381 

mutagenicity with the TA98NR strain with respect to TA98 gives further confirmation of the presence 382 

of nitroaromatic pollutants. 383 

In the spring season, lower values of mutagenicity were recorded for all samples. Negative results 384 

were observed for TA100, TA98 and TA98NR, and the YG1021 strain showed a lower mutagenic 385 

effect than that in the winter season. A similar trend was also observed in other studies with PM2.5 386 

extracts (Ceretti et al., 2015; de Rainho et al., 2013; Traversi et al., 2011). The significant reduction 387 

of the mutagenic effect in the warm season (spring vs winter p<0.001 for YG1021+S9 and p=0.001 388 

for YG1021-S9, t-test) was probably related to the low level of airborne contaminants in spring, as 389 

highlighted by the decrease in PM0.5 concentration. The lower concentrations of PAHs and nitro-390 

PAHs in spring particles were further confirmed by the lower mutagenicity of PM0.5, adjusting the 391 

data for particle mass units. 392 

 393 

3.4  Genotoxicity of PM0.5 samples 394 

3.4.1 Comet assay  395 

No genotoxic effect of PM0.5 was observed using the A549 cell line in almost all winter (Figure S2) 396 

and spring (Table S3) samples at all the tested doses, except for sporadic doses of a few winter samples 397 

(Figure 2). In particular, only one sample collected in Pisa in winter I (PI4) and two samples collected 398 
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in Brescia in winter II (BS1 and BS4) induced a significant increase in the genotoxic effect at the 399 

highest tested concentration of PM0.5 (50 m3), but there was not dose-response relationship. Moreover, 400 

the Fpg treatment did not increase the genotoxic effect, indicating there was no oxidative activity of 401 

the samples analysed in both seasons (Table S3). These results highlighted that PM0.5 samples induced 402 

only light primary DNA damage in the considered cells, confirming the low level of mutagenicity 403 

reported with the Ames test. 404 

The comet assay on human bronchial epithelium (BEAS-2B) showed a greater genotoxic effect of 405 

PM0.5 extracts in winter samples (winter I and II) than A549 (Figure 2). In particular, two samples 406 

from Torino (TO1 and TO2), three samples from Brescia (BS1, BS3 and BS4) and 2 samples from 407 

Pisa (PI3 and PI4) in winter I and one sample from Brescia (BS1) in winter II showed significant 408 

DNA damage, although only at the highest tested concentration (50 m3). The highest genotoxic effect 409 

was observed in Brescia samples. No dose-response relationship was observed for PM0.5 extracts 410 

except for one sample for Torino (TO1). The genotoxic effects observed for the Brescia, Torino, and 411 

Pisa samples were related to the higher concentration of PM0.5 reported in these samples and to the 412 

higher level of chemical contamination (PAHs and nitro-PAHs). The linear regression used to 413 

investigate the associations between DNA damage and air pollutants confirmed a significant 414 

relationship between DNA damage and PM0.5 (rS = 0.60, p < 0.01), PAHs (rS = 0.69, p < 0.01) and 415 

nitro-PAHs (rS = 0.68, p < 0.01) concentrations. 416 

However, the genotoxic effect reported in our study was lower than that observed in the study of 417 

Velali (2016) performed on PM0.5 collected in Thessaloniki. The difference in the genotoxic effect 418 

could be related to the different pollution characteristics of the sampling sites, an urban centre located 419 

in relative proximity of industrial sources, with a poor dispersion of air pollutants and a high level of 420 

air contaminants. Moreover, the lower concentration of PM0.5 per m3 observed in our samples may 421 

have contributed to the lower biological response in the presence of low levels of chemical pollutants. 422 

Considering the PM10 fractions, some studies found that all particle size fractions induced DNA 423 

damage in A549 cells, with the finer fractions (< 0.65 µm) inducing the highest damage (Healey et 424 

al, 2005). In the study of Velali et al. (2016), the DNA damage (mean mass normalized) did not 425 

change substantially, with the particle size being relatively higher in the 0.49-0.97 size range. This 426 

behaviour could be related to the chemical pollution of the different fractions. As reported in the study 427 

of Topinka et al. (2015), PAHs are mostly found to be associated with particles less than 1 µM, but 428 

both the 0.5-1 µm fraction and the < 0.5 µm fraction contained high levels of PAHs, justifying the 429 

genotoxic effect of fractions other than < 0.5 µm. 430 

Comparing the results obtained with the comet assay using BEAS-2B and the Ames test, the 431 

genotoxic effect was reported in the same samples that induced the higher mutagenic effect using the 432 
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Ames test, confirming the agreement between the two biological tests (YG1021 -S9 rS = 0.62, p < 433 

0.01; YG1021 +S9 rS = 0.60, p < 0.01). However, with respect to the comet assay, the Ames test 434 

indicated a higher sensitivity, showing a biological effect at low levels of air pollutants with a 435 

different level of response in relation to small differences in pollutant concentration. The higher 436 

sensitivity of the Ames test than the comet assay was also reported in other studies for PM2.5 or PM10 437 

extracts (de Brito et al., 2013; ElAssouli et al., 2007). Due to the specificity of the genotoxic profile 438 

of chemical mutagens, which rarely affect different endpoints with the same efficiency, the two test 439 

used are expected to work in a complementary way, providing only partially overlapping results. 440 

Considering the two cell lines used for the comet assay, the different distribution patterns of 441 

genotoxicity among A549 and BEAS-2B after exposure to PM0.5 extracts confirmed that the cell lines 442 

respond differently to genotoxic agents, as reported by other authors (Cavallo et al., 2013; Teoldi et 443 

al., 2017; Zhang et al., 2017). Moreover, the results obtained indicated the higher sensitivity of BEAS-444 

2B cells with respect to A549, confirming that PM0.5 can induce genotoxicity in normal cells, whereas 445 

cancer cells can be resistant to its adverse effects.  446 

 447 

3.4.2 Cytokinesis-block MN test 448 

The results of the micronucleus test using A549 cells treated with PM0.5 organic extracts showed 449 

values similar to those of the negative control at each testing dose for both winter (Figure 3) and 450 

spring samples (Table S4) from all the towns, indicating there was no chromosomal damage detected 451 

in the considered cells. In our study, cell viability, as evaluated by the Trypan blue dye exclusion test, 452 

was always higher than 60% for all treatments. Since the cytotoxicity did not exceed the limits 453 

specified in the OECD guidelines for the in vitro micronucleus test on mammalian cell (i.e., 55 ± 5% 454 

cytotoxicity) (OECD, 2010) we considered the genotoxic response not influenced by cytotoxicity 455 

(Tables S5 and S6). Moreover, because overall cytotoxicity in cell cultures is the consequence of both 456 

cell death and cytostasis, we have also calculated the Cytokinesis-Block Proliferation Index (CBPI), 457 

as indicated in the OECD guidelines (OECD, 2010). Obtained data showed that cell proliferation was 458 

not influenced by exposure to PM0.5 organic extracts (Tables S7 and S8). 459 

The absence of genotoxicity with the micronucleus test confirmed the low genotoxic effect of PM0.5 460 

samples as also reported with the comet assay. A lower number of positive responses in the 461 

micronucleus test compared to the comet assay was also reported in other studies on PM organic 462 

extracts (Bocchi et al., 2016; Lemos et al., 2016). The authors suggested that most of the damage 463 

observed can still be repaired because the associated clastogenicity was not found in most of the 464 

samples. It is important to emphasize that genotoxicity and mutagenicity tests often give different 465 

results (Bocchi et al., 2016). Thus, the discrepancy among the tests used in this study should not be 466 
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considered as an inconsistency, but rather a consequence of the fact that the test methods address 467 

different genetic endpoints.  468 

 469 

4. Conclusions 470 

The results of the in vitro tests performed in the MAPEC_LIFE study showed that PM0.5 samples 471 

induced low mutagenic and genotoxic effects. Although the biological effects were low, they were 472 

associated with levels of PM0.5, PAHs and nitro-PAHs, which vary according to season and town of 473 

residence.  474 

The lower biological effect observed in the spring season compared to winter underlines the 475 

importance of PM0.5 chemical composition and the necessity of reducing PM0.5 concentration to 476 

protect human health. Many epidemiological studies on other PM fractions demonstrated that a small 477 

reduction of PM10 or PM2.5 can decrease premature deaths, mortality and hospital admissions for 478 

respiratory and cardiovascular disease and increase life expectancy, confirming these findings (ERS, 479 

2010; Pope et al., 2009).  480 

In agreement with other studies, the results obtained, emphasized the need to use a battery of assays 481 

for genotoxicity screening of air pollutants confirming that only one test could lead to a loss of 482 

information about genotoxic and mutagenic activity of airborne pollutants, as observed with the MN 483 

test. Other insights such as DNA repair study with comet assay could help to understand the different 484 

response of the biological tests (comet assay vs MN test) to PM extracts. 485 

In contrast, the Salmonella/microsome assay proved to sensitively and efficiently characterize the 486 

mutagenicity of PM0.5 samples, and the analyses of PM0.5 using the comet assay could broaden the 487 

levels of response, complementing the findings of the Salmonella/microsome assay. The BEAS-2B 488 

cell line showed a greater sensitivity with respect to A549 cells (comet assay) when used with low 489 

contaminated PM0.5 samples, and the YG1021 strain better characterized (Ames test) the mutagenicity 490 

of PM0.5 samples compared to other strains. These findings confirmed that these models can represent 491 

the most suitable cellular models for the study of the in vitro effects of PM0.5. 492 

Historical trends confirm a decrease in the PM10 concentration in Italian towns, and the biological 493 

effects detected in this study were generally low. Nevertheless, it is important to further investigate 494 

the finest fractions of PM, which, also in this study, represent a relevant percentage of PM10, taking 495 

into account its chemical composition and the biological effects induced. In fact, the results obtained 496 

confirmed that monitoring PM0.5 itself could not provide sufficient information about the toxic 497 

compounds bound to the particles.   498 

This is a relevant issue considering that different climatic conditions varying from one year to another 499 

can cause peaks of PM that could lead to different results from those observed. 500 
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The genotoxicity results evaluated in this study also require further investigations focusing on longer 501 

monitoring campaigns to better characterize the role of the PM0.5 fraction in the determination of the 502 

biological effects in the five towns and in different climatic conditions. Moreover, further 503 

investigation of the nature of the chemical compounds and their association with the measured 504 

genotoxicity and epigenetic effects of PM0.5 in comparison with the other PM10 fractions will be the 505 

aim of our future studies. 506 
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Figure 1. PM10 mass concentration and its fractions measured in the samples from the five towns. Data are reported as mean value of the 3-4 samples of each town 751 
in winter I (WI), spring (S) and winter II (WII). The percentages reported in the bars represent the proportion of PM0.5 in the PM10 mass.  752 
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c) d)                                                                                       776 
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e) f) 778 

 779 

Figure 2. Genotoxic effect (% tail DNA) in A549 cells and BEAS-2B cells exposed to PM0.5 organic extracts 780 
of winter I and II evaluated by comet assay. ***p<0.001, **p<0.01 vs. control cells (C-) according to ANOVA 781 
combined with Dunnett’s post hoc test. a) Pisa, winter I, A549 b) Brescia, winter II, A549 c) Torino, winter I, 782 
BEAS-2B d) Brescia, winter I, BEAS-2B e) Pisa, winter I, BEAS-2B; f) Brescia, winter II, BEAS-2B.  783 
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c)                                                                                                    d)                                                                                       790 

 791 

e)                                                                                                        f) 792 

 793 

 794 

Figure 3. Genotoxic effect (MN/1000 cells) in A549 cells exposed to PM0.5 organic extracts of winter I and II 795 
evaluated by cytokinesis-block MN test. C-: control cells; a) Torino, winter I; b) Brescia, winter I; c) Pisa, 796 
winter I; d) Perugia, winter I; e) Lecce, winter I; f) Brescia, winter II. 797 
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Table 1. Concentration of PAHs and nitro-PAHs in the PM0.5 organic extracts sampled in winter I (WI), spring (S) and winter II (WII) in Torino, Brescia, Pisa, 798 
Perugia and Lecce. 799 

Town  Season  Site  PM0.5 concentration 
(µg/m3) 

  PAHsa 
(ng/m3) 

 B(a)P 
(ng/m3) 

  Carcinogenic PAHsb 
(ng/m3) 

  nitro-PAHsa 
(ng/m3) 

Torino  WI  1  22.44  12.17  1.29  6.90  0.13 
Torino  WI  2  20.96  7.82  0.83  4.46  0.21 
Torino  WI  3  25.12  6.13  0.60  3.46  0.16 

Mean value      22.84  8.71  0.91  4.94  0.17 
Mean value (ng/µg)      /  0.39  0.04  0.22  0.75 

               
Brescia  WI  1  6.46  3.86  0.48  2.16  0.05 
Brescia  WI  2  14.38  14.72  1.52  7.69  0.05 
Brescia  WI  3  10.06  4.17  0.38  2.12  0.11 
Brescia  WI  4  19.47  5.79  0.56  3.20  0.13 

Mean value      12.59  7.14  0.74  3.79  0.08 
Mean value (ng/µg)       /  0.58  0.06  0.31  0.74 

               
Pisa  WI  1  3.69  0.55  0.03  0.23  0.02 
Pisa  WI  2  12.34  3.63  0.42  2.05  0.08 
Pisa  WI  3  21.09  8.47  0.90  5.24  0.45 
Pisa  WI  4  17.80  2.87  0.26  1.62  0.16 

Mean value      13.73  3.88  0.40  2.28  0.18 
Mean value (ng/µg)      /  0.25  0.02  0.14  1.04 

               
Perugia  WI  1  11.73  4.77  0.50  2.63  0.04 
Perugia  WI  2  13.47  4.98  0.52  2.84  0.15 
Perugia  WI  3  6.51  2.21  0.18  1.09  0.03 
Perugia  WI  4  8.02  1.76  0.14  0.86  0.06 

Mean value      9.93  3.43  0.34  1.86  0.07 
Mean value (ng/µg)      /  0.33  0.03  0.18  0.69 

               
Lecce  WI  1  6.36  1.17  0.06  0.57  0.02 
Lecce  WI  2  9.39  2.76  0.17  1.50  0.06 
Lecce  WI  3  5.61  0.77  0.04  0.35  0.02 

Mean value      7.12  1.57  0.09  0.81  0.03 
Mean value (ng/µg)      /  0.21  0.01  0.10  0.44 

               
Torino  S  1  9.25  0.61  0.02  0.19  0.02 
Torino  S  2  8.30  0.50  0.01  0.12  0.02 
Torino  S  3  7.02  0.59  0.02  0.20  0.02 
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Mean value      8.19  0.57  0.02  0.17  0.02 
Mean value (ng/µg)      /  0.07  <0.01  0.02  0.28 

               
Brescia  S  1  6.48  0.42  0.01  0.11  0.02 
Brescia  S  2  14.54  0.64  0.02  0.23  0.02 
Brescia  S  3  9.02  0.37  0.01  0.08  0.02 
Brescia  S  4  17.08  0.35  0.01  0.06  0.02 

Mean value      11.78  0.44  0.01  0.12  0.02 
Mean value (ng/µg)      /  0.04  <0.01  0.01  0.17 

               
Pisa  S  1  4.40  0.34  0.01  0.09  0.02 
Pisa  S  2  6.36  0.38  0.01  0.11  0.02 
Pisa  S  3  9.68  0.85  0.02  0.39  0.02 
Pisa  S  4  2.72  0.39  0.01  0.11  0.02 

Mean value      5.79  0.49  0.01  0.18  0.02 
Mean value (ng/µg)      /  0.09  <0.01  0.03  0.38 

               
Perugia  S  1  7.86  0.84  0.04  0.28  0.02 
Perugia  S  2  4.79  0.57  0.02  0.13  0.02 
Perugia  S  3  6.50  0.52  0.01  0.09  0.02 
Perugia  S  4  2.97  0.44  0.01  0.04  0.02 

Mean value      5.53  0.59  0.02  0.14  0.02 
Mean value (ng/µg)      /  0.11  <0.01  0.02  0.36 

               
Lecce  S  1  1.83  0.56  0.02  0.18  0.02 
Lecce  S  2  5.90  0.61  0.02  0.21  0.02 
Lecce  S  3  5.41  0.56  0.02  0.19  0.02 

Mean value      4.38  0.58  0.02  0.19  0.02 
Mean value (ng/µg)      /  0.17  0.01  0.06  0.53 

               
Brescia  WII  1  19.92  8.41  0.57  4.10  0.03 
Brescia  WII  2  21.46  5.95  0.59  3.27  0.04 
Brescia  WII  3  9.11  4.87  0.48  2.59  0.04 
Brescia  WII  4  13.35  7.28  0.84  3.92  0.04 

Mean value 
Mean value (ng/µg) 

     15.96 
/ 

 6.63 
0.44 

 0.62 
0.04 

 3.47 
0.23 

 0.04 
0.28 

aCRM percentage recovery was found to be between 48% and 147% and the uncertainty was between 24 and 26% 800 
b∑ Carcinogenic PAHs: benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenzo(a,h)anthracene. 801 
 802 
 803 
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Table 2.  Mutagenic activity of PM0.5 organic extracts in S. typhimurium TA100, TA98, TA98NR, and YG1021 strains with and without metabolic activation (±S9) 804 
expressed as net revertants/m3of air equivalent. WI=winter I; S=spring; WII=winter II.  805 
 806 

Sites  Net revertants/m3 
 -S9  +S9 
 TA100  TA 98  TA98NR  YG1021  TA100  TA98  TA98NR  YG1021 

  WI S  WI S  WI S  WI S  WI S  WI S  WI S  WI S 
Torino                         

1  4.8 -  1.3 -  1.0 -  30.8 1.7  - -  1.5 -  0.9 -  34.3 1.6 
2  3.0 -  1.5 -  1.2 -  16.5 2.3  - -  1.9 -  0.9 -  35.8 1.5 
3  - -  0.9 -  0.6 -  17.7 0.7  - -  1.0 -  0.7 -  36.6 0.8 

Brescia                         
1  - -  0.5 -  - -  7.7 0.8  - -  - -  - -  12.9 0.7 
2  - -  0.4 -  - -  10.7 1.8  - -  0.9 -  - -  16.8 2.6 
3  - -  - -  - -  9.7 0.9  - -  0.6 -  - -  14.6 1.1 
4  - -  0.6 -  - -  7.6 0.8  - -  1.0 -  - -  20.0 1.0 

Pisa                         
1  - -  - -  - -  1.9 0.9  - -  - -  - -  3.0 1.0 
2  - -  - -  - -  2.9 0.4  - -  0.7 -  - -  7.0 0.6 
3  - -  - -  - -  7.4 2.3  - -  0.9 -  - -  14.3 3.5 
4  - -  0.8 -  - -  6.8 1.0  - -  0.8 -  - -  19.8 0.9 

Perugia                         
1  - -  0.5 -  - -  7.2 7.1  - -  0.9 -  - -  16.4 1.5 
2  - -  0.3 -  - -  7.1 0.6  - -  0.6 -  - -  17.8 17.8 
3  - -  - -  - -  3.0 0.8  - -  - -  - -  7.2 7.2 
4  - -  0.4 -  - -  3.4 0.4  - -  - -  - -  10.1 0.1 

Lecce                         
1  - -  0.4 -  - -  1.7 1.7  - -  - -  - -  4.8 4.7 
2  - -  0.5 -  0.4 -  4.5 4.5  - -  0.6 -  - -  8.2 8.2 
3  - -  - -  - -  1.4 1.4  - -  - -  - -  2.5 2.5 

  -S9  +S9 
  TA100  TA98  TA98NR  YG1021  TA100  TA98  TA98NR  YG1021 
  WII   WII   WII   WII   WII   WII   WII   WII  

Brescia                         
1  -   0.2   -   5.8   -   0.6   -   8.9  
2  -   0.5   -   11.1   -   1.0   -   9.8  
3  -   0.5   -   5.4   -   0.7   -   10.8  
4  -   0.3   -   6.4   -   0.7   -   14.6  

 807 


