

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Carbonic Anhydrase XII Inhibitors Overcome P-Glycoprotein-Mediated Resistance to Temozolomide in Glioblastoma

This is the author's manuscript

Original Citation:

Availability:

This version is available http://hdl.handle.net/2318/1683402 since 2019-04-12T09:55:51Z

Published version:

DOI:10.1158/1535-7163.MCT-18-0533

Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)

1	Carbonic anhydrase XII inhibitors overcome P-glycoprotein-mediated resistance to
2	temozolomide in glioblastoma
3	
4	Iris C. Salaroglio ^{1,#} , Prashant Mujumdar ^{2,#} , Laura Annovazzi ³ , Joanna Kopecka ¹ , Marta
5	Mellai ³ , Davide Schiffer ³ , Sally-Ann Poulsen ^{2,*,#} , Chiara Riganti ^{1,*,#}
6	¹ Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy
7	² Griffith Institute for Drug Discovery, Griffith University, Brisbane, Nathan, Queensland,
8	4111, Australia
9	³ Neuro-Bio-Oncology Center, Fondazione Policlinico di Monza, via Pietro Micca 29, 13100,
10	Vercelli, Italy
11	
12	#Equal contributors
13	
14	Running title
15	CAXII inhibitors reverse chemoresistance in glioblastoma
16	
17	Keywords
18	carbonic anhydrase XII; P-glycoprotein; temozolomide; glioblastoma cancer stem cells
19	
20	Financial support
21	Italian Association for Cancer Research (IG15232 to CR); Italian Ministry of University and
22	Research (RBFR12SOQ1 and FABR2017 to C.R.); Australian Research Council
23	(FT10100185 to S-A.P); Italian Institute for Security Service 2014-2017 (to ICS);
24	Fondazione Umberto e Marilisa Caligara for Interdisciplinary Research 2018 (to ICS);

- Fondazione Umberto Veronesi 2016 (to JK); Fondazione Policlinico di Monza (intramural
 grant to DS)

4	*Corresponding authors: Prof. Sally-Ann Poulsen, Griffith Institute for Drug Discovery,
5	Griffith University, Brisbane, Nathan, Queensland, 4111, Australia, phone: +61-7-37357825;
6	email: <u>s.poulsen@griffith.edu.au</u> ; Prof. Chiara Riganti, Department of Oncology, University
7	of Torino; Via Santena 5/bis, 10126 Torino, Italy; phone: +39-011-6705857; fax: +39-011-
8	6705845; email: <u>chiara.riganti@unito.it</u>
9	
10	Conflict of interest disclosure
11	The authors declare no potential conflicts of interest.
12	
13	Abstract word count: 169
14	Total number of Table and Figure: 6
15	Total manuscript word count: 4512
16	

1 Abstract

2 The role of carbonic anhydrase XII (CAXII) in the chemoresistance of glioblastoma is3 unexplored.

4 We found CAXII and P-glycoprotein co-expressed in neurospheres derived from 3/3 patients with different genetic backgrounds and low response to temozolomide (time to recurrence: 6-5 6 9 months). CAXII was necessary for the P-glycoprotein efflux of temozolomide and secondline chemotherapeutic drugs, determining chemoresistance in neurospheres. 7 8 Psammaplin C, a potent inhibitor of CAXII, re-sensitized primary neurospheres to 9 temozolomide by reducing temozolomide efflux via P-glycoprotein. This effect was 10 independent of other known temozolomide resistance factors present in the patients. The overall survival in orthotopic patient-derived xenografts of temozolomide-resistant 11 12 neurospheres, co-dosed with Psammaplin C and temozolomide, was significantly increased over temozolomide-treated (p<0.05) and untreated animals (p<0.02), without detectable signs 13 of systemic toxicity. 14 15 We propose that a CAXII inhibitor in combination with temozolomide may provide a new and effective approach to reverse chemoresistance in glioblastoma stem cells. This novel 16 mechanism of action, via the interaction of CAXII and Pgp, ultimately blocks the efflux 17 function of Pgp to improve glioblastoma patient outcomes. 18

1 Introduction

2 Glioblastoma (GB) is the most common and lethal adult primary brain tumor. The standardof-care treatment comprises surgery, followed by radiotherapy and chemotherapy, then 3 4 maintenance chemotherapy. Chemotherapy is based on the drug temozolomide (TMZ). With treatment, the increase in median survival rate for all patients is two months, while the 5 median overall survival is 12-15 months (1). In the subset of GB patients with the O^{6} -6 7 methylguanine-DNA methyltransferase (MGMT) promoter methylated, the two year survival is higher at approximately 40% (1). 8 9 GB stem cells (SC), a subpopulation of GB that govern tumor initiation and recurrence, are particularly difficult to eradicate with chemotherapy (2). One cause is an elevated expression 10 11 of P-glycoprotein (Pgp), an efflux pump that recognizes a broad spectrum of chemotherapeutics as substrates, including TMZ (3,4). The co-administration of a Pgp 12 inhibitor with chemotherapy has met with limited success however, owing to serious side 13 14 effects and toxicity (5). The identification of an alternative and safer mechanism to counter 15 Pgp-mediated drug resistance in GB SC is of high unmet need. Tumor acidosis is a hallmark of cancer (6). Membrane-bound carbonic anhydrases IX and/or 16 17 XII (CA, EC 4.2.1.1) maintain the intracellular/extracellular pH for efficient Pgp activity (7), and optimal tumor growth, invasion and metastasis (6). 18 19 CAIX and CAXII specific inhibitors are increasingly being investigated as potential 20 antitumor agents (8). Inhibitors of CAXII indirectly reduce Pgp activity and re-sensitize solid 21 tumors to Pgp substrates with a magnitude similar to tariquidar, a validated Pgp inhibitor (9). CAXII and Pgp mRNA were detectable in GB patient (Tissue Cancer Genome Atlas, 22 23 https://cancergenome.nih.gov), but CAXII (http://www.proteinatlas.org/ENSG00000074410-CA12/pathology) and Pgp (http://www.proteinatlas.org/ENSG00000085563-24

1	<u>ABCB1/pathology</u>) proteins were poorly detectable by immunohistochemistry. This trend led
2	us to hypothesize that CAXII and Pgp may be co-expressed in specific GB niches, e.g. SC-
3	enriched niches, with CAXII maintaining optimum pH for Pgp activity.
4	CAXII is overexpressed in aggressive GB (10) and is a negative prognostic factor in
5	infiltrating astrocytoma (11). CAXII is also highly expressed in 3D-culture of GB cells
6	(neurospheres, NS) (12), a mimic of cancer-derived GB SC. The therapeutic implications
7	surrounding CAXII have been poorly investigated in GB or GB SC. Here, we demonstrate
8	that CAXII mediates resistance to TMZ in GB SC in a Pgp-dependent manner. We show that
9	the combination of a CAXII inhibitor and TMZ substantially improve TMZ efficacy against
10	GB SC in GB NS-patient-derived xeongrafts (GB-NS-PDX), and that this effect is
11	independent of known factors of TMZ-resistance.
12	Methods
13	Reagents and plasticware. Plasticware for cell cultures was obtained from Falcon (Becton
14	Dickinson, Franklin Lakes, NJ). Electrophoresis reagents were obtained from Bio-Rad
15	Laboratories (Hercules, CA). The protein content of cell lysates was assessed using a BCA
	Laboratories (Hercules, CA). The protein content of cell lysates was assessed using a BCA kit from Sigma Chemicals Co. (St. Louis, MO). Unless specified otherwise, all reagents were
15	
15 16	kit from Sigma Chemicals Co. (St. Louis, MO). Unless specified otherwise, all reagents were
15 16 17	kit from Sigma Chemicals Co. (St. Louis, MO). Unless specified otherwise, all reagents were purchased from Sigma Chemicals Co.
15 16 17 18	kit from Sigma Chemicals Co. (St. Louis, MO). Unless specified otherwise, all reagents were purchased from Sigma Chemicals Co. Compounds synthesis and CAXII inhibition. Compounds were synthesized as in
15 16 17 18 19	 kit from Sigma Chemicals Co. (St. Louis, MO). Unless specified otherwise, all reagents were purchased from Sigma Chemicals Co. Compounds synthesis and CAXII inhibition. Compounds were synthesized as in Supplementary Information (Scheme 1). CAXII activity was measured as detailed previously
15 16 17 18 19 20	 kit from Sigma Chemicals Co. (St. Louis, MO). Unless specified otherwise, all reagents were purchased from Sigma Chemicals Co. Compounds synthesis and CAXII inhibition. Compounds were synthesized as in Supplementary Information (Scheme 1). CAXII activity was measured as detailed previously (13).
15 16 17 18 19 20 21	 kit from Sigma Chemicals Co. (St. Louis, MO). Unless specified otherwise, all reagents were purchased from Sigma Chemicals Co. Compounds synthesis and CAXII inhibition. Compounds were synthesized as in Supplementary Information (Scheme 1). CAXII activity was measured as detailed previously (13). Cells. Primary human GB cells (CV17, 010627, No3) were obtained from surgical samples
15 16 17 18 19 20 21 22	 kit from Sigma Chemicals Co. (St. Louis, MO). Unless specified otherwise, all reagents were purchased from Sigma Chemicals Co. Compounds synthesis and CAXII inhibition. Compounds were synthesized as in Supplementary Information (Scheme 1). CAXII activity was measured as detailed previously (13). Cells. Primary human GB cells (CV17, 010627, No3) were obtained from surgical samples from Neurosurgical Units, Universities of Torino and Novara after written informed consent,

25 or clinical outcome of the patients. The study was performed in accordance with the

1	Declaration of Helsinki and was approved by the Bio-Ethical Committee of University of
2	Torino (#ORTO11WNST). The histological diagnosis of GB was performed according to
3	WHO guidelines. MGMT methylation was detected by methylation-specific polymerase chain
4	reaction and capillary electrophoresis (14). EGFR amplification, IDH1/2 and TP53
5	mutations, 1p/19q co-deletion were examined as described in (15). Cells were cultured as
6	differentiated/adherent cells (AC) or NS as previously described (16), with minor
7	modifications (17). For AC, DMEM supplemented with 1% v/v penicillin-streptomycin, 10%
8	v/v fetal bovine serum (FBS; Lonza, Basel, Switzerland) was used. For NS, DMEM-F12
9	medium was supplemented with 1 M HEPES, 0.3 mg/ml glucose, 75 μ g/ml NaHCO ₃ , 2
10	mg/ml heparin, 2 mg/ml bovine serum albumin, 2 mM progesterone, 20 ng/ml EGF, 10 ng/ml
11	b-FGF. AC were obtained from dissociated NS cells, centrifuged at $1,200 \times g$ for 5 min and
12	seeded in AC medium. In vitro clonogenicity and self-renewal, and in vivo tumorigenicity
13	were reported in (3). Cell phenotypic characterization is detailed in the Supplementary
14	Materials. Mycoplasma spp contamination was assessed by PCR every 3 weeks;
15	contaminated cells were discharged.
16	Immunoblotting. 20 µg protein extracts from whole cell lysate were subjected to SDS-
17	PAGE and probed with the following antibodies: anti-CAXII (goat, #ab219641; Abcam,
18	Cambridge, UK), anti-CAIX (rabbit, # ab15086; Abcam), anti-Pgp (mouse, clone C219;
19	Millipore, Billerica, MA), anti-caspase 3 (mouse, clone C33, GeneTex, Hsinhu City,
20	Taiwan). Plasma membrane-associated proteins were evaluated in biotinylation assays (7).
21	Anti-β-tubulin (rabbit, # ab6046; Abcam) and anti-pancadherin (mouse, clone CH-19; Santa
22	Cruz Biotechnology Inc., Santa Cruz, CA) antibody were used to confirm equal protein
23	loading in whole cell and plasma-membrane associated extracts. In co-immunoprecipitation
24	experiments, 100 μ g of plasma membrane-associated proteins were immunoprecipitated with

anti-CAXII and anti-CAIX antibodies, using PureProteome protein A and protein G Magnetic
 Beads (Millipore).

Flow cytometry. Five×10⁵ cells were re-suspended in culture medium containing 5% v/v
FBS, incubated with anti-CAXII (Abcam) or anti-Pgp (mouse, clone MRK16; Kamiya,
Seattle, WA) antibody, followed by the secondary Alexa488-conjugated antibody, fixed with
4% v/v paraformaldehyde and analyzed by the Guava® easyCyte flow cytometer, (InCyte
software, Millipore). Control experiments included incubation of cells with non-immune
isotypic antibody, followed by secondary antibody.

Proximity ligation assay (PLA). The CAXII-Pgp interaction was measured with the
DuoLink In Situ kit (Sigma Chemicals Co), as per the manufacturer's instructions. The
method employs mouse anti-human Pgp (mouse, clone UIC-2, Millipore) or rabbit antihuman CAXII (#102344; NovoPro, Shangai, China) antibodies. Cell nuclei were
counterstained with 4',6-diamidino-2-phenylindole (DAPI). Cells were examined using a
Leica DC100 fluorescence microscope (Leica Microsystem, Wetzlar, Germany). A minimum
of five fields were examined for each experimental condition.

Confocal microscope analysis. 1×10^4 NS cells were seeded onto glass coverslips and 16 collected by cyto-spinning. Cells were fixed using 4% paraformaldehyde for 15 minutes, 17 washed with PBS and incubated for 1 h at room temperature with an anti-human CAXII 18 19 (NovoPRo) or an anti-Pgp (Millipore) antibody. Samples were washed 5× with PBS and incubated for 1 h with tetramethylrhodamine isothiocyanate (TRITC)- or fluorescein 20 isothiocyanate (FITC)-conjugated secondary antibodies (Sigma Chemicals Co.), respectively, 21 then washed with PBS 4× and deionized water 1×. Cells were examined using a Leica TCS 22 SP2 AOP confocal laser-scanning microscope. The number of yellow pixels, indicative of a 23 Pgp-CAXII interaction, was calculated using the JACoP plug-in of the ImageJ software 24

1 (<u>https://imagej.nih.gov/ij</u>) and expressed as a percentage of the total green pixels

2 (corresponding to Pgp) measured over a total of five fields per experiment.

3 Pgp ATPase activity. The assay was performed on Pgp-enriched membrane vesicles as
4 detailed in (18). The rate of ATP hydrolysis, an index of Pgp catalytic cycle and a necessary
5 step for substrate efflux, was measured. Results were expressed as nmol hydrolyzed
6 phosphate (Pi)/min/mg proteins.

7 Doxorubicin and temozolomide accumulation. Doxorubicin content was measured

8 fluorimetrically (7). The results were expressed as nmol doxorubicin/mg cell proteins. TMZ

9 content was measured by liquid scintillation counting in cells incubated with 10 μ M [³H]-

10 temozolomide (0.7 μCi/ml; Moravek Biochemical Inc., Brea, CA) for 24 h. The results were

11 expressed as nmol $[^{3}H]$ -temozolomide/mg cell proteins.

12 LDH release. The extracellular release of LDH, considered an index of cell damage, was

13 measured as detailed previously (3). The extracellular LDH activity was calculated as a

14 percentage of the total LDH activity in the dish.

15 Cell viability. Cell viability was evaluated using an ATPLite kit (PerkinElmer, Waltham,

16 MA). The results were expressed as percentage of viable cells in each experimental condition

17 versus untreated cells (considered 100% viable). To calculate the combination index (CI), NS

18 were incubated with TMZ and compound 1, alone and then in combination, over the range of

19 concentrations 10^{-10} - 10^{-3} M. CI values were calculated usingCalcuSyn software

20 (www.biosoft.com/w/calcusyn.htm).

21 Generation of *Pgp*- and *CAXII*-knocked out (KO) clones. Five $\times 10^5$ cells were transduced

22 with 1 µg CRISPR pCas vectors (Origene, Rockville, MD) targeting ABCB1/Pgp or CAXII

23 respectively, or with 1 μ g non-targeting vector (Origene), following the manufacturer's

24 instructions. Stable KO cells were selected from medium containing 1 µg/ml puromycin for 4

25 weeks.

In Vitro Plasma Stability. Compound 1 was spiked into mouse plasma (Animal Resource
Centre, Perth, Australia) to a concentration of 1000 ng/ml (DMSO/acetonitrile concentrations
0.2/0.4% v/v) at 37 °C for 4 h. At various time points, plasma samples were snap-frozen and
analyzed by LC-MS (Micromass Xevo triple quadrupole mass spectrometer, Waters Co.,
Milford, MA) relative to calibration standards (1 and diazepam as internal standard). The
average concentration of test compound was expressed as a percentage of compound
remaining relative to the sample quenched at 5 min.

In Vitro Metabolic Stability. Metabolic stability was performed by incubating 1 µM 8 9 compound 1 with 0.4 mg/ml mouse liver microsomes (Xenotech, Tokyo, Japan) at 37 °C, adding a NADPH-regenerating system, and subsequently quenching with acetonitrile 10 (containing diazepam as internal standard) at 2, 30 and 60 min. A species scaling factor was 11 used to convert the *in vitro* clearance (CL_{int}) to an *in vivo* CL_{int} (19). Hepatic blood clearance 12 and hepatic extraction ratio (E_H) were calculated as described (20). E_H was used to classify 13 compounds as low (< 0.3), intermediate (0.3–0.7), high (0.7–0.95) or very high (>0.95) 14 15 extraction compounds.

In Vitro Cytochrome P450 (CYP) Stability. Compound 1 (0.25 to 20 µM) was incubated 16 with CYP substrate in human liver microsomes (batch #1410230; XenoTech LLC., Lenexa, 17 KS, USA) at 37 °C. The total organic solvent concentration was 0.47% v/v. The reactions 18 19 were initiated by adding a NADPH-regenerating system and quenched with ice cold 20 acetonitrile containing analytical internal standard (0.15 µg/mL diazepam). Metabolite concentrations were determined by UPLC-MS (Waters/Micromass Xevo TQD triple-21 quadrupole) relative to calibration standards prepared in quenched microsomal matrix. The 22 23 inhibitory effect of compound 1 was assessed based on the reduction in the formation of the specific CYP-mediated metabolite relative to a control for maximal CYP enzyme activity. 24

1	<i>In vivo</i> tumor growth. In dose-dependent experimental sets 1×10^6 AC or NS cells, mixed
2	with 100 µl Matrigel, were injected subcutaneously in female BALB/c nu/nu mice (weight:
3	19.6 g \pm 2.4; Charles River Laboratories Italia, Calco). Animals were housed (5 per cage)
4	under 12 h light/dark cycles in a barrier facility on HEPA-filtered racks and were fed with an
5	autoclaved diet. Tumor dimensions were measured daily with calipers and growth calculated
6	using the equation $(L \times W^2)/2$, where L = tumor length, W = tumor width. When the tumor
7	reached a volume of 50 mm ³ , animals were randomized (10 animals/group) and treated over
8	2 cycles of 5 consecutive days (days: 1-5; 11-15 after randomization) as detailed in
9	Supplementary Figure S6. Animals were euthanized by injecting zolazepam (0.2 ml/kg) and
10	xylazine (16 mg/kg) i.m. at day 30. Hemocromocytometric analyses were performed with a
11	UniCel DxH 800 Coulter Cellular Analysis System (Beckman Coulter, Miami, FL) on 0.5 ml
12	of blood collected immediately after euthanizing, using commercial kits from Beckman
13	Coulter Inc.
14	
14	In a second experimental set, 1×10^6 NS cells, stably transfected with the
14	In a second experimental set, 1×10° NS cells, stably transfected with the pGL4.51[luc2/CMV/Neo] vector encoding for luciferase (Promega Corporation), mixed with
15	pGL4.51[luc2/CMV/Neo] vector encoding for luciferase (Promega Corporation), mixed with
15 16	pGL4.51[luc2/CMV/Neo] vector encoding for luciferase (Promega Corporation), mixed with 150 µl sterile physiological solution, were stereotactically injected into the right caudatus
15 16 17	pGL4.51[luc2/CMV/Neo] vector encoding for luciferase (Promega Corporation), mixed with 150 µl sterile physiological solution, were stereotactically injected into the right caudatus nucleus into 6-8 week olds female BALB/c <i>nu/nu</i> mice (weight: 20.3 g \pm 2.4), anesthetized
15 16 17 18	pGL4.51[luc2/CMV/Neo] vector encoding for luciferase (Promega Corporation), mixed with 150 µl sterile physiological solution, were stereotactically injected into the right caudatus nucleus into 6-8 week olds female BALB/c <i>nu/nu</i> mice (weight: 20.3 g \pm 2.4), anesthetized with sodium phenobarbital (60 mg/kg) i.p. Tumor growth was monitored by <i>in vivo</i>
15 16 17 18 19	pGL4.51[luc2/CMV/Neo] vector encoding for luciferase (Promega Corporation), mixed with 150 μ l sterile physiological solution, were stereotactically injected into the right caudatus nucleus into 6-8 week olds female BALB/c <i>nu/nu</i> mice (weight: 20.3 g \pm 2.4), anesthetized with sodium phenobarbital (60 mg/kg) i.p. Tumor growth was monitored by <i>in vivo</i> bioluminescence (Xenogen IVIS Spectrum, PerkinElmer, Waltham, MA) at day 6, 14 and 24
15 16 17 18 19 20	pGL4.51[luc2/CMV/Neo] vector encoding for luciferase (Promega Corporation), mixed with 150 µl sterile physiological solution, were stereotactically injected into the right caudatus nucleus into 6-8 week olds female BALB/c <i>nu/nu</i> mice (weight: 20.3 g \pm 2.4), anesthetized with sodium phenobarbital (60 mg/kg) i.p. Tumor growth was monitored by <i>in vivo</i> bioluminescence (Xenogen IVIS Spectrum, PerkinElmer, Waltham, MA) at day 6, 14 and 24 post-implantation. At day 7, animals were randomized (6 animals/group) and treated with 2
15 16 17 18 19 20 21	pGL4.51[luc2/CMV/Neo] vector encoding for luciferase (Promega Corporation), mixed with 150 μ l sterile physiological solution, were stereotactically injected into the right caudatus nucleus into 6-8 week olds female BALB/c <i>nu/nu</i> mice (weight: 20.3 g \pm 2.4), anesthetized with sodium phenobarbital (60 mg/kg) i.p. Tumor growth was monitored by <i>in vivo</i> bioluminescence (Xenogen IVIS Spectrum, PerkinElmer, Waltham, MA) at day 6, 14 and 24 post-implantation. At day 7, animals were randomized (6 animals/group) and treated with 2 cycles of 5 consecutive days (days: 7-11; 17-21 after randomization) as indicated in Figure 5 .
15 16 17 18 19 20 21 22	pGL4.51[luc2/CMV/Neo] vector encoding for luciferase (Promega Corporation), mixed with 150 μ l sterile physiological solution, were stereotactically injected into the right caudatus nucleus into 6-8 week olds female BALB/c <i>nu/nu</i> mice (weight: 20.3 g \pm 2.4), anesthetized with sodium phenobarbital (60 mg/kg) i.p. Tumor growth was monitored by <i>in vivo</i> bioluminescence (Xenogen IVIS Spectrum, PerkinElmer, Waltham, MA) at day 6, 14 and 24 post-implantation. At day 7, animals were randomized (6 animals/group) and treated with 2 cycles of 5 consecutive days (days: 7-11; 17-21 after randomization) as indicated in Figure 5 . Animals were euthanized at day 30. Brains were fixed in 40 μ g/ml paraformaldehyde at 4 °C

Millipore), cleaved (Asp175)caspase 3 (rabbit, #9661; Cell Signaling Technology Inc., 1 2 Danvers, MA), followed by a peroxidase-conjugated secondary antibody (Dako, Glostrup, Denmark). Stained sections were examined with a Leica DC100 microscope. In parallel, 3 4 tumor tissue was homogenized for 30 s at 15 Hz, using a TissueLyser II device (Qiagen, 5 Hilden, Germany) and clarified at 12000×g for 5 minutes. Protein (10 µg) from tumor lysates 6 were used for the immunoblot analysis of Pgp, as reported above. In a third experimental set, 7 animals with orthotopic tumors were monitored after the treatment detailed in Figure 5. 8 Animals were euthanized when they showed signs of significantly compromised neurological function or loss of body weight >20%. Overall survival was defined as the time interval 9 between tumor implant and euthanasia. 10 11 Animal care and experimental procedures were approved by the Bio-Ethical Committee of the Italian Ministry of Health (#122/2015-PR). 12 Statistical analysis. All data in the text and figures are provided as means +SD. The results 13 were analysed by a Student's t-test, using Statistical Package for Social Science (SPSS) 14 software (IBM SPSS Statistics v.19). The Kaplan-Meier method was used to calculate overall 15 16 survival of mice. Log rank test was used to compare the outcome of the treatment groups, using MedCalc® software (v.17.4). p < 0.05 was considered significant. Data analysis was 17 performed blinded. 18

19 **Results**

20 Glioblastoma-derived neurospheres co-express CAXII and Pgp

The clinical, genomic and phenotypic data for the three GB patients of this study are provided in **Table 1** and **Supplementary Table S1**. The *MGMT* promoter status is partially methylated in patient #1, unmethylated in patient #2 and fully methylated in patient #3 (**Table 1**). We generated primary cultures from patients #1-#3 and grew them as AC or NS.

1 NS had comparable levels of CAIX and CAXII protein, while only CAIX was detected in AC

2 (Figure 1a). NS had higher levels of CAXII and Pgp on the cell surface than AC (Figure

3 **1b**). CAXII co-immunoprecipitated with Pgp (**Figure 1c**). The results of the PLA

- 4 demonstrate that CAXII and Pgp are physically associated in the NS plasma-membrane
- 5 (Figure 1d). Quantification of CAXII:Pgp co-localization, based on confocal laser-scanning
- 6 microscopy, indicated that 58.67 ± 1.1 % of NS Pgp interacted with CAXII in the plasma-
- 7 membrane of NS (Figure 1e).

8 The expression of Pgp and CAXII was independent of the different culture conditions

9 between AC and NS (Supplementary Figure S1).

10 The addition of CAXII inhibitors to neurospheres reduces Pgp activity and increases

11 retention and cytotoxicity of chemotherapeutic drugs

12 A compound panel comprising Psammaplin C (1), its derivatives (2-4) and the non-CAXII

13 inhibitor control compound (5) (Figure 2a) was tested for the ability to indirectly reduce Pgp

14 activity in NS. The more potent the CAXII inhibitor (lower *K*_i; **Supplementary Table S2**),

the higher the reduction of Pgp activity (**Figure 2b**). The Pgp substrate doxorubicin

accumulated to a greater extent (Figure 2c) and exhibited greater toxicity (Figure 2d-e) in

17 AC than in NS. NS were refractory to doxorubicin. These characteristics were unchanged by

18 compounds 1-5 in AC. In NS compounds 1 or 3, the two most potent CAXII inhibitors,

19 restored the intracellular doxorubicin concentration to a level comparable to AC (Figure 2c),

20 partially restored the release of LDH induced by doxorubicin (Figure 2d) and reduced cell

21 viability (**Figure 2e**).

Comparable effects were observed with the chemotherapeutic drugs etoposide, topotecan and
 irinotecan. These drugs are known substrates of Pgp (21) (Supplementary Figure S2a-f). As

compound **1** was the most effective in restoring the effects of Pgp substrates in GB NS, it was

25 selected for further characterization.

CAXII inhibition enhances temozolomide cytotoxicity in neurospheres by reducing Pgp activity

3 TMZ, a substrate and down-regulator of Pgp (4, 22), decreased Pgp expression in NS (Figure 4 3a; Supplementary Figure S3a). TMZ consistently reduced the amount of Pgp that coimmunoprecipitated with CAXII (Figure 3b; Supplementary Figure S3b) and the activity 5 of Pgp (Figure 3c). Pgp expression (Figure 3a; Supplementary Figure S3a) and the 6 7 interaction of Pgp and CAXII (Figure 3b; Supplementary Figure S3b) was unchanged by compound 1, however Pgp-ATPase activity was reduced, even more so when in combination 8 9 with TMZ (Figure 3c). Consequently, in NS compound 1 increased TMZ accumulation (Figure 3d), cell necrosis (Figure 3e), apoptosis (Figure 3f) and reduced viability in the 10 presence of TMZ (Figure 3g), to the extent observed in Pgp-KO NS clones (wherein the 11 levels of CAXII were unaltered) or in AC (Figure 3d-g; Supplementary Figure S3c-d). In 12 Pgp-KO NS clones compound 1 did not enhance the effect of TMZ on reduced cell viability 13 (Figure 3g), suggesting that Pgp is the ultimate – although indirect – target of compound 1. 14 15 The isobologram analysis in NS (Supplementary Figure S4a-c) indicated a CI of TMZ and compound 1 equal to 0.08838 for patient #1, 0.07017 for patient #2 and 0.1775 for patient #3. 16 CAXII-KO NS clones had the same levels of Pgp in whole cell (Figure 4a; Supplementary 17 Figure S5a) and plasma-membrane extracts (Figure 4b; Supplementary Figure S5b) than 18 19 in NS or NS treated with a non-targeting vector. Similarly, the amount of plasma-membrane-20 associated Pgp in NS did not change when NS were treated with 10 nM of compound 1 21 (Figure 4b; Supplementary Figure S5b). However, when plasma-membrane extracts of CAXII-KO NS clones were immuno-precipitated with an anti-CAXII antibody, Pgp was 22 23 undetectable in the immunoprecipitated extracts (Figure 4c; Supplementary Figure S5c), confirming a strong and specific interaction between the two proteins. CAXII-KO NS clones 24 had lower Pgp-ATPase activity than wild-type NS (Figure 4d) even when the levels of Pgp 25

were the same. TMZ further reduced Pgp-ATPase activity in CAXII-KO NS clones (Figure 1 2 4d) and produced the same phenotypic response as in AC, namely TMZ accumulation (Figure 4e) and cytotoxicity (Figures 4f-h; Supplementary Figure S5d). 3 4 CAXII inhibition restores the efficacy of temozolomide in tumors derived from resistant glioblastoma neurospheres in vivo 5 Compound 1 was stable in Balb/c mice plasma (half-life >240 min) (Supplementary Table 6 7 S3) and showed low potential to inhibit major drug metabolizing CYP P450 enzymes (Supplementary Table S4). 8 9 Following identification of the dosing schedule that maximally reduced the tumor growth of AC in vivo (Supplementary Figure S6a) with significantly less effect against NS 10 (Supplementary Figure S6b-c), we co-administered compound 1 in mice bearing patient #2-11 derived NS at two dosages, 38 ng/kg and 3800 ng/kg, the former according to the CAXII K_i; 12 the latter to limit hematic/lymphatic clearance. Compound 1 did not reduce AC- or NS-13 derived tumor growth. When compound 1 was combined with TMZ, TMZ efficacy in AC-14 15 derived tumors was unchanged; however in NS-derived tumors TMZ efficacy was enhanced in a dose-dependent manner (Supplementary Figure S6b-c). Moreover, the combined 16 treatment did not elevate hematopoiesis, liver, kidney or muscle toxicity compared to TMZ-17 only treatment (Supplementary Table S5). Consistent with the in vitro setting (Figure 3f), 18 19 the growth of Pgp-KO NS-derived tumors was reduced by TMZ, while the growth of 20 scrambled-transduced tumors was not (Supplementary Figure S6d). Compound 1, at the dosage of 3800 ng/kg, enhanced the anti-tumor effect of TMZ in animals bearing scrambled-21 NS but not in animals bearing Pgp-KO NS (Supplementary Figure S6d) that lack this 22 23 indirect target of compound 1. In orthotopic GB-NS-PDX neither compound 1 nor TMZ alone reduced tumor growth, with 24 the exception of tumors derived from patient #3, wherein the genetic profile and clinical 25

history were suggestive of a more favorable response to TMZ (Table 1). The combination of 1 2 compound 1 and TMZ significantly decreased tumor growth in all three GB-NS-PDX 3 (Figure 5a-b) and increased overall survival (Figure 5c). Although TMZ reduced the 4 expression of Pgp in CAXII-positive tumors (Figure 5d-f), it did not reduce intratumor proliferation or increase apoptosis (Figure 5d-e).Compound 1 did not changed these 5 parameters. The combined use of compound 1 and TMZ reduced Pgp expression in tumors 6 7 (Figure 5d-f) as it did in NS cultured *in vitro* (Figure 3a). The combination also rescued the anti-proliferative and pro-apoptotic effects of TMZ, as demonstrated by the reduced 8 9 intratumor positive staining for Ki67 and by the increased activation of caspase 3 (Figure 5d-10 **e**).

11 Discussion

We analyzed samples from three GB patients that experienced a variable but poor clinical 12 response to TMZ. The patients had different genetic backgrounds however the NS-derived 13 from all patients co-expressed CAXII and Pgp, suggesting a relationship that may represent 14 15 an ancestral feature of GB SC, independent of genetic alterations or environmental conditions (such as different culture conditions). Notably, up to 60% of the Pgp in the plasma-membrane 16 of NS was found to interact with CAXII. This indicates that the enzymatic activity of CAXII 17 may act to influence the microenvironment pH for the co-localized Pgp. We are currently 18 19 investigating the mechanisms of up-regulation of Pgp and CAXII expression in NS and the 20 nature of interaction between these two proteins. To the best of our knowledge, ours is the first work showing an increased CAXII expression in GB NS derived from primary tumors. 21 Until now, there have been no reports on the role of CAXII in the response to chemotherapy 22 23 in NS. Based on our previous observations in Pgp-expressing solid cancer cell lines (7,9), we hypothesized that CAXII inhibitors may reverse the Pgp-mediated drug-resistance in GB NS, 24 wherein Pgp activity is enhanced by CAXII activity. Even though CAIX is expressed in NS 25

and is important in GB pathogenesis (23), our data indicate no significant role for CAIX in
 the chemoresistance of NS.

3 We recently synthesized Psammaplin C (compound 1 in this manuscript), one of the most 4 potent CAXII inhibitors ever reported (24). We synthesized a panel of related sulfonamides (2-4) and the control compound 5, which is identical to 1 but lacks the sulfonamide moiety. 5 This panel enabled the structure-activity relationships (SAR) between CAXII inhibition and 6 7 indirect Pgp inhibition to be established. The strongest inhibitor of CAXII, compound 1, was the most effective in rescuing the cytotoxicity of all tested Pgp substrates: topoisomerase I/II 8 9 inhibitors topotecan, irinotecan, etoposide and doxorubicin. These drugs are under evaluation in clinical trials as second-line treatments for GB and in GB patients that are refractory to 10 TMZ (25). Our findings suggest CAXII inhibitors may substantially enhance the efficacy of 11 these agents, being particularly effective against GB NS, where improvement of current 12 therapy is desperately sought. 13 Most importantly, compound 1 rescued the efficacy of TMZ, the first-line drug in GB 14 treatment. TMZ fails to eradicate GB SC, owing to a combination of MGMT status, cell 15 survival/anti-apoptotic pathways driven by EGFR amplification, mutations in IDH1/2 and 16 TP53, hypoxia, niches rich of growth factors (2). The three patient-derived NS analyzed in 17 this work had slight variation in their in vitro and in vivo sensitivity and clinical response to 18 19 TMZ, likely as a consequence of their different genetic background. In general, however, NS 20 from all patient samples were more resistant to TMZ than corresponding AC. The co-21 administration of compound 1 rescued sensitivity to TMZ, independent of MGMT status or

other genetic alterations, suggesting that inhibition of CAXII may overcome Pgp-mediatedresistance to TMZ.

Our findings in *Pgp*-KO and *CAXII*-KO NS support the hypotheses that i) in addition to the
 MGMT methylation status and other known genetic alterations determining resistance to

TMZ, the presence of Pgp plays a pivotal role in NS resistance to chemotherapy; ii) CAXII
inhibition overcomes this resistance by reducing Pgp activity. It is probable that the
interaction of CAXII with Pgp sustains the activity of Pgp, and that interfering with CAXII
by treatment with either compound 1 or genetic knockout significantly reduces ATPase
activity. Notably, this genetic or pharmacological inhibition did not alter the amount of
surface Pgp. As Pgp mediates TMZ efflux (4), targeting CAXII increases the intracellular
retention of TMZ to restore its cytotoxic effects.

8 The strong synergism observed with TMZ and compound **1** further enforces the hypothesis 9 that they are involved in the same pathway leading to inhibition of Pgp efflux activity. The 10 ability of compound **1** to reduce Pgp activity together with its potency and selectivity for

11 CAXII over other CAs, contribute to making compound **1** highly effective against GB NS.

12 Furthermore, CAXII has minimal expression in healthy cells

13 (<u>https://www.proteinatlas.org/ENSG00000074410-CA12/tissue</u>). This is a major advantage

14 as targeting CAXII to indirectly reduce Pgp activity provides a selective GB SC-targeting

tool and avoids the *in vivo* toxicity associated with using direct Pgp inhibitors (5).

16 Furthermore, the *in vitro* results obtained from treatment of GB-SC with a combination of

17 compound **1** and second-line chemotherapeutic drugs (all substrates of Pgp) may open the

18 way for new combination therapies with the potential to lower the chemotherapy dose

19 required to achieve significant GB reduction.

In line with the TMZ resistance observed in NS cultures and the clinical response of the corresponding patient to TMZ, two of the three GB-NS-PDX were refractory to TMZ. The third xenograft - generated from the patient with the most favorable genetic profile toward TMZ sensitivity, longest time to recurrence after TMZ treatment and longest overall survival - was partially sensitive to TMZ. In accordance with the *in vitro* findings tumor growth in compound **1** only treated GB-NS-PDX was not reduced, however compound **1** in

combination with TMZ significantly improved the anti-tumor activity over the TMZ-only
 cohort and increased the overall survival, likely as a consequence of the co-expression of
 CAXII and Pgp in these NS-derived tumors. Furthermore, the combination of TMZ and
 compound 1 reduced the intratumor level of Pgp, and recapitulated the same cytotoxic events
 observed in NS cultures.

6 Recently the combination of the CAIX/CAXII inhibitor SLC-0111 (100 mg/kg, daily over 14 7 days) with TMZ (100 mg/kg once every 7 days over 14 days) reduced GB growth compared to TMZ only. The authors speculate that the mechanism of SLC-0111 may be mediated by 8 9 CAIX together with increased DNA damage (26). This study did not however have the benefit of the inactive probe/active compound combination (compound **5** and **1** in our study) 10 to contribute evidence to support the hypothesis that CAIX was the predominant target of 11 12 SLC-0111. Our work may provide an additional explanation for the effect of SLC-0111, correlating its efficacy with CAXII inhibition causing indirect inhibition of Pgp and increased 13 intratumor retention of TMZ. Of note, compound 1 was effective at a substantially lower 14 15 dosage than SLC-0111. Additionally, compound 1 was devoid of toxicity and did not exacerbate TMZ side-effects, suggesting an appropriate efficacy and safety window with this 16 combination treatment. 17

In summary, we have investigated for the first time the expression and therapeutic 18 implication of CAXII in the highly chemorefractory GB SC-component of GB. We propose 19 20 that CAXII and Pgp co-expression is a new hallmark of chemoresistance in GB NS. This 21 relationship represents a previously unknown mechanism of TMZ resistance in GB-derived NS, wherein CAXII contributes to the Pgp-mediated resistance to TMZ and topoisomerase 22 23 I/II inhibitors in patient-derived GB NS. The detection of CAXII in primary GB samples by routine immunohistochemistry techniques may be difficult however as CAXII is restricted to 24 the SC-component that represents only a small portion of tumor bulk. This restricted 25

1	distribution may limit the potential use of CAXII as a predictive marker of low TMZ-
2	response. CAXII may however represent an exciting new therapeutic target in GB patients
3	resistant to TMZ and with a significant component of SC identified by pathology analysis.
4	Pharmacological inhibition of CAXII rescues the efficacy of TMZ, independently of genetic
5	alterations commonly associated with TMZ-resistance. Our results may form a basis to
6	warrant clinical validation of a new combinatorial therapy, based on a CAXII-inhibitor with
7	TMZ and/or topoisomerase I/II inhibitor, as more effective treatments to eliminate GB SC
8	compared to current treatment options.
9	
10	Authors contributions
11	ICS and LA performed in vitro and in vivo biological assays; PM synthesized the
12	compounds; MM performed the histopathological and genetic characterization of the primary
13	samples; JK analyzed the data of in vitro and in vivo biological assays; DS analyzed
14	histopathological and genetic characterization, and collected the data of the patient clinical
15	follow-up; S-AP and CR conceived the study, supervised the work and wrote the manuscript.
16	
17	Acknowledgments
18	We are grateful to Professor Supuran for CA enzyme inhibition assays, to Mr. Costanzo
19	Costamagna, Department of Oncology, University of Torino, for technical assistance.
20	
21	References
22	1. Stupp R, Taillibert S, Kanner A, Read W, Steinberg DM, Lhermitte B, et al. Effect of
23	Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide
24	Alone on Survival in Patients With Glioblastoma: A Randomized Clinical Trial. JAMA
25	2017 ;318:2306–16

1	2. Auffinger B, Spencer D, Pytel P, Ahmed AU, Lesniak MS. The role of glioma stem cells
2	in chemotherapy resistance and glioblastoma multiforme recurrence. Expert Rev. Neurother
3	2015 ;15:741–52

- 4 3. Riganti C, Salaroglio IC, Caldera V, Campia I, Kopecka J, Mellai M, et al. Temozolomide
- 5 downregulates P-glycoprotein expression in glioblastoma stem cells by interfering with the
- 6 Wnt3a/glycogen synthase-3 kinase/β-catenin pathway. *Neuro Oncol* **2013**;15:1502–17
- 7 4. Munoz JL, Wlaker ND, Scotto KW, Rameshwar P. Temozolomide competes for P-
- 8 glycoprotein and contributes to chemoresistance in glioblastoma cells. *Cancer Lett*
- 9 **2015**;367:69–75
- 10 5. Callaghan R, Luk F, Bebawy M. Inhibition of the multidrug resistance P-glycoprotein:
- 11 time for a change of strategy? *Drug Metab. Dispos* **2014**;42:623–31
- Corbet C, Feron O. Tumour acidosis: from the passenger to the driver's seat. *Nat Rev Oncol* 2017;17:577–93
- 14 7. Kopecka J, Campia I, Jacobs A, Frei AP, Ghigo D, Wollscheid B, et al. Carbonic
- 15 anhydrase XII is a new therapeutic target to overcome chemoresistance in cancer cells.
- 16 *Oncotarget* **2015**;6:6776–93
- 17 8. Gondi G, Mysliwietz J, Hulikova A, Jen JP, Swietach P, Kremmer E, et al. Antitumor
- 18 efficacy of a monoclonal antibody that inhibits the activity of cancer-associated carbonic
- 19 anhydrase XII. *Cancer Res* **2013**;73:6494–503
- 20 9. Kopecka J, Rankin GM, Salaroglio IC, Poulsen SA, Riganti C. P-glycoprotein-mediated
- chemoresistance is reversed by carbonic anhydrase XII inhibitors. Oncotarget 2016;7:85861–
- 22 75
- 23 10. Beckner ME, Pollack IF, Nordberg ML, Hamilton RL. Glioblastomas with copy number
- 24 gains in EGFR and RNF139 show increased expressions of carbonic anhydrase genes
- transformed by ENO1. *Biochim Biophys Acta Clin* **2016**;5:1–15

- 1 11. Haapasalo J, Hilvo M, Nordfors K, Haapasalo H, Parkkila S, Hyrskyluoto A, et al.
- 2 Identification of an alternatively spliced isoform of carbonic anhydrase XII in diffusely
- 3 infiltrating astrocytic gliomas. *Neuro Oncol.* 2008;10:131–38
- 4 12. Battke C, Kremmer E, Mysliwietz J, Gondi G, Dumitru C, Brandau S, et al. Generation
- 5 and characterization of the first inhibitory antibody targeting tumour-associated carbonic
- 6 anhydrase XII. *Cancer Immunol Immunother* **2011**;60:649–58.
- 7 13. Morris JC, Chiche J, Grellier C, Lopez M, Bornaghi LF, Maresca A, et al. Targeting
- 8 hypoxic tumor cell viability with carbohydrate-based carbonic anhydrase IX and XII
- 9 inhibitors. J Med Chem 2011;54:6905–18
- 10 14. Mellai M, Caldera V, Annovazzi L, Chiò A, Lanotte M, Cassoni P, et al. MGMT
- promoter hypermethylation in a series of 104 glioblastomas. *Cancer Genomics Proteomics* 2009;6:219–27
- 13 15. Mellai M, Piazzi A, Caldera V, Monzeglio O, Cassoni P, Valente G, et al. IDH1 and
- 14 IDH2 mutations, immunohistochemistry and associations in a series of brain tumors. J
- 15 Neurooncol 2011;**105:**345–57
- 16 16. Reynolds BA, Tetzlaff W, Weiss S. A multipotent EGF-responsive striatal embryonic
- 17 progenitor cell produces neurons and astrocytes. J Neurosci 1992;12:4565–74
- 18 17. Caldera V, Mellai M, Annovazzi L, Piazzi A, Lanotte M, Cassoni P, et al. Antigenic and
- 19 Genotypic Similarity between Primary Glioblastomas and Their Derived Neurospheres. J
- 20 *Oncol* **2011**;2011:e314962
- 21 18. Kopecka J, Salzano G, Campia I, Lusa S, Ghigo D, De Rosa G, et al. Insights in the
- 22 chemical components of liposomes responsible for P-glycoprotein inhibition. Nanomedicine
- 23 **2014**;10:77–87

- 1 19. Ring BJ, Chien JY, Adkison KK, Jones HM, Rowland M, Jones RD, et al. PhRMA
- 2 CPCDC initiative on predictive models of human pharmacokinetics, part 3: comparative
- 3 assessement of prediction methods of human clearance. *J Pharm Sci* **2011**;100:4090–110
- 4 20. Obach RS. Prediction of human clearance of twenty-nine drugs from hepatic microsomal
- 5 intrinsic clearance data: An examination of in vitro half-life approach and nonspecific
- 6 binding to microsomes. *Drug Metab. Dispos* **1999**;27:1350–59
- 7 21. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent
- 8 transporters. *Nat Rev Cancer* **2002**;2:48–58
- 9 22. Zhang R, Saito R, Shibahara I, Sugiyama S, Kanamori M, Sonoda Y, et al.
- 10 Temozolomide reverses doxorubicin resistance by inhibiting P-glycoprotein in malignant
- 11 glioma cells. *J Neurooncol* **2016**;126:235–42
- 12 23. Proescholdt MA, Merrill MJ, Stoerr EM, Lohmeier A, Pohl F, Brawanski A. Function of
- 13 carbonic anhydrase IX in glioblastoma multiforme. *Neuro On*col **2012**;14:1357–66
- 14 24. Mujumdar P, Teruya K, Tonissen KF, Vullo D, Supuran CT, Peat TS, et al. An unusual
- 15 natural product primary sulfonamide: synthesis, carbonic anhydrase inhibition, and protein X-
- 16 ray structures of Psammaplin C. J Med Chem 2016;59:5462–70
- 17 25. Carvalho BF, Fernandes AC, Almeida DS, Sampaio LV, Costa A, Caeiro C, et al.
- 18 Second-line chemotherapy in recurrent glioblastoma: a 2-cohort study. *Oncol Res Treat* 2015;
 19 38:348–54
- 20 26. Boyd NH, Walker K, Fried J, Hackney JR, McDonald PC, Benavides GA, et al. Addition
- of carbonic anhydrase 9 inhibitor SLC-0111 to temozolomide treatment delays glioblastoma
- 22 growth in vivo. *JCI. Insight* **2017**;2:pii: 92928

1	Table 1. Patient clinical, pathological and genetic data
---	--

	Patient #1	Patient #2	Patient #3
Age at diagnosis	57	53	61
Sex	М	F	М
Histological grade	IV	IV	IV
Therapy	Surgery +	Surgery +	Surgery +
	radiotherapy +	radiotherapy +	radiotherapy +
	chemotherapy	chemotherapy	chemotherapy
Time to recurrence	7	6	9
(months)			
Post-recurrence	Re-resection +	Radiotherapy	Radiotherapy+
therapy	radiotherapy		chemotherapy
Overall survival	12	9	18
(months)			
MGMT status	Partially	Fully unmethylated	Fully
	methylated		methylated
EGFR status	Not amplified	Not amplified	Amplified
IDH1 status	Mutated (395G>A)	Mutated (395G>A)	Wild-type
IDH2 status	Wild-type	Wild-type	Wild-type
TP53	Wild-type	Mutated	Wild-type
		(380C>T)	
1p/19q	Present	Absent	Absent
co-deletion			

2

Anagraphical, pathological, clinical and genetic data of patients of samples were used in the

3 study. Radiotherapy: 60 Gy (30 fractions). Chemotherapy: 75 mg/m² temozolomide (TMZ),

6 chemotherapy: 80 mg/m^2 carmustine (BCNU), days 1-3, every 8 weeks, 3 cycles. Time to

7 recurrence: time between the surgery and the appearance of tumor relapse at magnetic

8 resonance imaging (MRI). Overall survival: time between diagnosis and patient death.

9 MGMT: O⁶-methylguanine-DNA methyltransferase. Fully methylated: promoter methylation

10 of both alleles; partially methylated: promoter methylation of one allele. EGFR: epithelial

⁴ *per os*, daily, concurrently to radiotherapy, followed by $200 \text{ mg/m}^2 \text{ TMZ}$, *per os*, days 1-5,

⁵ every 28 days, 6 cycles. Post-recurrence therapy: radiotherapy: 60 Gy (30 fractions);

- growth factor receptor. Amplified: > 2 copies of EGFR genes; not amplified: < 2 copies of EGFR gene. IDH: isocitrate dehydrogenase.

1 Figures legends

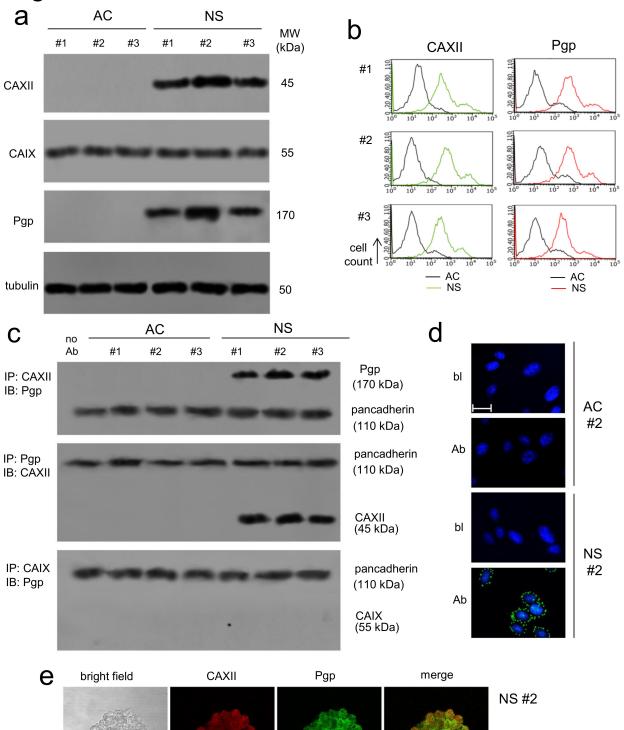
Figure 1. CAXII and Pgp are co-expressed and associated in glioblastoma-derived neurospheres

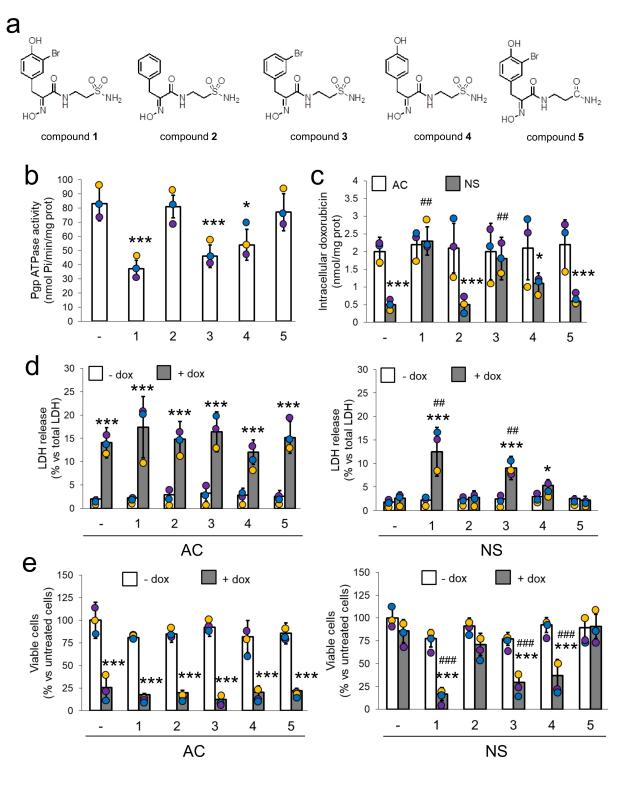
4 Primary GB cells derived from three patients (#1, #2, #3) were cultured as adherent cells (AC) or as neurospheres (NS). a. Cells were lysed and immunoblotted with the indicated 5 antibodies. The figure is representative of one out of three experiments. **b.** Cell surface 6 7 expression of CAXII and Pgp was detected by flow cytometry in replicate. The histograms are representative of one out of three experiments. c. Plasma-membrane extracts were 8 9 immuno-precipitated (IP) with anti-CAXII or anti-CAIX antibodies, then immunoblotted (IB) with an anti-Pgp antibody. In a complementary experimental set, plasma-membrane extracts 10 were immuno-precipitated with an anti-Pgp antibody and immunoblotted with an anti-CAXII 11 12 antibody, to confirm the specificity of the interaction between Pgp and CAXII. no Ab: #2 NS sample immunoprecipitated without antibody. An aliquot of the extracts before the 13 immunoprecipitation was loaded and probed with an anti-pancadherin antibody, as control of 14 equal protein loading. The figure is representative of one out of three experiments. d. 15 Proximity ligation assay between CAXII and Pgp in patient #2 AC and NS. Bl: cells 16 incubated without primary antibodies; Ab: cells incubated with primary antibodies. Blue: 17 nuclear staining (DAPI); green: Pgp/CAXII interaction. The image is representative of one 18 19 out of three experiments. A minimum of five fields/experiment were examined. Bar: 10 µm 20 $(10 \times \text{ ocular lens}; 63 \times \text{ objective lens})$. e. Immunofluorescence detection of plasma-membrane associated CAXII and Pgp in non-permeabilized NS from patient #2, by confocal microscope 21 analysis. The image is representative of one out of three experiments. A minimum of five 22 23 fields/experiment were examined. Bar: $10 \mu m$ ($10 \times$ ocular lens; $60 \times$ objective lens). Figure 2. CAXII inhibition reduces Pgp activity and increases cytotoxicity of 24 doxorubicin in glioblastoma-derived neurospheres 25

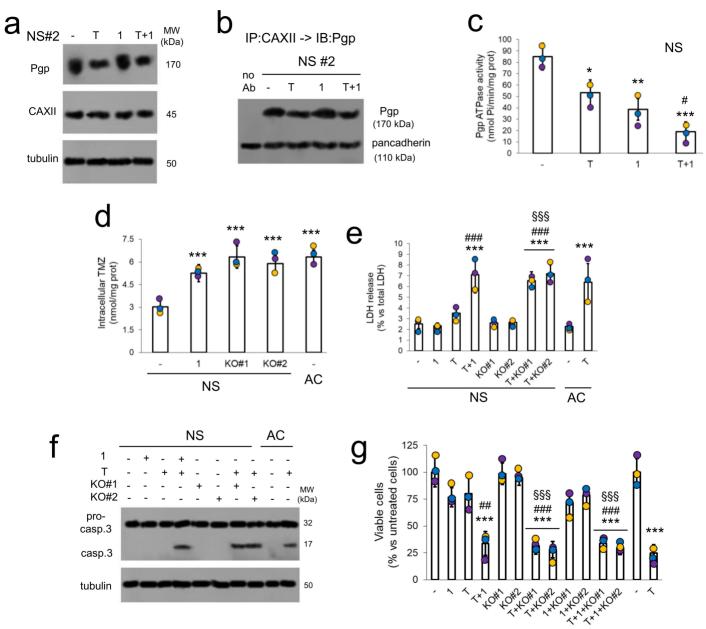
1	a. Chemical structures of CAXII inhibitors used. For panels b-d: pooled data of patients #1,
2	#2 and #3 are presented as means \pm SD (n=3 independent experiments for each patient).
3	Violet, orange and blue circles represent the mean of technical replicates of patients #1, #2
4	and #3. b. Spectrophotometric measure of Pgp ATPase activity, detected in triplicates in NS,
5	grown for 24 h in fresh medium (-) or in medium containing 10 nM compounds 1-5.
6	*p<0.02: compound 4 vs. untreated (-) cells: ***p<0.001: compounds 1 and 3 vs. untreated (-
7) cells (Student's t-test). c. Fluorimetric detection of doxorubicin (dox) accumulation,
8	measured in duplicates in cells treated 24 h with 5 μ M dox, alone (-) or in the presence of 10
9	nM compounds 1-5. *p<0.05: NS treated with compound 4 vs. corresponding AC
10	***p<0.001: untreated NS or treated with compounds 2 and 5 vs. corresponding AC;
11	^{##} p <0.002: NS treated with compound 1 and 3 vs. untreated (-) NS (Student's t-test). d.
12	Release of LDH, measured spectrophotometrically in duplicates, in cells grown for 24 h in
13	fresh medium (-) or in media containing 10 nM compounds 1-5, in the absence or presence of
14	5 µM dox. *p<0.05: treated AC/NS vs. corresponding "- dox" cells; ***p<0.001: treated
15	AC/NS vs. corresponding "- dox" cells; $^{\#\#}p<0.002$: NS treated with compound 1 and 3 vs.
16	"+dox" NS (Student's t-test). e. Viability of cells, measured by a chemiluminescence-based
17	assay in quadruplicates, after 72 h in fresh medium (-) or in media containing 10 nM
18	compounds 1-5, in the absence or presence of 5 μ M dox. ***p<0.001: treated AC/NS vs.
19	corresponding "- dox" cells; ^{###} p<0.001: NS treated with compound 1 , 3 and 4 vs. "+dox" NS
20	(Student's t-test).
21	Figure 3. CAXII pharmacological inhibition restores temozolomide cytotoxicity in
22	glioblastoma-derived neurospheres
23	NS were grown for 48 h (panels a-f) or 72 h (panel g) in fresh medium (-) or in medium
24	containing 50 µM temozolomide (T) or 10 nM compound 1, alone or in association. Panels b,

c, d, f: pooled data of patients #1, #2 and #3 are presented as means+SD (n=4 independent

experiments for each patient). Violet, orange and blue circles represent the mean of technical
replicates of #1, #2 and #3. AC were included as control of cells with undetectable CAXII
levels. a. Patient #2 NS were lysed and immunoblotted for Pgp and CAXII. The figure is
representative of one out of three experiments. b. Plasma-membrane extracts were
immunoprecipitated (IP) with an anti-CAXII antibody, then immunoblotted (IB) with an anti-
Pgp antibody. no Ab: sample immuno-precipitated without antibody. An aliquot of the
extracts before the immunoprecipitation was loaded and probed with an anti-pancadherin
antibody, as control of equal protein loading. The figure is representative of one out of three
experiments. c. Spectrophotometric measure of Pgp ATPase, detected in triplicates in NS.
*p<0.01: T-treated vs. untreated (-) cells;** p<0.01: 1-treated vs. untreated (-) cells;
***p<0.001: T+1-treated vs. untreated (-) cells; [#] p<0.05: T+1-treated vs. T-treated cells
(Student's t-test). d. Intracellular content of temozolomide (TMZ), measured in duplicates
after cell radiolabelling. NS clones knocked out for Pgp (KO#1, KO#2) and AC were
included as control of cells with undetectable expression of Pgp. ***p<0.001: all
experimental conditions vs. untreated (-) NS (Student's t-test). e. LDH release, measured
spectrophotometrically in duplicates. ***p<0.001: all experimental conditions vs. untreated (-
) AC/NS; ^{###} p<0.001: T+1-treated, T+KO1/KO2 cells vs. T-treated cells; ^{§§§} p<0.001:
T+KO1/KO2 cells vs. KO1/KO2 cells (Student's t-test). f. Patient #2 NS, incubated as
reported in a and/or knocked out for Pgp, were lysed and immunoblotted for procaspase and
cleaved caspase 3. The figure is representative of one out of three experiments. g. Cell
viability measured by a chemiluminescence-based assay in quadruplicates. ***p<0.001: all
experimental conditions vs. untreated (-) AC/NS; ##p<0.005: T+1-treated vs. T-treated cells;
^{###} p<0.001: T+KO1/KO2 or T+ 1 + KO1/KO2 cells vs. T-treated cells; ^{§§§} p<0.001:
T+KO1/KO2 or T+1+ KO1/KO2 cells vs. KO1/KO2 cells (Student's t-test).

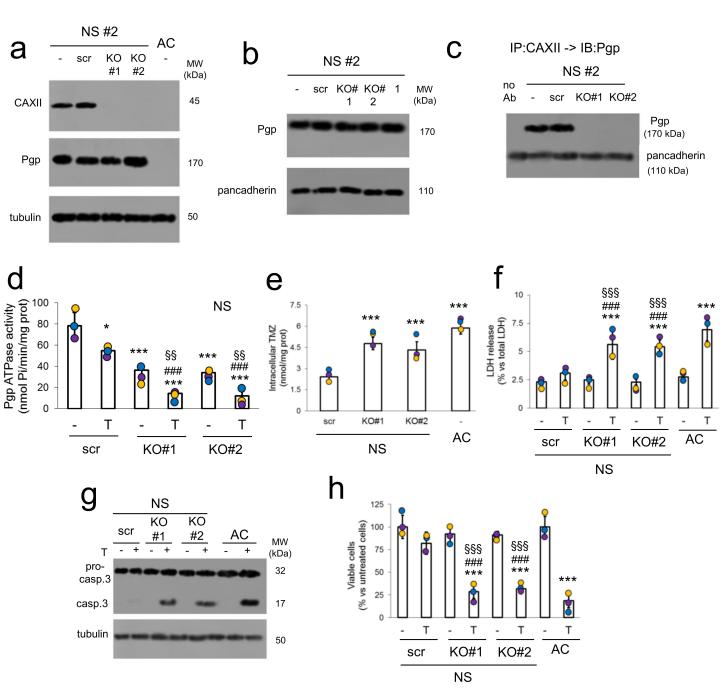

1 Figure 4. CAXII knocking-out restores sensitivity to temozolomide in glioblastoma-

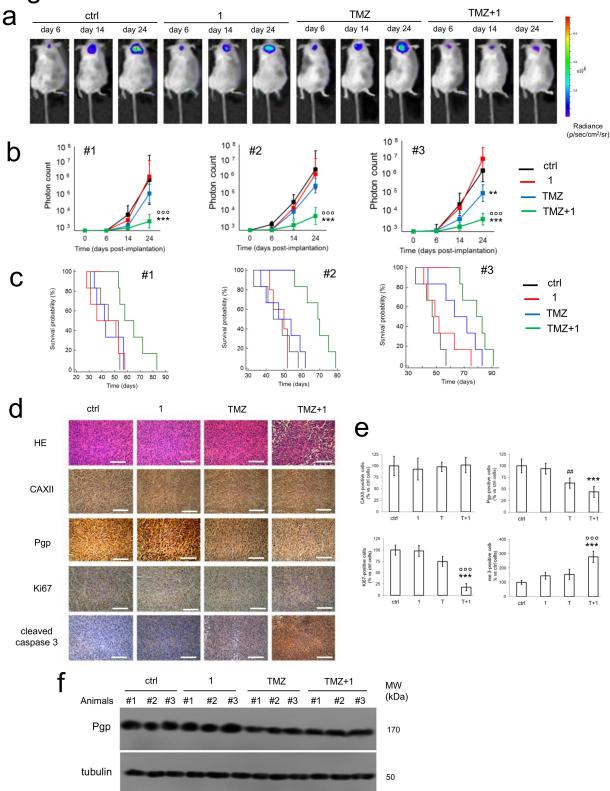

2 derived neurospheres


3 NS were grown for 48 h (panels **a**-g) or 72 h (panel **h**) in fresh medium (-) or in medium 4 containing 50 µM temozolomide (T) or 10 nM compound 1, alone or in association. Panels d, e, f, h: pooled data of patients #1, #2 and #3 are presented as means+SD (n=4 independent 5 6 experiments for each patient). Violet, orange and blue circles represent the mean of technical replicates of #1, #2 and #3. AC were included as control of cells with undetectable CAXII 7 levels. a. Patient #2 NS were growth in fresh medium (-), transduced with a non-targeting 8 9 vector (scrambled vector; scr) or with two CRISPR pCas CAXII-targeting vectors (KO#1, KO#2), lysed and immunoblotted with the indicated antibodies. The figure is representative 10 of one out of three experiments. **b**. Plasma-membrane extracts were probed with an anti-Pgp 11 12 antibody, or an anti-pancadherin antibody, as control of equal protein loading. The figure is representative of one out of three experiments. c. Plasma-membrane extracts from patient #2 13 CAXII-KO NS clones were immunoprecipitated (IP) with an anti-CAXII antibody and 14 15 immunoblotted (IP) with an anti-Pgp antibody. no Ab: sample immuno-precipitated without antibody. An aliquot of the extract before the immunoprecipitation was loaded and probed 16 with an anti-pancadherin antibody, as control of equal protein loading. The figure is 17 representative of one out of three experiments. d. Spectrophotometric measure of Pgp 18 ATPase, detected in triplicates in NS. *p<0.05: T-treated vs. scrambled-treated (-) cells; 19 ***p<0.001: KO1/KO2 or T+KO1/KO2 cells vs. scrambled-treated (-) cells; ###p<0.001: 20 T+KO1/KO2 cells vs. T-treated cells; ^{§§}p<0.01: T+KO1/KO2 cells vs. KO1/KO2 cells 21 (Student's t-test). e. Intracellular content of temozolomide (TMZ), measured in duplicates 22 after cell radiolabelling. ***p<0.001: all experimental conditions vs. untreated (-) NS 23 (Student's t-test). f. LDH release, measured spectrophotometrically in duplicates. 24 ***p<0.001: all experimental conditions vs. untreated (-) AC/NS; ###p<0.001: T+1-treated, 25

1	T+KO1/KO2 cells vs. T-treated cells; ^{§§§} p<0.001: T+KO1/KO2 cells vs. KO1/KO2 cells	
2	(Student's t-test). g. Patient #2 NS were lysed and immunoblotted for procaspase and	
3	cleaved caspase 3. The figure is representative of one out of three experiments. h. Cell	
4	viability measured by a chemiluminescence-based assay in quadruplicates. ***p<0.001: all	
5	experimental conditions vs. untreated (-) AC/NS; ###p<0.001: T+1-treated, T+KO1/KO2 cells	
6	vs. T-treated cells; ^{§§§} p<0.001: T+KO1/KO2 cells vs. KO1/KO2 cells (Student's t-test).	
7	Figure 5. Compound 1 improves temozolomide efficacy against orthotopically	
8	implanted glioblastoma neurosphere-derived tumors	
9	a. Representative <i>in vivo</i> bioluminescence imaging of orthotopically implanted patient #2 NS,	
10	in animals treated with vehicle (ctrl), compound 1 and temozolomide (TMZ), as follows: 1)	
11	control group, treated with 0.2 ml saline solution intravenously (i.v.); 2) 1 group, treated with	
12	3800 ng/kg compound 1 i.v.; 3) TMZ group, treated with 50 mg/kg TMZ per os (p.o.); 4)	
13	TMZ+1 group, treated with 50 mg/kg TMZ p.o.+3800 ng/kg compound 1 i.v. (6	
14	animals/group). b. Quantification of patient #1-3 NS-derived bioluminescence, taken as index	
15	of tumor growth. Data are presented as means+SD (6 animals/group). At day 24: **p<0.005,	
16	*** $p<0.001$: TMZ+1 group vs. all the other groups of treatment; ^{oo} $p<0.005$, ^{ooo} $p<0.01$:	
17	TMZ+1 group vs. TMZ-group (Student's t-test). c. Overall survival probability was	
18	calculated using the Kaplan-Meier method. Patient #1 NS: p<0.02: TMZ+1-group vs. all the	
19	other groups of treatment. Patient #2 NS: p<0.002: TMZ+1-group vs. all the other groups of	
20	treatment. Patient #3 NS: p<0.001: TMZ+1-group vs. ctrl and 1-group; p<0.05: TMZ+1	
21	group vs. TMZ-group; p<0.01: TMZ-group vs. ctrl and 1-group (log rank test; not reported in	
22	the figure). d. Representative intratumor staining with hematoxylin and eosin (HE) or the	
23	indicated antibodies, from patient #2 NS-derived tumors. The photographs are representative	
24	of sections from 5 tumors/group of treatment. Bar=10 μ m (10× ocular lens, 20× objective). e.	
25	Quantification of immuno-histochemical images, performed on sections with 111-94	

nuclei/field. The percentage of proliferating cells was determined by the ratio Ki67-positive
nuclei/total number (hematoxylin-positive) of nuclei using ImageJ software. The ctrl group
percentage was considered 100%. The percentage of CAXII, Pgp and caspase 3-positive cells
was determined by Photoshop program. Data are presented as means±SD. ***p<0.001:
TMZ+1 group vs. all the other groups of treatment; ^{ooo}p<0.001 TMZ+1 group vs. TMZ-
group; ##p<0.005: TMZ vs. ctrl group (Student's t-test). f. Immunoblot analysis of the
indicated proteins from tumor extracts of patient #2 NS (3 animals/group of treatment).





NS

AC

