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• We run a deterministic landslide model
within rainfall events extracted from
measured and downscaled precipitation
data

• Downscaled precipitation data, obtained
from WRF RPC4.5 model data, describes
a historical period and afuture scenario

• We estimate landslide hazard modifica-
tions in terms of rainfall thresholds and
size distributions.

• Rainfall thresholds are expected to change
in Central Italy in the considered scenario

• Landslide size distributions, showing
large statistical uncertainties, are not ex-
pected tochange
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The relation between climate change and its potential effects on the stability of slopes remains an open issue. For
rainfall induced landslides, the point consists in determining the effects of the projected changes in the duration
and amounts of rainfall that can initiate slope failures. We investigated the relationship between fine-scale cli-
mate projections obtained by downscaling and the expected modifications in landslide occurrence in Central
Italy.Weused rainfall measurements taken by 56 rain gauges in the 9-year period 2003–2011, and the RainFARM
technique to generate downscaled synthetic rainfall fields from regional climate model projections for the 14-
year calibration period 2002–2015, and for the 40-year projection period 2010–2049. Using a specific algorithm,
we extracted a number of rainfall events, i.e. rainfall periods separated by dry periods of no or negligible amount
of rain, from themeasured and the synthetic rainfall series. Then, we used the selected rainfall events to forcethe
Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Model TRIGRS v. 2.1. We analyzed the re-
sults in terms of variations (or lack of variations) in the rainfall thresholds for the possible initiation of landslides,
in the probability distribution of landslide size (area), and in landslide hazard. Results showed that the down-
scaled rainfall fields obtained by RainFARM can be used to single out rainfall events, and to force the slope stabil-
ity model. Results further showed that while the rainfall thresholds for landslide occurrence are expected to
change in future scenarios, the probability distribution of landslide areas are not. We infer that landslide hazard
in the study area is expected to change in response to the projected variations in the rainfall conditions. We ex-
pect our results to contribute to regional investigations of the expected impact of projected climate variations on
slope stability conditions and on landslide hazards.
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1. Introduction

Establishing a relation between climate change and its potential cli-
mate effects on the occurrence– or lack of occurrence – of landslides in a
given area remains an open issue (Gariano and Guzzetti, 2016). In fact,
while climatic variables like temperature or precipitation can be simu-
lated by numerical models and the corresponding level of confidence
can be estimated (Giorgi and Lionello, 2008; Ciccarelli et al., 2008;
Diffenbaugh and Field, 2013; IPCC, 2014; LoPresti et al., 2015; Turco
et al., 2015), the way and the extent to which the projected climate
changes maymodify the response of single slopes or entire catchments,
the frequency and extent of landslides, and the related variations in
landslide hazard (Corominas, 2000; Coe and Godt, 2012; Hanson et al.,
2012; Coe, 2016; Gariano and Guzzetti, 2016; Simonovic et al., 2016;
Ciervo et al., 2017; Gariano et al., 2017b; Rianna et al., 2017), remain
to be understood.

In this paper, we describe the results of an impact study aimed at es-
tablishing a cause-effect relationship between downscaled climate
change projections and the expected modifications in landslide occur-
rence, and in the related landslide hazard, in an area of about 420 km2

in Central Italy. For the study,we employed established techniques, pro-
cedures and models for (i) stochastic generation of synthetic down-
scaled rainfall fields from a regional climate model (Rebora et al.,
2006a, 2006b; D'Onofrio et al., 2014), (ii) extraction of rainfall events
from instrumental and synthetic rainfall series (Melillo et al., 2015,
2016), (iii) objective definition of rainfall thresholds from measure-
ments of rainfall conditions that have resulted in landslides (Brunetti
et al., 2010; Peruccacci et al., 2012), and (iv) spatially distributed,
time-varying slope stability modelling forced by rainfall events (Baum
et al., 2008; Alvioli et al., 2014; Alvioli and Baum, 2016).

The paper is organized as follows. First, we describe the study area,
in the Upper Tiber River Basin (UTRB), Central Italy (Section 2). Next,
we present the measured and the synthetic rainfall data series used in
the study, themethod used to single out rainfall events from the rainfall
series, and the model used to ascertain the slope stability conditions,
and their spatial and temporal variations (Section 3). This is followed
by a description of the results of our modelling efforts (Section 4), and
by a discussion of the results (Section 5). We conclude summarizing
the main lessons learnt (Section 6). In an Appendix A, we give details
on the procedures adopted to convert the pixel-based output of the
models into landslide hazard metrics.
2. Study area

Our study area is included in theUpper Tiber River Basin (UTRB) that
extends for about 4100 km2 in Central Italy (Fig. 1). In the catchment, el-
evation ranges from 163 m to 1571 m at M. Pennino, along the divide
between the Adriatic Sea and the Tyrrhenian Sea, and terrain gradient
computed from a 10 m × 10 m Digital Elevation Model (DEM) ranges
from almost zero along the plain of the Tiber River and its major tribu-
taries, to N60° in the mountains and the steepest hills. Four lithological
complexes, or groups of rock units (Cardinali et al., 2001), crop out in
the area, each comprising different sedimentary rock types varying in
strength from hard to weak and soft rocks (Guzzetti et al., 1996,
2008a). Soils reflect the lithological types, and range in thickness from
b20 cm to N1.5 m. Climate is of Mediterranean type, with cold winters
and hot summers. Rainfall occurs mainly from October to December
and from February to April. Snow falls every year in the mountains
and about every five years in the lowlands (Guzzetti et al., 2008a).
Due to the lithological and morphological settings, and to the meteoro-
logical and climatic conditions, landslides are abundant in the UTRB, and
are particularly numerous in the continental, post-orogenic sediments,
which extend for 422 km2, consisting primarily of clay and silt, and sub-
ordinately of sand and gravel, deposited in a continental, lake environ-
ment (Cardinali et al., 2001; Guzzetti et al., 2008a).
3. Data and models

3.1. Measured rainfall series

We used rainfall measurements taken by a network of 56 rain
gauges (yellow dots in Fig. 1) in the UTRB in the 9-year period from 1
January 2003 to 31 December 2011. The network is part of a larger na-
tional network operated by the Italian regional governments and the
Italian national Department for Civil Protection. In the area, the tempo-
ral sampling of the rainfall data varied from1 to 60min,with themajor-
ity of the measurements taken every 30 min, and the measurement
accuracy was in the range between 0.2 mm and 1.0 mm. A specific pro-
cedure was used to evaluate and rank the reliability of the rain gauge
sensors, allowing to identify missing data, errors and periods of proper
functioning in each rain gauge data series. In the 9-year period
2003–2011, the mean annual precipitation (MAP) measured at the 56
rain gauges was 860 mm (blue histogram in Fig. 2), with a minimum
value of 583 mm in 2003, and a maximum value of 1463 mm in 2010.
Rainfallmeasurements at rain gauge locationswere interpolated to pro-
duce grids suitable for use in TRIGRS at 1 km spatial resolution, using an
inverse distance criterion.

3.2. Synthetic rainfall series

Various techniques exist to downscale large-scale rainfall fields such
as those produced by Global and Regional Climate Models (GCMs and
RCMs) to the high temporal and spatial resolutions required by local im-
pact studies. Amongst them, statistical and stochastic downscaling tech-
niques proved particularly effective (Bordoy and Burlando, 2014). For
our study, we used synthetic rainfall data obtained by the Rainfall
Downscaling by a Filtered AutoRegressive Model (RainFARM) tech-
nique (Rebora et al., 2006a, 2006b), a stochastic procedure belonging
to the family of “metagaussian models”, based on nonlinear filtering of
the output of a linear autoregressive process, whose properties are de-
rived from the information available at the large scales. The RainFARM
technique was originally developed for the spatial and temporal down-
scaling of individual precipitation events on the time scales typical of
meteorological events (Rebora et al., 2006a, 2006b), and was next up-
dated to copewith longer climatic timescales, which required the appli-
cation of a purely spatial downscaling (D'Onofrio et al., 2014).

The RainFARM technique has been used for different kinds of studies,
including (i) the analysis of the sensitivity of a distributed hydrological
model to the variability of the spatio-temporal rainfall distribution
(Gabellani et al., 2007), (ii) the estimation of the uncertainty in flood pre-
dictions (Rebora et al., 2006a), (iii) the assessment of the main uncer-
tainty sources in ensemble precipitation forecasts (von Hardenberg
et al., 2007), and (iv) the quantification of sampling errors for the verifica-
tion ofmeteorological forecasts against rain gauge observations (Brussolo
et al., 2008). In this work RainFARM is used for the first time for the study
of the impact of precipitation changes on landslide occurrence.

We applied RainFARM to the output of a set of simulations
preformedwith the state-of-the-art non-hydrostatic Weather Research
and Forecasting (WRF) RCM run over the entire European domain at
0.11° spatial resolution (~12 km) and 3-h temporal resolution for a his-
torical period (1979–2005) and a scenario period (2006–2049) using
RCP4.5 radiative forcing (Thomson et al., 2011). The simulation used
the WSM6 (Hong and Lim, 2006) microphysics parameterization and
the convective scheme of Kain and Fritsch (1990), and is described in
more detail in Pieri et al. (2015) and in von Hardenberg et al. (2015).

Application of RainFARM toWRF allowed us to produce gridded pre-
cipitation datasets covering the UTRB at 1 km × 1 km spatial resolution
and at the same temporal resolution as the original data. We then sam-
pled the grids corresponding to the location of each rain gauge (Fig. 1),
producing56 synthetic rainfall series (one series for each rain gauge) for
the 9-year (past) calibration period 2002–2015, and the 40-year projec-
tion period 2010–2049.



Fig. 1.TheUpper TiberRiver basin (UTRB), Central Italy. Background is a shaded reliefmap calculated using TINITALY, the 10m×10mDEMused in thiswork (Tarquini et al., 2012). Yellow
dots show locations of 56 rain gauges used in the study. Green areas show the continental, post-orogenic sedimentswere the TRIGRS simulationswere performed. Orange lines encompass
the six sub-areas referred to in the paper.
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The stochastic downscaling method employed in this work implic-
itly takes into account orographic effects at the scale of the original
field (about 12 km in our case), since it preserves the average precipita-
tion volumes at that scale. The issue of orographic effects, investigated
recently by different authors (e.g., Harris et al., 1996; Badas et al.,
2005), is particularly important when downscaling is performed
starting from global climate models at coarse resolutions (D'Onofrio
et al., 2014).When starting from 30 km scales or larger, most of the oro-
graphic effects may be already captured by the dynamical downscaling
procedure. The RainFARM procedure provides a good representation of
sub-grid precipitation extremes (D'Onofrio et al., 2014).

3.3. Extraction of rainfall events

In general, rainfall time series consist of rainfall measurements
(M) or rainfall synthetic data (SP for the past, and SF for the future) cu-
mulated over continuous, fixed time intervals (e.g., minutes, hours,
days). However, landslides are known to be triggered by rainfall events
RE (Aleotti, 2004; Guzzetti et al., 2007; Brunetti et al., 2010; Berti et al.,
2012) i.e., rainfall periods of different duration and cumulated precipita-
tion separated by dry periods with no rain, or with a negligible amount
of rain (Guo, 2002; Guzzetti et al., 2007; Brunetti et al., 2010; Saito et al.,
2010; Shamsudin et al., 2010; Melillo et al., 2015).

Identification of RE from rainfall series is not trivial. To single out RE

in ourmeasured and synthetic rainfall series, we adopted the algorithm
proposed by Melillo et al. (2015, 2016), which was devised specifically
for the detection and characterization of rainfall events that have trig-
gered known landslides frommeasured hourly rainfall series. The algo-
rithmdepends on a number of parameters, themost important ofwhich
being the duration (in hours) of the dry period that separates two con-
secutive RE. The length of the dry period depends on seasonal condi-
tions. In the Mediterranean region, the dry period is typically shorter
in the “warm” and dry spring-summer period from May to September,
and is longer in the “cold” andwet autumn-winter period from October



Fig. 2. Distribution of the mean annual precipitation (MAP) at the 56 rain gauges used in
the study, for the measured, M (blue), and the synthetic, SP (red), rainfall data. See Fig. 1
for the location of the rain gauges for the 9-year overlapping period of the two data sets,
between 2003 and 2011. Vertical dashed lines show mean MAP values for the different
periods.
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to April (Brunetti et al., 2010;Melillo et al., 2015, 2016; Peruccacci et al.,
2017). FollowingMelillo et al. (2015), we distinguished aminimum dry
period for the “warm” (May–September) period CW, and a minimum
dry period for the “cold” (October–April) period, CC. To investigate the
sensitivity of the results to the model parameters, we repeated the se-
lection of measured and synthetic RE nine times, corresponding to
nine different combinations of CC and CW. We considered (CC-15%, CC,
CC + 15%) combined with (CW-15%, CW, CW + 15%), were CC = 48 h
and CW = 96 h are the values used by Melillo et al. (2015) in Sicily,
Southern Italy. Using different values for the input parameters also
helps investigating possible dependence of their numerical values on
the specific study area.

3.4. Modelling of slope stability

To determine the stability conditions of the slopes in our study area,
forced by time-varying rainfall inputs, we used TRIGRS v. 2.1 (Alvioli
and Baum, 2016), an updated, parallel implementation of the Transient
Rainfall Infiltration andGrid-Based Regional Slope-StabilityModel v. 2.0
(TRIGRS) for the timing and distribution of rainfall-induced shallow
landslides (Baum et al., 2008).

TRIGRS performs spatially-distributed, time-varying slope stability
simulations using information on (i) the geometrical and the mechani-
cal properties of the slopes, and (ii) the rainfall history that may cause a
slope to fail. To represent topography in the UTRB, we used TINITALY
(Tarquini et al., 2012) – a 10 m × 10 m DEM produced for the whole
of Italy from heterogeneous vector elevation data, consisting mostly in
contour lines and elevation points obtained from several sources –
which we considered adequate for our regional slope stability model-
ling (Alvioli et al., 2014; Raia et al., 2014). Following Alvioli et al.
(2014), we limited the slope stability simulations to the continental,
post-orogenic sediment complex (green areas in Fig. 1), where land-
slides are more abundant and frequent (Cardinali et al., 2001; Guzzetti
et al., 2008a). The values used to represent the geo-mechanical proper-
ties of the sediments in the post-orogenic complex were the same used
by Alvioli et al. (2014) i.e., cohesion, c=3.0 kPa; internal friction angle,
φ= 15°; wet soil unit weight, γS = 15,000 Nm−3; diffusivity, D0 = 4.7
∙ 10−3 m2 s−1; and saturated hydraulic conductivity, KS = 10−4 ms−1.
The soil setting of the green areas in Fig. 1 is a rather heterogeneous
one. In TRIGRS simulations we set numerical values of the geotechnical
properties correspond to a worst case scenario, in which the three most
important parameters (cohesion, friction angle and hydraulic conduc-
tivity) favour landslides. This is also justified by our final aim, that is,
to provide relative results. Possible biases introduced by peculiar
choices, for example the particular values of the geotechnical parame-
ters, cancel out in the comparison of simulations corresponding to the
future and past periods. To limit the model complexity, and to reduce
the computer processing effort, we used the simplifying assumption of
a fully saturated, infinite soil depth slope (Baum et al., 2008; Alvioli
and Baum, 2016). We maintain that the simplifications are reasonable
for the aim of this work.

We performed the simulations using information on RE singled out
from the measured (M) and the synthetic (SP and SF) rainfall series
using the algorithm proposed by Melillo et al. (2015, 2016). TRIGRS re-
quires spatially distributed rainfall information in the form of grids, e.g.
one grid for each 3-hour processing step in our case, (Baum et al., 2008;
Alvioli and Baum, 2016). Thus, we transformed the synthetic rainfall
data provided downscaled by RainFARM at 1 km × 1 km resolution to
the 10 m × 10 m resolution of the DEM used for slope stability model-
ling. For the rainfall measurements obtained at the 56 station locations
(Fig. 1), the rainfall information was also interpolated to the 10 m
× 10mDEM resolution, using an inverse distance algorithm. For conve-
nience, we set to 3 h the time step for the slope stability simulations.
This corresponds to the temporal resolution of the downscaled rainfall
data. In this 3-hour period, rainfall rate was considered to be constant,
a reasonable assumption for the aim of this work (Alvioli et al., 2014;
Raia et al., 2014).

Since the simulation of a single rainfall grid with at 10m× 10m res-
olution covering the entire UTRB required about 700MB of disk storage,
and many grids (one every 3 h) were necessary to process even rela-
tively short RE lasting from a few hours to a few days, a complete simu-
lation covering the entire UTRB for the whole examined period (about
50 years) was prohibitive, and two approximations were applied.
First, we split the study area into six sub-areas (orange polygons in
Fig. 1), andwe performed separatemodel runs for each of them. Second,
we selected subsets of all rainfall events singled out by the event selec-
tion procedure, and specifically: (i) 50 RE singled out from themeasured
rainfall series from 2003 to 2011, (ii) 50 RE from the synthetic rainfall
series in the 14-year calibration period 2002–2015, and (iii) 50 RE

from the synthetic rainfall series for each decade (10-year period)
from 2010 to 2049. This procedure gave rise to a total of 300 RE. The
first simplification reduced considerably the amount of computermem-
ory, storage and I/O operations required to perform the numerical sim-
ulations, and the second simplification reduced the number of model
runs, keeping them representative of the ensemble of the rainfall events
in each of the considered modelling periods.

We analyzed the TRIGRSmodel outputs in terms of the spatial distri-
bution of the “factor of safety” FS, an index expressing the ratio between
the local resisting (R) and driving (T) forces, FS = R/T. Values of FS
smaller than unity correspond to R b T, and denote instability of the
grid cell (Baum et al., 2008; Alvioli et al., 2014; Raia et al., 2014;
Alvioli and Baum, 2016; Viet et al., 2018). The values of the FS were
computed and stored at each 3-hour time step. Due to storage limita-
tions, all the grids were discarded after the analysis of each single
event was completed. Adopting the same criteria proposed by Alvioli
et al. (2014), we examined the spatial and the temporal trends of the
FS tracking the number of the unstable cells with FS b 1.0, and the num-
ber of “landslides” i.e., of clusters of contiguous cellswith FSb 1.0. Differ-
ent approaches exist for a sound definition of modelled landslides areas
starting from the two-dimensional FS grid (Bellugi et al., 2015) or using
a three-dimensional FS definition (Reid et al., 2015; Viet et al., 2018);
however, these are beyond the scope of this work.

4. Results

We present the results of our modelling effort in three complemen-
tary steps. First, we compare the rainfall events singled out from the



Table 1
Rainfall events (RE), for six periods, extracted from themeasured (M) and the synthetic (SP
and SF) rainfall series using the algorithm proposed by Melillo et al. (2015, 2016). In each
period, #RE is the number of rainfall events, RE the number of rainfall events per year, RE-G

the number of RE per year and per rain gauge, Emin (Emax) the minimum (maximum) cu-
mulated event rainfall (in mm) and Dmin (Dmax) the minimum (maximum) rainfall dura-
tion (in hours).

ID Period #RE RE RE-G Emin Emax Dmin Dmax

M 2003–2011 12,179 1353 24 1 654 3 1362
SP 2002–2015 23,641 1689 30 1 670 3 1941
SF1 2010–2019 21,182 2118 38 1 597 3 1047
SF2 2020–2029 21,157 2116 38 1 355 3 918
SF3 2030–2039 19,942 1994 36 1 379 3 1221
SF4 2040–2049 19,797 1980 34 1 506 3 1344
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measured and the synthetic rainfall series. Second, we calculate syn-
thetic (modelled) rainfall thresholds for the rainfall conditions that
have resulted in slope instability, and we compare them with an
existing empirical threshold for possible landslide occurrence in the
same geographical area. Third, we examine the statistics of landslide
area AL, known to represent a fingerprint of the population of landslides
(Guzzetti et al., 2002).
4.1. Comparison of observed and synthetic rainfall events

Fig. 2 shows the frequency distribution of the MAP at the 56 rain
gauges locations used in this study for the measured rainfall series M
and for the synthetic rainfall series SP, in the 9-year period 2003–2011
for which both rainfall series are available. Inspection of Fig. 2 reveals
that the synthetic series SP exhibits larger MAP values. Regional climate
models over the Mediterranean region often exhibit a “wet bias” over
orographic reliefs as shown by Kotlarski et al. (2014) for the recent Co-
ordinated Regional Climate Downscaling Experiment (CORDEX) simu-
lations. The WRF simulations downscaled in this work show a similar
behavior as well, and present an overestimate of precipitation over
the European and the Alpine regions (Pieri et al., 2015). By construction
the RainFARM downscaling proceduremaintains the same average pre-
cipitation as its large-scale driver, so it does not correct the “wet bias”,
but it may contribute to extend the range of high precipitation values
found at high resolution (D'Onofrio et al., 2014). Due to the limited du-
ration of our observations (9 years) and to the difficulties and uncer-
tainties inherent in any bias correction method (Ehret et al., 2012), we
preferred not to apply a bias correction to the WRF data and we took
this into consideration in the evaluation and discussion of results. We
further stress that performing TRIGRS simulations within individual
Fig. 3. Comparison of empirical cumulative density function (ECDF) for (a) the rainfall event
measured (M, blue) and the synthetic past (SP, red) rainfall events. Bands in colour show the
curves were obtained using CW = 48 and CC = 96.
rainfall events, lasting froma fewhours to a fewweeks, strongly reduces
the discrepancy found on the one-year scale shown in Fig. 2.

For the sets of RE extracted from the measured rainfall in the 9-year
period 2003–2011 (M), and the synthetic rainfall series in the 48-year
period 2002–2049 (SF1-SF4), using the algorithm proposed by Melillo
et al. (2015, 2016), we calculated the rainfall duration D (in hours)
and the cumulated event rainfall E (in mm); two parameters known
to control the initiation of landslides (Guzzetti et al., 2007, 2008b;
Brunetti et al., 2010; Peruccacci et al., 2012, 2017). Table 1 summarizes
statistics for the RE, for the different periods.We note that the synthetic
data for the four 2010–2049 decades contain about 20% more events
than the events identified using themeasured rainfall data in the period
2003–2011, and the synthetic rainfall data in the period 2002–2015.

We determined the empirical cumulative density function (ECDF)
for the rainfall durationD, and for the cumulated event rainfall E. Results
are portrayed in Fig. 3, showing that the synthetic data (red shaded
areas) have a slightly larger variability than the measured data (blue
shaded areas), for both the rainfall duration D and the cumulated
event rainfall E, while central values are very similar. The variability is
slightly larger for the rainfall duration D, than for the cumulated event
rainfall E. Therefore, fromnowon,we adopted RE obtainedwith the cen-
tral values CW=48h and CC=96h, taken fromMelillo et al. (2015). For
the synthetic rainfall data, we also computed the ECDFs for the four suc-
cessive decades in the period 2010–2049 (Fig. 4). Inspection of the de-
cadal ECDFs does not reveal significant differences in the statistics of
the rainfall duration D, or the cumulated event rainfall E.

To perform slope stability simulations, we devised a procedure to se-
lect a small subset of representative RE from the entire set of events. For
each of the six considered periods (Table 1), we selected randomly 50
RE, and we repeated the selection 5000 times, to obtain 5000 sets each
with 50 RE. We then calculated the average ECDF curve, and selected
the single ECDF that was closest to the calculated average curve. Results
are summarized in Fig. 5, where the randomensemble is represented by
grey curves, the calculated average by the black dotted curves, and the
selected ECDFs by colored curves. The corresponding six sets of 50 RE,
one set for each period, where then used to force the spatially distrib-
uted, time-varying slope stability modelling performed by TRIGRS.
4.2. Slope stability modelling with TRIGRS

We performed a total of 1800 spatially distributed, time-varying
slope stability simulations, including: (i) 300 simulations (50 RE × 6
sub-areas) using the measured rainfall data (M), (ii) 300 simulations
(50 RE × 6 sub-areas) using the downscaled synthetic rainfall data in
the 14-year calibration period 2002–2015 (SP), and (iii) 1200
duration D (in hours) and (b) the cumulated event rainfall E (in mm), calculated for the
uncertainty associated with the algorithm parameters of Melillo et al. (2015, 2016). Solid



Fig. 4. Comparison of empirical cumulative density function (ECDF) for (a) the rainfall event durationD (in hours) and (b) the cumulated event rainfall E (inmm), calculated for synthetic
past (SP, red) rainfall events (2002–2015) with synthetic future (projected) rainfall events (SF1, green (2010–2019); SF2, yellow (2020–2029); SF3, cyan (2030–2039); SF4, magenta
(2040–2049)). All curves were obtained using CW = 48 and CC = 96.
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simulations (50 RE × 6 sub-areas × 4 decades) using the downscaled
synthetic rainfall data for the four decades in 40-year period
2010–2049 (SF1- SF4). Each model run (one simulation) required be-
tween 1 and 10 h of computer time, and used between 10 and 30 pro-
cessors per parallel run, between a few and about 100 GB of RAM, and
between 1 and about 200 GB of storage space, depending on the length
of the considered RE. After each run, we analyzed the output maps and
calculated relevant summary quantities, i.e. the number of unstable
cells and the number of landslides (neighboring clusters of failing
cells), at each time step and for each of the six sub-areas. The maps
were deleted after the analysis, and the only summary quantities were
stored for each simulated event, alongwith the corresponding duration
and cumulative rainfall at each time step.

For illustrative purposes, Fig. 6 shows the result of a single simula-
tion taken from the SP ensemble, and specifically the simulation of the
longest RE in the SP series. The synthetic event lasted 1443 h
(60 days), corresponding to 481 time modelling steps in TRIGRS.
Fig. 6a shows the temporal evolution of the total number of unstable
cells (i.e., grid cells with FS b 1.0) in the six considered sub-areas, and
Fig. 6b shows the temporal variation of the slope stability conditions
in response to the time-varying rainfall, for one of the study areas
(i.e., A1 in Fig. 1). Inspection of Fig. 6b reveals that shortly after a rainfall
peak, shown by a rapid increase in the rainfall intensity, the number of
the unstable cells increases rapidly. Then, gradually, the number of the
unstable cells decreases to return to a condition of general stability in
the study area, characterized by a large number of grid cells with FS
≥ 1.0. Fig. 6c further compares the temporal evolution of the number
of modelled “landslides”, defined as clusters of adjacent cells with FS
b 1.0 (violet line) (Alvioli et al., 2014), to the total number of unstable
cells (red line), during the rainfall event. We observe that the number
of landslides changes as a function of time in larger discrete steps than
the number of the individual cells. This is consistent with our definition
of a landslide as cluster of neighboring unstable cells. In the simulation,
the maximum number of unstable cells occurred almost at the end of
the rainfall event, and corresponds to the red dot with E = 425 mm
and D = 1428 h (two months) in Fig. 7b.

4.2.1. Rainfall thresholds
We used the rainfall duration D (in hours) and the event cumulated

rainfall E (in mm) computed for the rainfall events extracted from the
different rainfall series, to reconstruct rainfall thresholds that represent
the minimum (D, E) rainfall conditions above which landslides are ex-
pected to occur in the UTRB, with a given probability (Guzzetti et al.,
2007, 2008a; Brunetti et al., 2010; Peruccacci et al., 2012). To select
the RE, we adopted the algorithm proposed by Melillo et al. (2015,
2016) that requires information on the “time of occurrence” of the land-
slide. For this work, we set the “time of occurrence” of the landslide to
coincide with the time in any given simulation when the maximum
number of cells were predicted to fail (FS b 1.0). As a consequence,
the corresponding rainfall duration and the event cumulated rainfall
represent the (D, E) rainfall conditions that have caused the modelled
landslide. In this way, we obtained 50 (D, E) pairs for each considered
period, and for each of the six sub-areas, corresponding to a total of
(i) 300 (D, E) pairs for each of the “past” periods (M, 2003–2011; SP,
2002–2015) and of (ii) 1200 (D, E) pairs for the “future” period (SF1-
SF4, 2010–2049). We note that the number of (D, E) pairs used in
Fig. 7 exceeds the number considered adequate to construct objective
thresholds with an acceptable level of uncertainty (Peruccacci et al.,
2012, 2017).

To obtain rainfall thresholds, we used the procedure proposed by
Brunetti et al. (2010) and modified by Peruccacci et al. (2012), which
was designed to determine objective and reproducible thresholds
from a distribution of (D, E) pairs in a CartesianDE plane. The procedure
assumes that the threshold curve takes the form of a power-law, E= α
Dγ with the parameters α and γ representing a constant factor and the
scaling exponent of the threshold curve, respectively. Following
Brunetti et al. (2010) and Peruccacci et al. (2012), we defined 5% ex-
ceedance probability thresholds (T5) i.e., threshold curves that leave
5% of the (D, E) pairs below the threshold line.

We used the results obtained from the observed data set (M) to cal-
ibrate the procedure for the calculation of threshold curves for the syn-
thetic data sets (SP and SF). Some of the (D, E) rainfall conditions
resulting from the TRIGRS simulations lie well below the empirical
threshold curve defined by Peruccacci et al. (2012) in central Italy (T5,
AMU, the 5% threshold valid for Abruzzo, Marche and Umbria regions).
We considered these conditions not representative of overt slope insta-
bility conditions, andwe discarded them (see Appendix A).We used the
remaining valid points to calculate the 5% threshold for the observed
data set (T5,M in Fig. 7a). We used the same criterion to discard a few
rainfall conditions in the synthetic data sets (e.g., the SP data set in
Fig. 7b and the SF data sets in Fig. 8). We consider this a calibration pro-
cedure to calculate the corresponding 5% thresholds, T5,S curves. Fig. 7a
shows that the T5,M is defined in the range 3 ≤ D ≤ 939 h and 7 ≤ E
≤ 276 mm. Fig. 7b shows that the T5,SP is defined in the range 6 ≤ D
≤ 1614 h and 9 ≤ E ≤ 425 mm. The T5,M and T5,SP curves are very similar
and can be considered equivalent.

We defined thresholds for the synthetic SF1, SF2, SF3, and SF4 data sets
(T5,SF1, T5,SF2, T5,SF3 and T5,SF4 in Fig. 8), in order to investigate threshold
variations in the future. For consistency, we compared these thresholds
to T5,SP, and not to T5,M, though T5,M and T5,SP are equivalent.We observe



Fig. 5. Representative subsets of rainfall events for the six different data sets listed in Table 1. Grey curves show an ensemble of 5000 sets of 50 events, each selected randomly from the
corresponding total number of events extracted from each data set. Black dotted curves show the average ECDF for the corresponding ensemble. Colored curves are the selected sets (each
containing 50 events) closest to the ensemble average, with respect to their root mean square deviation.
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that T5,SP and T5,SF1 curves coincide, even if they are defined in different
ranges. This is consistent with the fact that the two periods overlap be-
tween 2010 and 2015. Results from the future decades indicate that the
slope of the synthetic thresholds progressively decreases from 0.5 to
0.35, and the intercept increases slightly from log10(3.8) to log10(6.0).
This highlights a sizable effect of the projected climate change on the
rainfall thresholds that can initiate landslides in our study area.

4.2.2. Landslide area distributions
The probability of landslide area P(AL) is known to obey a typical dis-

tribution, with the probability that increases with landslide area up to a
maximum value (the so called “rollover”), and then decreases rapidly
following a power law (Guzzetti et al., 2002; Malamud et al., 2004).
This typical distribution is well approximated by functions (Hovius
et al., 1997; Malamud et al., 2004) whose parameters depend on the
mechanical properties of the soils and rocks where the landslides
occur (Katz and Aharonov, 2006; Stark and Guzzetti, 2009; Klar et al.,
2011). It remains uncertain if P(AL) will change in response to climate
changes (Gariano and Guzzetti, 2016). To help answer this question,
we calculated the area of the landslides identified by the numerical
slope-stability simulations, and we determined the probability density
function of these landslide areas.

For the purpose, the individual “landslides” were first singled out
from the FS maps produced by TRIGRS. This was obtained clustering



Fig. 6. A sample, very long simulated event from the SP ensemble. All curves are scaled to
their maximum value, in the considered time interval, to compare their time dependence,
with 3-h time steps. (a) plots shownumber of failing cells predicted by TRIGRS, for the six
sub-areas referred to in the paper. The maximum number of unstable cells in the areas
labelled from1 to 6 occurs after 1428 h, 1329 h, 1329 h, 1425 h, 1203 h and 1215 h,
respectively. Panels (b) and (c) show, for the sub-area A1: panel (b), the rainfall
intensity averaged over the area at each time step, the cumulative of the rainfall
intensity, and the number of failing cells; panel (c), the number of landslides
(i.e., clusters of adjacent failing cells) compared to the number of failing cells. In this
event, the maximum number of failing cells (i.e., the synthetic landslide) occurs almost
at the end of the event, that corresponds to the point (D,E) = (1428 h, 425 mm).

Fig. 7. Cumulated event rainfall E (mm) vs. rainfall duration D (h) conditions that have
generated the largest number of unstable cells in the simulated events for the M (blue
dots in Fig. 7a) and the SP (red dots Fig. 7b) data sets. Grey dots show rainfall conditions
unlikely responsible for the observed failures. Colored curves are the corresponding 5%
thresholds T5,M (Fig. 7a) and T5,SP (Fig. 7b). Shaded areas show uncertainty associated to
the new thresholds. T5,AMU is the threshold defined by Peruccacci et al. (2012) valid for
the same geographical area. Data shown in log–log coordinates.
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adjacent cells having FS b 1 (Alvioli et al., 2014). Next, the area of each
landslide was obtained summing the area of all the adjacent 10 m
× 10m grid cells forming the landslide. In this way, we identified an av-
erage of 1277 landslides per event in the simulations performed using
the measured data set, and about 600–800 landslides per event for
each of the simulations performed using the synthetic sets, highlighting
a sharp difference between the two. In Table 2 we report complete sta-
tistics of the slope stability simulations performed by TRIGRS. Lastly, for
each of the six data sets (M, SP, SF1, SF2, SF3, SF4) we fitted the empirical
distributions of landslide areas with the inverse Gamma function pro-
posed by Malamud et al. (2004) to describe the probability density
function of landslide areas, P(AL). Results are summarized in Fig. 9, for
the different considered periods.

Visual inspection of Fig. 9 reveals that the probability density of the
area of the landslides singled out from the TRIGRS simulations, for the
different periods, follows well the expected power law decaying behav-
ior, for AL N 300 m2. However, the empirical distributions fail to repro-
duce the “rollover” typical of empirical landslide data sets obtained
from accurate landslide event inventory maps (Malamud et al., 2004).
The result is not new (Alvioli et al., 2014; Hergarten, 2012), but the rea-
sons for the result are not fully known. In our case, theymay depend on
the inherent one-dimensional formulation of the slope-stability model
adopted in TRIGRS that does not provide an accurate way of clustering
adjacent unstable pixels into a single landslide. For this reason, we
discarded simulation results for AL b 300 m2 (shaded area in Fig. 9), fol-
lowing the procedure that we consider a calibration step described in
the Appendix A.

Further inspection of Fig. 9 reveals that the probability densities of
landslide areas obtained forcing the TRIGRS model with synthetic RE

(Fig. 9b-f), for AL N 300m2, are nearly identical to the probability density
of the modelled landslide areas obtained using the measured RE (M,
Fig. 9a). We conclude that in the considered period, and in our study
area, we do not expect the probability density of landslide area to



Fig. 8.Cumulated event rainfall E (mm) vs. rainfall durationD (h) conditions that have generated the largest number of unstable cells in the simulated events for the SF1 (green dots in (a)),
the SF2 (yellow dots in (b)), the SF3 (cyan dots in (c)) and SF4 (red dots in (d)) data sets. Grey dots show rainfall conditions unlikely responsible for failures in the area. Colored curves are
the corresponding 5% thresholds T5,SF1 (a), T5,SF2 (b), T5,SF3 (c) and T5,SF4 (d). Shaded areas show the statistical uncertainty associated to the new thresholds (cf. Section 5.4).
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change in response to theprojected climate changes, though the conclu-
sion is drawn from results with large statistical uncertainty.

5. Discussion

The general modelling framework commonly adopted by impact
studies to investigate the consequences of the projected climate and en-
vironmental changes on the stability of slopes, and on the projected
changes in landslide hazard, consists of two main modelling chains
(Gariano and Guzzetti, 2016). The first chain links the output of an en-
semble of GCMs for established emissions scenarios to regional climate
models, whichmay be further bias-corrected and downscaled adopting
different procedures. The climate-related modelling chain, including a
bias correction step, was formulated in general terms in Rianna et al.
(2014) as well. The output of the first chain is then used as an input to
the second chain that consists of slope stability models engineered to
assess the stability conditions of single slopes or entire catchments,
based on the local geo-hydrological and environmental settings. Typi-
cally, the two modelling chains are first calibrated or validated on past
Table 2
Statistics for the results of the slope stability simulations performed by TRIGRS v. 2.1
(Alvioli and Baum, 2016), in terms of the number (#L) and the area (AL) of the modelled
landslides. Minimumnumber of landslides is zero, when no grid cells in a simulation have
FS b 1. Smallest landslide has area AL = 10 m × 10 m= 100 m2, by construction.

ID Period #Lmax #Lavg AL,max [m2] AL,avg [m2]

M 2003–2011 63,897 1277 34,010 723
SP 2002–2015 37,596 751 23,507 529
SF1 2010–2019 39,860 797 19,311 604
SF2 2020–2029 29,187 583 31,909 405
SF3 2030–2039 32,915 658 15,709 518
SF4 2040–2049 28,409 568 15,704 413
climate, geo-hydrological and environmental data. Next, the calibrated
models are applied to future climate projections, to obtain future land-
slide projections.

Fig. 10 shows a graphical representation of the modelling scheme
adopted in this study, which falls in the general modelling framework
described above, with adjustments and some novelty. Our implementa-
tion of the climate evaluation chain included gridded downscaled pre-
cipitation data obtained using the RainFARM stochastic downscaling
technique (Rebora et al., 2006a, 2006b; D'Onofrio et al., 2014), applied
to the output of a RCM (WRF; Pieri et al. (2015)). We then sampled
downscaled data at the locations of 56 existing rain gauges in our
study area (Fig. 1), for which measured rainfall records were available.
This allowed to analyze the downscaled, synthetic rainfall data at the
same locations of the measured rainfall data. Our implementation of
the slope stability chain relied on TRIGRS v. 2.1 (Alvioli and Baum,
2016), a recent parallel implementation of the TRIGRS v. 2.0 for the
timing and spatial distribution of rainfall-induced shallow landslides
(Baum et al., 2008).

5.1. Rainfall events

The first novelty of our work consisted in selecting rainfall events, RE

from the available rainfall series, and to use them to force the spatially-
distributed, time-varying slope stability modelling (Result 1 in Fig. 10).
Rainfall events are (nearly) continuous periods of rain separated by a
dry period (Guo, 2002; Guzzetti et al., 2007; Brunetti et al., 2010; Saito
et al., 2010; Shamsudin et al., 2010; Melillo et al., 2015, 2016), and are
known to be a better proxy of the rainfall conditions responsible for
the initiation of landslides than other fixed-lengthmeasures of the rain-
fall duration, including hours or days (Aleotti, 2004; Guzzetti et al.,
2007; Brunetti et al., 2010; Berti et al., 2012). For this reason, we main-
tain that extraction of RE from the measured (M) and the synthetic (SP



Fig. 9. Dependence of landslide probability density on landslide area, AL (m2, in the upper x-axis, and km2, in the lower x-axis) determined for each landslide as the sum of all adjacent
unstable grid cells i.e., cell that have FS b 1 (Alvioli et al., 2014). TRIGRS simulations for the six data sets described in this work (a-f). Curves in colors are fits to TRIGRS results with the
function in Eq. (a2), by fitting results from individual events and averaging over individual results; their limit of validity is outside of the shaded area. Symbols show a sample subset of
the results from 10 events out of the total 50 events for each data set; different symbols were used for different events. Discarded points are not shown.
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and SF) rainfall series, and the subsequent identification of the rainfall
events that have resulted in modelled landslides, is a meaningful,
well-founded procedure to determine the influence of changing rainfall
patterns on slope stability conditions, and their possible variations in re-
sponse to the projected climate changes.

Our results showed that the downscaled rainfall time series obtained
using the RainFARM stochastic technique can be used to obtain syn-
thetic rainfall events, adopting the same algorithm proposed by
Melillo et al. (2015, 2016) for the automatic selection of the rainfall
events from standard rainfall records. The event selection algorithm
acts as a filter on the rainfall series, which in general are quite different
(see e.g. Fig. 2). As a result of the filtering, rainfall events from both the
measured and the synthetic series become very similar (see e.g. Fig. 3).

The ECDFs of the RE duration, D and the cumulated event rainfall, E
for the measured (M, blue in Fig. 3) and the synthetic past (SP, red in
Fig. 3) RE are very similar, with the SP events slightly longer, therefore
totalling a slightly larger cumulated rainfall than the M events. The dif-
ferences between the ECDFs are sufficiently small to allow for a mean-
ingful comparison of the spatially distributed, time-varying slope
stabilitymodels forced by themeasured and the synthetic rainfall series.
Also, the SP events exhibit a larger variability than the M events, as
shown by the larger extent of the red shaded areas in Fig. 3, compared
to the blue shaded areas. Comparison of the ECDFs for the synthetic
past events (SP) and the synthetic future events for the four considered
decadal periods (SF1, SF2, SF3, SF4) reveals that the ECDFs are nearly iden-
tical (Fig. 4), indicating that the SF rainfall events are similar to themea-
sured RE. Hence, the slope stability simulations obtained using the
synthetic RE can be compared consistently with each other, and with
simulations performed using the measured rainfall events.

5.2. Rainfall thresholds and area of landslides

The second novelty of the work (Result 2 in Fig. 10) consists in the
method used to compare the effects of the rainfall events forcing on
the slope stability conditions modelled by TRIGRS v. 2.1 (Alvioli and
Baum, 2016), for the different considered periods. We based the com-
parison on the analysis of (i) the rainfall thresholds that have resulted
in (modelled) landslides, and (ii) the modelled probability density of
landslide area, P(AL).

Analysis of Fig. 7 reveals that the T5,M thresholds defined for the 50
rainfall events with modelled landslides in the period 2003–2011 (M),
and for the 50 synthetic past rainfall events with modelled landslides
in the partially overlapping period 2002–2015 (SP) are nearly identical,
with themain difference that the T5,M threshold is valid in the range 3 ≤
D ≤ 939 h (40 days), whereas the T5,SP threshold is valid in the longer
range 6 ≤ D ≤ 1600 h (66 days). This is a result of the different duration
of the RE in the M and SP periods (Table 1). Despite the difference, we
maintain that the T5,M threshold is valid for the SP events in their full
rainfall duration range, and vice versa the T5,SP threshold is valid for
the M events in their full duration range.

Analysis of Fig. 8 reveals that T5,F1 is correctly equivalent to the T5,SP
threshold, as they are obtained from synthetic data partially overlap-
ping in time. The T5,F2, T5,F3, and T5,F4 thresholds defined for the next
three future non-overlapping decadal periods are not similar to the T5,



Fig. 10. Modelling framework exemplifying the different steps performed in this study. Result 1: RE can be extracted the stochastically-downscaled rainfall fields obtained using the
modified RainFARM technique, similarly to the measured rainfall data, and used meaningfully in numerical slope stability simulations. Result 2: the (D,E) rainfall conditions that can
result in (modelled) landslides are projected to change in the future period 2010–2049. Result 3: the area distribution of landslides is not expected to change in the future in the study
area, in the same future period.
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SP threshold, even considering the uncertainty associated to the thresh-
olds for the different periods.We conclude that the projected changes in
precipitation patterns are expected to vary the minimum cumulated
rainfall, for different durations, necessary to initiate landslides in our
study area. We further observe that the T5,F1, T5,F2, T5,F3, and T5,F4 are
progressively less steep in the DE plane. A horizontal threshold implies
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that landslides are initiated when a fixed cumulated rainfall E is
exceeded, independently of the rainfall duration D (Guzzetti et al.,
2007, 2008a, 2008b). The finding that future thresholds in the study
area will progressively depend more on the cumulated rainfall is in
agreement with the projected increase of more intense and frequent
rainfall events (IPCC, 2014) in several regions, including the European
area as shown by CORDEX models (Fisher and Knutti, 2016).

Analysis of Fig. 9 reveals that the probability density of landslide
area, P(AL) obtained for the modelled landslides initiated by the mea-
sured (M, observed) rainfall events is very similar to the P(AL) deter-
mined by Malamud et al. (2004) for mapped event landslides also in
the same general geographical area (Result 3 in Fig. 10). The modelled
P(AL) has the same slope as the empirical one, albeit it is slightly lower
than the empirical P(AL). Further analysis of Fig. 9 reveals (i) the main
difference between the M and SP results is the increased uncertainty
in the latter, and (ii) that the modelled landslides initiated by the syn-
thetic rainfall events for different future periods exhibit the same P
(AL) as the one obtained from the SP events, with comparable (large)
uncertainty. We conclude that the area distribution of landslides is not
expected to change in the future, in our study area. We acknowledge
that the large statistical uncertainty of the calculated P(AL) distributions
makes the results less robust than for the rainfall thresholds.

We note that TRIGRS models the timing and spatial distribution of
shallow landslides (Baum et al., 2008; Alvioli and Baum, 2016), and is
not suited for the modelling of large, deep-seated landslides, which
are abundant in the area (Cardinali et al., 2001; Guzzetti et al., 2008a).
We acknowledge that uncertainty remains in the (E, D) rainfall condi-
tions and the corresponding thresholds for the initiation of large,
deep-seated landslides in the study area.

5.3. Projected landslide hazard changes

When examining the complex results of the spatially distributed,
time-varying slope stability modelling (a total of 1800 simulations,
each consisting of a number of pixels varying between 270,000 for the
smaller sub-area, A1 in Figs. 1, and 1,050,000 for the larger sub-area,
A2 in Fig. 1), we faced the problem of finding a single, compact measure
to express the expected changes in the stability conditions of the slopes
in our study area, in response to the projected climate changes. For the
purpose, we selected landslide hazard, H (Guzzetti et al., 2005), which
we define in its most general form as:

H v; tð Þ ¼ T v; tð ÞU v; tð ÞS v; tð Þ; ð1Þ

where T,U and S are three functions, described in the following, v is a set
of environmental conditions (and related variables) relevant to the oc-
currence of landslides, and t is time.

Here, we examine the effects of the variations (or lack of variations)
of the rainfall thresholds and of the probability density of landslide area,
P(AL) on landslide hazard, H(v, t).

In Eq. (1), T(v, t) is the hazard's explicit time dependence i.e., the ex-
pected frequency of landslide events, or the average return period be-
tween successive landslide events (Guzzetti et al., 2005). To evaluate
the possible variation in the temporal probability of landslide occur-
rence, we examine the rainfall thresholds, and their variations (Figs. 7,
8). Lower (higher) rainfall thresholds in a period, correspond to a higher
(lower) expected frequency of landslide events and to a shorter (lon-
ger) average return period between successive landslide events, com-
pared to other periods. Considering the small uncertainty associated
to the thresholds, and the evidence that the thresholds vary significantly
in the considered future periods (SF1, SF2, SF3, SF4) with respect to the
past periods (M, SP), we conclude that the temporal component of land-
slide hazard, T(v, t) is projected to vary. Developing an explicit func-
tional form of T(v, t) would require information about the exceedance
probability for landslide occurrence as a function of time (Coe et al.,
2000; Crovelli, 2000; Roberds, 2005; Rossi et al., 2010; Witt et al.,
2010), and is beyond the scope if this work.

U(v, t) measures landslide magnitude. Following Guzzetti et al.
(2005), here we use landslide area AL, as a proxy for U(v, t), and we
take the (possible) changes in the probability density of landslide area,
P(AL) as a proxy for the (possible) variations in U(v, t). We note here
that a steeper (less steep) probability density curve indicates a larger
(smaller) proportion of small landslides, as compared to large land-
slides. We found no substantial variation of P(AL) calculated for the fu-
ture periods with respect to the past (Fig. 9). We conclude that we do
not expect variations in the landslide magnitude in the study area
within our modelling chain, though statistical uncertainty is large in
this case.

In Eq. (1), S(v, t) is landslide susceptibility, the spatial component of
H that measures the likelihood of spatial landslide occurrence, given a
set of environmental conditions (Guzzetti et al., 2005). Here we do not
consider landslide susceptibility and its possible variations due to the
projected climate changes. We stress here that landslide susceptibility
depends on factors that are not expected to change in the time-frame
of our analyses, including e.g., morphology, lithology, and on other fac-
tors that may – and probably will – change in the considered time-
frame due to climate variations, including e.g., land use and land cover
(Guzzetti et al., 2005; Gariano andGuzzetti, 2016; Gariano et al., 2017a).

We conclude that, even if landslide susceptibility S(v, t) remains the
same in our study area in the considered period, landslide hazard,H(v, t)
is expected to change because, albeit the probability density of landslide
area P(AL), a proxy for the magnitude component U(v, t) of landslide
hazard, is not expected to vary, the rainfall thresholds for the initiation
of landslides, and hence the temporal component T(v, t) of landslide
hazard, is projected to change.

We note that our results are different from the conclusions of
Ciabatta et al. (2016), who investigated the impact of climate change
on landslide occurrence in Umbria, Central Italy, using rainfall and tem-
peraturefields downscaled fromGCMmodel outputs for the past period
1990–2013, and for the two future periods 2040–2069 and 2070–2099.
These authors predicted an increase of up to N40% in landslide events in
Umbria. We stress that the results obtained by the two studies are not
directly comparable, because of the different climate projections used,
the different period covered, and the different quantities used to deter-
mine the predicted landslide occurrence.

5.4. Uncertainty

Ourmodelling chain is undoubtedly affected by uncertainties, which
have different origins and meanings, in the different modelling steps
(Fig. 10).

At the top of themodelling chain, different possible future scenarios
could have been used, leading to a corresponding uncertainty in the
projections. In the literature a few works exist about the analysis of un-
certainties related to the selection of climate projections (Hawkins and
Sutton, 2009;Mendlik and Gobiet, 2016;Wilcke and Bärring, 2016), the
role of bias correction in impact studies (Teutschbein and Seibert, 2012;
Maraun, 2016; Ehret et al., 2012) and the challenges posed by the use of
multi-model ensemble simulations (Knutti et al., 2010). Furthermore,
climatemodels differ in terms of parameterizations included, resolution
and processes which they represent, again leading to an important
source of uncertainty. Different GCMs may be used to provide external
boundary conditions for the RCMs providing a further source of model
uncertainty. In order to streamline our analysis, in this work we consid-
ered only the casewhere a singlemodel run and a single future scenario
are used, but the impact of these sources of uncertainty should be
evaluated.

The uncertainty associated to the event rainfall duration D, and the
event cumulated rainfall E, calculated for the measured (M) and the
synthetic past (SP) events shown in Fig. 3 is statistical, and measures
the variability of the two rainfall event metrics in each period. The
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uncertainty shown in Fig. 5 is related to the large number of random se-
lections performed to obtain the average ECDFs selected to represent
each set. We did not attempt to propagate the uncertainty associated
to the rainfall metrics originated in the climate modelling chain onto
the single RE, or the slope stability modelling. We maintain that this is
– at least partially – justified by the smoothing of the uncertainties op-
erated by the event selection procedure.

The uncertainty associated with the rainfall thresholds shown in
Fig. 7 depends on the number and the distribution of the (D, E) condi-
tions that represent the rainfall events, and on the statistical method
used to define the thresholds (Melillo et al., 2015, 2016). Similarly, the
uncertainty in the probability density of landslide area, P(AL) shown in
Fig. 9 depends on the number and the distribution of the empirical
data points, and on the statisticalmethod used to define P(AL). The latter
two uncertainties do not bear any direct physical relation to the original
climate model uncertainties.
5.5. Model applicability

In this work, we adopted a rather complex modelling chain (Fig. 10)
that included components for (i) the downscaling of the precipitation
fields (Rebora et al., 2006a, 2006b; D'Onofrio et al., 2014), (ii) the selec-
tion of rainfall events (Melillo et al., 2015, 2016), (iii) the definition of
ED rainfall thresholds (Brunetti et al., 2010; Peruccacci et al., 2012),
and for (iv) the spatially distributed, time-varying slope stability assess-
ment (Alvioli and Baum, 2016). Further, we joined the different models
using a number of assumptions and approximations.

The RainFARM technique is implemented in an easy-to-use software
package currently available in GitHub.1 It may suffer from computer
memory limitations in case precipitation fields over large areas have
to be downscaled at extremely high resolution. In the present study a
machinewith 48GB ofmemorywas used. Downscaled data correspond-
ing to 40 years for the study area occupies 4GB on disk.

The RE selection algorithm (Melillo et al., 2015, 2016; available at
CNR-IRPI2) proved robust, and the implementation software did not
suffer from computer storage or processing limitations. Similar consid-
erations hold for the definition of the rainfall thresholds. The method
proposed by Brunetti et al. (2010) and Peruccacci et al. (2012) per-
formed well on both the measured and the synthetic data sets, and
the implementation software did not suffer from computer limitations.
We further note that the RE selection procedure needs to be run only
once, since the RE do not vary, and that the rainfall thresholds are univ-
ocally defined once the rainfall conditions responsible for landslide oc-
currence are identified.

On the other hand, the TRIGRSmodel, or any other similar physically
based numerical model (e.g., Montgomery and Dietrich, 1994; Burton
and Bathurst, 1998; Malet et al., 2005; Rigon et al., 2006; Simoni et al.,
2008; Anagnostopoulos and Burlando, 2012; Von Ruette et al., 2013;
Mergili et al., 2014), has inherent computer storage and processing lim-
itations that impose careful selection of an appropriate modelling strat-
egy. Parallelization of the existing TRIGRS code (Alvioli and Baum, 2016;
available in GitHub3) was a first step, but further efforts are needed to
produce physically-basedmodels for the timing and spatial distribution
of rainfall-induced shallow landslides that can be used efficiently for cli-
mate impact studies.
6. Conclusions

We investigated the causal relationships between downscaled cli-
mate projections and slope stability conditions in a 422 km2 area in
the Upper Tiber River Basin, Central Italy, where post-orogenic
1 https://github.com/jhardenberg/RainFARM.jl
2 http://geomorphology.irpi.cnr.it/tools/rainfall-events-and-landslides-thresholds
3 https://github.com/baum-usgs/landslides-trigrs
sediments of continental origin crop out (Fig. 1) and landslides are
abundant (Cardinali et al., 2001; Guzzetti et al., 2008a).

The main results of this work can be summarized as follows:

• We showed that spatially distributed rainfall fields obtained by apply-
ing the RainFARM stochastic downscaling technique to data from the
WRF regional climate model can be treated by the algorithm and the
implementation software proposed by Melillo et al. (2015, 2016) for
the automatic detection of rainfall events that have triggered land-
slides from rainfall series.

• In our study area, comparison of the empirical cumulative density
functions (ECDFs) for 56 measured (observed) rainfall records, and
for an equal number of synthetic (projected) rainfall series at the
same locations (Fig. 3), revealed that the differences were sufficiently
small as compared to the differences in MAP (Fig. 2) to allow for a
meaningful comparison of the spatially distributed, time-varying
slope stability model TRIGRS v. 2.1 (Alvioli and Baum, 2016) forced
by the measured and the synthetic rainfall data.

• We showed that 5% non-exceedance probability, empirical cumulated
event rainfall – rainfall duration (ED) thresholds for the possible oc-
currence of landslides (Brunetti et al., 2010; Peruccacci et al., 2012)
obtained using the results of 1800 spatially distributed, time-varying
slope stability simulations forced with observed (measured) and
projected (synthetic) rainfall series, vary with time in our study
area. We conclude that the (D, E) rainfall conditions that can result
in (modelled) landslides are projected to change in the future period
2010–2049.We also showed that thresholds for future events will de-
pend more on the cumulated rainfall than on the rainfall duration
than they currently do.

• We further showed that the probability density functions of landslide
areas, P(AL) derived from the same sets of spatially distributed, time-
varying slope stability simulations were all rather similar, though
with large statistical uncertainty. We therefore infer that the area dis-
tribution of landslides is not expected to change in the future in the
study area.

• Lastly, adopting a general andwidely accepted definition for landslide
hazard (Guzzetti et al., 2005), we showed that landslide hazard is ex-
pected to change in the study area, because the rainfall thresholds for
the initiation of landslides are projected to change.

This work presents for the first time the application of a modelling
chain, inwhich high-resolution rainfall fields, obtainedwith a stochastic
downscaling technique, applied to rainfall climate projections from a
Regional Climate Model, are used to drive spatially-distributed, time-
varying slope stabilitymodels, using physically-based, deterministic ap-
proaches. Our results open the floor for other future similar applications
inwhichRCMandGCMoutputs are downscaled andused for the assess-
ment of the impacts on slope stability of projected climate changes.
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Appendix A

In this appendix, we provide further details on two key steps of our
modelling chain (Fig. 10).
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6.1. Rainfall thresholds

The definition of rainfall thresholds from the pairs of (D, E) rainfall
conditions that have resulted in (modelled) landslides in the TRIGRS
outputs required some calibration. We first observed that a few
landslide-triggering rainfall conditions, resulting from a very few (hun-
dreds, out of hundreds of thousands) grid cells with FS b 1.0, exhibited a
short duration (D b 9 h) and a corresponding low cumulated rainfall (E
b 10 mm). Inspection of these (D, E) rainfall pairs revealed that they
were below, or well below the empirical T5,AMU threshold valid for the
study area (Peruccacci et al., 2012). We considered these rainfall condi-
tions not representative of overt slope instability conditions. To discard
the non-representative rainfall pairs, we selected a cutting line parallel
to T5,AMU: (D, E) points lying below the cutting line will be discarded,
and points above the line will be considered as representative of the
rainfall conditions capable of triggering landslides in the area. We ad-
justed the position of the cutting line by calculating a T5,M threshold
with only the representative rainfall pairs, and then selecting the partic-
ular cutting line that resulted in the best agreement between the T5,M
and the T5,AMU thresholds. We performed the calibration (i.e., the selec-
tion of position of the cutting line) using rainfall conditions of the ob-
served data set (M), and we adopted the same cutting line to
determine thresholds for the (past and future) synthetic rainfall data
sets (SP and SF). The curves T5,M and T5,SP shown in Fig. 7, and the curves
T5,SF1, T5,SF2, T5,SF3 and T5,SF4 show in Fig. 8, were calculated using the
valid (D, E) rainfall conditions.

6.2. Landslide area

The output of the TRIGRS simulations was used to model the distri-
bution of landslide areas. From the pixel-based output produced by
TRIGRS, we singled out individual landslides, where a “landslide” was
as a cluster of adjacent unstable cells with FS b 1.0. For each landslide,
we then computed the landslide area AL, summing the area of all the ad-
jacent 10 m × 10 m grid cells forming the landslide. Physically based
models are known to produce unrealistically small, one-pixel-size un-
stable (stable) areas, whose P(AL), remarkably, follow power law distri-
butions; whereas P(AL) distributions of real event landslides are known
to have a maximum (the “rollover”). Fitting the P(AL) obtained from
TRIGRS with a power law (a straight line in log-log coordinates)
would hinder the true structure of the data, and will likely produce an
erroneous result. To cope with the problem, we devised the following
procedure.

Landslide area distributions are often presented in the form of prob-
ability density functions, parameterized e.g., by an inverseGamma func-
tion (Malamud et al., 2004),

P ALð Þ ¼ 1
aΓ ρð Þ

a
AL−s

� �ρþ1

exp −
a

AL−s

� �
; ða1Þ

where, Γ(ρ) is the Gamma function of ρ, a parameter controlling the
power-lawdecay formedium and large landslide areas, a primarily con-
trols the location of the maximum probability distribution (the “roll-
over”), and s primarily controls the exponential decay for small
landslide areas.

In the TRIGRS results, we assumed as unrealistic all the (modelled)
landslides with a very small AL (the small-AL part of the distribution),
constituted primarily by a single grid cell or a very few grid cells, and
we disregarded all the very small landslides up to a threshold value of
AL dictated by the requirement of observing a rollover-like behavior in
the remaining data, for the measured (M) data set. We complemented
the remaining data with fictitious data points sampled from the small-
AL part of the distribution of Eq. (a1)with values of the a, s, ρ parameters
fitted to real landslide data. We fitted the resulting data with the same
functional form of Eq. (a1), but with a larger set of parameters, in
order to be able to fit the power-law part of the distributions while
keeping almost fixed the small-AL part of the curve. The new parametri-
zation is as follows:

P ALð Þ ¼ 1
a1Γ ρ1ð Þ

a2
AL−s1

� �ρ2þ1

exp −
a3

AL−s2

� �
; ða2Þ

where the new parameters are a1, a2, a3, s1, s2, ρ1 and ρ2. This step is a
calibration to the simulations obtained with observed data. We then
used the same value of the cut, AL = 300 m2, for all the synthetic data
sets. It is understood that the small-AL part of the resulting curve is
meaningless, thus it is not shown in Fig. 9. The procedure was repeated
for each of the 50 events in each of the six data sets, resulting in 50 sets
of values of the a1, a2, a3, s1, s2, ρ1 and ρ2 parameters appearing in
Eq. (a2). The envelope of the corresponding 50 curves is shown in
Fig. 9with a shaded area, for each of the six different data sets. Discarded
points, with AL b 300 m2, are not shown in the Figure. Our final results,
shown in Fig. 9 with solid curves in colour, were obtained by plotting
Eq. (a2) with the average value of each of the parameters.
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