

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

A point mutation in the splice donor site of intron 7 in the as2-casein encoding gene of the Mediterranean River buffalo results in an allele-specific exon skipping

This is the author's manuscript

Original Citation:

Availability:

This version is available http://hdl.handle.net/2318/1507122 since 2018-03-18T00:00:22Z

Published version:

DOI:10.1111/j.1365-2052.2009.01897.x

Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)

This is the author's final version of the contribution published as:

G. Cosenza, A. Pauciullo, M. Feligini, A. Coletta, L. Colimoro, D. Di Berardino, L. Ramunno. A point mutation in the splice donor site of intron 7 in the as2-casein encoding gene of the Mediterranean River buffalo results in an allele-specific exon skipping. Animal Genetics 40, 788–794 (2009).

doi:10.1111/j.1365-2052.2009.01897.x

The publisher's version is available at: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2052.2009.01897.x

When citing, please refer to the published version.

Link to this full text: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2052.2009.01897.x

This full text was downloaded from iris-Aperto: https://iris.unito.it/

iris-AperTO

University of Turin's Institutional Research Information System and Open Access Institutional Repository

2	Mediterranean River buffalo results in an allele-specific exon skipping
3	
4	G. Cosenza*, A. Pauciullo*, M. Feligini†, A. Coletta‡, L. Colimoro*, D. Di Berardino* and L.
5	Ramunno*
6	
7	*Dipartimento di Scienze del Suolo, della Pianta, dell_Ambiente e delle Produzioni Animali,
8	Universita` degli Studi di Napoli ''Federico II'', Portici, Italy.
9	†Istituto Sperimentale Italiano Lazzaro Spallanzani, Lodi, Italy.
10	‡Associazione Nazionale Allevatori Specie Bufalina (ANASB), Caserta, Italy
11	
12	Correspondence: L. Ramunno (<u>ramunno@unina.it</u>)
13	
14	Source/description: The CSN1S2 cDNA of 10 unrelated Mediterranean River Buffaloes reared in
15	Southern Italy was amplified by RT-PCR, while the region from the 6th to the 8th exon of the
16	CSN1S2 gene was amplified from genomic template. All amplicons were sequenced twice and in
17	both directions. Fiftythree individuals randomly chosen from four breeding herds were genotyped for
18	an AluI-restriction fragment length polymorphism (RFLP). Primer sequences and PCR conditions are
19	given in Tables S1 & S2. Three individual milk samples from buffaloes with different genotypes at
20	CSN1S2 were analysed by reverse-phase-high pressure liquid chromatography (RP-HPLC).
21	
22	Polymorphism detection: cDNA sequence comparisons showed that five individuals had a normal

A point mutation in the splice donor site of intron 7 in the as2-casein encoding gene of the

1

Polymorphism detection: cDNA sequence comparisons showed that five individuals had a normal transcript only (lodged on EMBL, accession FM865618, named CSN1S2A), one had a deleted transcript only (lodged on EMBL, accession FM865619, named CSN1S2B), because of the splicing out of the 27-bp of exon 7, and the remaining four had a heterozygous pattern. Analysis of the genomic sequences revealed a FM865620:g.773G>C transversion that caused inactivation of the

intron 7 splice donor site and, consequently, the allele-specific exon skipping characteristic of the 1 2 CSN1S2B allele. The g.773G>C mutation creates a new AluI restriction site enabling a PCR-RFLP rapid genotyping assay (Fig. S1). PCR-RFLP genotypes for the AluI site were consistent with the 3 cDNA sequence data for all 10 animals. The cDNA sequences showed three additional exonic 4 mutations forming an extended haplotype with the g.773G>C polymorphism: FM865618: c.459C>T, 5 c.484A>T and c.568A>G homozygous and heterozygous respectively in the CSN1S2BB and 6 7 CSN1S2AB buffaloes. The first is silent, while the remaining two are non-conservative (p.Ile162Phe and p.Thp200Ala respectively). Chromatographic analysis of three individual samples with CSN1S2 8 AA, AB and BB genotypes showed the same retention time for the as2 casein fraction (Fig. S2), but 9 10 the hydrophobic characteristics of each allele do not allow their chromatographic separation. Allelic frequencies: The genotype frequencies (37 CSN1S2A/A, 15 CSN1S2A/B and one CSN1S2B/B) are 11 in agreement with Hardy–Weinberg equilibrium ($v_2 = 0.13$, d.f. = 1), with the frequency of the deleted 12 13 B allele being 0.16.

14

15 *Comments*: The results indicate that buffalo, similar to goats1,2 and cattle,3,4 have a CSN1S2 allele 16 resulting from a non constitutive splicing event. The predicted bubaline as2B protein is 198 aa long 17 instead of 207 aa and would also be characterized by the presence of Phe at position 147 and Ala at 185.

19

Acknowledgement: This research was financially supported by the Italian Ministry for Agriculture
 and Forestry Policy-MiPAF (SELMOL project).

22

23 References

- 24 1 Ramunno L. et al. (2001) Anim Genet 32, 264–8.
- 25 2 Martin P. et al. (1999) Int Dairy J 9, 163–71.
- 26 3 Bouniol C. et al. (1993) Gene 128, 289–93.

- 1 4 Mohr U. et al. (1994) Gene 143, 187–92.
- 2
- 3 Supporting information
- 4 Additional supporting information may be found in the online version of this article.
- 5 Table S1 Oligonucleotide primer sequences and positions.
- 6 Table S2 Thermal amplification programmes for (a) RT-PCR, (b) PCR and (c) AluI PCR-RFLP.
- 7 Figure S1 Observed genotypes after AluI digestion of fragments obtained by PCR of the DNA region
- 8 spanning the 7th exon and flanking regions of the Mediterranean river buffalo CSN1S2 gene.
- 9 Figure S2 RP-HPLC chromatogram of individual buffalo milk samples.

CSN2- amplified fragment	Position ¹	Primer sequence (5'-3')	Use	Annealing temperature
	1292-1311	F: TCCATTATAGCTTAAGCACT		
Promoter		F: TCCATTATAGCTTAAGCACC	AS-PCR	
	Complementary to 1457-1475	R: TGGGATGCACGGAAGTTTT		58.5 °C
Evon 0	10323-10340	F: GGGGGTGAGATGAAGAGT	Internal	
EXUIL 9	Complementary to 10663-10682	R: AATGACTGGTTAGGAAATAG	control	

Table S1. Primer sequences and amplification conditions for PCR.

¹Numbering of primers was according to the goat *CSN2* gene (AJ011018).

Figure S1. Observed genotypes after AluI digestion of fragments obtained by PCR of the DNA region spanning the 7th exon and flanking regions of the Mediterranean river buffalo *CSN1S2* gene. M=100 bp DNA ladder (Promega); lane 1: *CSN1S2* A/A; lane 2: *CSN1S2* A/B; lane 3 *CSN1S2* B/B.

Figure S2. RP-HPLC chromatogram of individual buffalo milk samples. Subjects with different genotypes at the *CSN1S2 locus* (*CSN1S2*AA, AB and BB) showed the same retention time for the α s2 casein fraction. Peaks 1, 3 and 4: κ casein, peaks 5 and 6: α s1 casein, peak 7: β casein, peak 2: α s2 casein.

	Position nt	Primers sequence (5'-3')*		EMBL	Amplicon size		
DT DCD**	1-18	Forward	ATATTCCATTGCCTGGAC	DO122467	796 bp		
KI-FCK**	Complementary to: 775-796	Reverse	ATGTGAAACTGTAGAAGATAGA	DQ133407	769 bp		
DCD ov 6.8	175-190	Forward	GAGAACCTTTGCTCCA	EM865618	~1750 bp		
FCK EX 0-8	Complementary to: 235-251	Reverse	CTAGATGAGCCGATAGA	1111003018			
AluI PCR-	668-687	Forward	TTCCTTTTATATTCAGGAGA	EM865620	288 hn		
RFLP***	Complementary to: 938-955	Reverse	GATTTAGGTGGACATTAC	1111003020	288 Up		
PCR Mix composition	The 100-µl PCR reaction mix comprised: 20 µl of RT reaction product or 100 ng of genomic DNA, 1x PCR Buffer, 10 pmol of each primer, dNTPs each at 0.2 mM, 5 U of Taq DNA Polymerase (Promega), 3 mM MgCl ₂						

* Primers were designed using OLIGO 5.0 software (National Biosciences Inc., Plymouth, MN)
**The RT was performed using Improm-IIk Reverse Transcriptase (Promega)
***Digestion with 10 U of AluI endonuclease of 17µl of PCR product was carried out for 5 h at 37 °C following the buffer manufacturer's instructions (Promega).

u)				
Cycle	Denaturation	Annealing	Extension	
1	97 °C − 2 min	57.5 °C – 45 sec	72 °C – 1.5 sec	
29	94 °C – 45 sec	57.5 °C – 45 sec	72 °C – 1.5 sec	
1	94 °C – 45 sec	57.5 °C – 45 sec	72 °C – 10 min	
b)				
Cycle	Denaturation	Annealing	Extension	
1	97 °C − 2 min	54 °C – 45 sec	72 °C – 2 min	
29	94 °C – 45 sec	54 °C – 45 sec	72 °C – 2 min	
1	94 °C – 45 sec	54 °C – 45 sec	72 °C – 10 min	
c)				
Cycle	Denaturation	Annealing	Extension	
1	97 °C − 2 min	54 °C – 45 sec	72 °C – 1.5 sec	
29	94 °C – 45 sec	54 °C – 45 sec	72 °C – 1.5 sec	
1	94 °C – 45 sec	54 °C – 45 sec	72 °C – 10 min	

Table S2 Thermal amplification programs for a) RT-PCR b) PCR and c) AluI PCR-RFLP a)