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Abstract 39 

 40 

Gnomoniopsis castanea is an emerging fungal pathogen causing nut rot of Castanea sativa.  41 

This study was aimed at testing and modelling the effects of climate on disease incidence. Up to 42 

120 ripe nuts were collected in 2011 from trees in each of 12 sites located in the north-west of Italy. 43 

The incidence of G. castanea in each site was expressed as the number of infected nuts on the total 44 

number of nuts sampled (%), as determined by combining the results of morphological 45 

identification of isolates obtained from nuts and their typing through a newly developed taxon-46 

specific molecular assay. Disease incidence ranged from 20% to 93%, depending on site. 47 

Geostatistical analyses revealed that, despite the clustering of sites (P<0.05), disease incidence was 48 

not spatially autocorrelated (P>0.05). This finding suggests that the disease is influenced by site-49 

dependent factors whose scale (~7.5-15.6 km) is consistent with the climate variability throughout 50 

the sampling region. Multivariate analyses on maximum, mean and minimum temperatures and on 51 

rainfall showed that warmer temperatures were associated with higher levels of the disease 52 

incidence. The temperatures of months before nut harvesting were selected as predictors for Partial 53 

Least Squares Regression (PLSR) models (GnoMods) of G. castanea incidence. External validation 54 

on data collected either on sites or in years not used for models fitting showed the good predictive 55 

abilities of the GnoMods (Spearman predobs/ > 0.72, P<0.05). The above findings support a relation 56 

between climate and incidence of G. castanea, providing statistical tools to forecast disease 57 

incidence at site level. 58 

 59 

 60 

 61 

 62 

 63 
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Introduction 64 

 65 

Sweet chestnut (Castanea sativa Miller) is a widespread broadleaf species in southern and 66 

western Europe, in Maghreb, Turkey, Caucasus as well as in Australia and New Zealand. This 67 

species has been spread and cultivated for thousands of years for both fruit and wood production 68 

and plays an important economic role in many countries, being a source of food highly appreciated 69 

for both fresh consumption and processing because of appreciable organoleptic and nutritional 70 

properties.  71 

Several fungi can cause nut rot of chestnut in pre-harvest and/or post-harvest conditions resulting 72 

in yield and economic losses, including Botrytis cinerea Pers., Ciboria batschiana (Zopf) N.F. 73 

Buchw., Cytodiplospora castanea Oudem., Diplodina castaneae Prill. & Delacr., Dothiorella spp., 74 

Fusarium spp., Penicillium spp., Pestalotia spp., Phoma castanea Peck, Phomopsis endogena 75 

(Speg.) Cif., Phomopsis viterbensis Camici and Rhizopus spp. (Washington et al., 1997). Since 76 

2005, in Italy, France and Switzerland, chestnut growers have noticed an abnormal increase in the 77 

amount of rotten nuts locally affecting more than 80% of nuts (Visentin et al., 2012; Maresi et al., 78 

2013). The huge majority of these nut rots were associated with an emerging fungal pathogen 79 

recently described as Gnomoniopsis castanea Tamietti, an ascomycete belonging to the family of 80 

Gnomoniaceae (Visentin et al., 2012). The symptoms of the nut rot caused by this fungus include a 81 

chalky aspect of the nut kernel at ripening, turning to brown as soon as the mummification 82 

progresses and the mycelium invades the kernel tissues. Besides being a parasite in the kernel of the 83 

nuts, G. castanea can also be found as an endophyte in the thin bark of chestnut branches and in 84 

other green tissues of the tree (Visentin et al., 2012). The teleomorphic stage of the fungus produces 85 

its perithecia on the burrs (Visentin et al., 2012). The acervuli of the anamorphic stage can be 86 

observed on necrotic galls whose formation on chestnut buds and leaves is triggered by the Asian 87 

chestnut gall wasp (Dryocosmus kuriphilus Yasumatsu) accidentally introduced to Europe in the 88 

early 2000s (Quacchia et al., 2008). A disease very similar to the one here described was observed 89 
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in New Zealand starting from 2008 (Shuttleworth et al., 2013). While the pathogen was described in 90 

New Zealand as Gnomoniopsis smithogilvyi L.A. Shuttlew. (Shuttleworth et al., 2012), it is still 91 

unknown whether the two congeners G. castanea and G. smithogilvyi may be the same species or 92 

not.  93 

To date, little is known about the ecology, epidemiology, biogeography and infection biology of 94 

Gnomoniopsis spp. on chestnut. Despite some hypotheses on the reasons determining the spread 95 

and the severity of these pathogens in chestnut orchards (Gentile et al., 2009; Maresi et al., 2013; 96 

Shuttleworth et al., 2013), many aspects still need to be elucidated. 97 

The climate has been reported to be related to pathosystems dynamics at global, regional and 98 

local scale both in agriculture and in forestry (Garrett et al., 2006). Climate may affect the 99 

pathosystems influencing not only the pathogens and their hosts, but also ecosystems composition, 100 

structure and functions (Garrett et al., 2006). During the last decades researchers have shown a 101 

growing interest in elucidating the role played by climate on plant diseases under a quantitative 102 

perspective. Many regression and simulation models have been proposed to explain and/or predict 103 

disease parameters as a function of the climate. Despite no general rules can be used to forecast the 104 

impact of climate on plant diseases, a vast body of literature support that temperature and rainfall 105 

figure among the most important climatic variables to model and to predict incidence, severity and 106 

spread of plant pathogens (Coakley et al., 1999; Kendrick, 2000; Magarey et al., 2005; Garrett et 107 

al., 2006). Epidemiological models including temperature and/or rainfall as predictors have been 108 

proposed for a large variety of plant pathogens as, for instance, Alternaria alternata (Fr.) Keissl. 109 

(Moschini et al., 2006.), Fusarium oxysporum f. sp. ciceris Matuo & K. Satô (Navas-Cortés et al., 110 

2007), Heterobasidion spp. (Gonthier et al., 2005), Phytophthora ramorum Werres, De Cock & 111 

Man in 't Veld (Kelly et al., 2007) and Plasmopara viticola (Berk. & M.A. Curtis) Berl. & De Toni 112 

(Lalancette et al., 1988). To date such models have found many practical applications in different 113 

fields including crop production estimation, food security policy, forest management, plant disease 114 

control, risk maps development, decision making support and economic losses estimation (Gregory 115 

http://www.indexfungorum.org/names/NamesRecord.asp?RecordID=474485
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et al., 2009; Edmonds, 2013; Gonthier & Thor, 2013). In particular warming temperatures, often 116 

related to the global climate change, have been identified in many cases as risk factors increasing 117 

the detrimental effects of plant pathogens (Harvell et al., 2002; Doohan et al., 2003).  118 

Some observations carried out in Italy, Australia and New Zealand suggest that climate could 119 

play a role in promoting high incidence levels of G. castanea and G. smithogilvyi (Maresi et al., 120 

2013; Shuttleworth et al., 2013). Even if dry and warm periods (Maresi et al., 2013), as well as 121 

rainy and warm ones (Smith & Agri, 2008; Smith & Ogilvy, 2008; Gentile et al., 2009; 122 

Shuttleworth et al., 2013) occurring during the vegetative season have been suggested to affect the 123 

incidence of nut rots, many of these hypotheses still need to be confirmed by statistical evidence.  124 

Several difficulties and constraints arise when modelling the incidence of plant diseases as a 125 

function of environmental variables because of sampling adequacy, spatial autocorrelation, spatial 126 

pseudoreplication, high collinearity among predictors, noise, lack of model parameters 127 

distributional theory and presence of restrictive assumptions regarding the statistical tests (Roy & 128 

Roy, 2008; Kéry, 2010; Crawley, 2013). However, recent improvements in statistics have led to the 129 

availability of methods allowing plant pathologists to carry out computational analyses that can deal 130 

with many of the above cited constraints. For instance, tools once unavailable or mainly confined to 131 

the borders of specific fields (e.g. chemometrics, criminology, urban planning) have recently been 132 

used in plant pathology (Gonthier et al., 2012a,b; Garbelotto et al., 2013). These methods and tools 133 

include Geographic Information Systems (GIS), spatial clustering and spatial autocorrelation 134 

analyses, Partial Least Squares Regression (PLSR), cross-validation, bootstrap and Principal 135 

Coordinates Analysis (PCoA). 136 

Taking advantage from the above cited methods and tools, the goals of this research were: I) to 137 

verify if the spatial pattern of the incidence of G. castanea at regional level is consistent with the 138 

hypothesis of a climate influence on the disease, II) to test whether climatic parameters and 139 

incidence of the disease are correlated, III) to model the incidence of the disease at site level as a 140 

function of climatic parameters, and IV) to validate the models. 141 
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 142 

Materials and methods 143 

 144 

Study sites, samplings and fungal isolations  145 

 146 

Up to 120 ripe nuts per site (Table 1) were randomly collected at the beginning of November 147 

2011 from the crown of 6-8 trees per site randomly chosen in 12 sweet chestnut orchards located in 148 

the north-west of Italy. The sites were selected so as to include a wide latitudinal and longitudinal 149 

extension according to the chestnut distribution in the area. Sites were located within a rectangular 150 

region of 9080 km2 (63 km from E to W, 144 km from S to N) at a mean distance of 12 km. The 151 

precise location and the main characteristics of the study sites are reported in Table 1. Samples were 152 

transported to the laboratory and stored at 4°C before subsequent analyses. 153 

Under a biological hood, 5 fragments per nut (approximately 1 × 1× 2 mm in size) were excised 154 

and plated in 9 cm diameter Petri dishes filled with Malt Extract Agar (MEA) as previously 155 

described (Visentin et al., 2012). Putative colonies of G. castanea were identified by examining 156 

macro and micro-morphological features including both the aspect of mycelium and acervuli and 157 

the shape and size of conidia. The incidence of G. castanea at site level was calculated as the ratio 158 

(%) between the number of infected nuts and the total number of nuts sampled. 159 

 160 

Development and application of a taxon-specific molecular diagnostic assay 161 

 162 

To confirm the morphological identification, a subset of 36 randomly selected putative colonies 163 

of G. castanea and all colonies showing anomalous morphological characters were typed by using a 164 

taxon-specific molecular diagnostic assay. Taxon-specific primers for G. castanea were designed 165 

based on alignment of ITS (Internal Transcribed Spacer) sequences of 15 species belonging to 166 

Gnomoniaceae family. In order to check their specificity, primers were also tested in an optimized 167 
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PCR assay using as template the DNA extracted from three ascomycetes fungi frequently associated 168 

with chestnut. Details of primers design, DNA extractions, PCR reactions and gel electrophoresis 169 

visualization are reported as Supplementary Material (S1). 170 

 171 

Geostatistical analyses 172 

 173 

The coordinates of each site were recorded with a GPS device (Magellan Mobile Mapper 6) in 174 

UTM WGS84 (zone 32N). Geostatistical analyses were implemented in CrimeStat 3.3 (Levine, 175 

2010) to detect the spatial pattern of sites and to test the spatial autocorrelation of incidence levels 176 

of G. castanea.  177 

The spatial pattern of sites was investigated with the L(d) transformed Ripley’s K(d) function 178 

(Mitchell, 2005) where d is the geographic distance among sites. Lower (Lcsr-lower) and upper (Lcsr-179 

upper) bounds were calculated for Lcsr, that is the L(d) function under the assumption of complete 180 

spatial randomness (csr) with 2000 simulations and 95% confidence level. The default correction 181 

for a rectangular study area was selected. The L(d) function, Lcsr-lower  and Lcsr-upper were plotted 182 

against d in order to find distance ranges of significant spatial clustering (L(d)>Lcsr-upper), of 183 

significant spatial dispersion (L(d)<Lcsr-lower) and the remaining ranges of random spatial pattern 184 

(Mitchell, 2005). A Nearest Neighbor Hierarchical Clustering (NNHC) analysis was performed to 185 

identify significant spatial clusters of sites and their order (Mitchell, 2005). The consistency 186 

between the results of the L(d) function and the NNHC analysis was assessed by measuring the 187 

distance between clustering sites (see Results). 188 

The spatial autocorrelation of incidence levels of G. castanea was assessed with the General 189 

Moran’s Index (I) and with the Getis-Ord General G-statistic (G) (Mitchell, 2005). The latter was 190 

calculated in a range of distances from 1 to 100 km (with 100 iterations) to detect the presence of 191 

cold and hot spots. The threshold to reject the null hypothesis of tests was set at P=0.05. 192 

 193 
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Climatic analyses 194 

 195 

For each site, climatic data were downloaded from the nearest thermo-pluviometric station 196 

(ARPA Piemonte, 2011). Those data included daily maximum, mean and minimum temperatures 197 

(°C) and the total daily rainfall (mm) from January 1st 2011 to October 31st 2011. To estimate the 198 

consistency between the climatic data derived from the thermo-pluviometric stations and the 199 

climate of the study sites, the mean distance between the sites and their nearest thermo-pluviometric 200 

stations was calculated (Table 1). Moreover, to assess the consistency between the spatial 201 

distribution of the sites and the spatial distribution of their nearest thermo-pluviometric stations the 202 

correlation between the geographical distance matrices among sites and among their nearest 203 

thermo-pluviometric stations was tested with the simple Mantel test.  204 

The correlation between the incidence of the pathogen at site level and the monthly average 205 

maximum, mean, minimum temperatures and the monthly average rainfall was assessed with the 206 

Spearman’s  correlation coefficient analysis (Crawley, 2013). 207 

Each of the 1200 daily values for both temperatures and rainfall was used as variable to perform 208 

a Principal Coordinates Analysis (PCoA) on sites. The PCoA was performed on the Euclidean 209 

distance matrix calculated from the coordinates of the sites in the space defined by the above cited 210 

variables. The minimum number of principal axes accounting for more than 70% of the total 211 

variance was retained and the principal coordinates of the sites were calculated. On those principal 212 

coordinates a Hierarchical Cluster Analysis (HCA) based on the Euclidean distance matrix and on 213 

the Ward agglomerative method (Garbelotto et al., 2013) was run to define groups of sites 214 

characterized by similar climatic conditions. The maximum silhouette width and the minimum C-215 

index criteria were used to identify the optimal number of clusters. 216 

The climate conditions between the two clusters of sites detected by the HCA (see Results) were 217 

compared with the Mann-Whitney test performed with exact significance (Crawley, 2013) on the 218 

average maximum, mean, minimum temperatures and average rainfall of each month. Bootstrap 219 
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bias-corrected accelerated percentile confidence intervals were calculated for each monthly average 220 

value based on 10000 iterations (Crawley, 2013). 221 

The incidence of G. castanea was calculated for the two clusters. The incidence levels were then 222 

compared with a χ2 test.  223 

The above mentioned analyses were carried out in R programming language (R Core Team, 224 

2013) by running the labdsv library for PCoA, the NbClust and clValid libraries for HCA, the boot 225 

library for the calculation of the bootstrap confidence intervals and the ecodist library for the simple 226 

Mantel test. 227 

 228 

Model fitting and validation 229 

 230 

A PLSR (Wold et al., 2001) was performed to model the incidence of G. castanea at site level in 231 

relation to the climatic conditions. The incidence value of the pathogen in each site was transformed 232 

through the application of the logit function before PLSR models fitting (Crawley, 2013). The logit 233 

transformed incidence at site level was used as dependent variable. The monthly average maximum, 234 

mean, minimum temperatures and the monthly average rainfall recorded at each site from January 235 

to October 2011 were considered as potential predictors. A pre-selection of predictors was 236 

performed before models fitting: only the climatic variables being significantly different between 237 

the 2 clusters of sites identified with the PCoA-HCA analyses were retained as predictors.  238 

A first set of PLSR models was fitted to sites data including all the pre-selected predictors 239 

(hereafter in the text simply defined as predictors) and from 2 to 11 latent variables (LV) (Abdi, 240 

2010). In addition, the null model was also fitted. Every model was identified by the acronym 241 

GnoMod (Gnomoniopsis Model) followed by two indexes indicating the number of LV and  242 

the number of predictors. Each GnoMod was expressed in terms of a vector-matrix form equation 243 

XBY ˆ  (Equation 1) where Ŷ is the column vector of the predicted values of the incidence of G. 244 

castanea at site level (i.e. logit of the percentage of nuts infected by G. castanea), X is design 245 
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matrix of the predictors for a model parameterization including the intercept (i.e. a matrix of the 246 

predictors values whose first column is filled by 1s)  and B is the column vector of the β 247 

coefficients (i.e. the multiplicative coefficients obtained through PLSR fitting and assigned to each 248 

predictor) (Wold et al., 2001; Kéry, 2010).  249 

For every GnoMod the Akaike Information Criterion (AIC) was calculated as described by Li et 250 

al. (2002) by adding a constant set to 100. LV selection was performed according to the minimum 251 

AIC criterion (Li et al., 2002). For the resulting GnoMod (i.e. the one with lowest AIC), the ΔAIC 252 

between the null model and the actual model was calculated. A semiparametric bootstrap based on 253 

10000 iterations was performed on the ΔAIC, deriving its 95% confidence interval (Carpenter & 254 

Bithell, 2000). On the same model, the internal validation parameters 2Q  (Wold et al., 2001) and 255 

2

cumQ  (Lazraq et al., 2003) were determined by cross-validation. The 2Q is similar to R2 in classical 256 

Ordinary Least Squares (OLS) regression, but originates from iterative calculus and refers to the 257 

estimation of predictive ability rather than to goodness of fit. Instead 2

cumQ  provides and estimate of 258 

the internal adequacy of the predictors.  259 

In order to test and validate the effective predictive ability, the GnoMod was run on data of a 260 

validation set (i.e. data not used to fit the model) (Abdi, 2010) gathered from 8 chestnut orchards, 261 

some of which were sampled more than once but in different years during a period lasting from 262 

2007 to 2013 (Table 2). Samplings in these orchards were carried out at the beginning of 263 

November. The incidence of G. castanea (i.e. observed incidence) was assessed through 264 

morphological identification of isolates as previously described, while the input predictors were 265 

collected for the validation set and then inserted in the GnoMod equation to estimate the incidence 266 

of G. castanea (i.e. predicted incidence) in logit scale. The predicted and the observed values 267 

recorded for the validation set were used to calculate some external validation indexes including 268 

their squared correlation coefficient and associated P-value (
2

/ predobsR ) (Roy & Roy, 2008), their 269 

Spearman’s correlation coefficient and related P-value ( predobs/ ) (Gonthier et al., 2012a), the 270 
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semiparametric bootstrap 95% confidence interval for the dependent variable based on 10000 271 

iterations (95% CIdv) (Carpenter & Bithell, 2000; Abdi, 2010) and the Mean Square Error of 272 

Prediction (MSEP) (Aptula et al., 2005). For the 95% CIdv, its mean width value (95% CIdvw) was 273 

calculated as a summary measure. 274 

The PLS-bootstrap method was applied on the GnoMod to perform predictors selection 275 

according to the algorithms of Amato & Esposito Vinzi (2003) and Lazraq et al. (2003) run in their 276 

semiparametric variant (Carpenter & Bithell, 2000). This procedure was iterated until no 95% 277 

confidence intervals of the predictors coefficients included 0. All the above described indexes were 278 

calculated for each nested GnoMod obtained at every step of the PLS-bootstrap method. The 279 

collinearity of the predictors was assessed with the Steiger test. 280 

To further assess the consistency among the climatic analyses and the GnoMods equations a 281 

simulation was carried out. The simulation consisted in running the equations on the validation set 282 

after increasing the predictors values by a multiplicative constant set to 1.01, then to 1.02 and 283 

finally to 1.05 and in recording at each step the extent of variation of the mean predicted dependent 284 

variable. The effect was estimated by calculating the mean percentage of increase in the predicted 285 

dependent variable for a 1% increment of the predictors values. 286 

The PLSR models were fitted and cross-validated with the plsdepot library, while the other 287 

algorithms described were compiled in R programming language (R Core Team, 2013). 288 

 289 

Results 290 

 291 

Incidence of G. castanea and taxon-specific molecular diagnostic assay  292 

 293 

A total of 441 colonies were identified as G. castanea based on macro and micro-morphological 294 

features. G. castanea was present in nuts from all the study sites. The incidence of the disease 295 

ranged from 20.0% to 93.5%, depending on site (Table 1), while the total incidence was 64.6%. 296 
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A forward primer (Gc1f, 5’-AGCGGGCATGCCTGTTCGAG-3’) and a reverse primer (Gc1r, 297 

5’-ACGGCAAGAGCAACCGCCAG-3’) were designed to amplify a 168 bp PCR product when 298 

used with the following thermocycler parameters: an initial cycle with a 95°C denaturation step of 5 299 

min, followed by 35 cycles, each one consisting of a 95°C denaturation step of 30 s, a 62°C 300 

annealing step of 45 s and a 72°C extension step of 1 min and a final cycle with a 72°C extension 301 

step of 10 min. No cross-reactivity of primers with DNA of ascomycotes frequently associated with 302 

chestnut was observed (Fig. 1). The morphological identification of G. castanea was confirmed by 303 

the results of the taxon-specific molecular diagnostic analysis for the whole subset of isolates. 304 

 305 

Geostatistical analyses 306 

 307 

The L(d) function analysis indicated that the sites were significantly clustered (P<0.05) within a 308 

distance range comprised between 7.47 and 15.55 km (L(d)>Lcsr-upper), while for all the other 309 

distance ranges the spatial pattern of sites did not differ significantly from a random one 310 

( uppercsrlowercsr LdLL   )( ) (P>0.05) (Fig. 2). 311 

The NNHC analysis identified three significant first order spatial clusters of sites. The largest 312 

cluster (A) included four sites, while the other two (B and C) were composed by only two sites each 313 

(Table 1). The mean distance among sites within the clusters was 7.49 km, a value in agreement 314 

with the clustering range indicated by the L(d) function. 315 

The General Moran’s Index (I) excluded the presence of spatial autocorrelation of the incidence 316 

of G. castanea (I=0.18; P>0.05). This result was confirmed by the Getis-Ord General G-statistic, 317 

that attained not significant values ranging from 0.00 to 0.82 (P>0.05), showing that neither hot 318 

spots nor cold spots could be identified.  319 

 320 

Climatic analyses  321 

 322 
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The simple Mantel test revealed a strong and significant correlation between the distance 323 

matrices of sites and of their nearest thermo-pluviometric stations (R=0.99; P<0.05). The mean 324 

distance between sites and their nearest thermo-pluviometric stations was 4.79 km.  325 

The Spearman’s  correlation coefficients analysis (Fig. 3) showed significant positive 326 

correlations (P<0.05) between the incidence of G. castanea and the monthly average maximum 327 

temperatures of July (  =0.60), August (  =0.62), September (  =0.61) and October (  =0.62) and 328 

the monthly average mean temperatures of June (  =0.70) and July (  =0.63). Instead, no 329 

significant correlations were detected between the incidence of G. castanea and the monthly 330 

average rainfall, with the only exception of August which showed a negative correlation coefficient 331 

(  =- 0.60; P<0.05). 332 

In the PCoA only two principal axes were retained, the first one accounting for 56.2% and the 333 

second for the 14.3% of the total variance. The HCA performed on the principal coordinates of sites 334 

revealed that two clusters of sites sharing similar climatic conditions could be identified (Fig. 4). In 335 

fact the maximum silhouette width (0.51) and the minimum C-index (0.33) were obtained when 336 

sites were partitioned in two groups. The first cluster (cluster 1) included eight sites (1, 2, 5, 6, 7, 9, 337 

11, 12; see Table 1 for sites codes) while the second one (cluster 2) comprised the remaining four 338 

sites (3, 4, 8, 10). 339 

Despite a slightly lower amount of precipitation in late spring, early and late summer in cluster 1 340 

compared to cluster 2, differences between the two clusters in terms of monthly average rainfall 341 

along the period from January to October were not significant (Mann-Whitney test; P>0.05). 342 

Instead, many significant differences were detected for the monthly average maximum, mean and 343 

minimum temperatures between the two clusters, indicating warmer climatic conditions in cluster 1. 344 

The monthly average maximum temperatures were significantly higher in cluster 1 than in cluster 2 345 

in every month from January to October (P<0.05), and the same was true for the monthly average 346 

mean temperatures from February to October (P<0.05). Significant differences between the two 347 
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clusters were also observed in terms of monthly average minimum temperatures in the period 348 

ranging from April to July (P<0.05) (Fig. 5). 349 

The incidence of G. castanea was 68.2% in cluster 1 and 57.8% in cluster 2. The χ2 test revealed 350 

that the difference of incidence levels between the two clusters was significant (P<0.05). 351 

 352 

Model fitting and validation 353 

 354 

The pre-selection performed with the climatic analyses allowed for the identification of 23 355 

predictors (i.e. the monthly average temperatures listed in the previous section that were 356 

significantly different between the two clusters). The null model attained an AIC value of 128.77, 357 

while among the models from GnoMod-2-23 to GnoMod-11-23 the minimum AIC (78.27) was 358 

observed in GnoMod-8-23. Thus, from GnoMod-8-23, the nested models GnoMod-8-19, GnoMod-359 

8-16 and GnoMod-8-15 were derived with the PLS-bootstrap method (Table 3). The four GnoMods 360 

differed because of the number of included predictors (i.e. the monthly average maximum, mean, 361 

minimum temperatures listed for each model in Table 3). Only in GnoMod-8-15 (the last step of the 362 

PLS-bootstrap method) the β coefficients were all significantly different from 0 (P<0.05). In all 363 

models the ΔAIC was significantly different from 0 and the Steiger test confirmed the collinearity 364 

among predictors (P<0.05). The four GnoMods showed a constant 2Q (0.99), while the other 365 

internal validation parameter 2

cumQ  ranged from 0.53 to 0.88. In the 8 orchards included in the 366 

validation set the incidence of G. castanea was comprised between 5.0% and 83.3% depending on 367 

site and sampling year (Table 2). The external validation parameters 
2

/ predobsR (attaining values 368 

ranging from 0.52 to 0.65) and predobs/ (comprised between 0.72 and 0.79) were significant 369 

(P<0.05) in each GnoMod. The 95% CIdvw varied from 2.95 to 3.21 and the MSEP ranged from 5.81 370 

to 7.68 depending on the model. 371 
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For all GnoMods the simulations recorded an increasing value of the predicted dependent 372 

variable at each step. On average a 1% increase of the predictors values produced a mean 373 

percentage of increase in the predicted dependent variable of 6.07% in GnoMod-8-23, 5.10% in 374 

GnoMod-8-19, 6.99% in GnoMod-8-16 and 6.90% in GnoMod-8-15. 375 

 376 

Discussion 377 

 378 

The nut rot caused by G. castanea represents a serious threat for sweet chestnut orchards, as 379 

shown in this study by the widespread occurrence and the high incidence of the pathogen in the 380 

north-west of Italy. In agreement with the results of previous surveys carried out in Italy (Visentin 381 

et al., 2012; Maresi et al., 2013), Australia (Shuttleworth et al., 2013) and New Zealand (Smith & 382 

Agri, 2008), Gnomoniopsis spp. may be considered as emerging pathogens whose detrimental 383 

effects on nut production impose a better understanding of their ecology, epidemiology, 384 

biogeography and infection biology. This research was mainly focused at elucidating and modelling 385 

the relation between climate and the incidence of G. castanea at site level.  386 

The primers Gc1f and Gc1r designed and tested in this study were shown to be taxon-specific for 387 

the amplification of the DNA of G. castanea, resulting in the successful discrimination between G. 388 

castanea and other common agents of nut rot of chestnut, such as Ciboria sp. and Phomopsis sp. 389 

Since this molecular assay was designed ad hoc as a tool to validate previous morphological 390 

identifications of fungal colonies isolated from nut kernels, further research is needed to assess its 391 

diagnostic efficacy on DNA extracted directly from chestnut tissues. 392 

Geostatistical analyses performed on the geographic coordinates of sites i.e. L(d) function and 393 

NNHC clearly showed that there was a significant clustered spatial pattern of sites at a scale of a 394 

few kilometres (~7.5-15.6). This pattern is usually unfavourable in the context of inferential 395 

statistics, since it can frustrate the attempt to draw correct conclusions from data because of spatial 396 

pseudoreplication (Crawley, 2013). However, it should be noted that the risk of spatial 397 
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pseudoreplication is substantial only if the Tobler’s principle holds true at the scale the study is 398 

performed. This principle states that the values of a variable (e.g. disease incidence) sampled from 399 

neighbouring locations are expected to be more similar than the ones coming from locations set far 400 

apart (Mitchell, 2005). The results of the General Moran’s Index and the Getis-Ord General G-401 

statistic revealed that the incidence of G. castanea violated the Tobler’s principle and hence that the 402 

sampling was not affected by spatial pseudoreplication. Furthermore, the discrepancy between the 403 

geographic pattern of sites and the spatial autocorrelation pattern of the incidence of G. castanea 404 

indicates the scale at which factors potentially related to the disease are operating. In fact, 405 

considering that sites geographically clustered do not show similar values of disease incidence, the 406 

above mentioned factors are likely to be site-specific, hence variable from site to site at the 407 

sampling scale of few kilometres as indicated by the L(d) function.  408 

As reported by previous papers focused on Gnomoniopsis spp. associated with chestnut, the 409 

climate might stand among the most important factors related to the incidence of nut rot in chestnut 410 

orchards (Maresi et al., 2013; Shuttleworth et al., 2013). This study tested the consistency between 411 

the spatial pattern of the incidence of G. castanea and the hypothesis of a climate influence on the 412 

disease. Based on the results of HCA and NNHC, the lack of spatial autocorrelation of the incidence 413 

of G. castanea implies also that nearer sites were not more likely to share similar values of the 414 

disease incidence. Thus the spatial pattern of incidence of G. castanea is consistent with the 415 

hypothesis of climate as a site-specific factor influencing the disease. It is worth noting that the 416 

average spatial variability of climate in the north-west of Italy, that is often sizeable even at a local 417 

scale, is in agreement with these findings. Even though those data came from thermo-pluviometric 418 

stations not located within the sampled chestnut orchards, the spatial distribution of these stations 419 

was highly correlated with the spatial distribution of the study sites as demonstrated by the results 420 

of the simple Mantel test. The mean distance between the study sites and their nearest thermo-421 

pluviometric stations was also consistent with the scale of the study. Both these observations 422 
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demonstrate that the selected thermo-pluviometric stations were representative enough to correctly 423 

describe the sites climate conditions. 424 

The agreement between the spatial scale of both climate and disease incidence may suggest they 425 

are associated, however it does not allow interpretation of the role and the relative importance of 426 

different climatic parameters on the disease. For this reason further climatic analyses were carried 427 

out. Monthly average temperatures were always positively correlated with the incidence of nut rot 428 

caused by G. castanea and such correlation was significant for at least the maximum temperatures 429 

or the mean temperatures in the period lasting from June to October. This finding suggests that 430 

warmer temperatures in the second half of the vegetative season are associated with increasing 431 

percentages of rotten nuts. Further evidence confirming this interpretation derives from results of 432 

the PCoA and HCA. Cluster 1 was clearly characterized by warmer temperatures than cluster 2, 433 

with the most notable differences detectable in the monthly average maximum and mean 434 

temperatures. The incidence of G. castanea was significantly higher in cluster 1 than in cluster 2, 435 

despite the mild magnitude of the difference (+10.4%). This significant but not substantial increase 436 

of disease incidence may suggest that other factors in addition to climatic ones are likely to be 437 

involved in driving infections and/or disease expression. Although the mechanisms of infection and 438 

the pathways of host colonization are mostly unknown for this pathogen, some hypotheses on the 439 

role played by warm temperatures on the disease may be formulated. Temperature affects fungal 440 

growth and may trigger metabolic and functional changes in fungi improving their trophic balance 441 

and sporulating ability (Kendrick, 2000). Such traits are pivotal for phytopathogenic fungi since 442 

they are involved in host colonization and disease transmission. Interestingly, in vitro growth of G. 443 

castanea was reported to be optimal at 25°C (Visentin et al., 2012), and such a temperature in this 444 

study was attained in the field only in sites of cluster 1, whose disease incidence was higher. 445 

However the effects of the temperature on the host side could be involved too. In fact the hypothesis 446 

that warmer temperatures could be associated with stress on chestnut and consequently with an 447 

increase of incidence of G. castanea was recently formulated (Maresi et al., 2013).  448 
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In a previous study the severity of the nut rot was mainly interpreted as a potential consequence 449 

of drought (Maresi et al., 2013), suggesting that the decrease of the water input provided by the 450 

rainfall could have played an important role. Instead, in the opposite hemisphere, abundant rainfalls 451 

during the flowering period were shown to be mildly correlated to the incidence of G. smithogilvyi 452 

(Shuttleworth et al., 2013). A comparison between the ecology of G. castanea and G. smithogilvyi 453 

may be hazardous since they occur in different biogeographical and environmental contexts, yet, at 454 

a first glance, the role of rainfall in the epidemiology of these pathogens seems to be still an 455 

argument to debate. The results of the climatic analyses performed in our study suggested that the 456 

rainfall was not significantly associated with the incidence of the nut rot. In fact no significant 457 

correlations were detected between the monthly average rainfall and the incidence of G. castanea, 458 

with the exception of August where the correlation was significant, but negative. Moreover the 459 

above mentioned cluster 1 and cluster 2 were never significantly different when compared in terms 460 

of monthly average rainfall. These findings cannot exclude a possible role of drought, but it is worth 461 

noting that drought does not depend only on a reduced water input, but also on the water loss which 462 

is often increased by warmer temperatures. Furthermore, since no correlation between the rainfall 463 

during the flowering period of the chestnut (June-July in the study sites) and the incidence of nut rot 464 

was detected, other factors in addition to possible floral infections should be considered to elucidate 465 

the infection biology and the epidemiology of G. castanea. A better understanding could be 466 

achieved with investigations performed on the abundance of the airborne inoculum of this fungus 467 

during the year in relation to the phenology of chestnut, on the potential interactions between the 468 

pathogen and other organisms affecting chestnut (e.g. the Asian gall wasp) and on the ways the 469 

pathogen penetrates into the host tissues. All these factors are, at least in theory, potentially 470 

influenced by climatic conditions, yet investigations of these aspects were beyond the aim of this 471 

study.  472 

Four PLSR models (i.e. GnoMods) were proposed in order to model the incidence of G. 473 

castanea at site level as the logit percent amount of infected nuts in function of monthly average 474 



 20 

maximum, mean, minimum temperatures. Because of the high number of predictors and their 475 

collinearity, a simple OLS regression would not have been recommended. It is worth noting that a 476 

significant correlation between all the predictors and the dependent variable is not a prerequisite for 477 

PLSR fitting (Wold et al., 2001). However, a first pre-selection of predictors may be useful to 478 

improve the reliability of the β coefficients. The further selection of the predictors was considered 479 

advantageous since it improved the predictive performances, provided that all the four PLSR 480 

models obtained were significantly different from the null model. On one hand, the cross-validation 481 

suggested that the GnoMods were interchangeable for predictive purposes (since they showed the 482 

same 2Q ), but GnoMod-8-15 was characterized by a better internal adequacy of the selected 483 

predictors (i.e. highest 2

cumQ  value). On the other hand, the external validation indexes, often 484 

considered more reliable for models selection than the internal ones (Aptula et al., 2005), did not 485 

provide univocal response. Considering that the ideal model should maximise 2

/ predobsR  and predobs/  486 

while minimizing 95% CIdvw and MSEP (Aptula et al., 2005; Roy & Roy, 2008) there is not an 487 

outstanding GnoMod. However, combining the internal and external validation indexes, GnoMod-488 

8-16 and GnoMod-8-15 may be the most reliable ones, especially considering the difference in 489 

MSEP with the other two models. It should be noted that all GnoMods showed significant and high 490 

external validation indexes 2

/ predobsR  and ./ predobs  This suggests that no substantial overfitting 491 

occurred and that GnoMods are robust tools for predicting the incidence of G. castanea at site level 492 

even with data gathered from different sites and/or years. This finding implies that the GnoMods 493 

predictions are reliable both under a spatial and under a temporal perspective. It is worth noting that 494 

a successful external validation is pivotal for all predictive models, but it is even more important in 495 

the case of models fitted on data gathered from a single-sampling session to ensure that no biased 496 

coefficients have been obtained. Moreover the simulations carried out with all GnoMods 497 

demonstrated the consistency between the association of warmer temperatures with increasing 498 
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disease incidence (as identified by the climatic analyses) and the effects of increasing temperatures 499 

on the models response.  500 

Modelling the incidence of the nut rot caused by G. castanea as a function of the climate may be 501 

interesting under many perspectives. Since G. castanea is an emerging pathogen whose ecology is 502 

still partially unknown, the fact that significant and robust models endowed with satisfactory 503 

predictive performances can be obtained is per se a relevant result enlightening there is a 504 

quantitative relation between the climate and the incidence of G. castanea at site level. Moreover, 505 

the GnoMods could be practical tools to predict the incidence before nut harvesting. Such an 506 

estimate of the amount of rotten nuts could allow nut growers to evaluate the related economic 507 

losses and thus the convenience of nut harvesting. A similar approach has already been proposed, 508 

for instance in the estimation of the direct financial losses related to the incidence of hearth rot 509 

caused by Heterobasidion annosum s.l. in Alpine conifer stands (Gonthier et al., 2012a.). It should 510 

be noted that despite the computational complexity for fitting the GnoMods to experimental data, 511 

their application to new datasets is fairly trivial since to obtain the prediction of the logit percent 512 

amount of nuts infected by G. castanea at site level only the matrix X needs to be compiled with the 513 

required monthly average maximum, mean and minimum temperatures, whose values are easy to 514 

download from widely available meteorological databases. 515 

 Beyond the practical applications, these models could also provide the researcher with equations 516 

able to quantify the disease incidence under different climate change scenarios, possibly helping in 517 

the interpretation of the epidemiology of G. castanea. Assuming that the global climate change 518 

implies for the future a long-term warming of the temperatures, according to our results we might 519 

expect on average an increase of the incidence of G. castanea in analogy with documented case 520 

studies involving other plant pathogens (Harvell et al., 2002; Doohan et al., 2003). Despite our 521 

results showed that temperatures are associated with the incidence of G. castanea, we cannot 522 

exclude that other climatic variables not investigated in our study could play a role. Relative 523 

humidity, wind and solar radiation have been reported to be related to fungal spores dispersion and 524 
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survival (Munk, 1981; Rotem et al., 1985; Kendrick, 2000), yet those climatic variables are often 525 

not available. In fact only a few thermo-pluviometric stations belonging to the official networks 526 

managed by regional or national agencies are equipped with the devices needed to measure those 527 

variables, and this is particularly true in the mountain areas where chestnut orchards are located.   528 

In conclusion, this study showed that climate is a site-specific factor that, at a scale of a few 529 

kilometres, can affect the incidence of nut rot caused by G. castanea. It was shown that warm 530 

temperatures during the months before nut harvesting are associated with increasing amount of 531 

rotten nuts and that the incidence of the disease can be modelled based on temperature values.  532 
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Figures legends 643 

Figure 1. Cross reactivity test for taxon-specific primers Gc1f/Gc1r. Gnomoniopsis castanea MUT 644 

455 (lanes 1 and 5), Cryphonectria parasitica (lanes 2 and 6), Ciboria sp. (lanes 3 and 7) and 645 

Phomopsis sp. (lanes 4 and 8) were amplified with primers combination ITS1f and ITS4 and with 646 

primers combination Gc1f and Gc1r. No bands were observed with primers combination Gc1f and 647 

Gc1r for C. parasitica, Ciboria sp. and Phomopsis sp. Negative Controls (NC) were also included. 648 

M is the molecular weight marker 100-bp DNA Ladder. 649 

 650 

Figure 2. Spatial pattern of sites investigated with the L(d) transformed Ripley’s K(d) function. The 651 

L(d) function is plotted against the geographic distance (d) among sites as well as the upper and 652 

lower bounds (Lcsr-upper and Lcsr-lower) of the  95% confidence interval simulated under the 653 

assumption of complete spatial randomness. A significant spatial clustering of sites occurs in the 654 

interval between 7.47 and 15.55 km, where L(d)>Lcsr-upper. 655 

 656 

Figure 3. Spearman’s  correlation analysis between the incidence of G. castanea, temperatures 657 

and rainfall. The Spearman’s  correlation coefficient is indicated for each climatic parameter 658 

(monthly average maximum, mean, minimum temperatures and rainfall) from January to October. 659 

Asterisks show significant  values (P<0.05). 660 

 661 

Figure 4. Multivariate analyses of sites with similar climatic conditions. a) Each site (see codes in 662 

Table 1) is projected as a point in a bi-dimensional space defined by the Principal Coordinates 663 

Analysis (PCoA). Nearer points share more similar climatic conditions than farther ones. b) The 664 

Hierarchical Cluster Analysis (HCA) performed on the principal coordinates of the sites shows that 665 

two clusters of sites sharing similar climatic conditions can be identified (cluster 1 and cluster 2). 666 

Sites belonging to the same cluster are also circled in the principal coordinates space (a). 667 
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 668 

Figure 5. Comparisons of temperatures and rainfalls between the clusters identified with PCoA and 669 

HCA. The monthly average maximum, mean and minimum temperatures and the monthly average 670 

rainfall (a, b, c and d, respectively) were compared between cluster 1 and cluster 2. The 95% 671 

bootstrap confidence intervals are reported for each value. For each month, different letters next to 672 

the plotted points indicate a significant difference detected by the Mann-Whitney exact test 673 

(P<0.05). 674 

 675 

676 
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Fig. 1 677 
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Fig. 2 681 
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Fig. 3 685 
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Fig. 4 688 
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690 
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Fig. 5 691 
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 693 
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Table 1. Main characteristics of study sites sampled in 2011 for the assessment of the incidence of Gnomoniopsis castanea. For each site, the 

incidence of G. castanea and the results of the Nearest Neighbor Hierarchical Clustering (NNHC) are reported. Sites included in the same 

geographical cluster are marked with the same capital letter, while sites not included in any cluster are labelled with –. 

  * not available  

Site name Site code UTM WGS84  

coordinates 

(m) 

Altitude 

(m a.s.l.) 

Exposure Soil type 

(Soil Taxonomy) 

 

Number of 

sampled 

nuts 

G. castanea 

 incidence 

(%) 

NNHC  

cluster 

Distance from 

the nearest 

thermo-

pluviometric 

station (km) 

Borgo San 

Dalmazzo 

1 E 378203.3 

N 4909837.6 

655 ENE Typic Hapludalf 40 85.0 A 6.17 

Boves 2 E 385186.1 

N 4907245.0 

783 E Typic Hapludalf 120 69.2 A 2.98 

Donato 3 E 414851.2 

N 5043995.9 

1011 SSW Typic Dystrudept 120 55.0 – 2.32 

Donnas 4 E 402474.5 

N 5048801.2 

848 SE n.a.* 37 59.5 – 8.86 

Envie 5 E 371375.2 

N 4950168.6 

285 flat Typic Hapludalf 80 77.5 B 10.51 

Mattie 6 E 351141.2 

N 4995572.5 

1170 ENE Typic Dystrudept 40 20.0 C 6.50 

Monteu Roero 7 E 414064.5 

N 4960599.5 

350 NE Psammentic Haplustalf 46 93.5 – 4.53 

Peveragno 8 E 389871.2 

N 4907514.9 

680 NNW Typic Hapludalf 40 80.0 A 2.18 

Robilante 9 E 381773.9 

N 4904511.4 

695 NNE Typic Hapludalf 40 75.0 A 2.26 

Sanfront 10 E 365472.8 

N 4944613.2 

607 SW Typic Dystrudept 40 42.5 B 3.87 

Torre Pellice 11 E 357449.6 

N 4965227.1 

725 SSW Typic Hapludalf 40 65.0 – 3.85 

Villar 

Focchiardo 

12 E 359474.5 

N 4995073.5 

1150 WNW Typic Dystrudept 40 45.0 C 3.48 



 35 

Table 2. Main characteristics of validation set sites sampled from 2007 to 2013 for the assessment of the incidence of G. castanea and for the 

external validation of the GnoMods.  

 

* not available  

 

Site name UTM WGS84  

coordinates (m) 

Altitude 

(m a.s.l) 

Exposure Soil type 

(Soil Taxonomy) 

Number of 

sampled nuts 

Sampling year G. castanea 

incidence (%) 

Bastianetti 

(Italy) 

E 420752.2 

N 4896438.9 

608 SSE Typic Hapludalf 40 

51 

2012 

2013 

35.0 

31.5 

Boves 

(Italy) 

E 385186.1 

N 4907245.0 

783 E Typic Hapludalf 40 

40 

2007 

2012 

80.0 

27.5 

Gaiola 

(Italy) 

E 371742.5 

N 4910445.3 

815 ESE Typic Hapludalf 40 

40 

2012 

2013 

32.5 

5.0 

Peveragno 

(Italy) 

E 389871.2 

N 4907514.9 

680 NNW Typic Hapludalf 102 

40 

2007 

2013 

69.6 

42.5 

Robilante 

(Italy) 

E 381773.9 

N 4904511.4 

695 NNE Typic Hapludalf 37 

40 

40 

2008 

2012 

2013 

59.5 

32.5 

5.0 

San Giorio di 

Susa 

(Italy) 

E 357285.4 

N 4997786.6 

544 NNE Typic Dystrudept 40 2013 10.0 

Saint Auban 

(France) 

E 315409.7 

N 4855943.8 

1240 N n.a.* 40 2011 52.5 

Valdieri 

(Italy) 

E 371447.2 

N 4904194.7 

886 E Typic Dystrudept 60 

44 

2007 

2008 

83.3 

18.2 
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Table 3. Coefficients and indexes of the Partial Least Squares Regression (PLSR) models GnoMods. The β 

coefficients are associated with the predictors indicated in subscripts where tmax, tmed and tmin stand for 

monthly average maximum, mean and minimum temperatures followed by the abbreviation of the month 

they refer to. Next to the β coefficients their 95% confidence intervals are shown. The ΔAIC with its 95% 

confidence interval, the internal validation indexes ,
2Q 2

cumQ  as well as the external ones 2

/ predobsR , predobs/ , 

95% CIdvw and MSEP are reported for all models. After a coefficient or a parameter the symbol * indicates 

significance (P<0.05), no symbol indicates no significance (P≥0.05), while (~) indicates that no test is 

associated with the value. The symbol – replacing coefficients values indicates that their associated 

predictors were removed from the model based on the outcomes of the PLS-bootstrap analysis. 
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 GnoMod-8-23 GnoMod-8-19 GnoMod-8-16 GnoMod-8-15 

β0 -7.97* (-8.98; -6.96) -6.92* (-8.53; -5.32) -6.62* (-8.40; -4.84) -6.92* (-8.71; -5.13) 

βtmax-jan 0.01 (-0.11; 0.13) – – – 

βtmax-feb 0.10 (-0.08; 0.28) – – – 

βtmax-mar -0.11* (-0.17; -0.04) -0.05 (-0.13; 0.03) – – 

βtmax-apr -0.15* (-0.24; -0.06) -0.08 (-0.23; 0.08) – – 

βtmax-may 0.03 (-0.02; 0.09) – – – 

βtmax-jun 0.52* (0.46; 0.58) 0.52* (0.47; 0.58) 0.50* (0.43; 0.57) 0.50* (0.43; 0.57) 

βtmax-jul 0.40* (0.37; 0.43) 0.45* (0.39; 0.50) 0.46* (0.37; 0.55) 0.46* (0.36; 0.56) 

βtmax-aug 0.05 (-0.01; 0.11) – – – 

βtmax-sep 0.04* (0.01; 0.08) 0.05* (0.01; 0.09) 0.04 (-0.03; 0.12) – 

βtmax-oct 0.37* (0.27; 0.48) 0.39* (0.25; 0.54) 0.33* (0.17; 0.49) 0.36* (0.19; 0.52) 

βtmed-feb 0.32* (0.06; 0.57) 0.42* (0.14; 0.70) 0.58* (0.33; 0.84) 0.52* (0.27; 0.78) 

βtmed-mar -1.20* (-1.28; -1.13) -1.18* (-1.3; -1.07) -1.21* (-1.35; -1.07) -1.20* (-1.34; -1.06) 

βtmed-apr -0.42* (-0.52; -0.33) -0.44* (-0.54; -0.34) -0.46* (-0.59; -0.33) -0.46* (-0.59; -0.33) 

βtmed-may -0.15* (-0.19; -0.11) -0.14* (-0.20; -0.07) -0.14* (-0.22; -0.05) -0.14* (-0.23; -0.05) 

βtmed-jun 0.34* (0.23; 0.45) 0.30* (0.17; 0.43) 0.21* (0.03; 0.38) 0.20* (0.01; 0.40) 

βtmed-jul -0.32* (-0.38; -0.25) -0.29* (-0.37; -0.21) -0.30* (-0.41; -0.19) -0.31* (-0.43; -0.20) 

βtmed-aug -0.11* (-0.19; -0.02) -0.12 (-0.26; 0.03) – – 

βtmed-sep -0.39* (-0.47; -0.31) -0.42* (-0.54; -0.30) -0.39* (-0.64; -0.15) -0.35* (-0.65; -0.05) 

βtmed-oct -1.12* (-1.21; -1.02) -1.16* (-1.27; -1.06) -1.23* (-1.41; -1.06) -1.22* (-1.39; -1.04) 

βtmin-apr 0.54* (0.41; 0.66) 0.47* (0.30; 0.65) 0.49* (0.32; 0.66) 0.46* (0.28; 0.64) 

βtmin-may 0.55* (0.39; 0.71) 0.61* (0.42; 0.79) 0.57* (0.38; 0.76) 0.58* (0.39; 0.77) 

βtmin-jun 1.93* (1.72; 2.15) 1.88* (1.59; 2.16) 1.74* (1.45; 2.03) 1.79* (1.48; 2.10) 

βtmin-jul -1.24* (-1.36; -1.11) -1.22* (-1.36; -1.08) -1.19* (-1.35; -1.04) -1.19* (-1.35; -1.04) 

ΔAIC 50.51* (24.26; 77.06) 50.66* (28.93; 72.39) 48.34* (31.75; 64.93) 48.82* (28.80; 68.84) 

2Q  0.99(~) 0.99(~) 0.99(~) 0.99(~) 

2

cumQ  0.53(~) 0.78(~) 0.79(~) 0.88(~) 

2

/ predobsR  0.52* 0.59* 0.65* 0.63* 

predobs/  0.78* 0.79* 0.72* 0.79* 

95% CIdvw 3.21(~) 2.98(~) 2.95(~) 3.05(~) 

MSEP 7.68(~) 8.08(~) 5.81(~) 6.00(~) 


