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Spline quasi-interpolating projectors for the solution

of nonlinear integral equations

C. Dagnino, A. Dallefrate, S. Remogna∗

Abstract

In this paper we use spline quasi-interpolating projectors on a bounded interval

for the numerical solution of nonlinear integral equations. In particular, we propose

a spline quasi-interpolating projection method with high order of convergence and

a spline quasi-interpolating collocation method, both in case of smooth kernels and

in case of Green’s function type ones. We explicitly construct the approximate

solutions and we get results related to the convergence orders. Finally, we provide

numerical tests, that confirm the theoretical results.
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1 Introduction

Recently, the use of the spline quasi-interpolation has been proved to work well for the
approximation of the solution of linear Fredholm integral equations (see e.g. [1, 2, 3, 10,
12, 13]). In particular, in [1] a degenerate kernel method based on (left and right) partial
approximation of the kernel by a quartic spline quasi-interpolant is provided. In [2],
the authors propose and analyse a collocation method and a modified Kulkarni’s scheme
based on quasi-interpolating spline operators, which are not projectors. In [10], the
numerical solution of the integral equation is constructed by approximating the kernel by
using two types of bivariate spline quasi-interpolants. In [13] quadratic and cubic quasi-
interpolating projectors are proposed and analysed in Galerkin, Kantorovich, Sloan and
Kulkarni schemes. Finally, in [3, 12], quasi-interpolating operators have been presented
for the numerical solution of 2D and surface integral equations, respectively.

Moreover, in [9], the authors use the Nyström method based on a quadrature for-
mula associated with non-uniform spline quasi-interpolation for solving nonlinear integral
equations of Hammerstein type.

This paper deals with nonlinear integral equations of the form

x−K(x) = f, (1.1)

where K is the Urysohn integral operator

K(x)(s) :=

∫ 1

0

k(s, t, x(t))dt, s ∈ I := [0, 1], x ∈ X := C[0, 1]. (1.2)

The kernel k(s, t, u) is a real valued function defined on [0, 1]× [0, 1]×R and we assume
that, for f ∈ C[0, 1], (1.1) has a unique solution ϕ.

We recall that classical methods to solve nonlinear integral equations [6] are the
projection ones, as the Galerkin, collocation methods and, recently, a modified projection
method, proposed by Kulkarni, based on a sequence {πn} of orthogonal projectors or
interpolatory projectors, onto finite dimensional subspaces Xn approximating X. Xn

is usually the space of piecewise polynomials of degree d at most continuous (see e.g.
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[8, 14, 15, 16] and references therein). Other methods to numerically solve (1.1) are the
Nyström ones (see e.g [4, 5, 7] and references therein).

In this paper we propose methods based on spline quasi-interpolation projectors for
the solution of (1.1). In particular, in Section 2, we introduce spline quasi-interpolating
projectors (abbr. QIPs) of a general degree d and class Cd−1, proving their properties and
we present some special ones. Then, in Section 3, we consider integral equations (1.1) with
smooth kernels and we propose two methods based on the above spline quasi-interpolating
projectors. The first method is of Kulkarni’s type and has a high convergence order and
the second one is a quasi-interpolating spline collocation method. We explicitly construct
the approximate solutions and we study their convergence orders. Finally, in Section 4 we
consider and analyse the above methods for the solution of nonlinear integral equations
with a Green’s function type kernel. Both in Section 3 and in Section 4, we provide
numerical tests, confirming the theoretical results and illustrating the approximation
properties of the applied methods, with particular reference to the convergence order and
the fact that the approximate solution is of class Cd−1, if the kernel of K satisfies certain
smoothness requirements, contrary to classical projection methods, based on piecewise
polynomials of degree d, that provide a solution at most continuous.

2 Spline quasi-interpolating projectors

Let Xn := S
d−1
d (I,Tn) be the space of splines of degree d and class Cd−1 on the uniform

knot sequence Tn := {ti = ih, 0 ≤ i ≤ n}, with h = 1/n.
For x ∈ C[0, 1], let πn be a QIP on S

d−1
d (I,Tn) defined by

πnx :=

N∑

i=1

λi(x)Bi, (2.1)

where N :=dim(Sd−1
d (I,Tn)) = n+d, the Bi’s are the B-splines with support [ti−d−1, ti],

on the usual extended knot sequence Te
n := Tn ∪ {t−d = . . . = t0 = 0; 1 = tn = . . . =

tn+d}, and are a basis for Sd−1
d (I,Tn). The coefficients in (2.1) are given by local contin-

uous linear functionals λi. They have the form

λi(x) :=

2i∑

j=2(i−d−1)

σi,jx (ξj) , (2.2)

where ξ2i := ti, for 0 ≤ i ≤ n, ξ2i−1 := si :=
1
2 (ti−1+ ti), for 1 ≤ i ≤ n, and the σi,j ’s are

chosen such that πnx = x, for all x ∈ S
d−1
d (I,Tn). We remark that the quasi-interpolation

nodes ξj involved in (2.2) are inside the support of Bi.
Since the λi are continuous linear functionals, the operator πn is bounded, i.e. ‖πn‖ :=

sup ‖πnx‖
‖x‖ < ∞, x ∈ C[0, 1]. Therefore, as πn is a projector, classical results in approxi-

mation theory provide

‖x− πnx‖∞ ≤ C dist(x, Sd−1
d (I,Tn)),

where C := 1+‖πn‖∞. Using the Jackson type theorem for splines [11], we can conclude
that, for x ∈ Cj [0, 1], there exists a constant Cj , depending on C and j, such that,

‖x− πnx‖∞ ≤ Cjh
jω(x(j), h), with 0 ≤ j ≤ d, (2.3)

where ω is the modulus of continuity of x(j). Moreover, if x has the derivative of order
d+ 1 continuous, we obtain

‖x− πnx‖∞ = O(hd+1). (2.4)

The QIP πn can also be written in the quasi-Lagrange form

πnx =

2n∑

i=0

xiLi, (2.5)
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with xi := x(ξi), for 0 ≤ i ≤ 2n and the Li’s are compactly supported functions, called
fundamental functions, obtained as linear combination of B-splines, according to (2.2).

The following theorems present some interesting properties of the projectors πn, in
case of even degree d.

Theorem 1. Let πn be a QIP on S
d−1
d (I,Tn) of kind (2.1) and let the degree d be even.

If the functionals λi, i = d + 1, . . . , n, are such that the values σi,j, in (2.2), associated
with quasi-interpolation nodes symmetric with respect to the center of the support of Bi,
are equal, then

∫ ti

ti−1

(πnmd+1(t)−md+1(t))dt = 0, i = d+ 1, . . . , n− d, (2.6)

where md+1(t) = td+1.

Proof. Let Pd be the space of polynomials of degree at most d. Setting md+1(t) :=
(t− si)

d+1 + pd(t) = pd+1(t) + pd(t), where pd ∈ Pd, as πnpd = pd, we can write

∫ ti

ti−1

(πnmd+1(t)−md+1(t))dt =

∫ ti

ti−1

(πnpd+1(t)− pd+1(t))dt.

Now, as

∫ ti

ti−1

pd+1(t)dt = 0, it is sufficient to prove that

∫ ti

ti−1

πnpd+1(t) = 0.

Taking into account the locality of the B-splines, the symmetry of the data points
with respect to si, the fact that pd+1 satisfies pd+1(si + w) = −pd+1(si − w) and the

assumptions on the coefficient λi(x), i = d+1, . . . , n, we can deduce

∫ ti

ti−1

πnpd+1(t) = 0.

Therefore, we get (2.6).

Theorem 2. If the hypotheses of Theorem 1 hold, for any function g ∈ W 1,1 (i.e. with
‖g′‖1 bounded) and any function x such that

∥
∥x(d+2)

∥
∥
∞

is bounded, there results

∣
∣
∣
∣

∫ 1

0

g(t)(πnx(t)− x(t))dt

∣
∣
∣
∣
= O(hd+2). (2.7)

Proof. We have that

∣
∣
∣
∣

∫ 1

0

g(t)(πnx(t)− x(t))dt

∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

n∑

j=1

∫ tj

tj−1

g(t)(πnx(t)− x(t))dt

∣
∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
∣

n−d∑

j=d+1

∫ tj

tj−1

g(t) (πnx(t)− x(t)) dt

∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

(I)

+

∣
∣
∣
∣
∣
∣

d∑

j=1

∫ tj

tj−1

g(t) (πnx(t)− x(t)) dt

∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

(II)

+

∣
∣
∣
∣
∣
∣

n∑

j=n−d+1

∫ tj

tj−1

g(t) (πnx(t)− x(t)) dt

∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

(III)

For (II) and (III), taking into account (2.4), we have

(II) + (III) ≤

d∑

j=1

∫ tj

tj−1

|g(t)| |πnx(t)− x(t)| dt+

n∑

j=n−d+1

∫ tj

tj−1

|g(t)| |πnx(t)− x(t)| dt

≤ 2dh ‖g‖∞ ‖πnx− x‖∞ = O(hd+2).
(2.8)
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In order to bound the term (I), firstly we consider

∫ tn−d

td

g(t)(πnmd+1(t)−md+1(t))dt. (2.9)

Setting γj :=
1
h

∫ tj

tj−1
g(s)ds, for all j = d+1 . . . n−d, and defining the piecewise constant

function γ by γ(t) = γj for t ∈ (tj−1, tj), then

‖g − γ‖1,Id =

∫ tn−d

td

|g(t)− γ(t)|dt =

n−d∑

j=d+1

∫ tj

tj−1

|g(t)− γj |dt, (2.10)

with Id := [td, tn−d]. Since

|g(t)− γj | ≤
1

h

∫ tj

tj−1

|g(t)− g(s)|ds =
1

h

∫ tj

tj−1

∫ t

s

|g′(v)|dvds ≤

∫ tj

tj−1

|g′(v)|dv, (2.11)

from (2.10) and (2.11)

‖g − γ‖1,Id ≤

n−d∑

j=d+1

∫ tj

tj−1

∫ tj

tj−1

|g′(v)|dvdt = h

n−d∑

j=d+1

∫ tj

tj−1

[g′(v)|dv = h ‖g′‖1,Id .

Therefore, we consider (2.9) and we get

∣
∣
∣
∣

∫ tn−d

td

g(t)(πnmd+1(t)−md+1(t))dt

∣
∣
∣
∣

≤

∣
∣
∣
∣

∫ tn−d

td

(g(t)− γ(t))(πnmd+1(t)−md+1(t))dt

∣
∣
∣
∣
+

∣
∣
∣
∣

∫ tn−d

td

γ(t)(πnmd+1(t)−md+1(t))dt

∣
∣
∣
∣

≤

∫ tn−d

td

|g(t)− γ(t)| |πnmd+1(t)−md+1(t)| dt+

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

n−d∑

j=d+1

γj

∫ tj

tj−1

(πnmd+1(t)−md+1(t))dt

︸ ︷︷ ︸

=0 by Theorem 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ ‖πnmd+1 −md+1‖∞,Id
‖g − γ‖1,Id = O(hd+2)

(2.12)
in view of (2.4).

Now, we consider the quasi-Lagrange form (2.5) of πn and the Taylor expansion for
x

x(ξi) =
d∑

k=0

x(k)(t)(ξi − t)k

k!
+
x(d+1)(t)

(d+ 1)!
(ξi − t)d+1 +Ri, (2.13)

where

Ri =
x(d+2)(vi)

(d+ 2)!
(ξi − t)d+2, with vi between ξi and t.

By considering the binomial expansion and by using the exactness of πn on Pd, since d
is even, from (2.5) and (2.13), we obtain

πnx(t) =

2n∑

i=0

x(ξi)Li(t) = x(t) +
x(d+1)(t)

(d+ 1)!

2n∑

i=0

(ξi − t)d+1Li(t) +

2n∑

i=0

RiLi(t)

= x(t) +
x(d+1)(t)

(d+ 1)!

2n∑

i=0

(ξd+1
i − td+1)Li(t) +

2n∑

i=0

RiLi(t)

= x(t) +
x(d+1)(t)

(d+ 1)!
(πnmd+1(t)−md+1(t)) +

2n∑

i=0

RiLi(t).

(2.14)
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Assuming t ∈ [tj−1, tj ], since the fundamental functions Li are compactly supported,

|Ri| ≤

∥
∥x(d+2)

∥
∥
∞

(d+ 2)!
Chd+2, with C a suitable positive constant. Therefore

|R| =

∣
∣
∣
∣
∣

2n∑

i=0

RiLi(t)

∣
∣
∣
∣
∣
≤

∥
∥x(d+2)

∥
∥
∞

(d+ 2)!
Chd+2

2n∑

i=0

|Li(t)| .

As the Lebesgue function
∑2n

i=0 |Li(t)| is bounded independently of n, we see that

|R| = O(hd+2). (2.15)

Therefore, from (2.14)

πnx(t)− x(t) =
x(d+1)(t)

(d+ 1)!
(πnmd+1(t)−md+1(t)) +R. (2.16)

Consequently, from (2.16)

(I) =

∣
∣
∣
∣

∫ tn−d

td

g(t)(πnx(t)− x(t))dt

∣
∣
∣
∣
=

∣
∣
∣
∣

∫ tn−d

td

g(t)

(
x(d+1)(t)

(d+ 1)!
(πnmd+1(t)−md+1(t)) +R

)

dt

∣
∣
∣
∣
.

Since the function g(t)x
(d+1)(t)
(d+1)! ∈W 1,1, from (2.12) and (2.15), we get

(I) = O(hd+2). (2.17)

Therefore, from (2.8) and (2.17) we obtain (2.7).

Here we report three examples of spline QIPs of the form (2.1), that we denote by
Q2, Q̄2 and Q3.

The operators Q2 and Q̄2 are defined in the space S12(I,Tn) of C1 quadratic splines
([13], [11, p. 155]) as follows

• Q2x :=

n+2∑

i=1

λi(x)Bi, with

λ1(x) := x0, λ2(x) := 2x1 −
1

2
(x0 + x2),

λn+1(x) := 2x2n−1 −
1

2
(x2n−2 + x2n), λn+2(x) := x2n,

λi(x) :=
1
14x2i−6 −

2
7x2i−5 +

10
7 x2i−3 −

2
7x2i−1 +

1
14x2i, 3 ≤ i ≤ n.

• Q̄2x :=

n+2∑

i=1

λi(x)Bi, with

λ1(x) := x0, λi(x) := 2x2i−3−
1

2
(x2i−4+x2i−2), 2 ≤ i ≤ n+1, λn+2(x) := x2n.

The operator Q3 is defined on the space S23(I,Tn) of C2 cubic splines [13] as follows:

Q3x :=

n+3∑

i=1

λi(x)Bi,
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with

λ1(x) := x0, λ2(x) := −
5

18
x0 +

20

9
x1 −

4

3
x2 +

4

9
x3 −

1

18
x4,

λ3(x) :=
1

8
x0 − x1 +

19

8
x2 −

19

24
x4 +

1

3
x5 −

1

24
x6,

λn+1(x) :=
1

8
x2n − x2n−1 +

19

8
x2n−2 −

19

24
x2n−4 +

1

3
x2n−5 −

1

24
x2n−6,

λn+2(x) := −
5

18
x2n +

20

9
x2n−1 −

4

3
x2n−2 +

4

9
x2n−3 −

1

18
x2n−4, λn+3(x) := x2n,

λi(x) := −
1

30
x2i−8 +

4

15
x2i−7 −

19

30
x2i−6 +

9

5
x2i−4 −

19

30
x2i−2 +

4

15
x2i−1 −

1

30
x2i, 4 ≤ i ≤ n.

It is easy to verify that Q2 and Q̄2 satisfy the hypotheses of Theorem 1 and Theorem
2. Moreover, they are superconvergent on the set of evaluation points {ξi}

2n
i=0, i.e. the

following theorem holds.

Theorem 3. If ‖x(4)‖∞ is bounded, then, for πn = Q2, Q̄2 it holds

|πnx(ξi)− x(ξi)| = O(h4), 0 ≤ i ≤ 2n. (2.18)

Proof. The result (2.18) is proved in [13] for Q2. Following the same logical scheme, we
can get (2.18) also for Q̄2.

3 Projection spline methods for Uryshon integral equa-

tion with smooth kernels

We consider the integral equation (1.1) with a smooth kernel. Given a spline QIP operator
πn : C[0, 1] → S

d−1
d (I,Tn), defined as in Section 2, we introduce the following projection

methods based on it:

1. QIP spline Kulkarni’s type method, where, in (1.1), K is approximated by

Kk
n := πnK +Kπn − πnKπn. (3.1)

The approximate equation is then

ϕk
n −Kk

n(ϕ
k
n) = f. (3.2)

2. QIP spline collocation method, where, in (1.1), K is approximated by Kc
n :=

πnKπn and the right hand side f by πnf . The approximate equation is then

ϕc
n − πnK(ϕc

n) = πnf. (3.3)

3.1 Convergence of the methods

In this section we study the convergence of the spline projection methods (3.2) and (3.3).
Concerning the existence and uniqueness of the approximate solutions ϕk

n and ϕc
n, we

can refer to the general results given in [16] and [8], respectively, that also hold for the
spline QIPs considered.

To establish the convergence order of the proposed methods, we firstly need the
following assumptions.

Let ϕ be the unique solution of (1.1) and let a and b be two real numbers such that

[ min
s∈[0,1]

ϕ(s), max
s∈[0,1]

ϕ(s)] ⊂ (a, b).
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Define Ω := [0, 1] × [0, 1] × [a, b]. Let α ≥ 1. We assume that k ∈ Cα(Ω), ∂k
∂x

∈ C2α(Ω),
f ∈ Cα[0, 1]. Therefore, K is a compact operator from C[0, 1] to Cα[0, 1] and ϕ ∈
Cα[0, 1].

The operator K is Fréchet differentiable and the Fréchet derivative is given by

(K ′(x)q)(s) =

∫ 1

0

∂k

∂u
(s, t, x(t))q(t)dt. (3.4)

We get the convergence orders of the spline projection methods (3.2) and (3.3). Moreover,
we prove a superconvergence property of (3.2) in case of even d, under some hypotheses
on the functionals defining the spline QIP and on the smoothness of the kernel K.

Theorem 4. For α ≥ 1, let k ∈ Cα(Ω), ∂k
∂u

∈ C2α(Ω) and f ∈ Cα[0, 1]. Let ϕ be
the unique solution of (1.1) and assume that 1 is not an eigenvalue of K ′(ϕ). Let πn :
C[0, 1] → S

d−1
d (I,Tn) be a spline QIP operator of kind (2.1). Let ϕk

n be the unique
solution of (3.2). Then

‖ϕk
n − ϕ‖∞ = O(h2β),

with β := min{α, d+ 1}.

Proof. It is directly obtained from the approximation properties (2.3) of the spline pro-
jector πn and from the general Theorem 2.4 of [16].

If the kernel of K is sufficiently smooth, that is α ≥ d+1, we have also the following
result.

Theorem 5. For α ≥ d + 1, let k ∈ Cα(Ω), ∂k
∂u

∈ C2α(Ω) and f ∈ Cα[0, 1]. Let ϕ
be the unique solution of (1.1) and assume that 1 is not an eigenvalue of K ′(ϕ). Let
πn : C[0, 1] → S

d−1
d (I,Tn) be a spline QIP of kind (2.1). Let ϕk

n be the unique solution
of (3.2). Then

‖ϕk
n − ϕ‖∞ =

{
O(h2d+2), if d is odd
O(h2d+3), if d is even and ϕ satisfies the hypothesis of Theorem 2

.

Proof. If d is odd, the result is an immediate consequence of Theorem 4 with β = d+ 1.
Now we suppose d even. We know that, by assumption, I−K ′(ϕ) is invertible. From

(3.1), we have
(Kk

n)
′(ϕ) = πnK

′(ϕ) + (I − πn)K
′(πnϕ)πn.

Consequently,

K ′(ϕ)− (Kk
n)

′(ϕ) = (I − πn)K
′(ϕ)(I − πn) + (I − πn)(K

′(ϕ)−K ′(πnϕ))πn.

Therefore,

‖K ′(ϕ)− (Kk
n)

′(ϕ)‖ ≤ ‖(I − πn)K
′(ϕ)(I − πn)‖+ ‖(I − πn)(K

′(ϕ)−K ′(πnϕ))πn‖.

Since πn converges to the identity operator pointwise on C[0, 1] and K ′(ϕ) is compact,
it follows that ‖(I − πn)K

′(ϕ)‖ → 0, as n→ ∞.
For δ0 > 0, let

B(ϕ, δ0) = {ψ ∈ X : ‖ϕ− ψ‖∞ < δ0}.

Since by assumption ∂k
∂x

∈ C2α(Ω), it follows that K ′ is Lipschitz continuous in a neigh-
borhood B(ϕ, δ0) of ϕ, that means, there exists a constant γ such that

‖K ′(ϕ)−K ′(x)‖ ≤ γ ‖ϕ− x‖∞ , x ∈ B(ϕ, δ0).

Therefore, we get

‖K ′(ϕ)−K ′(πnϕ)‖ ≤ γ‖ϕ− πnϕ‖∞ → 0, as n→ ∞.

7



Thus, since the sequence {‖πn‖} is uniformly bounded,

‖K ′(ϕ)− (Kk
n)

′(ϕ)‖ → 0 as n→ ∞.

It follows that I − (Kk
n)

′(ϕ) is invertible, for n big enough, and

‖(I − (Kk
n)

′(ϕ))]−1‖ ≤ 2‖(I −K ′(ϕ))−1‖.

Since the spline operator πn is a projector, by using Theorem 1.1 in [16], we obtain

‖ϕk
n − ϕ‖∞ ≤ 4‖(I −K ′(ϕ))−1‖‖(I − πn)(K(ϕ)−K(πnϕ))‖∞. (3.5)

Now we can write

(I−πn)(K(ϕ)−K(πn(ϕ))) = −(I − πn)[K(πnϕ)−K(ϕ)−K ′(ϕ)(πnϕ− ϕ)]
︸ ︷︷ ︸

(✷)

−(I − πn)K
′(ϕ)(πnϕ− ϕ)

︸ ︷︷ ︸

(✸)

.

By applying Lemma 2.1 in [16], that holds for the spline projector πn, since β = d + 1,
we have

‖(✷)‖∞ = O(h3d+3). (3.6)

Moreover, from (2.4), we get

‖(✸)‖∞ ≤ C‖(K ′(ϕ)(πnϕ− ϕ))(d+1)‖∞h
d+1. (3.7)

Since ∂k
∂u

∈ C2α(Ω), it follows that

(K ′(ϕ)(πnϕ− ϕ))(d+1)(s) =

∫ 1

0

∂kd+2

∂sd+1∂u
(s, t, ϕ(t))(πnϕ− ϕ)(t)dt,

then, since d is even, by Theorem 2 with g(t) = ∂kd+2

∂sd+1∂u
(s, t, ϕ(t)), we obtain

‖(K ′(ϕ)(πnϕ− ϕ))(d+1)‖∞ = O(hd+2). (3.8)

Thus, from (3.7) and (3.8)
‖(✸)‖∞ = O(h2d+3). (3.9)

Finally, from (3.5), (3.6) and (3.9), we can conclude that ‖ϕk
n − ϕ‖∞ = O(h2d+3).

For the QIP spline collocation method (3.3), as we expect from classical literature
(see e.g [6, 8]), we have

‖ϕc
n − ϕ‖∞ = O(hβ). (3.10)

If β = d+ 1, from (2.4), we have the following order of convergence:

‖ϕc
n − ϕ‖∞ = O(hd+1). (3.11)

3.2 Construction of the approximate solutions

Considering the equations (3.2) and (3.3), here we propose the construction of the cor-
responding approximate solutions.

1. QIP spline Kulkarni’s type method.

From (3.1) and (3.2), taking into account that πn is a spline QIP, after some algebra
we obtain

πnϕ
k
n − πnK(ϕk

n) = πnf, ϕk
n = πnϕ

k
n + (I − πn)(K(πnϕ

k
n) + f) (3.12)

and
πnϕ

k
n − πnK(πnϕ

k
n + (I − πn)(K(πnϕ

k
n) + f)) = πnf. (3.13)
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Defining ψn = πnϕ
k
n and

Fn(y) = y − πnK(y + (I − πn)(K(y) + f))− πnf, y ∈ S
d−1
d (I,Tn), (3.14)

whose Fréchet derivative is given by

(Fn)
′(y)q = q − πnK

′(y + (I − πn)(K(y) + f))(I + (I − πn)K
′(y))q, (3.15)

the equation (3.13) becomes ψn − πnK(ψn + (I − πn)(K((ψn) + f)) = πnf , which
is equivalent to Fn(ψn) = 0 and it is iteratively solved by applying the Newton-
Kantorovich method.

Given an initial approximation ψ
(0)
n , the iterates ψ

(r)
n , r = 0, 1, 2, . . . , are given by

ψ(r+1)
n = ψ(r)

n − ((Fn)
′(ψ(r)

n ))−1Fn(ψ
(r)
n ). (3.16)

Defining, according to (3.12),

ϕ(r)
n := ψ(r)

n + (I − πn)(K(ψ(r)
n ) + f), (3.17)

then, from (3.14) and (3.15), (3.16) can be written as

ψ
(r+1)
n − πnK

′(ϕ
(r)
n )ψ

(r+1)
n − πnK

′(ϕ
(r)
n )(I − πn)K

′(ψ
(r)
n )ψ

(r+1)
n

= πn(K(ϕ
(r)
n ) + f)− πnK

′(ϕ
(r)
n )ψ

(r)
n − πnK

′(ϕ
(r)
n )(I − πn)K

′(ψ
(r)
n )ψ

(r)
n .

(3.18)

Since ψ
(r)
n ∈ S

d−1
d (I,Tn),

ψ(r)
n =

N∑

j=1

x(r)n (j)Bj , x(r)n ∈ R
N (3.19)

and, from (3.18), after some algebra, we obtain the following linear system of size
N :

x
(r+1)
n (i)−

N∑

j=1

x(r+1)
n (j)λi(K

′(ϕ(r)
n )Bj)−

N∑

j=1

x(r+1)
n (j)λi

(

K ′(ϕ(r)
n )(I − πn)K

′(ψ(r)
n )Bj

)

= λi

(

K(ϕ
(r)
n )
)

+ λi(f)−

N∑

j=1

x(r)n (j)λi

(

K ′(ϕ(r)
n )Bj

)

−

N∑

j=1

x(r)n (j)λi

(

K ′(ϕ(r)
n )(I − πn)K

′(ψ(r)
n )Bj

)

,

i = 1, . . . , N , whose matrix form is

(

I −A(r)
n −B(r)

n

)

x(r+1)
n = d(r)n , (3.20)

where, for i, j = 1, 2, . . . , N ,

• A
(r)
n (i, j) := λi

(

K ′(ϕ
(r)
n )Bj

)

,

• B
(r)
n (i, j) := λi

(

K ′(ϕ
(r)
n )(I − πn)K

′(ψ
(r)
n )Bj

)

,

• d
(r)
n (i) := λi

(

K(ϕ
(r)
n )
)

+ λi(f)− (A
(r)
n x

(r)
n )(i)− (B

(r)
n x

(r)
n )(i).

After solving the system (3.20), we get the vector x
(r+1)
n , defining ψ

(r+1)
n as in

(3.19). Finally, the approximate solution ϕk
n at the (r + 1) iteration is ϕ

(r+1)
n ,

constructed as in (3.17).

From (3.17), we can remark that the approximate solution ϕk
n ∈ Cd−1[0, 1], if the

kernel k is sufficiently smooth, contrary to the classical projection methods based
on piecewise polynomials of degree d that are at most continuous.
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2. QIP spline collocation method.

Defining Fn(y) = y − πnK(y) − πnf , where y ∈ S
d−1
d (I,Tn), we solve Fn(ϕ

c
n) = 0

iteratively by using the Newton-Kantorovich method. Given an initial approxima-

tion ϕ
(0)
n , the iterates ϕ

(r)
n , r = 0, 1, 2, . . . , are

ϕ(r+1)
n − πnK

′(ϕ(r)
n )ϕ(r+1)

n = πn(K(ϕ(r)
n ) + f)− πnK

′(ϕ(r)
n )ϕ(r)

n . (3.21)

Setting

ϕ(r)
n :=

N∑

j=1

x(r)n (j)Bj , x(r)n ∈ R
N , (3.22)

(3.21) is equivalent to the following system of linear equations of size N
(

I − C(r)
n

)

x(r+1)
n = w(r)

n , (3.23)

where, for i, j = 1, 2, . . . , N ,

• C
(r)
n (i, j) := λi

(

K ′(ϕ
(r)
n )Bj

)

,

• w
(r)
n (i) := λi

(

K(ϕ
(r)
n )
)

+ λi(f)− (C
(r)
n x

(r)
n )(i).

After solving the system (3.23), we get the vector x
(r+1)
n , defining ϕ

(r+1)
n as in

(3.22). Finally, the approximate solution ϕc
n at the (r + 1) iteration is ϕ

(r+1)
n .

From (3.22), we notice that the solution ϕ
(c)
n is a spline of degree d and class Cd−1.

From a computational point of view, the QIP spline Kulkarni’s type method is more
complicated than the QIP spline collocation one that is easier to implement. However,
as we have proved in Section 3.1, the first one has a higher convergence order.

Remark 1. Our method (3.1)-(3.2), based on quasi-interpolatory projectors in the space
of splines of degree d and smoothness Cd−1, is comparable with those recently proposed
in [5] and [16], based on interpolatory projectors in the space of piecewise polynomials of
degree d at most continuous. In general, for sufficiently smooth kernels, the convergence
order is 2d+2 for the above three methods. However, the schemes in [5] and [16] provide
a numerical solution that is at most continuous for any degree d, while the approximate
solution provided by our scheme has the advantage of having smoothness that depends on
the degree d, indeed it is Cd−1. Moreover, we remark that our method has convergence
order 2d+3 if d is even and those proposed in [5] and [16] can achieve convergence order
3d+ 3 using interpolatory projectors at the set of Gauss points.

3.3 Numerical results

In this section we present some test equations of kind (1.1), also considered in [4, 5, 16].
We solve them both by the QIP spline Kulkarni’s type method and the QIP spline
collocation one, based on the spline projectors Q2, Q̄2 and Q3.

The integrals appearing in (3.20) and (3.23) are evaluated numerically by using a
classical composite Gauss-Legendre quadrature formula with high accuracy.

For all the tests, for increasing values of n, we compute:

i) the maximum absolute error

Eµ
∞ := max

v∈G
|ϕ(v)− ϕµ

n(v)|,

where G is a set of 1500 equally spaced points in [0, 1], µ = k in case of QIP
spline Kulkarni’s type methods and µ = c in case of QIP spline collocation ones,
based on the projectors Q2, Q̄2, Q3. We also compute the corresponding numerical
convergence order Oµ

∞, obtained by the logarithm to base 2 of the ratio between two
consecutive errors;
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ii) the maximum absolute error at the quasi-interpolation nodes

ESµ := max
0≤i≤2n

|ϕ(ξi)− ϕµ
n(ξi)|,

with µ = k in case of QIP spline Kulkarni’s type methods and µ = c in case of QIP
spline collocation ones, based on Q2, Q̄2. The corresponding numerical convergence
order Oµ is also computed.

The numerical tests confirm the theoretical properties proved in Section 3.1. Moreover,
the comparisons of our results with those reported in [4, 5, 16] show that the statements
of Remark 1 hold. Finally, we remark that methods based on quasi-interpolating spline
projectors provide smooth approximate solutions of class C1 when πn = Q2, Q̄2 and of
class C2 when πn = Q3.

Test 1

Consider the following Hammerstein integral operator K with a degenerate kernel, de-
fined as follows

K(x)(s) =

∫ 1

0

p(s)q(t)x2(t)dt, s ∈ [0, 1],

where p(s) = cos(11πs), q(t) = sin(11πt).
Then K is compact and the integral equation ϕ − K(ϕ) = f has a unique solution

for f ∈ C[0, 1].

We choose f(s) =

(

1−
2

33π

)

cos(11πs), s ∈ [0, 1], so that ϕ(s) = cos(11πs), s ∈ [0, 1].

By using computational procedures constructed in the Matlab environment, we obtain
the results reported in Table 1, that confirm the theoretical ones stated in Theorem 5 for
the QIP spline Kulkarni’s type method and in (3.11) for the QIP spline collocation one.
In particular, we remark that in case d = 2, there is a superconvergence phenomenon,
i.e. the order of the QIP spline Kulkarni’s type method is 7, as proved in Theorem 5.
Moreover, we can notice the superconvergence on the set of evaluation points, as stated in
Theorem 3. Finally, we remark that the approximate solutions are smooth. In particular
they are of class C1 when πn = Q2, Q̄2 and of class C2 when πn = Q3.

Test 2

Consider the following Hammerstein integral equation

ϕ(s)−

∫ 1

0

es−2tϕ3(t)dt = es+1, 0 ≤ s ≤ 1,

with the exact solution ϕ(s) = es.
We obtain the results reported in Table 2, that confirm the theoretical ones stated in

Theorem 5 for the QIP spline Kulkarni’s type method and in (3.11) for the QIP spline
collocation one.

Test 3

Consider the following Urysohn integral equation

ϕ(s)−

∫ 1

0

dt

s+ t+ ϕ(t)
= f(s), 0 ≤ s ≤ 1,

where f is chosen so that ϕ(t) =
1

t+ c
, c > 0, is a solution.

We consider c = 1, c = 0.1 and we remark that the exact solution is ill behaved in
the case c = 0.1.
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Table 1: Maximum absolute errors for Test 1 in case of QIP spline Kulkarni’s type (k)
and QIP spline collocation (c) methods.

n Ek
∞ Ok

∞ ESk Ok Ec
∞ Oc

∞ ESc Oc

Methods based on Q2

40 1.08(-06) 6.97(-07) 7.74(-03) 4.98(-03)

80 4.08(-09) 8.1 2.26(-09) 8.2 6.77(-04) 3.5 3.76(-04) 3.7

160 2.13(-11) 7.6 6.31(-12) 8.5 8.17(-05) 3.0 2.43(-05) 4.0

320 1.42(-13) 7.2 2.14(-14) 8.2 1.01(-05) 3.0 1.53(-06) 4.0

640 - - - - 1.26(-06) 3.0 9.57(-08) 4.0

Methods based on Q̄2

40 1.50(-06) 1.41(-06) 9.12(-03) 8.58(-03)

80 1.12(-08) 7.1 7.79(-09) 7.5 7.97(-04) 3.5 5.54(-04) 4.0

160 8.07(-11) 7.1 3.28(-11) 7.9 8.58(-05) 3.2 3.49(-05) 4.0

320 6.13(-13) 7.0 1.32(-13) 8.0 1.02(-05) 3.0 2.19(-06) 4.0

640 5.33(-15) 6.8 - - 1.27(-06) 3.0 1.37(-07) 4.0

Methods based on Q3

40 2.38(-08) 1.53(-03)

80 9.40(-11) 8 9.27(-05) 4.0

160 1.12(-13) 9.7 5.58(-06) 4.1

320 - - 3.43(-07) 4.0

640 - - 1.34(-08) 4.7

Firstly, we consider c = 1 and we obtain the results presented in Table 3.
When we consider c = 0.1 by using the same procedures we get the results in the

Table 4.
Also in Test 3, the theoretical results stated in Theorem 5 for the QIP spline Kulkarni’s

type method and in (3.11) for the QIP spline collocation one are confirmed. In case
of degree d even, we can remark the superconvergence phenomenon of the QIP spline
Kulkarni’s type method and the superconvergence on the set of evaluation points, for
both QIP spline methods.

4 Projection spline methods for Uryshon integral equa-

tion with Green’s function type kernels

In this section, we consider integral equations (1.1) with Green’s function type kernels in
the definition of the integral operator K in (1.2). In particular, we assume k belonging
to G2(α, γ) [8], i.e., given two integers α and γ with α ≥ γ, α ≥ 0, γ ≥ −1, the kernel k
has the following properties:

1. the partial derivative l(s, t, u) :=
∂k(s, t, u)

∂u
exists for all (s, t, u) ∈ Ψ := [0, 1] ×

[0, 1]× R;

2. there are functions li ∈ Cα(Ψi), i = 1, 2, with

l(s, t, u) =

{
l1(s, t, u), (s, t, u) ∈ Ψ1, s 6= t,
l2(s, t, u), (s, t, u) ∈ Ψ2,

12



Table 2: Maximum absolute errors for Test 2 in case of QIP spline Kulkarni’s type (k)
and QIP spline collocation (c) methods.

n Ek
∞ Ok

∞ ESk Ok Ec
∞ Oc

∞ ESc Oc

Methods based on Q2

4 2.00(-08) 4.54(-09) 3.35(-04) 7.61(-05)

8 1.13(-10) 7.5 1.49(-11) 8.3 4.28(-05) 3.0 5.67(-06) 3.7

16 6.83(-13) 7.4 4.10(-14) 8.5 5.36(-06) 3.0 3.87(-07) 3.9

32 1.51(-14) 5.5 - - 6.68(-07) 3.0 2.53(-08) 3.9

64 - - - - 8.27(-08) 3.0 1.62(-09) 4.0

Methods based on Q̄2

4 5.35(-08) 1.16(-08) 3.63(-04) 7.88(-05)

8 4.88(-10) 6.8 5.35(-11) 7.8 4.47(-05) 3.0 4.90(-06) 4.0

16 4.03(-12) 6.9 2.46(-13) 7.8 5.47(-06) 3.0 3.25(-07) 3.9

32 4.80(-14) 6.4 - - 6.75(-07) 3.0 2.11(-08) 3.9

64 - - - - 8.38(-08) 3.0 1.34(-09) 4.0

Methods based on Q3

4 2.37(-11) 2.17(-05)

8 5.73(-14) 8.7 1.51(-06) 3.8

16 - - 9.93(-08) 3.9

32 - - 6.36(-09) 4.0

64 - - 4.02(-10) 4.0

and Ψ1 := {(s, t, u) : 0 ≤ t ≤ s ≤ 1, u ∈ R}, Ψ2 := {(s, t, u) : 0 ≤ s ≤ t ≤ 1, u ∈
R};

3. if γ ≥ 0 then l ∈ Cγ(Ψ). If γ = −1, then l may have a discontinuity of the first
kind along the line s = t;

4. there are two functions ki ∈ Cα(Ψi), i = 1, 2, such that

k(s, t, u) =

{
k1(s, t, u), (s, t, u) ∈ Ψ1, s 6= t,
k2(s, t, u), (s, t, u) ∈ Ψ2,

5.
∂2ki
∂2u

∈ C(Ψi), i = 1, 2.

Thanks to such requirements, the operator K is Fréchet differentiable and the Fréchet
derivative is given by (3.4).

In order to obtain the approximate solution for (1.1), given a spline QIP operator
πn : C[0, 1] → S

d−1
d (I,Tn), we apply the QIP spline Kulkarni’s type method (3.2) and

the QIP spline collocation one (3.3), described in Section 3. For the explicit construction
of the approximate solutions we can refer to Section 3.2.

Concerning the convergence of the methods, in case of the QIP spline collocation
method, as we expect (see e.g [6, 8]), we have the order of convergence stated in (3.10),
(3.11) and in case of the QIP Kulkarni’s type method we can prove the following result.

Theorem 6. Let the kernel k of the integral operator K in (1.2) be of class G2(2α, γ),
with α ≥ 1 and f ∈ Cα[0, 1]. Let ϕ be the unique solution of (1.1) and assume that 1 is
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Table 3: Maximum absolute errors for Test 3, with c = 1, in case of QIP spline Kulkarni’s
type (k) and QIP spline collocation (c) methods.

n Ek
∞ Ok

∞ ESk Ok Ec
∞ Oc

∞ ESc Oc

Methods based on Q2

4 8.48(-08) 5.06(-08) 6.85(-04) 3.84(-04)

8 7.84(-10) 6.8 3.50(-10) 7.2 9.54(-05) 2.8 3.84(-05) 3.3

16 5.08(-12) 7.3 1.47(-12) 7.9 1.21(-05) 3.0 3.10(-06) 3.6

32 3.08(-14) 7.4 5.55(-15) 8.0 1.50(-06) 3.0 2.21(-07) 3.8

64 - - - - 1.85(-07) 3.0 1.48(-08) 3.0

Methods based on Q̄2

4 2.00(-07) 1.33(-07) 7.27(-04) 4.59(-04)

8 2.75(-09) 6.2 1.42(-09) 6.6 9.96(-05) 2.9 4.67(-05) 3.3

16 2.67(-11) 6.7 9.34(-12) 7.2 1.25(-05) 3.0 3.84(-06) 3.6

32 2.24(-13) 6.9 4.60(-14) 7.7 1.53(-06) 3.0 2.78(-07) 3.8

64 - - - - 1.87(-07) 3.0 1.87(-08) 3.9

Methods based on Q3

4 1.58(-09) 9.02(-05)

8 3.30(-12) 8.9 7.77(-06) 3.5

16 6.55(-15) 9.0 6.84(-07) 3.5

32 - - 5.00(-08) 3.8

64 - - 3.36(-09) 3.9

not an eigenvalue of K ′(ϕ). Let πn : C[0, 1] → S
d−1
d (I,Tn) be a spline QIP operator of

kind (2.1). Let ϕk
n be the unique solution of (3.2). Then

‖ϕk
n − ϕ‖∞ = O(hβ+β̃), (4.1)

where β := min{α, d+ 1} and β̃ := min{β, γ + 2}.

Proof. Thanks to the approximation properties of the spline QIPs πn stated in (2.3) and
from [15, Theorem 2.3], we obtain (4.1).

4.1 Numerical results

In this section we consider the following test equation

x(s)−

∫ 1

0

k(s, t)g(t, x(t))dt =

∫ 1

0

k(s, t)z(t)dt, s ∈ [0, 1], (4.2)

where

k(s, t) =

{
(1− s)t 0 ≤ t ≤ s ≤ 1,
s(1− t), 0 ≤ s ≤ t ≤ 1,

g(t, u) =
1

1 + t+ u
and z(t) is chosen so that ϕ(s) =

s(1− s)

s+ 1
is a solution of (4.2). We

remark that γ = 0 and α can be chosen as large as we want.
We solve it both by the QIP spline Kulkarni’s type method and the QIP spline

collocation one, based on the spline projectors Q2, Q̄2 and Q3.
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Table 4: Maximum absolute errors for Test 3, with c = 0.1, in case of QIP spline
Kulkarni’s type (k) and QIP spline collocation (c) methods.

n Ek
∞ Ok

∞ ESk Ok Ec
∞ Oc

∞ ESc Oc

Methods based on Q2

4 4.50(-07) 1.13(-07) 6.80(-01) 5.51(-01)

8 3.87(-10) 10.2 2.51(-10) 8.8 2.67(-01) 1.3 2.10(-01) 1.4

16 1.00(-11) 5.3 1.01(-12) 8.0 7.04(-02) 1.9 5.12(-02) 2.0

32 1.21(-13) 6.4 1.07(-14) 6.7 1.29(-02) 2.4 7.99(-03) 2.7

64 - - 1.86(-03) 2.8 8.65(-04) 3.2

Methods based on Q̄2

4 2.89(-06) 1.39(-06) 7.44(-01) 6.41(-01)

8 1.26(-08) 7.8 3.43(-09) 8.7 2.94(-01) 1.3 2.48(-01) 1.4

16 8.00(-11) 7.3 1.22(-11) 8.1 7.77(-02) 1.9 6.14(-02) 2.0

32 5.88(-13) 7.1 4.80(-14) 8.0 1.42(-02) 2.4 9.87(-03) 2.6

64 - - - - 2.02(-03) 2.8 1.11(-03) 3.2

Methods based on Q3

4 1.97(-08) 4.17(-01)

8 1.16(-11) 10.7 1.03(-01) 2.0

16 1.29(-13) 6.5 1.70(-02) 2.6

32 - - 1.96(-03) 3.1

64 - - 1.75(-04) 3.5

The integrals appearing in (3.20) and (3.23) are evaluated numerically with high
accuracy, by a classical composite Gauss-Legendre quadrature formula in a suitable way,
i.e. paying attention to the line s = t in the evaluation of the kernel, by using quadrature
nodes that do not lie on such a line.

For increasing values of n, we compute the maximum absolute error

Eµ
∞ := max

v∈G
|ϕ(v)− ϕµ

n(v)|,

where G is a set of 1500 equally spaced points in [0, 1], µ = k in case of QIP spline
Kulkarni’s type methods and µ = c in case of QIP spline collocation ones, based on the
projectors Q2, Q̄2 and Q3. We also compute the corresponding numerical convergence
order Oµ

∞.
By using computational procedures constructed in the Matlab environment, we obtain

the results reported in Table 5. The numerical tests confirm the theoretical results stated
in Theorem 6 for the QIP spline Kulkarni’s type method and in (3.11) for the QIP spline
collocation method.

5 Conclusions

In this paper we have proposed spline projection methods for the numerical solution of
nonlinear integral equations, both in case of smooth kernels and in case of Green’s func-
tion type ones. In particular, we have considered quasi-interpolating spline projectors
on a bounded interval for defining a projection method with high order of convergence
and a collocation method of classical type. We have analysed the construction of the
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Table 5: Maximum absolute errors in case of QIP spline Kulkarni’s type (k) and QIP
spline collocation (c) methods.

n Ek
∞ Ok

∞ Ec
∞ Oc

∞

Methods based on Q2

4 2.53(-06) 1.41(-03)

8 9.44(-08) 4.7 1.94(-04) 2.9

16 2.93(-09) 5.0 2.44(-05) 3.0

32 8.53(-11) 5.1 3.02(-06) 3.0

64 2.50(-12) 5.1 3.71(-07) 3.0

Methods based on Q̄2

4 2.94(-06) 1.54(-03)

8 1.09(-07) 4.8 2.09(-04) 2.9

16 3.28(-09) 5.0 2.58(-05) 3.0

32 9.25(-11) 5.1 3.12(-06) 3.0

64 2.63(-12) 5.1 3.78(-07) 3.0

Methods based on Q3

4 1.29(-07) 1.85(-04)

8 6.49(-09) 4.3 1.56(-05) 3.6

16 1.83(-10) 5.1 1.36(-06) 3.5

32 3.82(-12) 5.6 1.00(-07) 3.8

64 6.86(-14) 5.8 6.73(-09) 3.9

approximate solutions and we have studied their order of convergence. Then, we have
presented some numerical examples, confirming the approximation properties of the pro-
posed methods.

An interesting work in progress is the use of spline quasi-interpolating operators which
are not projectors for the numerical solution of nonlinear integral equations, as considered
in [2] for the linear case.
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